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Supplementary Methods 
 
	
Disease-relevant cell types used to construct the enhancer and enhancer-promoter 

catalogs 

For B-cell acute lymphoblastic leukemia (B-ALL), we used data of the following cell types: 

GM12878, CD19+ B cell, naïve B cell, total B cell. For acute myeloid leukemia (AML), we 

used data of the following cell types: K562, NB4, monocyte, monocyte progenitor, 

megakaryocyte, eosinophil, erythroblast, neutrophil, macrophage. For neuroblastoma 

(NBL), we used data of the following cell types: SK-N-SH, SH-SY5Y, neural crest cell, 

IMR-5/75. For Wilms tumor (WT), we used data of the following tissue/cell types: adult 

kidney, HEK293, IMR-5/75, RT407, G401, 786-O. For osteosarcoma (OS), we used data 

of the following cell types: Osteoblast, U2OS, SaOS2. The sources of the data sets are 

provided in Table S1. 

 
Prediction of active enhancers using histone mark ChIP-Seq data 

Enhancers were predicted using the Chromatin Signature Inference using Artificial Neural 

Network (CSI-ANN) algorithm (13). The inputs to the algorithm are normalized ChIP-Seq 

signals of three histone marks associated with enhancers (H3K4Me1, H3K4Me3, 

H3K27Ac). We used public histone mark ChIP-Seq data of human cell/tissue types 

relevant to the five cancer types in this study (Table S1). Raw ChIP-Seq data were first 

mapped to human GRCh37 genome using Bowtie2 (v2.1.0). CSI-ANN combines signals of 

all histone marks and uses an artificial neural network-based classifier to make predictions 

of active enhancers. A training set for the classifier was prepared using ENCODE data of 

GM12878, K562, and hESC cells. Specifically, a set of promoter-distal p300 binding sites 



	 	

(2.5 kbp away from RefSeq TSS) in all three cell types was selected. The top 500 distal 

p300 sites that overlap with H3K4Me1 and H3K27Ac peaks, but not with H3K4Me3 peaks 

(promoter mark), were selected as the positive training set. One thousand randomly 

selected genomic regions and 500 active promoter regions were used as the negative 

training set. Enhancers were predicted using a false discovery rate (FDR) cutoff of 0.05. 

Predicted enhancers that overlap by >500 bp were merged by selecting the enhancer with 

the highest CSI-ANN score. 

 

Prediction of SNVs that disrupt transcription factor binding 

We used the Find Individual Motif Occurrences (FIMO) software to scan the 100 bp 

sequences flanking SNVs. A collection of transcription factor DNA binding motifs from the 

Cis-BP database (v1.02) was used for motif scan (48). Motif score differences between the 

sequences harboring the alternative alleles of the SNV were computed. To determine if 

one of the alleles of a SNV causes significance change in the TF motif score, a p-value for 

the TF motif score difference was calculated using a null distribution computed with all 

SNPs identified by the 1000 Genome Project. P-values were adjusted for multiple testing 

using the Benjamini-Hochberg method. 

 

Prediction of enhancer-promoter interactions 

Target promoters of enhancers were predicted using the Integrated Method for Predicting 

Enhancer Targets (IM-PET) algorithm (14).  It predicts enhancer-promoter interactions by 

integrating four features derived from transcriptome, epigenome, and multiple genome 

sequence data, including: 1) enhancer-promoter activity correlation, 2) transcription factor-



	 	

promoter co-expression, 3) enhancer-promoter co-evolution, and 4) enhancer-promoter 

distance. Public histone mark ChIP-Seq and RNA-Seq data (Table S1) were used to 

compute values of features 1, 2 and 4. Values of feature 3 were computed based on 

sequence conservation across 15 mammalian species (human, chimp, gorilla, orangutan, 

gibbon, rhesus, baboon, marmoset, tarsier, mouse lemur, tree shrew, mouse, rat, rabbit, 

and guinea pig). We used an FDR cutoff of 0.01 for making predictions.  

 

Parameter optimization of the weighted elastic net model 

The translocation t(14,X) is known to hijack a super enhancer on chromosome 14 to near 

CRLF2 gene and result in the overexpression of CRLF2. To optimize parameters of the 

weighted elastic net (WEN) model, we constructed the mutation count matrix of CRLF2 

disrupting its cis-regulatory elements. We used 10-fold cross-validation to tune the 

parameters of the WEN model. In each iteration, we used the data of 147 patients for 

training the model. The trained model was then used to predict CRLF2 expression using 

data from the remaining 16 patients. Since our model predicts expression value with cis-

regulatory mutations (e.g. enhancer mutations or mutations disrupt enhancer-promoter 

interactions) (predictors), we define a mean squared error as the difference between 

expected expression value based on the fitted model and observed expression value of 

CRLF2. The model fitting of the weighted elastic net is done using the Least Angle 

Regression (LARS) algorithm implemented in the “AdapEnetClass” R package. The WEN 

model has two adjustable parameters: penalty parameter !! and forward selection step of 

LARS algorithm. The penalty parameter !! controls the strength of the penalty term in the 

ridge regression and LASSO regression. The forward step of the LARS algorithm controls 



	 	

the number of predictors considered by the model. We tested a combination of six different  

!!	values (0, 0.1, 0.5, 1, 2, 3) and fifteen forward steps (1-15). We also performed the 

tenfold cross validation using permutated CRLF2 expression values. The model generated 

using real data out-performed the ones generated using permutated data, suggesting the 

robustness of the trained model (Fig. S1M). We also tested the sensitivity of prediction 

result on parameter setting. We made predictions using three !!	values, 0.1, 0.2, and 0.3. 

Generally with the increase of !!, the number of predicted genes decreased modestly (4% 

decrease with !!	= 0.2 and 15% decrease with !!	= 0.3). And the genes predicted with !!	= 

0.2 or 0.3 were roughly a subset of genes predicted with !!	= 0.1 (Fig. S1M). Based on 

these analyses, we chose to use !! = 0.1 and forward step = 15 to make the final 

predictions in this study. 

The statistical significance of each regression coefficient was computed using the 

“AdapEnetClass” R package. The p-values were adjusted for multiple-testing with the 

Benjamini-Hochberg method. As a result, our method selects mutations that are 

significantly associated with the gene expression change in the patients with an adjusted 

p-value < 0.05. 

 

Evaluation of false prediction rate using an independent cohort 

To validate the recurrence of predicted causal noncoding mutations, we followed the 

method described in (49) to generate the quantile-quantile (QQ) plot. We downloaded 

simple somatic mutations and somatic structural variants in 2,715 donors from the ICGC 

data portal. For each genes affected by noncoding mutations, the number of mutated 

patients, k, was used as the test statistic. In our analysis with TARGET data, 2% of SNVs 



	 	

in enhancer/promoter regions affect gene expression, and 24% of structural variant break 

points affect gene expression. To compute the background mutation rate (BMR) for each 

gene in each ICGC donor, we counted the number of structural variants in 200 kbp region 

and the number of SNVs in enhancers/promoters and computed the BMR under the 

assumption that the causal noncoding mutations rate is the same as the TARGET data. 

Then we computed the probability of having observed k or more mutations in n patients in 

the gene of interest using a Poisson binomial model:  
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where Fl is the set of all subsets of k integers that can be selected from {1, 2, …, n}, pi or pj 

is the probability that patient i or patient j has the mutation; A is a set of k integers that can 

be selected from {1, 2,…, n} and Ac is the complement of A. We used an approximation for 

the Poisson binomial distribution implemented in the Python package, poibin. The QQ plot 

shows the observed P values versus P-values based on random expectation. 

 

Replication timing analysis 

Genome-wide replication timing data for GM12878, K562, SK-N-SH, HEK293, and U2OS 

cells were downloaded from the Replication Domain database (50). These data were 

generated using the repli-seq method (51). Briefly, cells were sorted into early (S) and 

late (G1) phase fractions on the basis of DNA content using flow cytometry. BrdU-

labeled DNA from each fraction was immunoprecipitated, amplified, and sequenced. 

The replication timing was measured as the log2 ratio of early over late fraction reads in 



	 	

5 kb bins. The replication timing for each gene was calculated as the average log2 ratio 

of early over late fraction reads across the whole gene body. 

 

Regulon disruption of transcription factors in cancer patients 

Regulon of a transcription factor is defined as the set of target genes of the TF. To identify 

the target gene, the enhancer and promoter sequences of the gene is scanned for binding 

motif hit of the TF using Find Individual Motif Occurrences (FIMO) and an FDR cutoff of 

0.01 (52). The regulon of a given TF is defined as disrupted if at least one of the following 

three scenarios is observed: 1) coding region of the TF gene is mutated; 2) at least one TF 

binding site in the enhancer/promoter of a target gene is mutated; 3) at least one 

enhancer-promoter interaction involving the TF and a target gene is disrupted by a SV. We 

ranked the transcription factors according to the number of patients with regulon disruption 

by combined coding and noncoding mutations. 

 

Mutual exclusivity and co-occurrence of mutations 

We tested mutual exclusivity and co-occurrence of mutations for genes mutated in at least 

5 patients. For a given gene pair, we performed Fisher’s exact test using the Comet R 

package (53). The Benjamini-Hochberg method was used to correct for multiple testing. 

 
Clustering of cancer subtypes 

We first generated a joint mutational profile for each patient covering both coding and 

noncoding mutations. These include: non-silent point mutations in the coding region, copy 

number alterations in the coding region, gene fusion, SNVs or small indels in 

enhancers/promoters of the gene, copy number alterations affecting enhancers and 



	 	

enhancer rearrangement. We performed hierarchical clustering to identify patient groups 

based on their joint mutational profiles. We used the elbow method to determine the 

optimal number of clusters. To do so, we cut the hierarchical clustering dendrogram to 

generate different numbers of clusters ranging from two to fifteen. For each number of 

clusters, the total within-cluster sum of square (WSS) was calculated. The curve of WSS 

versus the number of clusters was plotted. The location of a bend in the plot was used to 

determine the optimal number of clusters. 

 

RT-qPCR  

Total RNA was isolated using the RNeasy micro kit (Qiagen) including on-column DNase 

digestion to remove genomic DNA. cDNA was synthesized from total RNA using the high-

capacity cDNA reverse transcription kit (Applied Biosystems) according to the 

manufacturer’s instructions. qPCR reactions were performed on a Bio-Rad CFX Connect 

real-time PCR system with iQTM SYBR® Green Supermix (Bio-Rad) according to 

manufacturers’ instructions. Relative gene expression was calculated using the 2-ΔΔCt 

method using Tbp as the reference gene. Each sample was assayed in duplicate, and at 

least three independent samples were analyzed for each experimental condition. 

 

Luciferase reporter assay  

Candidate enhancer (~3 kb) was cloned into the luciferase reporter vector pGL3 

(Promega) using in-fusion HD cloning kit (Clontech). A super core promoter 1 (SCP1) (54) 

was used as the basal promoter. A negative control region of similar length with no 

enhancer-associated histone modification signals was also cloned into the same vector as 



	 	

a negative control. Reporter constructs were co-transfected with the internal control 

construct pRL-TK (Promega) into Ba/F3 cells by electroporation. 48h post transfection, 

cells with three independent transfections were harvested and measured for firefly and 

Renilla luciferase activities using the dual-luciferase reporter assay system (Promega). 

Firefly luciferase activity of individual transfections was normalized against Renilla 

luciferase activity. 

  

sgRNA design 

The sgRNAs targeting CHD4 were designed by Feng Zhang’s laboratory (55).  The 

sequences for non-targeting control sgRNAs were based on a previous publication (56). All 

sequences are listed in Table S4.  

	
	
Competition growth assay 
 
NALM-6 and REH cells stably expressing Cas9 (NALM6-Cas9 and REH-Cas9) were 

separately transduced with the lentiviral vectors carrying CHD4-sgRNA-GFP or Safe-

sgRNA-mCherry. Three days post transduction, transduced cells were pooled together. 

Depletion of fluorescence signal was measured by flow cytometry at indicated time points.  

	
	
 
 
 
 
 
 
 
 
 
 



	 	

Supplementary Figures 
 
Figure S1. Identification of putative causal noncoding mutations affecting 
enhancer/promoter functions.  
 
(A) Pipeline for calling single nucleotide variants (SNVs) and small insertions and deletions 
(indels) (size < 60bp). We used GATK Haplotypecaller (v3.8) and Freebayes (v1.0.2) to 
call SNVs and small indels. The p-value is calculated using Fisher’s exact test to test 
whether the mutant read count in the tumor is significantly higher than normal. All p-values 
were adjusted for multiple testing. (B) Quality assessment of identified SNVs and small 
indels using a set of 735 high-confidence SNVs. The high-confidence set was generated 
by the TARGET project for B-ALL, AML, NBL, and WT and were validated using multiple 
experimental protocols including WES, RNA-Seq and PCR. (C) Mutation rates of all SNVs, 
SNVs in coding region, promoter region and enhancer region. (D) Mutation rates of SNVs 
across five cancer types. (E) Genomic distribution of identified SNVs and small indels. 
Other intergenic, intergenic regions other than promoters and enhancers. (F) Pipeline for 
calling structural variants (SVs). We used Delly (v0.7.2) and Lumpy (v0.2.13) to call SVs. 
(G) Number of identified SVs in each cancer type; (H) Quality assessment of identified SVs 
using 12 known SVs in 212 leukemia patients. (I) Corroborating evidence for the predicted 
enhancers in five cancer types. Percentage of overlap of our predicted enhancers with one 
or more lines of corroborating evidence is shown. Numbers in the brackets denote the 
number of enhancers identified in the cancer-relevant cell types. Data sources of the public 
ATAC-Seq data are summarized in Table S1. (J) Overlap of enhancer-promoter 
interactions predicted by IM-PET and published high-resolution chromatin interactions. (K) 
Validation of noncoding mutation recurrence in a pan-cancer cohort from ICGC. The 
quantile-quantile (QQ) plot shows the observed empirical P values of mutation recurrence 
(n = 2,706 samples) compared to P values based on random expectation for all noncoding 
mutations in the TARGET cohort. (L) Number of predicted causal mutations for each 
mutation type normalized by the total number of mutations. (M) Parameter optimization of 
the weighted elastic net model. We tested all combinations of 6 different λ2 values (0, 0.1, 
0.5, 1, 2, 3) and fifteen forward selection steps (1-15) of the LARS algorithm. Left, Mean 
squared errors of 10-fold cross validation using different parameter settings. Right, 
Number of genes with predicted causal noncoding mutations using different λ2 values (0.1, 
0.2, 0.3). 



	 	

 
 
 



	 	

Figure S2. Example predicted enhancer hijacking events in pediatric cancers and 
experimental validations.  
 
(A) Left, Genome browser view of enhancer hijacking to CRLF2 via the t(14;X)(q32;p22) 
translocation. Shown tracks are histone modification ChIP-Seq data in CD19+ B cell and 
identified SV break points (BPs). The hijacked enhancers predicted to regulate CRLF2 are 
highlighted in brown. Right, Expression level of CRLF2 in patients with and without the 
translocations. (B) Top, Genome browser view of enhancer hijacking to TERT. TERT has 
multiple translocation partners in neuroblastoma patients, including (t(10;5)(p22;p15), 
t(5;5)(q34;p15), and t(5;5)(q12;p15).  Shown tracks are histone modification ChIP-Seq 
data in normal neural crest cells and identified SV break points (BPs). The hijacked 
enhancers predicted to regulate TERT are highlighted in brown. Bottom, Expression level 
of TERT in patients with and without the translocations. (C) We obtained WGS and RNA-
Seq data from a recent published pediatric MPAL cohort (Alexander et al. Nature. 2018). 
MPAL, mixed phenotype acute leukemia. Among 94 MPAL patients, 15 had translocations 
near ZNF384 and CHD4. The expression level of CHD4 is significantly higher in those 
patients. (D) Time to relapse of patients with and without the ZNF384/CHD4 
rearrangement. (E) Enrichment of CHD4 targets among down-regulated genes in patients 
with CHD4 translocation. CHD4 targets are defined as genes whose enhancer or promoter 
is bound by CHD4 according to the ChIP-Seq data in GM12878 cells. Down-regulated 
genes in patients with CHD4 translocation were identified using edgeR (q-val < 0.05). The 
proportion of all genes bound by CHD4 was calculated as the negative control. 
Hypergeometric p-value is shown. (F) Genome browser view of PAX5, IRF4, EBF1, and 
TCF3. Shown tracks are histone modifications and CHD4 ChIP-Seq signals in GM12878 
cells. (G) Expression levels of PAX5, IRF4, EBF1, and TCF3 in patients with and without 
CHD4 enhancer hijacking. (H) Schematic for the generation of t(6;15)(qF2:qE1) 
translocation in Ba/f3 cells. The translocation does not create fusion gene involving CHD4 
or ZNF384. Instead, it hijacks the enhancer of EP300 to the vicinity of the CHD4 promoter. 
(I) Relative mRNA levels of TCF3, PAX5, and EBF1 in Ba/F3 cells with and without the 
introduced translocation. P values were calculated using one-sided Student’s t-test (n=2). 
 



	 	



	 	

Figure S3. Additional examples of enhancer alterations in pediatric cancers.  
 
(A) Genome browser view of ATG3 enhancer deletion. The enhancers are highlighted in 
brown. Tracks shown are average H3K4Me1, H3K4Me3, and H3K27Ac signals in 
human CD19+ B cells. P-value of one-sided t-test is shown (n=153). (B) Genome 
browser view of GATA2 gene and its regulating enhancers. The enhancers are 
highlighted in brown. Tracks shown are average H3K4Me1, H3K4Me3, and H3K27Ac 
signals in 13 myeloid cell types, and frequency of the identified SNVs in AML patients. 
IDH2 expression values in two groups of patients are shown in the right panel. P-value 
of one-sided t-test is shown (n=153).  (C) Genome browser view of GFI1B gene and its 
regulating enhancers. P-value of one-sided t-test is shown (n=153). 
 
 
 

 
 



	 	

Figure S4. Coding and noncoding mutations affect different pathways.  
 
(A) Heatmap showing p-values of enriched pathways among genes with coding 
mutations (red) and noncoding mutations (blue). Pathways highlighted in red are 
metabolic pathways. (B) Replication timing of metabolic genes. Genome-wide 
replication timing data for GM12878, K562, SK-N-SH, HEK293, and U2OS cells were 
downloaded from the Replication Domain database. The replication timing was 
measured as the log2 ratio of the array signals in early (S) phase over the array 
signals in late (G1) phase in 5 kb bins. The list of metabolic genes (2071) is curated 
from the metabolic pathways of KEGG, Reactome, and NCI-Nature pathway 
databases. P-value of one-sided t-test is shown (n=21,841).   
 



	 	

 
 
 



	 	

Figure S5. Putative causal noncoding mutations defines novel B-ALL subgroups. 
  
(A) Genome browser view of enhancer hijacking of SUPT7L. Shown tracks are histone 
modification ChIP-Seq data in CD19+ B cells and SV break points (BP). The hijacked 
enhancer predicted to regulate SUPT7L is highlighted in brown. (B) Expression level of 
SUPT7L in patients with and without the inversions. (C) Contingency matrix indicates 
patient mutation status of TCF3 and SUPT7L. (D) Time to relapse of patients with 
TCF3-PBX1 and Inv(2) mutations. P-value of one-sided log-rank test is shown (n=159).  
(E) Genome browser view of enhancer rearrangement of MIR663B. Shown tracks are 
histone modifications in CD19+ B cells, and identified SV break points. The enhancer 
regulating MIR663B is highlighted in brown. (F) Expression levels of ANKRD30BL, 
MIR663B, CCL17, CD40, PIK3CD in patients with and without the translocation. P-
values of one-sided t-test are shown (n=163). 
 



	 	

 
 
 
 
 
 
 
 
 
 
 
 
 



	 	

Figure S6. Putative causal noncoding mutations defines novel patient subgroups 
for AML, NBL, WT.  
 
(A) Genome browser view of enhancer rearrangement of ERBB2. Shown tracks are 
histone modification ChIP-Seq data in neural crest cell (Prescott et al. Cell. 2015) and 
identified SV break points. The enhancers predicted to regulate ERBB2 are highlighted 
in brown. (B) Expression level of ERBB2 in patients with and without the EP disruption. 
P-value of one-sided t-test is shown (n=100).  (C) Time to relapse of patients with and 
without the ERBB2 EP disruption. P-value of one-sided log-rank test is shown (n=100). 
(D) Genome browser view of enhancer copy number change of TGM6. Shown tracks 
are histone modification ChIP-Seq data in neural crest cells and identified CNVs. The 
enhancer predicted to regulate TGM6 is highlighted in brown. (E) Expression level of 
TGM6 in patients with and without enhancer duplication. P-value of one-sided t-test is 
shown (n=100). (F) Time to relapse of patients with and without the TGM6 enhancer 
duplication. P-value of one-sided log-rank test is shown (n=100). (G) Genome browser 
view of enhancer deletion of ZNF37A in AML patients. Shown tracks are histone 
modification ChIP-Seq data in human myeloid cells, and identified deletions. The 
enhancer predicted to regulate ZNF37A is highlighted in brown. (H) Expression level of 
ZNF37A in patients with and without the enhancer deletion. P-value of one-sided t-test 
is shown (n=153).  (I) Time to relapse of patients with and without the ZNF37A 
enhancer deletion. P-value of one-sided log-rank test is shown (n=153). (J) Genome 
browser view of enhancer rearrangement of GAS6. Shown tracks are histone 
modification ChIP-Seq data in HEK293 cells, and identified SV break points. (K) 
Expression level of GAS6 in patients with and without the EP disruption. P-value of one-
sided t-test is shown (n=53). (L) Time to relapse of patients with and without the GAS6 
EP disruption. P-value of one-sided log-rank test is shown (n=53). 
 



	 	

 



	 	

Supplementary Tables 
 
Table S1. Published data and software used in this study. 
 
Data Source Accession # / Link 
TARGET B-ALL WGS and RNA-Seq  TARGET SRP011998, SRP011999 
TARGET AML WGS and RNA-Seq TARGET SRP012000 
TARGET NBL WGS and RNA-Seq TARGET SRP012002 
TARGET WT WGS and RNA-Seq TARGET SRP012006 
TARGET OS WGS and RNA-Seq TARGET SRP012003 
Histone modification ChIP-Seq and RNA-Seq 
data for GM12878, CD19+ B cell, K562, NB4, 
adult kidney, SK-N-SH, HEK293, osteoblast 
cells 

ENCODE https://www.encodeproject.
org/matrix/?type=Experime
nt&status=released 

Histone modification ChIP-Seq and RNA-Seq 
data for monocyte, monocyte progenitor, 
megakaryocyte, eosinophil, erythroblast, 
neutrophil, macrophage 

BLUEPRINT https://epigenomesportal.c
a/ihec/ 

Histone modification ChIP-Seq and RNA-Seq 
data for IMR-5/75 and SH-SY5Y cells 

Henrich et al. Cancer Res. 
2016 

GSE80197, GSE80397 

Histone modification ChIP-Seq and RNA-Seq 
data for neural crest cell 

Prescott et al. Cell. 2015 GSE70751 

Histone modification ChIP-Seq and RNA-Seq 
data for RT407 and G401 cells 

Wang et al. Nat. Genet. 
2017 

GSE71506 

Histone modification ChIP-Seq and RNA-Seq 
data for 786-O cell 

Platt et al. EMBO Rep. 
2016 

GSE67237, GSE78113 

Histone modification ChIP-Seq and RNA-Seq 
data for U2OS cell 

Walz et al. Nature. 2014 GSE44672 

ATAC-Seq data for GM12878 Buenrostro et al. Nat 
Methods, 2013 

GSE47753 

ATAC-Seq data for CD19+ B cell, 
Erythroblast and NK cells 

Corces et al., Nat Genet, 
2014 

GSE74912 

ATAC-Seq data for K562 Schmidl et al., Nat 
Methods, 2015 

GSE70482 

ATAC-Seq data for neural crest cell Prescott et al. Cell. 2015 GSE70751 
ATAC-Seq data for HEK293 cell Karabacak et al., Genome 

Biol, 2019 
GSE108513 

ATAC-Seq data for SaOS2 cell Morris et al., Nat Genet, 
2019 

GSE120755 

Hi-C data for GM12878 and K562 cells Rao et al., Cell, 2014 GSE63525 
Hi-C data for monocyte and macrophage Phanstiel et al., Mol Cell, 

2017 
http://www.aidenlab.org/juice
box/ 

Hi-C data for HEK293 Zuin et al., PNAS, 2014 GSE44267 
Hi-C data for SK-N-SH Guo et al., Cell, 2015 GSE71072 
Hi-C data for G401 Lajoie et al. Methods, 

2015 
GSE105235 

Capture Hi-C for naïve B cell, total B cell, 
megakaryocyte, eosinophil, erythroblast, 
neutrophil 

Javierre et al., Cell, 2016 https://osf.io/u8tzp/ 

ChIA-PET for GM12878 and K562 cells Heidari et al. Genome 
Res., 2014 

GSE59395 



	 	

ChIA-PET for NB4 cell Li et al., Cell, 2012 GSE33664 
Software Source Link 
Samtools Li et al., 2009 http://samtools.sourceforge.n

et/ 
GATK (v3.8) McKenna et al., 2010 https://software.broadinstitute

.org/gatk/ 
Freebayes (v1.0.2) Garrison and Marth, 2012 https://github.com/ekg/freeba

yes 
Delly2 (v0.7.2) Rausch et al., 2012 https://github.com/dellytools/d

elly 
Lumpy (v0.2.13) Layer et al., 2014 https://github.com/arq5x/lump

y-sv 
STAR (v2.7) Dobin et al., 2013 https://github.com/alexdobin/

STAR 
Cufflinks (v2.2.1) Mortazavi et al., 2008 http://cole-trapnell-

lab.github.io/cufflinks 
CSI-ANN Firpi et al., 2010 https://github.com/tanlabcode

/CSI-ANN 
IM-PET He et al., 2014 https://github.com/tanlabcode

/IM-PET 
Bowtie2 (v2.1.0) Langmead et al., 2012 http://bowtie-

bio.sourceforge.net/bowtie2/i
ndex.shtml 

FIMO Grant et al., 2011 http://meme-
suite.org/doc/fimo.html 

Cis-BP database Weirauch et al., 2014 http://cisbp.ccbr.utoronto.ca/ 
Comet R package Leiserson et al., 2015 https://bioconductor.org/pack

ages/release/bioc/html/coME
T.html 

 
Table S2. Enhancer-promoter pairs that are disrupted by noncoding mutations. 
See excel file. 
 
Table S3. Known cancer-relevant functions of the top affected TFs in each cancer 
type.  
 

TF Cancer Reported function (reference PMID) 
LMO2 B-ALL “HOX-mediated LMO2 expression in embryonic mesoderm is 

recapitulated in acute leukaemias” (23708655) 
“The Lmo2 oncogene initiates leukemia in mice by inducing thymocyte 
self-renewal” (20093438) 

GLIS2 B-ALL GLIS2 fusion in leukemia patients 
RUNX1 B-ALL ETV6-RUNX1 frequently occur in pediatric B-ALL 
PAX5 B-ALL “Pax5 loss imposes a reversible differentiation block in B-progenitor 

acute lymphoblastic leukemia” (24939936) 
TCF3 B-ALL TCF3-PBX1 frequently occur in pediatric B-ALL 
MGA AML Frequently mutated in the AML patients with partial tandem duplication 

of MLL (MLL-PTD) (27389053) 
KLF1 AML KLF1 enhancer is found methylated in AML patients. (28749240) 

“EKLF/KLF1-regulated cell cycle exit is essential for erythroblast 
enucleation” (27480112) 



	 	

GATA1 AML “GATA1 mutations in acute leukemia in children with Down syndrome” 
(16631446) 

RARG AML CPSF6-RARG, NUP98-RARG fusion in AML patients. (29568099) 
CREB1 AML “CREB Increases Chemotherapy Resistance through Regulation of the 

DNA Damage Repair Pathway in AML Cells” (15837624) 
STAT2 AML JAK-STAT in AML 
RUNX1 AML RUNX1-RUNX1T1 in AML 
ELK1 NBL “The presence of Elk-1 in the cytoplasm of neurons or neuroblastomas 

was confirmed.” (21441990) 
KLF4 NBL “KLF4 inhibits tumor growth in various cancers such as neuroblastoma 

and lung cancers by inducing the expression of CDK inhibitors and 
inhibiting cyclin D1 and FOXM1 expression.” (23045286) 

WT1 NBL “The WT1 may govern cell differentiation and suppress cell proliferation in NBL” 
(21292082) 

CREB1 NBL “CREB was specifically cleaved by caspases in neuroblastoma extracts, 
and in cells induced to undergo apoptosis by staurosporine.” (11119719) 

ETV1 NBL “The small molecule inhibitor YK-4-279 disrupts mitotic progression of 
neuroblastoma cells, overcomes drug resistance and synergizes with 
inhibitors of mitosis” (28602975) 

PLAG1 WT “PLAG1, the Main Translocation Target in Pleomorphic Adenoma of the 
Salivary Glands, Is a Positive Regulator of IGF-II” (10646861) 

YY1 WT “Survivin selective inhibitor YM155 induce apoptosis in SK-NEP-1 Wilms 
tumor cells” (23267699) 

E2F4 WT “Loss of heterozygosity on chromosome 16q increases relapse risk in 
Wilms’ tumor” (29029528) 

PAX3 OS “Pax3 induced a mesenchymal to epithelial transition (MET) in human 
SaOS-2 osteosarcomas” (15688035) 

GLI2 OS “GLI2 is a novel therapeutic target for metastasis of osteosarcoma” 
(25082385) 

 
 
Table S4.  PCR and sgRNA target sequences used in this study.  
 
Name Sequence (5' to 3') Purpose 
mrCHD4_F1 ATGGACGCACTTCTGAACAACA 

RT-qPCR 

mrCHD4_R1 GCTTTGGAGTCTCTGCTTCG 
mrTBP_F2 GTAAACTTGACCTAAAGACCATTGC 
mrTBP_R2 ACGCAGTTGTCCGTGGCT 
mrNOP2_F1 CGAAAACAGAAGGGTGCGGAGAC 
mrNOP2_R1 ACGACTCGACAGCCTCTTGGA 
mrNOP2_F2 CGTCCCTAAGCCAAATAAGTCTCCT 
mrNOP2_R2 TCTTCCTCCTCGTCCCCATCACT 
mrZFP384_F1 GCCTTCTATCCCCACAGTCTCAG 
mrZFP384_R1 CCACAGCCCTTCTCTGGCAACA 
mrZFP384_F2 CACACAGTGAAACACGCCAAGGT 
mrZFP384_R2 ATCAGGAGGGTTGTGTTTGCG 
mrIRF4_F1 GGGCAAGCAGGACTACAATCGT 



	 	

mrIRF4_R1 ATCCCTTCTCGGAACTTGCCTTTA 
mrIRF4_F2 GACCAGTCACACCCAGAAATCCCATA 
mrIRF4_R2 GGGACTCAGGTGGGGCACAAGCATA 
mrPAX5_F1 AGATGTAGTCCGCCAAAGGATAGTG 
mrPAX5_R1 CGGCTTGATGCTTCCTGTCTC 
mrPAX5_F2 GCCGACACCAACAAACGCAAG 
mrPAX5_R2 GCCATTCGGCACTGGAGACT 
mrEP300_F1 TCCAGAAGGAACTAGAAGAGAAACG 
mrEP300_R1 CCATGTTCGACCCAGTATTCATAGGA 
mrFlt3_F1 ACAGAGACCCAGGCAGGAGAATAC 
mrFlt3_R1 GCGTCCTGGTTTTCCATCTTCCTA 
mrFlt3_F2 TCAAAGCACCCCAGCCAGTCA 
mrFlt3_R2 TGACTGAGAAGCAGAACTTTTCGTAC 
mrTcf3_F1 ACTTCAGTGACTCCCACAGCAG 
mrTcf3_R1 CTCCCAAAGGTGGCATAGGCATTC 
mrTcf3_F2 CAGATACTCAGCCGAAGAAGGTCC 
mrTcf3_R2 ATCCCTGCTGTAGCTGTCACCT 
mrEbf1_F1 GCTGTGGCAACCGAAATGAGACT 
mrEbf1_R1 CACGTGGGTTTCCTGCATTCTTTAG 
mrEbf1_F2 TGTCCACAATAACTCCAAGCACGG 
mrEbf1_R2 GCTGATGGCTTTGATACAGGGAGT 
mpEP300E_F2 CCGAGCTCTTACGCGTGCTGCTTTTTCAGAAGACCT 

PCR 

mpEP300E_R2 CCGGGCTAGCACGCGTGTAGAGTCTCCAAGATGGTAGT 
mpNCE_F1 CCGAGCTCTTACGCGTTGTTTGTAGTTTGAGTTCCAC 
mpNCE_R1 CCGGGCTAGCACGCGTTTGAACCAAATGCCTACCT 
hpNCE_F1 CCGAGCTCTTACGCGTCTTTTATTCTGTGGGTTGTCTC 
hpNCE_R1 CCGGGCTAGCACGCGTCTACCACTCCCAAAGCATAA 
mpT418_F1 CCCTAAACCTTTGTTGTCAGA 
mpT486_R1 TGACCCAAACTTAGCACATC 
mpT418_R2 TAACCATAATGTGTTTCATCCTCC 
CHD4_1 GAAGGGGATGGCGTCGGGCC 

sgRNA 

CHD4_2 TTCCGGCGCGCCGAGTCCTT 
CHD4_3 AGGTGGTGGTGCAACCTCAG 
non-targeting control_1 GCCCCGCCGCCCTCCCCTCC 
non-targeting control_2 CCAGTTGCTCTGGGGGAACA 
non-targeting control 
Translocation_1 
Translocation_2 

TCAGCAAAGGACGAAACAAA 
CATGCAAACGCACACCATAC AGG 
CAGTATTCTAAGTTACGGGC AGG 
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