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Supplementary Text

Crystal Growth and Structure Refinement

Single crystals of RhSi were grown from a melt using the vertical Bridgman crystal growth

technique. Here the crystal growth was performed with an off-stoichiometric composition with

slightly excess Si. First, a polycrystalline ingot was prepared using the arc melt technique with

the stoichiometric mixture of Rh and Si metal pieces of 99.99 % purity. Then the crushed pow-

der was filled in a custom-designed sharp-edged alumina tube and finally sealed inside a tanta-

lum tube with argon atmosphere. The temperature profile for the crystal growth was controlled

with a thermocouple attached at the bottom of the tantalum ampoule containing the sample.

The sample was heated to 1500◦C and then slowly cooled to cold zone with a rate of 0.8 mm/h.

Single crystals with average dimension of∼15 mm length and∼6 mm diameter were obtained.

A picture of the grown crystal is shown in the inset of Fig. S1. The crystals were analyzed with

a white beam backscattering Laue X-ray diffraction technique at room temperature. The sam-

ples show very sharp spots that can be indexed by a single pattern, revealing excellent quality

of the grown crystals without any twinning or domains. A Laue diffraction pattern of the ori-

ented RhSi single crystal superposed with a theoretically simulated pattern is presented in Fig.

S1. The structural parameters were determined using a Rigaku AFC7 four-circle diffractometer

with a Saturn 724+ CCD-detector applying graphite-monochromatized Mo-Kα radiation. The

crystal structure was refined to be cubic P213 (#198) with lattice parameter, a=4.6858(9) Å.

Material Symmetries
1. Nonlinear Tensor in the [111] basis

The second-order optical nonlinearity generates currents at both the sum and difference fre-

quencies of the applied electric field. LPGE and CPGE correspond to the current generated at



the difference frequency,

ji ∝ σijkEjE
∗
k (1)

For cubic space group P213 the only nonvanishing elements of σijk have indices xyz and per-

mutations. The elements with even permutations of xyz are equal to σxyz and odd permutations

are equal to σ∗xyz. If we write σxyz = α + iγ where α and γ are both real, the structure of the

third rank tensor can be displayed in the form,
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where the element σijk is the kth element of the column vector in the ith row and jth column of

the matrix.

2. Transformation properties of the CPGE

The circular photogalvanic current can be written in terms of the photon helicity,

ji ∝ βij(E× E∗)j. (3)

The second rank CPGE tensor is contracted from the third-rank conductivity tensor according

to the relation,

βij = σiklεjkl, (4)

where εjkl is the unit antisymmetric tensor. Substitution of the conductivity tensor for the RhSi

space group (Eq. 2) yields,

βij = iβδij, (5)



where δij is the Kronecker delta. Substitution into Eq. 3 yields,

j ∝ iβE× E∗, (6)

which shows that for the case of space group P213 the CPGE current is always directed parallel

to the helicity vector, regardless of its direction with respect to the crystal axes.

3. LPGE sample rotation dependence

We use Rodrigues’ rotation formula to transform this tensor into the basis where z′ is parallel

to the [111] direction in the crystal basis, which yields
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. (7)

Using this tensor we can calculate the LPGE response for fixed linear pump polarization as the

crystal is rotated about the z′ (or [111]) axis. The crystal rotation corresponds to the transfor-

mation σ′αβγ = Rαi(φ)Rβj(φ)Rγk(φ)σijk, where,

R(φ) =

 cos(φ) sin(φ) 0
− sin(φ) cos(φ) 0

0 0 1

 . (8)

If, for example, the pump polarization is fixed in the x′ direction, then the LPGE current depends

only on the tensor elements σ′xxx and σ′yxx and from Eqs. 7 and 8 we have,

σ′xxx = R3
xxσxxx +RxxR

2
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and
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From Eqs. 9 and 10 we obtain the dependence of the LPGE current on crystal rotation angle,

j(φ) ∝ cos(3φ)x̂′ − sin(3φ)ŷ′. (11)

Eq. 11 implies that the angle, θ, of the LPGE current relative to the x′ axis is given by θ = 3φ.

This is consistent with what is observed and shown in Fig. 2C and 2D in the main text.

Material Properties
1. Linear optical properties

We performed reflectivity measurements in the range .08eV - 3eV (main text, Fig. 4A) and

used Kramers-Kronig analysis to compute the complex index of refraction ñ = n + iκ. This

and the complex dielectric permittivity ε̃ = ñ2 are plotted in Fig S2. We additionally calculate

σ1 = 2nκε0ω (main text Fig. 4B and Fig. S2A) along with α, ts, tp and θin (Fig. S4A-C) which

are the absorption coefficient, Fresnel transmission coefficients and the angle of refraction for

45◦ angle of incidence. These are defined by

θin = arcsin
sin θi
n

α =
2ωκ

c

ts =
2 cos θi

cos θi + ñ cos θin

tp =
2 cos θi

ñ cos θi + cos θin

(12)

where θi = 45◦ is the angle of incidence of the pump light.



We compare the predicted optical conductivity of the Γ and R nodes in RhSi with our mea-

sured σ1 in Fig. S3A and Fig. 4B in the main text. The fraction of the total optical conductivity

that represents the predicted linear conductivity is shown in Fig. S3B.

2. Scattering time (τ )

Using the measured value of σdc, we infer the equillibrium scattering time to be τ = 8.6 fs from

our results for σ1(ω) using the form for the Drude conductivity

σ1(ω) =
σdc

1 + ω2τ 2
. (13)

3. Terahertz index of refraction

The complex index of refraction at THz frequencies determines the impedance mismatch be-

tween RhSi and free space. We can obtain an accurate estimate of ñ from the dc conductivity.

Given the value of τ determined in the previous section, the THz emission lies in the low fre-

quency limit of the optical conductivity, where ωτ � 1 and σ(ω) → σdc. In this regime, the

complex permittivity at low frequency is

ε̃(ω) = − σ̃(ω)

iω
=
iσdc
ω
. (14)

The complex index of refraction is then given as,

ñ ≡ n+ iκ =

√
ε̃(ω)

ε0
= (1 + i)

√
σdc

2ε0ω
(15)

which at 1 THz is equal to 57(1 + i). Although our Kramers-Kronig analysis begins to become

somewhat unreliable for photon energies less than ∼10meV, it agrees with our analysis and

gives ñ(1THz) = 51 + 57i, confirming that Eq. 15 is correct. When calculating βτ in our

analysis, we use ñ(ω) to find the frequency dependent transmission of the THz radiation from

RhSi into free space.



4. Inferring laser pulse length from emitted THz radiation

It is not feasible using conventional methods such as autocorrelation to characterize the pulse

length T of the laser over the entire wavelength range. Lacking a more precise method, we use

the THz time traces to estimate the pulse length at each wavelength, since the laser does not

necessarily produce the same pulse width across its available wavelength range. We know that

the photocurrent scattering time τ is much shorter than the pulse length, which means that the

instantaneous current follows the applied electric field squared. The effect of the OAP collection

filters, described in a later section, which modify the spectrum of the terahertz radiation is to

apply a second derivative to the pulse waveform, since for low frequencies the transmission

function’s leading term is ω2. By making this approximation we find that the full width half

maximum of the terahertz pulse t1 is related to T by the equation

t1 =

√
1− 2W (

√
e/4)

2
T (16)

where W (z) is the Lambert W function, or product log. This allows us to calculate an approxi-

mate pulse length for each wavelength. The results are presented in Fig. S4A.

Inferring the CPGE amplitude from the detected electro-optic signal

In this section we describe the normalization factors needed to convert from signal at the electro-

optic detector to the CPGE saturation coefficient βτ . This process involves the following three

steps.

1. Determine the time-dependent electric field in the sample that arises from a photogen-

erated surface current which depends on laser parameters (intensity at the sample) and

material parameters (β, τ , Fresnel coefficients, etc.).

2. Compute the Fourier transform of the terahertz pulse, the apply two filters to it. The first is

the frequency-dependent transmission of the radiation into free space, 1/(ñ(ω) + 1). The



second is the transfer function of the collection optics, F(ω), that quantifies the fraction

of radiation that is collected by the system and transferred to the ZnTe detection crystal.

3. Compute the inverse Fourier transform of the resulting spectrum, then convert the result-

ing time-dependent electric field at the ZnTe surface crystal to signal at the output of the

biased photodetector scheme.

In order to obtain the value of βτ of RhSi, we assume β = β0 = πe3/3h2 and τ = 1 fs

for all pump frequencies in this calculation. Then, by dividing the amplitude of the measured

signal to the expected signal given all experimental parameters, we yield a value for βτ at each

pump frequency in units of (β0×fs).

1. Calculation of the radiated field from the sample

Assume we have some CPGE coefficient β. For circularly polarized light, CPGE is given by

dj

dt
= β|E|2. (17)

As laser light travels through a material at angle θin relative to the normal direction z, its inten-

sity decays according to the (power) attenuation coefficient along the direction of propagation,

rk = z/ cos θin:

|E|2 = E2
0e
−αrk
k . (18)

The sheet current density generation rate is then given by

dK

dt
=

∫ ∞
0

dz
dj

dt
sin θin

= βE2
0 sin θin

∫ ∞
0

dze
−αz/ cos θin
k

= β
1

2α
E2

0 sin 2θin

(19)

and the saturation current density is

K = βτ
1

2α
E2

0 sin 2θin. (20)



The factor of sin θin represents the fraction of the current parallel to the surface, which is what

radiates into free space. Since the scattering rate τ is much less than the pulse length T , the cur-

rent amplitude follows the electric field squared amplitude and will radiate in the THz regime.

The radiated electric field amplitude can be found as follows. From Ampère’s law we have

E ñ
c

= B = µ0
2
K

=⇒ E = µ0c
2ñ
K.

(21)

Using the Fresnel transmission coefficient t = 2ñ/(ñ+ 1), the external radiation is given by

Eext =
µ0c

2ñ
Kt =

Z0

ñ+ 1
K. (22)

Using Eq. 20 we get

ETHz
ext =

βZ0τ

2α(ñ+ 1)
E2

0 sin 2θin. (23)

The frequency dependence of the factor 1/(ñ(ω) + 1) is shown in Fig. S5A. Now we must

express E0 in terms of the measured laser parameters average power P , repetition rate f , spot

size r0 and pulse duration T . At normal incidence the intensity of the electric field of the pump

laser at the surface of the sample is given by

I(r, t) =
cε0
2
E2(r, t) =

cε0
2
E2

exte
−r2/r20e−t

2/T 2

(24)

Integrating over space and time yields the relation

E2
ext =

2PZ0

π
√
πfTr2

0

, (25)

where we include a factor of 1/2 to account for 45◦ angle of incidence. This leaves us with a

peak THz electric field of

ETHZ
ext =

Z2
0βτtstpP sin 2θin

π
√
παfTr2

0(ñ+ 1)
(26)

which radiates into free space and eventually is detected through electrooptic sampling. In order

to experimentally determine the spectrum of βτ , each of the terms in the above equation must



be determined as a function of the pump frequency. As discussed earlier, we calculate ts, tp,

θin = arcsin 1/(
√

2n) and α = 2κω/c as a function of pump frequency based on spectrally

resolved reflectivity measurements and Kramers-Kronig analysis which produces the complex

index of refraction. These values are plotted in Fig. S3C-D. The laser power P is directly

measured across the laser’s spectral range. We use a concave focal length F = 50 cm mirror to

focus light on the sample, gives a focused spot size of r0 = 2Fλ
πd

where d is the collimated beam

diameter.

2. Radiation from the photoexcited region

The THz radiation emitted by the sample is collected by a 45◦ OAP which collimates the beam.

A second OAP then focuses it onto a ZnTe electro-optic sampling (EOS) crystal. In order to

calculate the fraction of radiated light collected by the OAP, we start with the formula for the

vector potential at location r from a current density described by j(r, t),

A(r, t) =
µ0

4π

∫
d3r′

j (r, tr)

|r− r′|
(27)

where tr is the retarded time. If we assume for the moment radiation at a specific frequency ω,

the current density in our experiment is given by

j (r, t) = J0x̂δ(z)e−x
2/2r20e−y

2/r20e−(t−x′ sin θi/c)
2/T 2

(28)

where the term x′ sin θi/c in the final exponential represents the phase delay across the photoex-

cited spot due to off-normal incidence at angle θi = 45◦ (Fig. S6A). The coordinates used in the

calculation are shown in Fig. S6B.



The retarded time at r is given by

tr = t− |r− r′| /c

= t− 1

c

√
r2 − 2r · r′ + r′2

≈ t− 1

c
r (1− r̂ · r′/r)

= t− r

c
+

r̂ · r′

c

= t− r

c
+

1

c
(sin θ cosφx′ + sin θ sinφy′) .

(29)

where the OAP is in the far field limit r′ � r.

The Fourier transform of the vector potential is

A(r, ω) =
µ0

4πr
j0x̂

∫
dteiωt

∫
dx′dy′e

− x2

2r20 e
− y2

r20 e−u
2/T 2

(30)

where u = tr − x′ sin θi
c

= t− r
c

+ (sin θ cosφ− sin θi)
x′

c
+ sin θ sinφy

′

c
. This gives

A(r, ω) =
µ0

4πr
j0x̂e

−ω2T 2/4eiωr/c
∫
dx′e

− x′2

2r20 eiωx
′(sin θ cosφ−sin θi)/c

×
∫
dy′e

− y′2

r20 eiωy
′ sin θ sinφ/c

(31)

=
µ0

4
√

2r
r2

0

√
πj0x̂e

−ω2T 2/4eiωr/ce−
r20ω

2

2c2
(sin θi−sin θ cosφ)2e−

r20ω
2

4c2
sin2 θ sin2 φ (32)

The fraction of the total radiation captured by the OAP is given by

F(ω) =

∫
OAP

dθdφ sin θE(ω, θ, φ)

/∫
2π

dθdφ sin θE(ω, θ, φ). (33)

The second integral is integrated over the upper half-sphere (0 < θ < π/2) because we only

consider the radiation emitted away from the sample, not into it. All θ- and φ-independent

factors can be removed from the integrand, so we can use the form

E(θ, φ) ∝ cos θe−
r20ω

2

2c2
(sin θi−sin θ cosφ)2e−

r20ω
2

4c2
sin2 θ sin2 φ (34)

in the integrand. The integral depends on spot size, r0, which is variable across the spectral

range of the pump laser. We calculate this integral numerically for each pump wavelength.



F(ω) is plotted for several pump wavelengths in Fig. S5B as a function of ν = ω/2π. For small

wavelengths relative to the excitation spot size, the radiation emits at the specular direction

relative to the incoming pump light.

3. Electro-optic detection using ZnTe

The last step in the calibration is the conversion of the electric field at the surface of the ZnTe

crystal to the signal at the output of the biased photodetector scheme. Detection of the THz

field is performed through electro-optic sampling (EOS) in ZnTe (110). In this technique the

THz electric field induces transient birefringence, ∆n, in the ZnTe, which is detected by a co-

propagating probe beam at 800 nm. Our analysis is based on the detailed studies of the EOS in

technique presented in Refs. (?, ?). For THz frequencies below 3 THz we neglect dispersion in

ZnTe and assume a real index n = 2.85 (?).

The transient birefringence generates a polarization rotation in the probe beam. We measure

the rotation using an optical bias scheme (?, ?) that yields a gain factor of 88 as compared with

the conventional balanced detector measurement. In the conventional scheme, the fractional

change in the balanced output is given by,

∆V (τ)

V
=
ωn3r41

2c

∫ L

0

dz

∫ ∞
−∞

dtETHz(z, t)I0(z, t− τ) (35)

where ω is the angular frequency of the probe pulse, c is the speed of light, L is the propagation

distance through the crystal, ETHz is the THz field strength, r41 = 4 pm/V is the electro-optic

coefficient of ZnTe at 800 nm, n = 2.85 is the index of refraction of ZnTe and

I0(z, t− τ) = I0 exp{−[z − vg(t− τ)]2/(vgTpr)
2} (36)

is the normalized intensity of the 800 nm probe beam with pulse duration, Tpr, which propagates

with group velocity vg.



THz transients with bandwidth less than 3 THz, Eq. 35 simplifies to,

∆V (τ)

V
=
ωn3r41L

2c

∫ ∞
−∞

dtETHz(t)I0(t− τ). (37)

Because the duration of the probe pulse is approximately 35 fs, much less that the time scale of

the THz transient, we make the approximation that I0(t− τ)→ δ(t− τ) to obtain (?)

∆V (τ)

V
=
ωn3r41L

2c
ETHz(τ). (38)

An additional factor of 2/(n + 1) is needed because the THz field is partially reflected at the

surface of the ZnTe. Finally, we substitute ETHz with the expression in Eq. 26 (after applying

the frequency dependent collection filters) and as discussed earlier set βτ = β0×1fs. This gives

an expected EOS signal for each pump frequency based on laser parameters, material properties

and the experimental geometry, and by comparing the measured value with the expected value

we obtain βτ in units of (β0×fs). The results are plotted in the main text in Fig. 3.



Fig. S1. Crystal growth and diffraction. Laue diffraction pattern of a [111] oriented RhSi
single crystal superposed with a theoretically simulated pattern. Inset shows picture of the
grown RhSi single crystal. Photo credit: Kaustuv Manna, Max Planck Institute for Chemical
Physics of Solids.
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Fig. S2. Material properties. (A) The real and imaginary parts of the refractive index. (B)
The real and imaginary parts of the complex dielectric function.
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Fig. S3. Ideal conductivity. (A) Here we compare the ideal Γ and R band conductivity, σ1,ΓR,
with the total conductivity of RhSi, σ1. (B) The fraction of σ1 which constitutes the ideal Weyl
conductivity.
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Fig. S4. Material properties. (A) Power absorption coefficient α. (B) Fresnel transmission
coefficient magnitudes |ts| and |tp|. (C) Angle of refraction for incident angle θi = 45◦. (D)
Pump pulse length T estimated from the emitted terahertz waveforms.
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Fig. S5. Surface THz transmission and collection filter. (A) Fraction of terahertz radiation
transmitted from bulk into free space, determined by dc conductivity and optical conductivity
measurements. (B) Fraction of terahertz collected and collimated by the OAP.



BA

θ

φ x

rz

Δt = x sinθi / c

Fig. S6. Filter calculation geometry (A) Illustration of photoexcited current at off-normal
incidence. The pump light (red shading) is cast onto the sample which excites a current (orange
shading). There is a time delay across the photoexcited region which affects the radiated angle,
as in a phased array antenna. (B) Illustration of the polar coordinate system used in the filter
calculation.
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