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SUPPLEMENTARY NOTE 1: DISPERSION CURVES

System with no modulation:

A composite structure is made by bonding 0.5 mm thick piezoelectric disks (PZT) to a host layer (PLA) with the
thickness of 0.5 mm. Both the disks and the host layer are modeled as linear isotropic materials rigidly bonded to
each other. To plot the band structure of the unit cell, one should solve the equations of motion for this composite
structure governed by,

ρÜ = ∇.S (S-1)

S = c(E) : ε(U), (S-2)

where U(x, y, z) = uî + vĵ + wk̂ is the displacement vector, ρ the density, ∇. the divergence operator, S the stress
matrix, c(E) is the fourth order elasticity tensor for either isotropic material, E the modulus of elasticity, and ε(U)
the strain matrix. Figure S-2(a) depicts a 0.5 mm thick PLA (E = 3.5 GPa, ρ = 1300 kg/m3, ν = 0.3) hexagonal unit
cell bonded to six piezoelectric disks (EEp = 72 GPa, ρ = 7800 kg/m3, Cp = 1.5 nF , k31 = 0.31), each with thickness
0.5 mm and diameter 7 mm, Fig. S-2(b) depicts the first Brillouin zone, and Fig. S-2(c) provides the system’s band
structure in the absence of modulation computed using COMSOL Multiphysics. The unit cells are repeated along the
lattice vectors a1 = Lî and a2 = L/2̂i+

√
3L/2ĵ to form the entire periodic structure. Floquet boundary conditions

in COMSOL Multiphysics, with appropriate destinations on the edges, are used to model the periodicity of the unit
cell in the aforementioned directions. The dispersion curves are then computed by sweeping the wavevector along the
boundaries of the first irreducible Brillouin zone (blue triangular area in Fig. S-2(b)),

Γ = (0, 0) (S-3)

M = (0, 2π/
√

3) (S-4)

K = (2π/3, 2π/
√

3). (S-5)

As shown in Fig. S-2(c), multiple Dirac cones are observed at the K-point. As depicted, due to the complexity of
the system proposed herein, more modes are present compared to the theoretical model designed in [23], where the
authors simply studied a lattice of six acoustic resonators with six degrees of freedom. Since all of these modes will
be folded after applying time modulation, difficulties arise in finding a topological bandgap to protect edges states.
Note that the bands falling within the frequency range of interest are plotted in blue.

Negative capacitance:

One possible way to vary material properties in time is to employ shunted piezoelectric disks. Figure S-1 depicts a
schematic of a piezoelectric disk attached to an external circuit. Accordingly, when a piezoelectric patch is connected
to an active circuit with the capacitance of −C ′ (see Fig. S-1), the elastic modulus is obtained as [38-39],

Em = EPE
C ′ − CTp
C ′ − CSp

, (S-6)

where EPE denotes the Young’s modulus of the PZT disk when the electrodes are short circuited, CTp the stress-free

capacitance, CSp = CTp (1 − k2
31) the strain-free capacitance, and k31 the piezoelectric coupling coefficient for the

longitudinal straining of a through-the-thickness polarized patch, respectively. In the absence of modulation, PZT
patches are open-circuited; hence, the elastic modulus is obtained by placing C ′ = 0 in Eq. S-6,

E0 = EEp
1

1− k2
31

. (S-7)

The equivalent negative capacitance is specified by,

−C ′ = −R2C0

R1
, (S-8)

where R1 and R2 are the resistors connected to the op-amp, and C0 is the paralleled capacitor. The coupled PZT and
circuit are only stable when C ′ > CTp [41]. In addition, to prevent saturation of the capacitor (which can also lead to
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FIG. S-1. Schematic of a shunted piezoelectric disk and its connected circuit. The switch placed between the PZT
disk and the negative capacitance circuit varies the effective Young’s modulus between E0 and Em at the frequency of f0 = 1/T .

instability), a resistor (R0) with a relatively large resistance compared to R1 and R2 is paralleled with the capacitor
[42]. Finally, as shown in Fig. S-1, by placing a switch between the piezoelectric and the circuit, we can modulate
the PZT’s effective elastic modulus between E0 and Em by ON/OFF operation of the switch at the fundamental
frequency f0 = 1/T .

System with modulation:

The discussion below holds for the piezoelectric subdomain undergoing time modulation; the PLA subdomain
continues to be governed by Eq. S-1. In order to model the system with time modulation, we alter the modeled
stiffness of the piezoelectric disks from the open-circuit value, E0, to the closed-circuit value (for optimal bandgap
opening), Em, using a period T = 2π/ω0,

E(r, t) = E0 +
δE

2
(sgn[cos(ω0t+ φ(r)]− 1), (S-9)

where sgn denotes the sign function taking either -1 or 1 and δE = E0 − Em denotes the modulation depth. This
function can be expressed using its Fourier decomposition,

E(r, t) = (E0 −
δE

2
)− δE

2

2k+1∑
n=−(2k+1)

ān (S-10)

ān = sgn(n)
4iei(nω0t+nφ(r))

nπ
, (S-11)

where i =
√
−1 is the unit imaginary number, and n takes only odd values. Since the system is modulated with the

frequency of f0 = ω0/2π, the solution of Eq. S-1 will be in the form of,

U(r, t) =
∑
l

Ul(r)ei(ω+lω0)t. (S-12)

Replacing Eq. S-12 in the main equation of motion (i.e., Eq. S-1), and using the Floquet-Bloch theorem in time,
we obtain the following infinite set of coupled time-independent differential equations for the harmonics Ul(r):
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FIG. S-2. Detailed band structure of the system without modulation. (a) Schematic of the proposed hexagonal unit
cell (with characteristic size L), composed of a PLA host layer with six bonded piezoelectric disks, (b) first Brillouin zone
of the proposed hexagonal unit cell, (c) band structure of the hexagonal unit cell in the absence of modulation. Blue curves
exhibit the frequency range of interest for which modulation will be applied.

−(ω − nω0)2ρUl(r) = ∇.

[
c
(
E0 −

δE

2

)
: ε
(
Ul(r)

)]
+

2k+1∑
n=−(2k+1)

∇.

[
c
(δE

2

)
: ε
(
Un−l(r)

)]
āne

inφ(r). (S-13)

In order to solve these independent equations, the system in Eq. S-13 is truncated to the fifth harmonic l =
{−2,−1, 0, 1, 2}, and fifth term of Eq. S-10 as n = {−3,−1, 0, 1, 3}, which captures adequately the response in the fre-
quency range of interest. This equation is then inputted into COMSOL Multhiphysics (Solid Mechanics Module), after
transformation to the weak form, where these fully coupled equations are directly computed in the (quasi-)frequency
domain. Figure S-3 plots the band structure of the system computed from Eq. S-13 when modulation is applied at a
frequency of f0 = 50 kHz and modulation depth of δE = 0. It is important to choose the modulation frequency such
that the folded bands do not interfere with the original ones at the location of the desired Dirac cone. As observed,
in addition to the original dispersion curves (plotted in blue), folded bands are present where red curves correspond
to l = 1, and green correspond to l = −1, respectively. Although Eq. S-13 is computed using five harmonics, only
three of them fall within the plotted frequency range (i.e., 30-90 kHz). This clearly documents that for the targeted
Dirac cone (at approximately 84 kHz), no folded modes interfere with the frequency range of interest (marked with
a black box).

SUPPLEMENTARY NOTE 2: CHERN NUMBER

For any dispersion curve bounding the topological bandgap, the Berry connection is defined as [43],

AAA (k) ≡ 〈U(k)|i∇k|U(k)〉, (S-14)

where U(k) denotes the mass-normalized displacement of the eigenmode with harmonic index l = 0 computed at

the wavevector k, ∇k ≡ ∂
∂kx

î + ∂
∂ky

ĵ, and i ≡
√
−1 is the unit imaginary number. The Berry curvature of a given

mode is defined as FFF ≡ ∇k ×AAA . Figure S-4 displays the Berry curvature of the system shown in Fig. 1(e) at the
optimal value of the bandgap. Finally, the total Chern number of each mode is computed as the integral of the Berry
curvature over the entire Brillouin zone,

C ≡ 1

2π

∫∫ (
∂Aky

∂kx
− ∂Akx

∂ky

)
dkx dky (S-15)
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FIG. S-3. Band structure of the hexagonal unit cell in the presence of modulation with zero depth. Blue curves
exhibit the original modes while red (l = 1) and green (l = −1) lines exhibit folded modes.

The required integration can be computed numerically using two trapz functions in Matlab. For the system proposed
in this study, the total Chern numbers are computed to be {+1, 0, 0,−1}.

SUPPLEMENTARY NOTE 3: TOPOLOGY OF FLOQUET SYSTEMS

The aim of this section is to prove the accuracy of the presented approach in the previous section, to compute the
Chern number by only considering the zeroth order of modulation. This is done by developing an analytical approach,
where we establish a connection between the Chern number obtained from the harmonic series of Floquet states (in
the above section), and the stroboscopic effective Hamiltonian. First, we start with the general form of the eigenvalue
problem as,

i∂tψ(k, t) = H (k, t)ψ(k, t), (S-16)

where ψ(k, t) describes the eigenstate at arbitrary time t, and H (k, t) is the Hamiltonian of the system in momentum

space. The evolution then is obtained from S-16 as, U (t) = T exp(−i
∫ t

0
H (k, t′)dt′, which defines the time-dependent

state from initial state to be

ψ(k, t) = U (t− t0)ψ(k, t0). (S-17)

When a periodic temporal modulation is applied to the system with the period of T (H (k, t) = H (k,T + t)), the
stroboscopic Hamiltonian can be extracted from evolution operator to be time independent,

U (T)ψ(k, t0) = exp(−iHeffT)ψ(k, t0). (S-18)

Namely, the expression of such static Hamiltonian is Heff = i
T log U (T), which effectively describes the average effect

of the dynamics and contains the information of topology of the Floquet system. Then topological invariant is revealed
by calculating the Chern number defined in Eq. (S-15) from the static eigenstates. The following effort is to show
such topology can be equivalently represented by the Harmonic series of time-dependent Floquet states. Next we
apply Bloch-Floquet theorem to the wavefunction in eq. (S-16) as below,

ψ(k, t) = e−iωtφ(k, t), (S-19)

where Floquet state φ(k, t) is periodic in time such that φ(k, t) = φ(k,T + t), and ω is the quasi-frequency of the
Floquet states with the period of ω0 = 2π

T . Replacing Eq. S-19 into Eq. S-16 will introduce the new form of eigenvalue
problem under the Floquet state as,

HFφ(k, t) = ωφ(k, t), (S-20)
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FIG. S-4. Topological properties of the proposed system. The Berry curvature of the system proposed in Fig. 1(e) for
the four bands bounding the topological bandgaps in the frequency range of interest.

where HF = H (k, t)− i∂t is the Floquet Hamiltonian. Considering the periodic behavior of the system, Eq. (S-18)
will appear in the new form as,

ψ(k,T + t0) = exp(−iHeffT)ψ(k, t0). (S-21)

Finally, replacing back Eq. (S-19) into (S-21) results in,

e−iω(T+t0)φ(k,T + t0) = exp(−iHeffT)e−iωt0ψ(k, t0). (S-22)

which can be then simplified by applying Taylor expansion to both sides as,

Heffφ(k, t) = ωφ(k, t), (S-23)

This final form reveals the both Floquet Hamiltonian and stroboscopic effective Hamiltonian share the same set of
eigenstates. Since Floquet states are periodic in time, we apply Fourier transform to these states in (S-23), therefore,

Heff

∑
l

φ(k, l)eilω0t = ω
∑
l

φ(k, l)eilω0t, (S-24)

where l is an integer. In order for (S-24) to be valid, each harmonic function φ(k, l) needs to satisfyHeffφ(k, l) =
ωφ(k, l), such that it is reasonable to use arbitrary φ(k, l) to characterize the topology of the Floquet system. Es-
pecially, when l = 0, it corresponds to the analog first Brillouin zone of quasi-frequency. When the dynamics of the
Floquet system are approximately described by the coupled equations of finite series harmonics, the Chern number
obtained from eigenstates φ(k, 0) will most accurately describe the topology of the Floquet system. This clearly
confirms the accuracy of the approach in the previous section to compute the Chern number by only considering the
zeroth order of modulation (i.e., ω0).



FIG. S-5. Fabricated experimental setup. On the left: the tested structure (back side) after being wired to the circuit.
Reflective tape is used in measuring the displacement via a scanning laser Doppler vibrometer (red spot). An exciting PZT disk
(lower left in subfigure) stimulates the system at frequency f0. On the right: the circuits used to provide negative capacitance
to the PZT disks. Photo Credit: Amir Darabi, Georgia Institute of Technology.

SUPPLEMENTARY NOTE 4: EXPERIMENT

Setup:

Figure S-5 depicts the back-side of the fabricated structure (on the left) and the connected circuit (on the right) that
are used to measure the wave-response of the field. See Fig. 3a in the manuscript for the front side. The composite
structure is realized from a 0.5 mm thick PLA layer with one-hundred and fifty glued (by 3M DP270 Epoxy Adhesive)
piezoelectric disks.

Time snapshots of experimental results:

Figures S-6 and S-7 plot time snap-shots of the experimentally-measured wavefield for the horizontal and triangular
interfaces reported in the manuscript.
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FIG. S-6. Time snapshots of experimental results. Experimentally-measured displacement wavefield with a horizontal
interface (depicted in Fig. 4(a) of the manuscript) captured at different times due to excitation by a source with frequency
87 kHz kHz. The location of source is marked withe the green star.

t = t1 t = t2

t = t3 t = t4

FIG. S-7. Time snapshots of experimental results. Experimentally-measured displacement wavefield with a triangular
interface (depicted in Fig. 4(b) of the manuscript) captured at different times due to excitation by a source with frequency
87 kHz kHz. The location of source is marked withe the green star.
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