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Abstract
Background: Using hyperspectral cameras is well established in the �eld of plant phenotyping, especially when using high
throughput routines in greenhouses. Nevertheless, the used work�ows di�er depending on the applied camera, the imaged
plants, the experience of the users and the measuring setup.
Results: This review describes a general work�ow for the assessment and the processing of hyperspectral plant data at the
greenhouse scale. Aiming at a detailed description of possible error sources, a comprising literature review of possibilities
to overcome these errors and in�uences is provided. The processing of hyperspectral data of plants starting from the
hardware sensor calibration, the software processing steps to overcome sensor inaccuracies and the preparation for
machine learning is shown and described in detail.
Furthermore, plant traits extracted from spectral hypercubes are categorized to standardize the terms used when
describing spectral traits in plant phenotyping. Data is introduced from a scienti�c view on the data for canopy, single
organs, plant development and also combined traits coming from spectral and 3D measuring devices. Conclusions This
publications provides a structured overview on implementing hyperspectral imaging into biological studies. Work�ows
have been categorized to de�ne a trait level scale according to their metrological level and the processing complexity. A
general work�ow is shown to outline procedures and requirements to provide fully calibrated data of highest quality. This
is essential for di�erentiation of tiny changes from spectral re�ectance of plants, to track and trace spectral development
as an answer to biotic or abiotic stresses.
Key words: plant phenotyping, camera calibration, machine learning, spectral signature

Background

During the last years, spectral sensing of plants has developed
as a valuable tool for plant phenotyping [1] [2]. The principle of
hyperspectral imaging (HSI) is based on the fact that all mate-
rials re�ect electromagnetic energy in prominent patterns and
speci�c wavelength due to di�erence of their chemical compo-
sition and inner physical structure [3]. Spectroscopy is de�ned
as the method of acquiring and explaining the spectral charac-
teristics of an object regarding light intensity emerging from
molecules at di�erent wavelengths to provide a precise �nger-

print of an object. Spectral imaging combines spatial and tem-
poral information similar to a digital camera [4].
Spectral cameras have become a�ordable that increase the

visible spectrum (400 – 700nm, VIS) of RGB-cameras by the
ultra-violet (200–400nm, UV,[5]), the near infrared spectrum
(700 – 1000nm,NIR, [6]) or even the short wave infrared spec-
trum (1000 – 2500nm, SWIR, [7] ). This is highly interesting
for plant science as many plant traits and biophysiological pro-
cesses can be traced beyond the visible spectral range [8]. Re-
�ectance imaging of plants has been related to plant tissue
characteristics [9], to detect abiotic stresses [10] or plant dis-
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Key Points

• a literature overview is provided to describe aims and scopes of spectral sensing of plants and the di�erent types of analysis
methods

• hyperspectral work�ows for plant measuring are highly individual and need to be structured for evaluation
• a general work�ow for hyperspectral plant phenotyping including camera calibration, segmentation and machine learning
analysis is shown

• a level-based trait de�nition is introduced for canopy, plant organ, time series and sensor fusion

eases [11].
Typically, laboratory work�ows di�er in their use of cam-

eras, measuring setups and data handling such as calibration,
smoothing and segmentation. There are several hardware cali-
bration steps to understand and execute, starting from the cam-
era pixel position mapping to the proper wavelength, the cor-
rection of the camera and lens distortion to the correction of
the 3D setup whenmeasuring upper and lower leaves of a plant.
Thus, a standardized introduction of a work�ow of hyperspec-
tral image processing is needed to enable the comparison of
results from di�erent laboratories regarding their hyperspec-
tral analysis.
To introduce HSI as a state-of-the-art tool for plant pheno-

typing a literature overview is presented showing the di�erent
biological objectives what hyperspectral sensors are used for in
the laboratory and greenhouse scale starting from stress detec-
tion and disease classi�cation to a linking tomolecular analysis
(QTL analysis) grouped by the introduced level-description.
The following paragraph introduced introduces techniques

to overcome di�erent impairments on the measured spectrum
coming from the experimental setup, the sensor, the role of il-
lumination and the challenges whenmeasuring complex plants
with plant speci�c optical properties. The complete work�ow
from sensor adjustment, correction, calibration, segmentation
to the extraction of spectral plant traits and to a deeper analysis
using routines of machine learning (ML) to extract biological
information is described.
The application part describes the di�erent aspects of plant

traits based on HSI. Finally, a level-description model is intro-
duced from the perspective of a data scientist. It describes the
increase of complexity in data acquisition and data handling,
when switching from an averaged spectrum of the plant canopy
to an organ-speci�c spectrum to spectral development in time
course to multi-sensor plant models. The latter is needed for
the geometrical correction of the spectral data.

HSI a tool for plant screening

A comprehensive literature review shows examples for hyper-
spectral application from biotic stress detection like disease or
virus detection, abiotic stress detection like heavy metal or cold
stress and plant trait extraction like biochemical traits or leaf
water content. Table 1 emphasizes di�erent use-cases from
plant science, where hyperspectral imaging cameras were used
to di�erentiate between di�erent situations.
In table 1 hyperspectral data was grouped by trait level

which describes the complexity of the traits. Starting from sim-
ple image analysis (level 1), to organ identi�cation (level 2), to
time series (level 3) and to a �nal multi-sensor data acquisi-
tion (level 4). It is shown that HSI is used for classi�cation and
regression problems across all trait levels (1-4). A closer intro-
duction into these phenotypic trait levels can be found below
in the text.
Three main groups can be identi�ed including i) detection

and quanti�cation of biotic stress like disease detection [11], ii)
detection and quanti�cation of abiotic stress like heavy metal
[15] or water stress [26] and iii) extraction of plant traits to
describe water content [21] or biochemical traits [28].
Thus, HSI is widely used for di�erent aspects of plant

screening and can be depicted to be a state-of-the-art tool for
plant phenotyping.

Data acquisition and processing

Spectral systems and resulting data di�er in the way the cam-
era is calibrated and the data is processed. This leads to in-
consistencies regarding the data quality and the validity of re-
sults. This increases the di�culty to compare data from di�er-
ent sensors. Multiple steps are needed to acquire valid physical
re�ectance data starting from the sensor wavelength calibra-
tion, the instrument function, the radiometric calibration and
spectral and pixel binning.
The goal of calibration is to standardize the spectral axis,

determining if the sensor is working properly, providing the
accuracy of the extracted data, validate the credibility and quan-
tify the instrument errors, accuracy and reproducibility under
di�erent operating conditions [4].
Four categories of factors that in�uence the measured spec-

trum of plants can bede�ned (see Figure 1). I) the experi-
mental setup including the optical con�guration II) the sensor
characteristics including sensor o�set, noise and sensitivity be-
haviour and distortion e�ects [33] III) the illumination e�ects
from the light source when using active illumination or the sur-
rounding light when using environmental light and IV) object
and its properties. This causes plant spectrum variability due
to di�erences in genotypes, plant organs, materials within the
image such as pot and background data, inclination in�uence
due to the architecture of plants, absorption, transmission and
backscattering as plant tissue properties and temporal e�ects
due to growth.

Camera characteristics and measuring setup

Hyperspectral cameras for plant phenotyping often are line
scanners (pushbrooms) as this type of sensor is commonly used
in plant science or for high throughput analysis as it, unlike
snapshot cameras, provides a very high spatial and spectral
resolution. These scanners are either moved over the plant
or use a mirror for panning over the plant and to produce a
full 3D (2D spatial + spectral dimension) hyperspectral cube.
Currently state-of-the-art plant phenotyping centers use line
scanners for imaging maize lines [34], to detect genotypic dif-
ferences [35] or to predict the nitrogen content in wheat [36].
The next step, the transfer of these sensor types to the �eld
scale has already been started for tracking the canopy develop-
ment in cereals [37] or as an open-source and open data project
of Terra-Ref [38].
The measuring setup of a hyperspectral line scanner con-
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Table 1. Hyperspectral imaging is widely used for detection of biotic and abiotic stresses as well as for trait description. Traits are categorizedby a complexity description starting from trait level 1 (TL1, whole plant), trait level 2 (TL2, organ speci�c traits), trait level 3 (TL 3, timeseries) and trait level 4 (TL4, multi sensor traits).
purpose group plant method trait level target reference
detection of impurities in seeds traits wheat, spelt, barley SVM TL 1 classi�cation [12]
insect damage detection biotic stress soybean SVDD TL 1 classi�cation [13]
cold stress detection abiotic stress maize CNN TL 1 regression [14]
heavy metal stress detection abiotic stress rice SVM TL 1 classi�cation [15]
germination detection traits trees LDA TL 1 classi�cation [16]
virus detection biotic stress tomato, tobacco SVM TL 1 classi�cation [17]
weed resistance analysis traits amaranth FLDA TL 1 classi�cation [18]
ph-value determination traits rice & water hyacinth PLS & NN TL 1 regression [19]
nitrogen concentration traits oilseed rape SAE & FNN TL 1 regression [20]
leaf water content traits maize PLSR TL 1 regression [21]
disease detection biotic stress sugar beet ANN, DT, SVM TL 2 classi�cation [22]
disease resistance & QTL analysis biotic stress sugar beet SAM TL 2&3 classi�cation [23]
disease development biotic stress wheat DT TL 2&3 classi�cation [24]
biomass & biofuel potential traits maize SDA TL 3 classi�cation [25]
water stress detection abiotic stress tomato DT TL 3 classi�cation [26]
salt stress detection abiotic stress wheat SiVm TL 3 classi�cation [27]
biochemical trait analysis traits maize, soybean PLSR TL 3 regression [28]
detection of plant communication traits maize LDA TL 3 classi�cation [29]
disease forecast biotic stress barley GAN TL 3 classi�cation [30]
disease di�erentiation biotic stress cucumber SDA TL 4 classi�cation [31]
disease detection biotic stress sugarbeet SVM TL 4 classi�cation [32]

sists of the the line scanning unit, together with the illumina-
tion source. In a moving system, the light moves together with
the camera unit [28]. If using amirror, the illumination is �xed
and changes along the scan area. The result is a hyperspectral
datacube.
Choosing the right camera for a sensor setup has to take

into account the spectral region of interest, signal-to-noise ra-
tio, dynamic range, spectral and spatial resolution, pixel size,
frame rate, lenses and operating temperature [39].
To acquire a proper datacube di�erent calibration routines

are needed to ensure highly accurate re�ectance values. Fig-
ure 2 shows a generalized processing pipeline for hyperspec-
tral cubes for the demands of plant imaging in greenhouses
and laboratories as it is common for the demands of plant phe-
notyping.

Wavelength calibration - from pixel to wavelength

When using a pushbroom sensor one dimension of the detec-
tor represents the spatial information of the lines of the target.
The other dimension represent the full spectrum of a single line
of pixels. The wavelength calibration describes the comparison
of measured spectral values with known values [40] and con-
sequently, the mapping of the dispersed geometric access to
wavelength in nm.
A calibration is needed after manufacturing and after any

physical changes to the optical path [41]. Wavelength calibra-
tion is obtained by exposing the optical system to a calibration
light source / sources. Three aspects are critical for obtaining a
proper wavelength calibration including (i) the selection of the
calibration light, (ii) the determination of the center of charac-
teristic peaks and (iii) a polynomial �tting to the data [42]. The
calibration light source / sources should cover the wavelength
range to be calibrated. Wavelength calibration light sources
emit atomic emission lines of known wavelengths. A polyno-
mial �t of the geometric position of the atomic emission lines
on the chip and the known wavelength is conducted. This step
is usually performed preliminary by the manufacturer and en-
ables displaying the spectral axis in units of wavelength (nm).

Instrument function / point spread function - overcoming spectral
distortion
Measurements of any optical device can be described as a con-
volution of the original data with the appropriate transfer func-
tion of the sensor and optical setup. This convolution is char-
acterized as a (spectral & spatial) blurring or smearing of the
data [43]. The terms "instrument function" and "point spread
function" are both used to describe this convolution. The term
"point spread function" typically refers to the spatial convolu-
tion. The term "instrument function" is referring to the con-
volution in the spectral domain. Both terms de�ne the highest
possible spectral and spatial resolution. E�ects resulting from
the point spread function are described in the following para-
graphs. In contrast to spatial distortions the (spectral) instru-
ment function is typically not corrected for.
Spatial calibration - overcoming spatial distortion
Similar to 2D-RGB-cameras which come with barrel and pillow
distortion [44], the images of a hyperspectral line scanner tend
to show similar e�ects called smile and keystone e�ects. Smile
is the curvature distortion of the horizontal spectra lines[33] or
a shift in wavelength in the spectral domain [45]. Keystone is
the distortion of the focal plane rectangle into a trapezoid [33]
or a band-to-band misregistration [45]. These e�ects can be
corrected using geometric control points (GCP) [33] . A spatial
calibration of the hyperspectral cube describes the character of
the spatial mapping process. This process results in an recti-
�ed image. Not all manufacturers provide this calibration by
default.
Radiometric calibration - from counts to a physical unit
Due to di�erences in quantum e�ciency of the detector and
varying e�ciency of the grating and other optical components
(lenses etc.), measurements using di�erent optical systems of
the same object under same illumination conditions may not
be identical [41]. To correct for such instrument related dif-
ferences, radiometric calibration of the measurement device or
white referencing is needed. Radiometric calibration uses an
integrating sphere to measure the calibration coe�cients for
each wavelength band (pixel) that is measured by the sensor
[46]. The camera output is mapped to a physical unit (lumi-
nous �ux) using a certi�ed spectral test specimen (integrating
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Figure 1. In�uences on the measured spectrum of a plant. The four main sources of in�uence are the experimental setup, the way the camera is mounted, the
distance to the plant etc., the light, its spectrum, focus, the object of interest with its absorbing and transmitting properties when imaging plants and the sensor
in particular the dark and white referencing, its noise and sensitivity, distortion, discretization and binning.

sphere). Thus, radiometric calibration describes the spectral
characterization of lens system, chip and dispersive elements
(grating and �lter).
In many applications absolute radiometric calibration is not

required. Often it is su�cient to use a relative spectral calibra-
tion to correct for the spectrally varying system e�ciency. A
simple white referencing and dark subtraction is su�cient for
re�ectance measurement.
Spectral and spatial binning - reducing the noise level
To acquire a high retrieval accuracy within the acquired data a
high signal to noise ratio (SNR) is required. SNR is the ratio
of the radiance measured to the noise created by the detector
and instrument electronics [4]. This ratio can be increased by
combining spectral image information along the spectral axis
(spectral binning) or by integrating the neighbour pixels (spa-
tial binning) [39]. It was shown that binning along the spectral
axis using just a few neighbours reduces of the (spectral) image
size in favor of an enhanced signal to noise ratio [47].
In general, wavelength next to each other are highly corre-

lated [48]. Thus it can be stated, that a slightly spectral binning
will not a�ect the informative value of the remaining spectrum.
Binning can be performed directly at the camera internal

hardware (hardware binning) or by a processing software when
loading the datacube (software binning). In general, hardware
binning results in less noise than software binning as the sen-
sor signal is directly merged in the camera prior to analog dig-
ital conversion. If using hardware binning, this step has to be
performed �rst before any calibration. If using software bin-
ning, it is the �rst step in the pre-processing right after the
hardware calibration steps.

Data preprocessing

Pre-processing can be initiated after hardware calibration and
measurement validation. A standardized process is needed to
compare measurements from di�erent timepoints and from
di�erent measuring setups. It includes pre-processing steps
where the normalization is performed, the spectral smoothing

and 3D correction up to a masking of the object of interest and
data splitting, dimension reduction and feature selection for
ML.
re�ectance calibration / normalizing - overcoming the light source
in�uence
To enable comparable measurements for time series within
the same measurement setup, between di�erent sensor setups
or under di�erent illumination conditions the normalization
of the datacube according to the maximum and minimum re-
�ectance intensity is needed. Therefore the dark image is cap-
tured by recording the hypercube with a lid on the camera or a
closed shutter. This dark data cube described the lowest possi-
ble sensor signal. Right after this the white reference spectrum
is acquired using a spectrally known reference target. Most of-
ten highly re�ective materials like barium sulfate (SphereOp-
tics.com) act as a reference. Alternatively the use of materials
with a known spectral re�ectance is established as a standard
procedure. Performing the object scan right after including the
associated dark image, the normalization step can be described
by formula 1:

INorm = cubeO – cube
D
O

cubeWR – cubeDR
(1)

Within this formula cubeO depicts the object cube respec-tively the cubeDO dark reference whereas cubeR de�nes the refer-ence object and cubeWR white reference and cubeDR dark reference[3] [4].
spectral smoothing - dealing with peaks and spectral outliers
Based on the assumption that the plant spectrum has a smooth
spectrum and peaks within the spectrum are results of outliers
and noise the use of soft smoothing algorithms is valid. Most
established is the Savitzky-Golay smoothing algorithm [49] for
hyperspectral data where 15 centered points and a polynomial
of degree 3 has shown its applicability [50].
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Figure 2. A generalization of a hyperspectral work�ow The way to extract information from sensor data and to bring it into a biological context to generate
knowledge starts with the data acquisition, the hardware calibration, a proper normalization step, data pre-processing, masking to focus on the object of interest,
the plant and to cut out background, plant pot and stabilization sticks etc. Depending on the experiment setup data and the analysis type has to be divided into
validation, training and test data set to train a model and to evaluate it on the test data. This is followed by the result interpretation and identi�cation of diseases,
stresses or other properties of the plants. Vertical dashed lines describe in a general way the transition between the imaging process, the processing of the data,
the generation of information and by interpretation knowledge.

3D correction - correcting the in�uence of the sensor-object distance
The measured re�ectance on the detector is depending on the
re�ected light intensity and the distance between sensor and
re�ection point on the object/plant. For measuring a plant with
upper and lower leaves, the distance to the sensor is di�erent
for both leaves. This results in di�erences in the measured in-
tensity. Some publications show the normalization of the spa-
tial distance [18] [51]. A prerequisite for this is an integration
of a 3D measuring device in the measuring setup (laserscanner,
ultrasound etc.). Depending on the distance, the corrected cube
contains equal re�ectance values for similar surfaces although
the distance to the camera is di�erent by using pixelwise dis-
tance normalization.
segmentation masking
Image segmentation is used to partition an image into mean-
ingful parts that have similar features and properties [52]. For
the demands of plant phenotyping this usually means the sepa-
ration from plant and background pixels. This is mostly based
on simple vegetation indices or thresholds using a speci�c
wavelength [53]. Further segmentation like the identi�cation
of single leaves, or the detection of disease symptoms are fo-
cused on later in the work�ow pipeline as MLmethods are used
to tackle this problem.
After masking, the transition between fore- and back-

ground is very sharp. Pixels at this transition include parts
of both classes and are depicted as "mixed pixels". To over-
come the in�uence of these pixels to the analysis result, these
pixels have to be removed. Literature shows that an the use
of erosion as a binary image processing technique is e�cient.
A �lter element the size of 3x3 pixels is used to shrink the re-
gion of the foreground [54]. A negative side e�ect related to
the reduction of foreground data is the possibility of loosing
important information which can be used to enhance the data
quality.
preparation for ML
To prepare the data for use in a common ML routine, us-
ing supervised classi�cation approaches, the dataset is split
into three subgroups including the same distribution of groups
within the three sets. That means the ratio between the in-

cluded groups is similar. Set one is called validation dataset
and is used for tests on dimension reduction, for feature ex-
traction and for principal component analysis. Set two is called
the training set and is used to calculate the model of the ML
method like support vector machines (SVM) or decision trees
(DT). The third set is called the test set and is used to validate
the model and to calculate a model accuracy. The size of the
groups di�ers with respect to the number available samples. A
repeated cross-validation using di�erent splits of the dataset
(test and training) is recommended. To decrease redundancy
within the dataset dimension reduction as it can be performed.
State-of-the-art techniques are principal component analysis
(PCA, [55]), feature selection using recursive feature elimina-
tion (RFE), ReliefF or correlation-based feature selection [56].

Data analysis and interpretation

hyperspectral traits

Hyperspectral traits can be grouped into di�erent groups, de-
pending of the focus of the data. If the data is coming from
a single plant (trait level 1) the datacube can be used to derive
very rough information about the plant like the plant canopy
[57]. If the datacube is segmented into regions including sin-
gle leaves, disease symptoms or spatially con�ned areas (ROI,
trait level 2), these regions can be compared together. This is
commonly done by a classi�cation on pixel (single spectrum)
level [58]. Time series measurements are essential for accu-
rate capturing of developing disease symptoms. This leads to
the development of spectral dynamics over time (trait level 3)
[24] [50]. Hyperspectral datacubes are a�ected by distance and
inclination of the measured object. The correction of thehyper-
spectral information according to distance and inclination is
needed. This can be done by modeling the measuring setup
and the occuring errors. It needs the use of an accompany-
ing sensor measuring the object geometry as a 3D laserscanner
[59] and fusing the data for a complete 3D-hyperspectral data
model that enables detection of plant disease within a corrected
spectrum [32]. An overview about these traits, prerequisites
and applications is shown in Fig. 3.
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Figure 3. A general trait visualization Plant traits are parameters that describe the hyperspectral properties of the plant tissue. Nevertheless, these traits can be
grouped according to the e�ort that is needed for their extraction. First level (1) traits describe the spectrum of the whole canopy. By using a classi�cation based
on ML algorithm it is possible to identify spectra of single leaves (level 2). By measurements over time the development of these spectra can be visualized (level
3) and by using further sensors it is possible to reduce geometrical e�ects based on a sensor fusion (level 4).

machine learning
For data analysis and ML, the tasks can be divided into super-
vised methods and unsupervised methods. Supervised meth-
ods require a known target value and therefore labeled data to
train a model. Within the supervised learning methods, meth-
ods can be grouped by their target. If the output is a label as
an a�liation to a group and the label is categorial, the method
is called classi�cation. Prominent routines for supervised clas-
si�cation are SVM, DT and Neural Network architectures (NN).
A similar approach using labeled data is regression, where the
output does not predict a group but a numeric value. Known
methods for this scenario are Support Vector Regression (SVR),
DT and NN.
A special case of ML is Deep Learning (DL). DL allows com-

putational models that are composed of multiple processing
layers to learn representations of data with multiple levels of
abstraction. It also describes an algorithm allowing raw data as
input and automatically discovers a representation, consisting
of multiple non-linear modules, for detection or classi�cation
[60]. In contrast to SVM or DT approaches, DL is based on N
architectures and is based on very huge datasets used for train-
ing. DL approaches have been widely used on RGB images for
the demands of plant phenotyping as there is a classi�cation
of root tips, shoot and leaves [61] [62] and can be depicted to
be state of the art. During the last years, hyperspectral applica-
tions are raising. Di�erent types of DL approaches have been
used for plant disease [63] or stress detection [64].
Unsupervised approaches do not need labeled data and try to

detect patterns within the data. Clustering approaches like k-
means shift manual work from model generation to cluster in-
terpretation as it is the task of the scientist to give semantic to
the clustered datasets. The clustering of hyperspectral datasets
has been successfully shown for the detection of drought for
maize [65].
Usually the results of a classi�cation are presented by a con-

fusion matrix, which indicates for a speci�c trained model the
resulting classi�cation of the test dataset regarding true posi-
tive, false positives, false negative and true negative. It com-
pares the predicted values to the true values.

Challenges and limitations

HSI has to face many challenges regarding sensor setup, il-
lumination, data processing and plant speci�c characteristics.
Starting with the measuring setup where the sensor, illumina-
tion and the object distance has to be adapted to the plant size
to gain best re�ectance results. Thus, the setup has to tailored
has to be tailored towards the size of the plantss. Both extrema
within one measuring setup causes problems in illumination,
image resolution and chip intensity.
When transferring hyperspectral imaging to the UV area be-

tween 200–400nm, plants can su�er from the harmful prop-
erties of illumination in this spectrum [5]. Further evaluation
of the e�ects of light exposure on the study objects is recom-
mended as plant properties such as architecture, tissue compo-
sure and wax layer di�er between species.
Beside e�ects of the geometry, like the correlation between

normalized di�erence vegetation index (NDVI) and inclination,
have to be taken into account or if possible have to be corrected
[7]. This emphasizes the need for imaging setups including
di�erent sensors for geometry and re�ectance.
When transferring results from the laboratory or green-

house to the �eld the work�ow for using HSI is di�erent and
has to be designed individually [66]. Due to environmental con-
ditions such as overcast and varying angles of sun exposure a
speci�cally illumination normalization with a high frequency
or even permanent has to be conducted. Furthermore, the use
of masks rise from vegetation indices or wavelength thresh-
olds loose quality due to shadows, focus plane if not measuring
directly vertically. Measuring hyperspectral imaging on UAV
brings the problem of image fusion especially when using line
scanners [67], here the single line scans have to be merged
together according to the 3D movement of the carrier.
Especially when using high throughput imaging setups [21]

combined with hyperspectral cameras periodical imaging leads
to huge datasets independent of the scale [37]. This empha-
sized the need for reliable, stable and e�cient algorithms and
high-end computational machines to process the datacubes.
Image analysis and interpretation is the key plant phenotyp-
ing bottleneck [68].
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Conclusion

HSI is a well-established tool for plant phenotyping in green-
houses. But each laboratory is using a specialized work�ow
for data assessing, processing and handling which makes the
data individually valid but di�cult to compare. This study in-
troduces a generalized work�ow of calibration, normalizing,
smoothing and masking of spectral images up to the prepara-
tion for use in ML routines in greenhouses and laboratories.
This work�ow includes hardware-based calibration steps as
well as software based processing. Furthermore, a general de�-
nition for hyperspectral traits is introduced to establish a level-
system starting from traits for the whole plant, to traits for sin-
gle organs, traits describing temporal development and traits
that are based on the measurements of di�erent sensors. An
literature overview using hyperspectral imaging and ML is in-
troduced to show the di�erent application areas for plant mea-
suring in agriculture together with the used ML method and
the used plant material. Thus a general overview for the ap-
plication of hyperspectral imaging in plant science is reason-
able. This review o�ers a standardized protocol for raw data
processing and how plant traits can be categorized due to their
complexity regarding e�ort in data processing and derivable
traits.
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