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Abstract: Using hyperspectral cameras is well established in the field of plant phenotyping,
especially when using high throughput routines in greenhouses. Nevertheless, the
used workflows differ depending on the applied camera, the imaged plants, the
experience of the users and the measuring setup. 
This review describes a general workflow for the assessment and the processing of
hyperspectral plant data at the greenhouse scale. Aiming at a detailed description of
possible error sources, a comprising literature review of possibilities to overcome these
errors and influences is provided. The processing of hyperspectral data of plants
starting from the hardware sensor calibration, the software processing steps to
overcome sensor inaccuracies and the preparation for machine learning is shown and
described in detail. 
Furthermore, plant traits extracted from spectral hypercubes are categorized to
standardize the terms used when describing spectral traits in plant phenotyping. Data
is introduced from a scientific view on the data for canopy, single organs, plant
development and also combined traits coming from spectral and 3D measuring
devices.
 
This publications provides a structured overview on implementing hyperspectral
imaging into biological studies.

Workflows have been categorized to define a trait level scale according to their
metrological level and the processing complexity. A general workflow is shown to
outline procedures and requirements to provide fully calibrated data of highest quality.
This is essential for differentiation of tiny changes from spectral reflectance of plants, to
track and trace spectral development as an answer to biotic or abiotic stresses.
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Reviewer reports:

Reviewer #1: The submitted manuscript reviewed relevant literature and summarized a
general workflow for the analysis of plant hyperspectral images collected in controlled
environments. This review could have a great impact to the research community: The
general workflow could guide researchers to standardize the data acquisition and
processing of plant hyperspectral images for controlled environment studies, help
accumulate global research efforts, promote the data sharing, and ultimately advance
big data analysis for plant spectral responses and therefore biological understanding.
Therefore, the manuscript fits well with the journal's scope and could be of great
interest to readers. There are some parts need to be further improved or explained.

1.In my opinion, a unique feature of spectral imaging is the combination of spatial and
spectral information for objects rather than the combination of spatial and temporal
information, which has been stated by the authors in the first paragraph in Background
section.
•We appreciate this suggestion, text has been changed accordingly.
2.Details and explanations are needed for the data acquisition section. While line-scan
(pushbroom) systems are widely used, many researchers also used area scanning
mode (rarely point scanning, aka whiskbroom, mode) for studying plant spectral
responses. To the best comprehensiveness, it would be better to briefly introduce all
three scanning modes including basic system setup and pros and cons of using each
mode. A figure may be added for the best illustration of the system setups.
•We appreciate this suggestion. A figure showing the different techniques for
hyperspectral imaging has been added.
3.Data pre-processing (e.g., reflectance calibration or flat field correction)/meta-data
information is utmost important for sharing plant hyperspectral images. Authors may
consider to emphasize this importance and provide more information on how to select
reference targets. For example, Spectralon targets are generally in good quality with
known spectral characteristics, so data collected using this type of reference targets
could be directly shared as long as the target model number and manufacturer are
provided. In case Spectralon targets cannot be used (due to either cost consideration
or spatial limitation), inexpensive alternative references can be used but the reference
spectral characteristics should be provided as meta-data to ensure the reusability and
comparableness of shared datasets.
•The link to the spectralon manufacturer was added, furthermore the sentence: “When
sharing datasets the reference spectral characteristics should be provided as meta-
data to ensure the reusability and comparableness.”
•Now this point should be emphasized.
4.Authors may consider use "flat field correction" as the name for the section of
"reflectance calibration /normalizing …". An important feature of applying Eq.1. to
images is to reduce nonuniformity caused by either the imaging chip, illumination, or
both.
•This has been changed accordingly.
5.In the section of "preparation for ML", please consider adjusting the description order
as "training", "validation", and "testing", which is logically natural and widely used by
research communities. Authors may also consider cite a technical-driven review paper
on feature selection. This will help readers to further the understanding and knowledge
of the techniques can be potentially used.
•This has been changed accordingly.
6.It would be very interesting and useful if authors could provide a table to list some
publicly available datasets that were collected by following the general workflow. This
will in turn help the technical community to obtain domain datasets for the development
of new tools in the future.
•We really appreciate this suggestion. Nevertheless, community is still lacking of
hyperspectral datasets of plants with open/free access. This defines a todo for the
future. We hope that this study will give a good basis for publishing a technical proper
dataset.
7.There are some repeated words and typos to be carefully checked by the authors.
For example: "publications" in the abstract and "bedefined" to "be defined" in the Data
acquisition and processing section.
•This has been changed accordingly.
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Reviewer #2: This is a review paper focusing on close-range hyperspectral imaging for
plant assessment in the greenhouse and laboratory scales.  Given the broad interest of
using hyperspectral imaging for plant phenotyping research, as well as the complexity
of data structure and analysis method, this manuscript is quite timely and relevant. The
hyperspectral image is known for its large data volume. The topic thus is appropriate
for the journal. The paper covered the topics including camera and measurement
setup, data preprocessing, and data analysis/interpretation. The authors' argument is
that a standardized workflow for image acquisition, processing and analysis is needed
to make the data comparable among various labs, which is a valid point. The paper
provides a good technical summary of hyperspectral imaging (such as camera and
imaging stage setup, white referencing), and gives a good compilation of its
applications on plant assessment that can be useful for the phenotyping research
community. My major comments for the authors to consider improving the manuscript
are in the following.

Section of spectral smoothing. The authors only discussed Savitzky-Golay method and
missed many other methods that are common for spectral preprocessing.
In addition to spectral averaging (binning) that the authors also discussed, other
methods like Multiplicative Signal Correction and Standard Normal Variate are also
widely used. Other preprocessing such as first and second order derivative are also
common. Note Savitzky-Golay can also be used for differentiation. I think you need to
mention these methods rather than just Savitzky-Golay.
•We  have added these methods together with  a literature link.
Preparation for ML. You discussion of calibration set, validation set, and test set are
not correct. In machine learning, calibration set is for model calibration (to calibrate
model parameters), validation is for model hyper-parameter tuning, and the test set is
to evaluate the performance of the developed model. Please make sure you express
this correctly. In some implementations, an explicit validation set is not used where
model calibration and hyper-parameter tuning are conducted together.  In these
implementations, test set is also referred to as validation set. I would recommend the
authors to read some of the literature on NIRS analysis, as when the images are
reduced to the spectrum level, the (pre)processing and analysis share commonalities.
There are quite a few publications recently on using VIS-NIR-SWIR for leaf analysis in
the context of plant phenotyping. Please study those so you can see
calibration/validation schemes and spectral preprocessing.
•The description of the machine learning sets has been changed accordingly.
The explanation following Equation 1 was poor.  I cannot understand it. Please revise.
•The explanation has been changed.
There is significant room for the authors to improve the writing and presentation of the
manuscript.  There are quite a few places where the wording and phrases can be
improved.  Please see my comments on the attached document.
•Comments in the PDF version of the draft have been inserted and the text changed
accordingly.

Reviewer #3: This paper presents a workflow for researchers using hyperspectral
imaging for phenotyping applications, specifically based in greenhouses and laboratory
settings. This paper is very timely and quite necessary, in my opinion. Overall I think
the paper is well organized and presents information that will be very useful for
researchers as they design their experimental setups. My background is remote
sensing, specifically hyperspectral, so many of my comments and suggestions are
based on lining up the language in this manuscript with the language used in the
existing remote sensing literature base. Since remote sensing researchers have been
working with hyperspectral since the 1980s, I believe this will allow readers to find
established and published methods that can directly apply to plant phenotyping without
having to 'reinvent the wheel'. I am also assuming that most of your readers may not
be familiar with hyperspectral. Especially since if I were new to hyperspectral for
phenotyping, I would start with reading this paper!

General Comments:
*To be technically correct, use the term hyperspectral instead of spectral. RGB imagery
is also spectral, but it just happens to be broadband and only three bands.
•This has been changed for the plant imaging sections. For the technical sections we
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focused on the spectral calibration and the techniques, thus we think the term spectral
is here appropriate.
*The camera characteristics and measuring setup section should be broken up into two
sections. One for camera characteristics and one for the measuring setup. The camera
characteristics description is thorough, but I would like to see more details (or more
explicitly stated) on the experimental design or measuring setup. Specifically, the
authors could elaborate on the following topics:
•As the authors mention, illumination is a significant factor in collecting high-quality
data. Not all bulbs will work appropriately - what things do researchers need to know
not to have illumination issues? Why should any fluorescent lights be turned off before
collection?
•We clearly see that illumination is an highly important facor. Thus an extra section
“Using illumination for measuring” has been added to the text.
•Side-view versus nadir image collection - why would you choose one over the other?
Why will side view not translate to outdoor image collections?
•This has been added accordingly in the section “Measuring setup”.
•The inclusion of a reference panel (briefly mentioned in a different section) in the
scene. Should it be all scenes or a preferred location within a scene?
•This has been added accordingly in the section “Measuring setup”.
•A discussion on the field of view of the camera and how to determine camera height
based on the sample being collected and desired spatial resolution.
•This has been added accordingly in the section “Measuring setup”.
•Pushbroom versus integrating cameras
•This has been added accordingly in the section “Camera characteristics”.
•There needs to be a better description of each of the remote sensing data levels. At
the moment, the terminology isn't quite correct, and the clarity is missing (Radiometric
calibration section). Specifically, it would be important to define digital numbers,
radiance, and reflectance data levels. They each have very different factors that
influence them and require different corrections.
•This has been added accordingly in the section “Radiometric calibration”.
•Do not use the term normalization for reflectance retrieval. Reflectance calibration is
ok, but to match the remote sensing literature, reflectance retrieval would be more
accurate.
•This has been changed accordingly.

Specific Comments:
Abstract > Results: "This review describes a general workflow for the assessment and
the processing of hyperspectral plant data at the greenhouse scale."  I would add
greenhouse and laboratory scale since this is the first mention of the measurement
scale and it will match the title

•This has been changed accordingly.

Abstract > Conclusions: I would have this start on a new line like Background and
Results.
•This has been changed accordingly.

"This publications provides a structured overview on implementing hyperspectral
imaging into biological studies."
Publication should be singular. I would also add at the end "at the greenhouse and
laboratory scale". This paper would not be useful for outdoor collections with UAV or
airborne sensors.
•This has been changed accordingly.

Key Words: Make sure to include hyperspectral.
•This has been changed accordingly.

Key Points: hyperspectral not spectral, needs to be structure for evaluation of what?
•This has been changed accordingly.
"During the last years, spectral sensing of plants has developed as a valuable tool for
plant phenotyping [1] [2]."
Rewording - "During recent years, hyperspectral sensing…." I think it is important to
say hyperspectral instead of spectral. RGB is also spectral, but it just happens to be
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broadband.
•This has been changed accordingly.

"The principle of hyperspectral imaging (HSI) is based on the fact that all materials
reflect electromagnetic energy in prominent patterns and specific wavelength due to
difference of their chemical composition and inner physical structure [3]. Spectroscopy
is defined as the method of acquiring and explaining the spectral characteristics of an
object regarding light intensity emerging from molecules at different wavelengths to
provide a precise fingerprint of an object."

This sentence needs some rewording. This is not the principle of hyperspectral
imaging but remote sensing in general. The difference between hyperspectral and
other remote sensing is that hyperspectral is characterized by measuring hundreds of
narrow bands in the electromagnetic spectrum. For any remote sensing sensor, the
measured signature is the result of a material's chemical composition and inner/outer
physical structure. It is important to note that the spectral signature is not just the inner
leaf, especially since that depends on the part of the electromagnetic spectrum that is
measured. Additionally, it is important to specify HOW hyperspectral is different than
multi-spectral sensors (specifically RGB cameras are mentioned). In the paper, a lot of
great examples are shown using hyperspectral. Still, I think the introduction could use
one sentence saying why someone would invest the extra time/money/effort into using
hyperspectral over an RGB camera. Lastly, spectroscopy can also be collected with a
point spectrometer instead of an imager. There is a whole literature base that uses
point spectroscopy for phenotyping, which is not the focus on this paper. I would add a
single sentence acknowledging this difference. Also, it may not be apparent to readers
that spectroscopy equals hyperspectral, and I would say that hyperspectral is more
commonly used in the plant sciences literature.
•This has been changed accordingly. We hope that it now fulfills the claims of the
reviewer.

"Spectral cameras have become affordable that increase the visible spectrum (400 -
700nm, VIS) of RGB-cameras by the ultra-violet (200 - 400nm, UV,[5]), the near
infrared spectrum (700 - 1000nm,NIR, [6]) or even the short wave infrared spectrum
(1000 - 2500nm, SWIR, [7] )."
This sentence needs rewording. Hyperspectral cameras have become more affordable
and as a result, more commonly used? Compared to RGB cameras, they increase the
spectral resolution and spectral range?
•This has been changed accordingly.

Reflectance imaging of plants has been related to plant tissue characteristics [9], to
detect abiotic stresses [10] or plant diseases [11].
This is the first time the term reflectance is used, and it might be easier for readers who
are not familiar with this data type to use hyperspectral instead (until you get a chance
to define reflectance in the Data Acquisition and Processing section). This list, as
written, suggests these are the only applications of hyperspectral imaging of plants. I
would add at the end "among others" to give some flexibility.
•This has been changed accordingly.

"To introduce HSI as a state-of-the-art tool for plant phenotyping a literature overview
is presented showing the different biological objectives what hyperspectral sensors are
used for in the laboratory and greenhouse scale starting from stress detection and
disease classi¬fication to a linking to molecular analysis (QTL analysis) grouped by the
introduced level-description."
Suggested rewording - "To introduce HSI as a state-of-the-art tool for plant
phenotyping, a literature overview is presented showing the different biological
objectives can be achieved with hyperspectral sensors in the laboratory and
greenhouse settings including stress detection, disease classi¬fication, and molecular
analysis (QTL analysis)."
•This has been changed accordingly and by suggestion of an other reviewer.

"The following paragraph introduced introduces techniques to overcome different  ..."
Typos: "The following section introduces techniques ..."
•This has been changed accordingly.
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"A comprehensive literature review shows examples for hyperspectral application from
biotic stress detection like disease or virus detection, abiotic stress detection like heavy
metal or cold stress and plant trait extraction like biochemical traits or leaf water
content."
Since this is the start of a paragraph, please include again this is at the
greenhouse/laboratory scale.
•This has been changed accordingly.

Table 1: Please include in the caption this is for the greenhouse/laboratory scale. I'm
not as familiar with hyperspectral greenhouse studies, but there is only one citation for
each of these?
•A describing sentence has been added to the table caption.

"Spectral systems and resulting data differ in the way the camera is calibrated and the
data is processed."
These are not the only ways hyperspectral systems differ. As mentioned in the
following sections, there are many other factors. Perhaps a more generalized
sentence? "Hyperspectral systems and resulting data will vary due to many factors,
including camera characteristics, experimental setup, calibration, and data processing.

•This has been changed accordingly.

"… sensor wavelength calibration, the instrument function, the radiometric calibration
and spectral and pixel binning."
What is "the instrument function"?
•Instrument function and point spread function need a detailed introduction which has
been given in the section “Instrument function / point spread function - overcoming
spectral distortion”

"Four categories of factors that influence the measured spectrum of plants can
bedefi¬ned."
Add space between be and defined.
•This has been changed.
Also, these four factors are HUGE when collecting hyperspectral data and often result
in the most errors or incorrectly interpreted data. I love the figure and that these factors
are mentioned, but I think they could use a little more elaboration. How might each
factor impact your data? The last sentence starts to address this, but in my opinion, it is
too much of a summary of all of them. For example, spectra variability due to
differences in genotypes is not caused by the optical configuration but the plant's
properties.

•We clearly see this point and its importance. Nevertheless a quantification of the
influence of the single error sources is rather complicated and needs test series with
high quality calibrated recordings. Thus we hope that the summary approach is
sufficient for publication.

Camera characteristics and measuring setup As mentioned in general comments, I
believe this section should be split into two, which would allow authors to go into detail
about how the measurement setup is critical for high-quality measurements. As I
progress through specific comments, I will highlight sections that could be expanded
on or moved to the measurement set up section.

•The section has been split and changed accordingly.

"Hyperspectral cameras for plant phenotyping often are line scanners (pushbrooms) as
this type of sensor is commonly used in plant science or for high throughput analysis
as it, unlike snapshot cameras, provides a very high spatial and spectral resolution."
This sentence is awkward and could use rewording. While they are often line scanners
there are other hyperspectral camera systems. Since this is a literature review, mention
those scanners and how they are different. In the measurement setup section, the
pros/cons of each could be explained.
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•This has been changed. Furthermore a complete new figure has been added.

"The next step, the transfer of these sensor types to the field scale has already been
started for tracking the canopy development in cereals [37] or as an open-source and
open data project of Terra-Ref [38]."
My remote sensing background has significant issues with this sentence.
Hyperspectral data collection has been happening for decades with airborne sensors
or point spectrometers for plant applications. Including predicting nitrogen content and
canopy development. Since this sentence doesn't add to the camera characteristics
section, I would remove it or reword so that it doesn't exclude a whole body of research
(which is outside the scope of this paper).

•This has been changed. The sentence has completely been removed.

Wavelength calibration: I'm quite confused by this section. The wavelengths that
sensor measures should be set by the manufacturer. Are there enough people creating
their own hyperspectral sensors for this section to be applicable? In my experience,
wavelengths rarely drift, and if they do, the manufacturer would prefer to do the
correction. The sentence "The wavelength calibration describes the comparison of
measured spectral values with known values [40] and consequently, the mapping of
the dispersed geometric access to wavelength in nm." sounds like it is discussing
reflectance retrieval, but that is a different section. The sentences "A polynomial ¬fit of
the geometric position of the atomic emission lines on the chip and the known
wavelength is conducted. This step is usually performed preliminary by the
manufacturer and enables displaying the spectral axis in units of wavelength (nm)."
Sounds like you are discussing the conversion of digital numbers to radiance, but that
is also another section. I've also never heard the term dispersed geometric access, so
it would probably be good to define? Now, it is important to know that each band has a
spectral response function (again generally provided by sensor manufacturer or
estimate by Gaussian function). This information is critical to resample a camera to
another camera spectral resolution.

•We agree with this comment. A wavelength calibration should be performed by the
manufacturer. The scope of this publication is to introduce all aspects of hyperspectral
calibration. After a longer discussion with a specialist of a worldwide spectrometer
manufacturer we can say that the majority of the users, especially scientists, build
hyperspectral cameras, especially push broom and whisk broom systems themselves
and thus need to perform their sensor wavelength calibration by themselves.
•The sentence has been changed access  axis. The confusion should be solved now.
•We deeply re-discussed this text section and think that we could improve the quality
and readability. This passage only focusses on mapping of pixel position on the
camera to wavelength and not about reflectance or radiance measuring.

"Due to differences in quantum efficiency of the detector and varying efficiency of the
grating and other optical components (lenses etc.), measurements using different
optical systems of the same object under same illumination conditions may not be
identical [41]."
A sentence needs to follow this one that spells out to the reader that this data level is
called digital numbers. This data-level is influenced by sensor characteristics,
atmospheric conditions, and surface properties (in this example plants). This will
emphasize the reason why sensors at this data type level are not comparable.

This has been changed accordingly.

"To correct for such instrument related differences, radiometric calibration of the
measurement device or white referencing is needed."
*White reference is NOT used for radiometric calibration. Many software programs will
incorporate the radiance to reflectance step into one which would use the white
reference. However, the term white referencing is specifically for converting to
reflectance. This is a critical difference when making measurements outdoors, but it
worth separating here.
This has been changed accordingly.
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*It is also important to tell the reader what the radiance is, especially since there are
many plant applications (such as photosynthetic studies) that require radiance values,
not reflectance. This data product is influenced by the light source, atmospheric
absorptions, and surface properties, but it does remove camera factors.
Now it should be more clear and more explicit.
*To convert from DNs to radiance, a gain and offset per band are applied to the data
which are provided by the sensor designers or engineers. Software provided by the
manufacturer should have those values automatically provided. IF they don't, then you
have to develop them yourself, which is the description actually provided in this
section.
"In many applications absolute radiometric calibration is not required. Often it is
sufficient to use a relative spectral calibration to correct for the spectrally varying
system efficiency. A simple white referencing and dark subtraction is sufficient for
reflectance measurement."
This needs to be reworded. Right now, it jumps from radiometric calibration to a
reflectance measurement - which has not been defined. Also, this depends on the
camera system. Often it is possible to 'skip' the radiance conversion because it a linear
regression with DNs, but this is not the case with every camera (depending on the
camera characteristics it can be non-linear spectrally and spatially).
This has been changed accordingly. And a few more explicit sentences have been
added.

Spectral and spatial binning: Yes, SNR can be increased when data is binned, but
many new users will do this incorrectly. For example, many hyperspectral sensors
have 'bad bands' towards the upper and lower range of the sensor. Bad bands are
those defined with having very high noise and unreliable measurements. These bad
bands are lower SNR ratio than other bands because they are at the upper limits of the
sensor's capabilities. There can also be bad bands due to atmospheric conditions,
which in a greenhouse with high water vapor could be strong. I also feel like this is not
necessary for all cameras and really depends on the SNR of the camera used. My
suggestion would be to word this as an optional step and explain when a user should
consider these methods. Especially since there are sections on dimensionality
reduction and spectral smoothing which also impacts the spectral data.

This has been changed. A new sentence dealing with the lower and upper spectral
area and how to handle it has been added.

"Thus it can be stated, that a slightly spectral binning will not affect the informative
value of the remaining spectrum."
Slightly? I think a different word might more appropriate.

•This has been changed to “limited” we hope that this is fine now.

"It includes pre-processing steps where the normalization is performed, the spectral
smoothing and 3D correction up to a masking of the object of interest and data
splitting, dimension reduction and feature selection for ML."
 This sentence is awkward and could use rewording.
•The sentence has been changed.

Reflectance Calibration: Do not use the term normalization for reflectance retrieval.
Define what the reflectance data level is and what the units are. It is important for the
readers to know that this data level removes camera effects, atmospheric conditions,
and lighting effects, so only the surface properties remain. THIS data source is
comparable across camera systems, whereas the other data levels are not.
•The term normalization has been changed in the complete study article. Furthermore
a more appropriate definition has been added.

"Most often highly reflective materials like barium sulfate (SphereOptics.com) act as a
reference."
In my opinion, the reference panel is one of the most critical components of making
high-quality hyperspectral measurements. I would love to see this in an experimental
setup section with a lot more details. For example, the material does need to be highly
reflective but also highly reflective across the entire spectral range of the camera
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measures. Also, probably the most commonly used panel (but of course more
expensive) is a spectralon panel made by Labsphere. White paint for camera
measuring 400-1000 nm can also be sufficient.
•Spectralon has been added as well as “across the entire spectral range”

"Alternatively the use of materials with a known spectral reflectance is established as a
standard procedure."
Yes! I always recommend a black, light gray, and dark gray target also. These can be
measured with a point spectrometer to get a known reflectance value.
•This sentence has been added to the text.

"Performing the object scan right after including the associated dark image, the
normalization step can be described by formula 1:"
This formula is the most basic way of converting from radiance to reflectance, using
only a single target. In the remote sensing literature, it is referred to as the empirical
line correction method. However, if you have a variable atmosphere (such as a
greenhouse with fluctuating values) or are covering a large area, a single target may
not be sufficient for good data. This is also true if the lighting conditions change or if the
data set is a time series. A more advanced empirical line correction method
incorporates multiple targets, which can make it robust to these changes. Conversion
to reflectance from radiance generally results in the largest data errors, so in my
opinion is worth elaborating.
•To emphasize this point a new sentence was added.
•“For measurements in a greenhouse with a variable environment like a change in light
condition, or when measuring time series or measurements that cover a large area it it
recommended to use multiple targets or periodical re-calibration of the sensor setup.”

"Based on the assumption that the plant spectrum has a smooth spectrum and peaks
within the spectrum are results of outliers and noise the use of soft smoothing
algorithms is valid."
This sentence needs to be clarified. Plant spectra can have peaks or valleys that are
due to biophysical or structural conditions that people may be interested in. Very sharp
peaks that only span one or two wavelengths are definitely noise. This is where a
discussion of 'bad bands' that I mentioned before would be useful. Again, this may not
apply to all cameras and it may not apply to the whole spectrum depending on the
SNR.
•We see this point and appreciate this indication. Thus the part “covering just one or
two bands” was added to clarify this.

"Most established is the Savitzky-Golay smoothing algorithm [49] for hyperspectral
data where 15 centered points and a polynomial of degree 3 has shown its applicability
[50]."
This is highly dependent on the camera's spectral resolution.
•That is right. The sentence has been changed and the camera of the example has
been added.

"Literature shows that an the use of erosion as a binary image processing technique is
efficient."
Typo shown in italics. There should be a citation with this statement or is it the same as
the following sentence? Might be worth mentioning that some machine learning
algorithms are robust to them anyway. Also, I'm sure you are aware there is a whole
literature for working with mixed pixels which might be helpful for readers to know if
their spatial resolutions are coarse.
•The authors think that Moghimi 2018 should be enough as a citation. The fact that
some but not all methods are robust to mixed pixels is right, but we think that this will
be beyond the scope of this study as we do not want to focus on ML techniques. But
we are thankful for this comment.

Preparation for ML: I love that the authors chose to focus on machine learning
techniques. I have found too many phenotyping papers that rely on a vegetation index
to retrieve their trait of interest. Why do we have cameras that measure hundreds of
bands if we are going to reduce them down to one value? I would love to see one
sentence on why researchers should use ML approaches rather than a vegetation
index.
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•This has been changed. A short paragraph has been added in the beginning of
“preparation for ML”

"To decrease redundancy within the dataset dimension reduction as it can be
performed."
I would like to suggest a clarification for this sentence - "Dimensionality reduction
methods can decrease spectral redundancy and reduce data volume within the
dataset."
•This has been changed accordingly.

"State-of-the-art techniques are principal component analysis (PCA, [55]), feature
selection using recursive feature elimination (RFE), ReliefF or correlation-based
feature selection [56]."
I would change "state-of-the-art" to common since PCA was one of the very first
dimensionality reduction techniques. Or split it into two sentences - one with common
and another with new algorithms.
•This has been changed.

"If the data is coming from a single plant (trait level 1) the datacube can be used to
derive very rough information about the plant like the plant canopy [57]."
Very rough information? What does this mean? Instead of like, I would suggest "such
as"
•This has been changed. Rought -> low resolved

"The correction of thehyperspectral information according to distance and inclination is
needed."
Space needed between the and hyperspectral.
•This has been changed.

"In contrast to SVM or DT approaches, DL is based on N architectures and is based on
very huge datasets used for training."
Consider rewording to remove duplicate "is based on"
•This has been changed.

"DL approaches have been widely used on RGB images for the demands of plant
phenotyping as there is a classi¬fication of root tips, shoot and leaves [61] [62] and can
be depicted to be state of the art."
Remove there is.
•This has been changed.

"Usually the results of a classi¬fication are presented by a confusion matrix, which
indicates…"
Since the previous sentence said no labeled data was needed, it might be worth
mentioning that the confusion matrix does need labeled data.
•This is right, nevertheless, the labeled data is needed for evaluation. To clarify this,
this paragraph was moved to the supervised section.

"Thus, the setup has to tailored has to be tailored towards the size of the plantss."
Remove duplicate s on plants.
•This has been changed.

"Beside effects of the geometry, like the correlation between normalized difference
vegetation index (NDVI) and inclination, have to be taken into account or if possible
have to be corrected [7]."
NDVI is not only influenced by leaf inclination but also more broadly canopy structure.
•The text clearly says that the datacube is affected by distance and inclination which
includes effects of the canopy structure. The authors think an additional emphasizing
of this aspect is not necessary. Thus, the text was not changed .

"When transferring results from the laboratory or greenhouse to the ¬field the work ow
for using HSI is different and has to be designed individually [66]."
I think this paragraph should be condensed significantly since it is definitely out of the
scope of the paper and a single paragraph would not be sufficient to explain how this
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workflow would be transferrable to field settings. The reflectance retrieval process
(referred to as normalization here) is completely different for field collections. As
mentioned most everything is different. I would summarize by saying "The workflow
proposed is not transferrable to field conditions which requires a very different
experimental set up to ensure high quality hyperspectral measurements."
•This has been changed.

"Especially when using high throughput imaging setups [21] combined with
hyperspectral cameras periodical imaging leads to huge datasets independent of the
scale [37]."
This sentence is should be reworded.
•This has been changed.
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Abstract
Background: Using hyperspectral cameras is well established in the �eld of plant phenotyping, especially when using high
throughput routines in greenhouses. Nevertheless, the used work�ows di�er depending on the applied camera, the imaged
plants, the experience of the users and the measuring setup.
Results: This review describes a general work�ow for the assessment and the processing of hyperspectral plant data at the
greenhouse and laboratory scale. Aiming at a detailed description of possible error sources, a comprising literature review
of possibilities to overcome these errors and in�uences is provided. The processing of hyperspectral data of plants starting
from the hardware sensor calibration, the software processing steps to overcome sensor inaccuracies and the preparation
for machine learning is shown and described in detail.
Furthermore, plant traits extracted from spectral hypercubes are categorized to standardize the terms used when
describing hyperspectral traits in plant phenotyping. Data is introduced from a scienti�c view on the data for canopy,
single organs, plant development and also combined traits coming from spectral and 3D measuring devices.
Conclusions This publication provides a structured overview on implementing hyperspectral imaging into biological
studies at the greenhouse and laboratory scale. Work�ows have been categorized to de�ne a trait level scale according to
their metrological level and the processing complexity. A general work�ow is shown to outline procedures and
requirements to provide fully calibrated data of highest quality. This is essential for di�erentiation of tiny changes from
hyperspectral re�ectance of plants, to track and trace hyperspectral development as an answer to biotic or abiotic stresses.
Key words: plant phenotyping, camera calibration, machine learning, hyperspectral signature, hyperspectral

Background

During recent years, hyperspectral sensing of plants has devel-
oped as a valuable tool for plant phenotyping [1] [2]. The prin-
ciple of hyperspectral imaging (HSI) is based on the fact that
all materials re�ect electromagnetic energy in prominent pat-
terns and speci�c wavelength due to di�erence of their chem-
ical composition, inner physical structure and surface prop-
erties. This signal is characterized by measuring hundreds of
narrow bands within the electromagnetic spectrum [3]. Spec-
troscopy is de�ned as the method of acquiring and explaining

the hyperspectral characteristics of an object regarding light
intensity emitted, re�ected or transmitted from molecules at
di�erent wavelengths to provide a precise �ngerprint of an
object. Hyperspectral imaging combines spectral and spatial
information similar to a digital camera [4]. Hyperspectral
Imaging extends the measurable spectral range from the vis-
ible (RGB camera) to the NIR range and sample the spectrum
in many narrow bands (> 20 bands). If only a few (< 20) spec-
tral bands were samples literature depicts this as multispectral.
Compared to spectroscopy, which measures the same spectral
area HSI is able to measure spectral and spatial information in
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Key Points

• a literature overview is provided to describe aims and scopes of hyperspectral sensing of plants and the di�erent types of
analysis methods

• hyperspectral work�ows for plant measuring are highly individual and need to be structured for result comparison and
evaluation

• a general work�ow for hyperspectral plant phenotyping including camera calibration, segmentation and machine learning
analysis is shown

• a level-based trait de�nition is introduced for canopy, plant organ, time series and sensor fusion

an images which enables a more detailed analysis of the object.
Spectral cameras have become a�ordable during the last

years. Unlike RGB cameras imaging the visible spectrum
(400 – 700nm, VIS) this area is extended by the ultra-violet
(200 – 400nm, UV,[5]), the near infrared (700 – 1000nm, NIR,
[6]) or even the short wave infrared spectrum (1000 – 2500nm,
SWIR, [7]). This is highly interesting for plant science as many
plant traits and biophysiological processes can be traced be-
yond the visible spectral range [8]. Hyperspectral imaging
of plants has been related to plant tissue characteristics [9], to
detect abiotic stresses [10] or plant diseases [11] among others.
Typically, laboratory work�ows di�er in their use of cam-

eras, measuring setups and data handling such as calibration,
smoothing and segmentation. There are several hardware cali-
bration steps to understand and execute, starting from the cam-
era pixel position mapping to the proper wavelength, the cor-
rection of the camera and lens distortion to the correction of
the 3D setup whenmeasuring upper and lower leaves of a plant.
Thus, a standardized introduction of a work�ow of hyperspec-
tral image processing is needed to enable the comparison of
results from di�erent laboratories regarding their hyperspec-
tral analysis.
To introduce HSI as a state-of-the-art tool for plant pheno-

typing, a literature overview is presented showing the di�erent
biological objectives what hyperspectral sensors are used for in
the laboratory and greenhouse scale. The overview comprises
stress detection, disease classi�cation and linking to molecular
analysis (QTL analysis). All found use-cases were grouped by
the introduced level-description.
The following section introduces techniques to overcome

di�erent impairments on the measured spectrum coming from
the experimental setup, the sensor, the role of illumination and
the challenges when measuring complex plants with plant spe-
ci�c optical properties. The complete work�ow from sensor ad-
justment, correction, calibration, segmentation to the extrac-
tion of hyperspectral plant traits and to a deeper analysis using
routines of machine learning (ML) to extract biological infor-
mation is described.
The application part describes the di�erent aspects of plant

traits based on HSI. Finally, a level-description model is intro-
duced from the perspective of a data scientist. It describes the
increase of complexity in data acquisition and data handling,
when switching from an averaged spectrum of the plant canopy
to an organ-speci�c spectrum to spectral development in time
course to multi-sensor plant models. The latter is needed for
the geometrical correction of the spectral data.

HSI a tool for plant screening

A comprehensive literature review shows examples for hyper-
spectral application from biotic stress detection like disease
or virus detection, abiotic stress detection like heavy metal or
cold stress and plant trait extraction like biochemical traits or

leaf water content at the greenhouse and laboratory scale. Ta-
ble 1 emphasizes di�erent use-cases from plant science, where
hyperspectral imaging cameras were used to di�erentiate be-
tween di�erent situations.
In Table 1 hyperspectral data was grouped by trait level

which describes the complexity of the traits. Starting from sim-
ple image analysis (level 1), to organ identi�cation (level 2), to
time series (level 3) and to a �nal multi-sensor data acquisi-
tion (level 4). It is shown that HSI is used for classi�cation and
regression problems across all trait levels (1-4). A closer intro-
duction into these phenotypic trait levels can be found below
in the text.
Three main groups can be identi�ed including i) detection

and quanti�cation of biotic stress like disease detection [11], ii)
detection and quanti�cation of abiotic stress like heavy metal
[15] or water stress [26] and iii) extraction of plant traits to
describe water content [21] or biochemical traits [28].
Thus, HSI is widely used for di�erent aspects of plant

screening and can be depicted to be a state-of-the-art tool for
plant phenotyping.

Data acquisition and processing

Hyperspectral systems and resulting data will vary due to many
factors, including camera characteristics, experimental setup,
calibration, environmental characteristics and data processing.
This leads to inconsistencies regarding the data quality and the
validity of results. This increases the di�culty to compare data
from di�erent sensors. Multiple steps are needed to acquire
valid physical re�ectance data starting from the sensor wave-
length calibration, the instrument function, the radiometric
calibration and spectral and pixel binning.
The goal of calibration is to standardize the spectral axis,

determining if the sensor is working properly, providing the
accuracy of the extracted data, validate the credibility and quan-
tify the instrument errors, accuracy and reproducibility under
di�erent operating conditions [4].
Four categories of factors that in�uence the measured spec-

trum of plants can be de�ned (see Figure 1). I) the experi-
mental setup including the optical con�guration II) the sensor
characteristics including sensor o�set, noise and sensitivity be-
haviour and distortion e�ects [34] III) the illumination e�ects
from the light source when using active illumination or the
surrounding light when using environmental light and IV) ob-
ject and its properties. Plant object properties means spectral
variability due to di�erences in genotypes, plant organs, mate-
rials within the image such as pot and background data, incli-
nation in�uence due to the architecture of plants, absorption,
transmission and backscattering as plant tissue properties and
temporal e�ects due to growth.
Camera characteristics
HSI can be performed using three di�erent sensor types the
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Table 1. Hyperspectral imaging is widely used for detection of biotic and abiotic stresses as well as for trait description. Traits are categorizedby a complexity description starting from trait level 1 (TL1, whole plant), trait level 2 (TL2, organ speci�c traits), trait level 3 (TL 3, timeseries) and trait level 4 (TL4, multi sensor traits). The following overview describes a representative selection for the greenhouse andlaboratory scale
purpose group plant method trait level target reference
detection of impurities in seeds traits wheat, spelt, barley SVM TL 1 classi�cation [12]
insect damage detection biotic stress soybean SVDD TL 1 classi�cation [13]
cold stress detection abiotic stress maize CNN TL 1 regression [14]
heavy metal stress detection abiotic stress rice SVM TL 1 classi�cation [15]
germination detection traits trees LDA TL 1 classi�cation [16]
virus detection biotic stress tomato, tobacco SVM TL 1 classi�cation [17]
weed resistance analysis traits amaranth FLDA TL 1 classi�cation [18]
ph-value determination traits rice & water hyacinth PLS & NN TL 1 regression [19]
nitrogen concentration traits oilseed rape SAE & FNN TL 1 regression [20]
leaf water content traits maize PLSR TL 1 regression [21]
disease detection biotic stress sugar beet ANN, DT, SVM TL 2 classi�cation [22]
disease resistance & QTL analysis biotic stress sugar beet SAM TL 2&3 classi�cation [23]
disease development biotic stress wheat DT TL 2&3 classi�cation [24]
biomass & biofuel potential traits maize SDA TL 3 classi�cation [25]
water stress detection abiotic stress tomato DT TL 3 classi�cation [26]
salt stress detection abiotic stress wheat SiVm TL 3 classi�cation [27]
biochemical trait analysis traits maize, soybean PLSR TL 3 regression [28]
detection of plant communication traits maize LDA TL 3 classi�cation [29]
disease forecast biotic stress barley GAN TL 3 classi�cation [30]
disease early detection biotic stress sugar beet SVM, PLS, DT TL 3 classi�cation [31]
disease di�erentiation biotic stress cucumber SDA TL 4 classi�cation [32]
disease detection biotic stress sugarbeet SVM TL 4 classi�cation [33]

push broom / line scanner, the �lter-based sensor setup and a
whisk broom setup (see Figure 2). Push broom cameras scan
the region below the sensor in lines and complete the full scan
by either moving the sensor [28] or by using a mirror that is
panned over the object of interest. A �lter based system is
measuring the complete region of interest using di�erent �l-
ters either by splitting the scan ray using prisma or by using
a combined �lter pattern. Whisk broom sensors measure the
full spectral range pixel by pixel similar to a spectrometer that
is moved over the region of interest. All three setups result in
a three-dimensional hypercube showing two spatial axis and
one spectral axis.
Whisk broom sensors have more moving parts and thus

are likely to wear out. Push broom cameras have less mov-
ing parts but need a high quality calibration as the di�erent
regions of the chip can show di�erent sensitivity which can
result in stripes within the datacube. Filter based systems are
commonly restricted by the number of �lters and provide less
spectral resolution. Currently state-of-the-art plant pheno-
typing centers use mostly push broom line scanners.
Measuring setup
Choosing the right camera for a sensor setup has to take into
account the point of interest side-view or from top-view setup,
depending on if one single image from top is su�cient or if
multiple images by rotating the plant are needed. Furthermore
the spectral region of interest which is di�erent depending on
the camera chip (silicon for 380 – 1000nm, indium-gallium-
arsenide for 1000 – 2500nm), the focal length, the minimum
working distance, the maximum resolution resulting from sen-
sor height and plant height, the focused signal-to-noise ra-
tio, dynamic range, spectral and spatial resolution, pixel size,
frame rate, lenses and operating temperature [35]. In general
the �eld of view should cover the complete plant from small
seedlings to the bigger plants in a timeseries experiment. This
is accompanied by a periodical adaption of the focal plane as the
plant height is changing due to plant development. Here the de-
sired resolution has to be considered as the ratio between plant
pixels and background pixels is changing permanently. For ref-
erence panels the options are a permanent reference measur-

ing after each plant if using a box design, referencing within
the measurable volume at the same height as the majority of
the plant pixels or a periodical referencing along the scan axis
when using a measuring setup at a longer line stage.

Illumination for measuring
Illumination is essential for HSI, but not every light source can
be used. The use of passive light like sunlight which is avail-
able outdoors and in greenhouses is valid. Active light sources
need a closer consideration. Tungsten halogen lamps are broad
band emitter (400–2600nm) can be used, are economically af-
fordable and technically easy to setup. Whereas gas discharge
tubes (�uorescent tubes or uncoated tubes) are not usable as
these tubes emit high narrow lines in the spectrum. Never-
theles, deuterium gas discharge can be used for UV measuring
applications and arc sources like xenon lamps can be used for
snapshot cameras. LED lamps can be used depending on the
implemented technology and use case according to the mea-
suring scenario and emitted wavebands [36]
To acquire a proper datacube di�erent calibration routines

are needed to ensure highly accurate re�ectance values. Fig-
ure 3 shows a generalized processing pipeline for hyperspec-
tral cubes for the demands of plant imaging in greenhouses
and laboratories as it is common for the demands of plant phe-
notyping.
Wavelength calibration - from pixel to wavelength
When using a pushbroom sensor one dimension of the detec-
tor represents the spatial information of the lines of the target.
The other dimension represent the full spectrum of a single line
of pixels. The wavelength calibration describes the compari-
son of measured spectral values with known values [37] and
consequently, the mapping of the dispersed geometric axis to
wavelength in nm.
A calibration is needed after manufacturing and after any

physical changes to the optical path [38]. Wavelength calibra-
tion is obtained by exposing the optical system to a calibration
light source / sources. Three aspects are critical for obtaining a
proper wavelength calibration including (i) the selection of the
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Figure 1. In�uences on the measured spectrum of a plant. The four main sources of in�uence are the experimental setup, the way the camera is mounted, the
distance to the plant etc., the light, its spectrum, focus, the object of interest with its absorbing and transmitting properties when imaging plants and the sensor
in particular the dark and white referencing, its noise and sensitivity, distortion, discretization and binning.

Figure 2. Overview of common HSI techniques: Three di�erent HSI setups are commonly used. Push broom cameras (yellow) are line scanners that were moved
over the object or alternatively use a mirror, �lter-based systems (green) scan single wavelengths according to the �lters one after each other, whisk broom
cameras (blue) scan the full spectrum pixel by pixel. All setups result in a 3D hypercube (purple) showing two spatial axis and one spectral axis.

calibration light, (ii) the determination of the center of charac-
teristic peaks and (iii) a polynomial �tting to the data [39]. The
calibration light source / sources should cover the wavelength
range to be calibrated. Wavelength calibration light sources
emit atomic emission lines of known wavelengths. A polyno-
mial �t of the geometric position of the atomic emission lines
on the chip and the known wavelength is conducted. This step
is usually performed primarily by the manufacturer and en-
ables displaying the spectral axis in units of wavelength (nm).

Instrument function / point spread function - overcoming spectral
distortion

Measurements of any optical device can be described as a con-
volution of the original data with the appropriate transfer func-
tion of the sensor and optical setup. This convolution is char-
acterized as a (spectral & spatial) blurring or smearing of the
data [40]. The terms "instrument function" and "point spread
function" are both used to describe this convolution. The term
"point spread function" typically refers to the spatial convolu-
tion. The term "instrument function" is referring to the con-

volution in the spectral domain. Both terms de�ne the highest
possible spectral and spatial resolution. E�ects resulting from
the point spread function are described in the following para-
graphs. In contrast to spatial distortions the (spectral) instru-
ment function is typically not corrected for.

Spatial calibration - overcoming spatial distortion

Similar to 2D-RGB-cameras which come with barrel and pillow
distortion [41], the images of a hyperspectral line scanner tend
to show similar e�ects called smile and keystone e�ects. Smile
is the curvature distortion of the horizontal spectra lines[34] or
a shift in wavelength in the spectral domain [42]. Keystone is
the distortion of the focal plane rectangle into a trapezoid [34]
or a band-to-band misregistration [42]. These e�ects can be
corrected using geometric control points (GCP) [34]. A spatial
calibration of the hyperspectral cube describes the character of
the spatial mapping process. This process results in an recti-
�ed image. Not all manufacturers provide this calibration by
default.
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Figure 3. A generalization of a hyperspectral work�ow The way to extract information from sensor data and to bring it into a biological context to generate
knowledge starts with the data acquisition, the hardware calibration, a proper normalization step, data pre-processing, masking to focus on the object of interest,
the plant and to cut out background, plant pot and stabilization sticks etc. Depending on the experiment setup data and the analysis type has to be divided into
validation, training and test data set to train a model and to evaluate it on the test data. This is followed by the result interpretation and identi�cation of diseases,
stresses or other properties of the plants. Vertical dashed lines describe in a general way the transition between the imaging process, the processing of the data,
the generation of information and by interpretation knowledge.

Radiometric calibration - from counts to a physical unit
Due to di�erences in quantum e�ciency of the detector and
varying e�ciency of the grating and other optical components
(lenses etc.), measurements using di�erent optical systems of
the same object under same illumination conditions may not
be identical [38]. Data-level is in�uenced by sensor charac-
teristics, atmospheric conditions, and surface properties of the
plants. On the most basic level cameras return their measure-
ment values as digital numbers. To correct for such instrument
related di�erences of these returned digital numbers, radio-
metric calibration of the measurement device or white refer-
encing is needed. Radiometric calibration transforms these
digital numbers to radiance values. Radiance depicts the phys-
ical measurement of the spectral power �ux emitted, received,
transmitted or re�ected by an object per unit solid angle and
projected area. It uses an integrating sphere to measure the
calibration coe�cients for each wavelength band (pixel) [43].
The camera digital output is mapped to a physical quan-

tity (radiance) using a certi�ed spectral transfer standard (in-
tegrating sphere plus calibrated emitter). Thus, radiometric
calibration accounts for the spectral variation of the external
lens system, internal optics, sensor and dispersive elements
(grating and �lter). Radiance values are typically used in
high altitude / long distance measurement scenarios (plane or
satellite based measurements). Radiometric calibration does
not account for a potential active illumination light source, at-
mospheric absorption between the object under study and the
camera system as well as surface properties of the specimen. It
corrects for the camera and optics spectrally varying e�ciency.
Radiance data can be converted to re�ectance data if the

irradiation source is known or measured [44] In many appli-
cations absolute radiometric calibration and the corresponding
radiance data is not required. Often, it is su�cient to use re-
�ectance data rather than radiance data. In contrast to radiance
data which involves an absolute calibration, re�ectance data
does not require absolute calibration. A relative spectral cali-
bration to correct for the spectrally varying system e�ciency
using a simple white reference and dark o�set subtraction is
su�cient for re�ectance measurements. Re�ectance data is
corrected for camera e�ects, atmospheric conditions and light-
ing e�ects, so only the surface properties of the measured ob-

ject remain.

Spectral and spatial binning - reducing the noise level
To acquire a high retrieval accuracy within the acquired data a
high signal to noise ratio (SNR) is required. SNR is the ratio
of the radiance measured to the noise created by the detector
and instrument electronics [4]. This ratio can be increased by
combining spectral image information along the spectral axis
(spectral binning) or by integrating the neighbour pixels (spa-
tial binning) [35]. It was shown that binning along the spectral
axis using just a few neighbours reduces of the (spectral) image
size in favor of an enhanced signal to noise ratio [45]. Nev-
ertheless, lowest SNR ratio is usually found at the beginning
and end of the measurable range of a sensor. A common step
to deal with this area is simply cutting the �rst and last few
spectral bands of the sensor [36].
In general, wavelength next to each other are highly cor-

related [46]. Thus it can be stated, that a limited spectral
binning will not a�ect the informative value of the remaining
spectrum.
Binning can be performed directly at the camera internal

hardware (hardware binning) or by a processing software when
loading the datacube (software binning). In general, hardware
binning results in less noise than software binning as the sen-
sor signal is directly merged in the camera prior to analog dig-
ital conversion. If using hardware binning, this step has to be
performed �rst before any calibration. If using software bin-
ning, it is the �rst step in the pre-processing right after the
hardware calibration steps.

Data preprocessing

Pre-processing can be initiated after hardware calibration and
measurement validation. A standardized process is needed to
compare measurements from di�erent timepoints and from
di�erent measuring setups. The pre-procesing steps include
the normalization, the spectral smoothing and 3D correction,
masking of the object of interest, data splitting, dimension re-
duction and feature selection for ML.
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re�ectance retrieval - overcoming the light source in�uence

To enable comparable measurements for time series within
the same measurement setup, between di�erent sensor setups
or under di�erent illumination conditions the normalization
of the datacube according to the maximum and minimum re-
�ectance intensity is needed. Therefore the dark image is cap-
tured by recording the hypercube with a lid on the camera
or a closed shutter. This dark data cube described the low-
est possible sensor signal. Right after this the white refer-
ence spectrum is acquired using a spectrally known reference
target. Most often highly re�ective materials like barium sul-
fate (www.SphereOptics.de, www.labsphere.com) act as a ref-
erence. Alternatively the use of materials with a known spec-
tral re�ectance across the entire spectral range is established
as a standard procedure. Here black, dark and light gray
objects can be measured with a point spectrometer to get a
known re�ectance value. When sharing datasets the refer-
ence spectral characteristics should be provided as meta-data
to ensure the reusability and comparableness. Performing the
object scan right after including the associated dark image, the
normalization step can be described by formula 1:

INorm = cubeO – cube
D
O

cubeWR – cubeDR
(1)

Equation 1 follows literature [3] [4] and describes. The nu-
merator describes the subtraction of the measured object cube
cubeO and the associated dark current cubeDO, the denominatordescribes the subtraction of the white reference measurement
cubeWR and the associated dark reference cubeDR. An importantfeature of Equation 1 is the reduction of nonuniformity caused
by either the imaging chip, the illumination or the measuring
situaten (box etc.).
For measurements in a greenhouse with a variable environ-

ment like a change in light condition, or when measuring time
series or measurements that cover a large area it is recom-
mended to use multiple targets or periodical re-calibration of
the sensor setup.

spectral smoothing - dealing with peaks and spectral outliers

Based on the assumption that the plant spectrum has a smooth
spectrum and peaks covering just one or two bands within
the spectrum are the result of outliers and noise the use of
soft smoothing algorithms is valid. Most established is the
Savitzky-Golay smoothing algorithm [47] for hyperspectral
data. [48] showed the applicability for use of 15 centered points
and a polynomial of degree 3 for a Specim FX10 camera provid-
ing 220 bands within 400 – 1000nm. Furthermore multiplica-
tive signal correction [49] and standard normal variate [50] are
well established routines for signal correction.

3D correction - correcting the in�uence of the sensor-object distance

The measured re�ectance on the detector is depending on the
re�ected light intensity and the distance between sensor and
re�ection point on the object/plant. For measuring a plant with
upper and lower leaves, the distance to the sensor is di�erent
for both leaves. This results in di�erences in the measured in-
tensity. Some publications show the normalization of the spa-
tial distance [18] [51]. A prerequisite for this is an integration
of a 3D measuring device in the measuring setup (laserscanner,
ultrasound etc.). Depending on the distance, the corrected cube
contains equal re�ectance values for similar surfaces although
the distance to the camera is di�erent by using pixelwise dis-
tance normalization.

segmentation masking
Image segmentation is used to partition an image into mean-
ingful parts that have similar features and properties [52]. For
the demands of plant phenotyping this usually means the sepa-
ration from plant and background pixels. This is mostly based
on simple vegetation indices or thresholds using a speci�c
wavelength [53]. Further segmentation like the identi�cation
of single leaves, or the detection of disease symptoms are fo-
cused on later in the work�ow pipeline as MLmethods are used
to tackle this problem.
After masking, the transition between fore- and back-

ground is very sharp. Pixels at this transition include parts of
both classes and are depicted as "mixed pixels". To overcome
the in�uence of these pixels to the analysis result, these pixels
have to be removed. Literature shows that the use of erosion
as a binary image processing technique is e�cient. A �lter el-
ement the size of 3x3 pixels is used to shrink the region of the
foreground [54]. A negative side e�ect related to the reduc-
tion of foreground data is the possibility of loosing important
information which can be used to enhance the data quality.
preparation for ML
Up to this point the datacube consists of hundreds of spec-
tral bands. To detect the speci�c wavelength that include the
biggest impact for the question of interest machine learning is
needed. This is also important for a later transfer to multispec-
tral cameras with less spectral bands but with the opportunity
to measure in high throughput on the �eld scale.
To prepare the data for use in a common ML routine, us-

ing supervised classi�cation approaches, the dataset is split
into three subgroups including the same distribution of groups
within the three sets. That means the ratio between the in-
cluded groups is similar. Set one is called the training set and
is used to calculate the model of the ML method like support
vector machines (SVM) or decision trees (DT). Set two is called
validation dataset and is used for model hyper-parameter tun-
ing. The third set is called the test set and is used to eval-
uate the performance of the developed model and to calcu-
late a model accuracy. The size of the groups di�ers with
respect to the number available samples. A repeated cross-
validation using di�erent splits of the dataset (test and train-
ing) is recommended. Dimensionality reduction methods can
decrease spectral redundancy and reduce data volume within
the dataset. Common techniques are principal component
analysis (PCA) [55], feature selection using recursive feature
elimination (RFE) [56], ReliefF [57] or correlation-based fea-
ture selection [58].

Data analysis and interpretation

hyperspectral traits
Hyperspectral traits can be grouped into di�erent groups, de-
pending of the focus of the data. If the data is coming from
a single plant (trait level 1) the datacube can be used to de-
rive very lowly resolved information about the plant such as
the plant canopy [59]. If the datacube is segmented into re-
gions including single leaves, disease symptoms or spatially
con�ned areas (ROI, trait level 2), these regions can be com-
pared together. This is commonly done by a classi�cation on
pixel (single spectrum) level [60]. Time series measurements
are essential for accurate capturing of developing disease symp-
toms. This leads to the development of hyperspectral dynam-
ics over time (trait level 3) [24] [48]. Hyperspectral datacubes
are a�ected by distance and inclination of the measured object.
The correction of the hyperspectral information according to
distance and inclination is needed. This can be done by model-
ing the measuring setup and the occuring errors. It needs the
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Figure 4. A general trait visualization Plant traits are parameters that describe the hyperspectral properties of the plant tissue. Nevertheless, these traits can be
grouped according to the e�ort that is needed for their extraction. First level (1) traits describe the spectrum of the whole canopy. By using a classi�cation based
on ML algorithm it is possible to identify spectra of single leaves (level 2). By measurements over time the development of these spectra can be visualized (level
3) and by using further sensors it is possible to reduce geometrical e�ects based on a sensor fusion (level 4).

use of an accompanying sensor measuring the object geometry
such as a 3D laserscanner [61] [62] and fusing the data for a
complete 3D-hyperspectral data model that enables detection
of plant disease within a corrected spectrum [33]. An overview
about these traits, prerequisites and applications is shown in
Fig. 4.
machine learning
For data analysis and ML, the tasks can be divided into super-
vised methods and unsupervised methods. Supervised meth-
ods require a known target value and therefore labeled data to
train a model. Within the supervised learning methods, meth-
ods can be grouped by their target. If the output is a label as
an a�liation to a group and the label is categorial, the method
is called classi�cation. Prominent routines for supervised clas-
si�cation are SVM, DT and Neural Network architectures (NN).
A similar approach using labeled data is regression, where the
output does not predict a group but a numeric value. Known
methods for this scenario are Support Vector Regression (SVR),
DT and NN.
A special case of ML is Deep Learning (DL). DL allows com-

putational models that are composed of multiple processing
layers to learn representations of data with multiple levels of
abstraction. It also describes an algorithm allowing raw data as
input and automatically discovers a representation, consisting
of multiple non-linear modules, for detection or classi�cation
[63]. In contrast to SVM or DT approaches, DL is based on NN
architectures and depends on huge labelled datasets for train-
ing. DL approaches have been widely used on RGB images for
the demands of plant phenotyping as a classi�cation of root
tips, shoot and leaves [64] [65] and can be depicted to be state
of the art. During the last years, hyperspectral applications are
raising. Di�erent types of DL approaches have been used for
plant disease [66] or stress detection [67].
Usually the results of a classi�cation are presented by a con-

fusion matrix, which indicates for a speci�c trained model the
resulting classi�cation of the test dataset regarding true posi-
tive, false positives, false negative and true negative. It com-
pares the predicted values to the true values.
Unsupervised approaches do not need labeled data and try to

detect patterns within the data. Clustering approaches like k-
means shift manual work from model generation to cluster in-
terpretation as it is the task of the scientist to give semantic to
the clustered datasets. The clustering of hyperspectral datasets
has been successfully shown for the detection of drought for
maize [68].

Challenges and limitations

HSI has to face many challenges regarding sensor setup, il-
lumination, data processing and plant speci�c characteristics.
Starting with the measuring setup where the sensor, illumina-
tion and the object distance has to be adapted to the plant size
to gain best re�ectance results. Thus, the setup has to tailored
has to be tailored towards the size of the plants. Both extrema
within one measuring setup causes problems in illumination,
image resolution and chip intensity.
When extending hyperspectral imaging to the UV area be-

tween 200–400nm, plants can su�er from the harmful proper-
ties of illumination in this spectral region [5]. Further eval-
uation of the e�ects of light exposure on the study objects is
recommended as plant properties such as architecture, tissue
composure and wax layer di�er between species.
Surface geometry has a remarkable e�ect on the measured

spectrum. [7] found a correlation between normalized di�er-
ence vegetation index (NDVI) and surface inclination. Thus
this e�ect has to be taken into account or if possible has to be
corrected. This emphasizes the need for imaging setups includ-
ing di�erent sensors for geometry and re�ectance.
The work�ow proposed is not transferable to �eld condi-

tions which requires a very di�erent experimental set up to
ensure high quality hyperspectral measurements [69].
High throughput imaging setups [21] combine hyperspec-

tral cameras with high frequent imaging this leads to complex
datasets independent of the scale [70]. This emphasized the
need for reliable, stable and e�cient algorithms and high-end
computational machines to process the datacubes. Image anal-
ysis and interpretation is the key plant phenotyping bottleneck
[71].
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Conclusion

HSI is a well-established tool for plant phenotyping in green-
houses. But each laboratory is using a specialized work�ow for
data assessing, processing and handling which makes the data
individually valid but di�cult to compare.
This study introduces a generalized work�ow for handling

hyperspectral image data for greenhouses and laboratories.
It includes calibration, re�ectance retrieval, data smoothing,
masking and preparation for use in a machine learning rou-
tine.
This work�ow includes hardware-based calibration steps

as well as software based processing. Furthermore, a general
de�nition for hyperspectral traits is introduced to establish a
level-system starting from traits for the whole plant, to traits
for single organs, traits describing temporal development and
traits that are based on the measurements of di�erent sensors.
An literature overview using hyperspectral imaging and ML is
introduced to show the di�erent application areas for plant
measuring in agriculture together with the used ML method
and the used plant material. Thus a general overview for the
application of hyperspectral imaging in plant science is reason-
able. This review o�ers a standardized protocol for raw data
processing and how plant traits can be categorized due to their
complexity regarding e�ort in data processing and derivable
traits.

Declarations

List of abbreviations

• (A)NN - (arti�cial) neural network
• CNN - convolutional neural network
• DC - dark current
• DT - decision tree
• (F)LDA - (�shers) linear discriminant analysis
• FNN - fully connected neural network
• GAN - generative adversarial network
• HSI - hyperspectral imaging
• ML - machine learning
• NDVI - normalized di�erence vegetation index
• NIR - near infrared (700 – 1000nm)
• PLS (R) - partial least square (regression)
• RGB - red, green, blue, digital camera sensor
• SAE - stacked auto encoder
• SAM - spectral angle mapper
• SDA - stepwise discriminant analysis
• SNR - signal noise ratio
• SiVm - simplex volume maximization
• SVDD - support vector data descriptor
• SVM - support vector machines
• SWIR - short wave infrared (1000 – 2500nm)
• UV - ultra violett spectrum (< 380nm)
• VIS - visual spectrum (380 – 700nm)
• VNIR - visual + infrared spectrum (380 – 1000nm)
• WR - white reference

Ethical Approval (optional)

“Not applicable”

Consent for publication

“Not applicable”

Competing Interests

‘The authors declare that they have no competing interests’.

Funding

This study was partially funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under Ger-
many's Excellence Strategy - EXC 2070 - 390732324. Further-
more it was supported by Bayer AG - Crop Science.

Author’s Contributions

SP and AKM designed the research. AKM supervised the project.
SP and AKM designed the review manuscript, prepared the �g-
ures and studied the literature. All authors read and approved
the �nal version of the article.

Acknowledgements

We would like to thank Oliver Lischtschenko from Ocean Optics
B.V. for his helpful comments and suggestions regarding the
hyperspectral sensor calibration. Furthermore we would like
to thank Patrick Schramowski for proofreading the machine
learning part and Abel Barreto and Anita Kuepper for proof-
reading and help with the �gures.

Authors’ information (optional)

References

1. Mahlein AK, Kuska MT, Thomas S, Wahabzada M,
Behmann J, Rascher U, et al. Quantitative and qualitative
phenotyping of disease resistance of crops by hyperspectral
sensors: seamless interlocking of phytopathology, sensors,
and machine learning is needed! Current Opinion in Plant
Biology 2019 Aug;50:156–162. https://doi.org/10.1016/j.
pbi.2019.06.007.

2. Fiorani F, Rascher U, Jahnke S, Schurr U. Imaging plants
dynamics in heterogenic environments. Current Opinion in
Biotechnology 2012 Apr;23(2):227–235. https://doi.org/
10.1016/j.copbio.2011.12.010.

3. Elmasry G, Kamruzzaman M, Sun DW, Allen P. Principles
and Applications of Hyperspectral Imaging in Quality Eval-
uation of Agro-Food Products: A Review. Critical Reviews
in Food Science and Nutrition 2012 Nov;52(11):999–1023.
https://doi.org/10.1080/10408398.2010.543495.

4. Elmasry G, Sun DW. Principles of Hyperspectral Imaging
Technology. In: Hyperspectral Imaging for Food Quality
Analysis and Control Elsevier; 2010.p. 3–43. https://doi.
org/10.1016/b978-0-12-374753-2.10001-2.

5. Brugger A, Behmann J, Paulus S, Luigs HG, Kuska MT,
Schramowski P, et al. Extending hyperspectral imaging
for plant phenotyping to the UV-range. Remote Sensing
2019 Jun;11(12):1401. https://doi.org/10.3390/rs11121401.

6. Behmann J, Acebron K, Emin D, Bennertz S, Matsubara S,
Thomas S, et al. Specim IQ: Evaluation of a new, minia-
turized handheld hyperspectral camera and its application
for plant phenotyping and disease detection. Sensors 2018
Feb;18(2):441. https://doi.org/10.3390/s18020441.

7. Behmann J, Mahlein AK, Paulus S, Dupuis J, Kuhlmann H,
Oerke EC, et al. Generation and application of hyperspectral
3D plant models: methods and challenges. Machine Vision
and Applications 2015 Oct;27(5):611–624. https://doi.org/
10.1007/s00138-015-0716-8.

https://doi.org/10.1016/j.pbi.2019.06.007
https://doi.org/10.1016/j.pbi.2019.06.007
https://doi.org/10.1016/j.copbio.2011.12.010
https://doi.org/10.1016/j.copbio.2011.12.010
https://doi.org/10.1080/10408398.2010.543495
https://doi.org/10.1016/b978-0-12-374753-2.10001-2
https://doi.org/10.1016/b978-0-12-374753-2.10001-2
https://doi.org/10.3390/rs11121401
https://doi.org/10.3390/s18020441
https://doi.org/10.1007/s00138-015-0716-8
https://doi.org/10.1007/s00138-015-0716-8


10 | GigaScience, 2017, Vol. 00, No. 0

8. Croft H, Chen JM. Leaf Pigment Content. In: Compre-
hensive Remote Sensing Elsevier; 2018.p. 117–142. https:
//doi.org/10.1016/b978-0-12-409548-9.10547-0.

9. Corti M, Gallina PM, Cavalli D, Cabassi G. Hyperspectral
imaging of spinach canopy under combined water and ni-
trogen stress to estimate biomass, water, and nitrogen con-
tent. Biosystems Engineering 2017 Jun;158:38–50. https:
//doi.org/10.1016/j.biosystemseng.2017.03.006.

10. Behmann J, Steinrücken J, Plümer L. Detection of early
plant stress responses in hyperspectral images. ISPRS
Journal of Photogrammetry and Remote Sensing 2014
Jul;93:98–111. https://doi.org/10.1016/j.isprsjprs.2014.
03.016.

11. Mahlein AK, Kuska MT, Behmann J, Polder G, Walter A.
Hyperspectral Sensors and Imaging Technologies in Phy-
topathology: State of the Art. Annual Review of Phy-
topathology 2018 Aug;56(1):535–558. https://doi.org/10.
1146/annurev-phyto-080417-050100.

12. Pierna JAF, Vermeulen P, Amand O, Tossens A, Dardenne
P, Baeten V. NIR hyperspectral imaging spectroscopy and
chemometrics for the detection of undesirable substances
in food and feed. Chemometrics and Intelligent Laboratory
Systems 2012 Aug;117:233–239. https://doi.org/10.1016/
j.chemolab.2012.02.004.

13. Huang M, Wan X, Zhang M, Zhu Q. Detection of
insect-damaged vegetable soybeans using hyperspectral
transmittance image. Journal of Food Engineering 2013
May;116(1):45–49. https://doi.org/10.1016/j.jfoodeng.
2012.11.014.

14. Yang W, Yang C, Hao Z, Xie C, Li M. Diagnosis of Plant
Cold Damage Based on Hyperspectral Imaging and Con-
volutional Neural Network. IEEE Access 2019;7:118239–
118248. https://doi.org/10.1109/access.2019.2936892.

15. Zhang SY, Fei T, Ran YH. Diagnosis of heavy metal cross
contamination in leaf of rice based on hyperspectral image:
a greenhouse experiment. In: 2018 IEEE International Con-
ference on Advanced Manufacturing (ICAM) IEEE; 2018. p.
159–162. https://doi.org/10.1109/amcon.2018.8614938.

16. Nansen C, Zhao G, Dakin N, Zhao C, Turner SR. Using
hyperspectral imaging to determine germination of native
Australian plant seeds. Journal of Photochemistry and Pho-
tobiology B: Biology 2015 Apr;145:19–24. https://doi.org/
10.1016/j.jphotobiol.2015.02.015.

17. Moghadam P, Ward D, Goan E, Jayawardena S, Sikka P,
Hernandez E. Plant disease detection using hyperspec-
tral imaging. In: 2017 International Conference on Digital
Image Computing: Techniques and Applications (DICTA)
IEEE; 2017. p. 1–8. https://doi.org/10.1109/dicta.2017.
8227476.

18. Reddy KN, Huang Y, Lee MA, Nandula VK, Fletcher RS,
Thomson SJ, et al. Glyphosate-resistant and glyphosate-
susceptible palmer amaranth (amaranthus palmeriS. Wats.):
hyperspectral re�ectance properties of plants and poten-
tial for classi�cation. Pest Management Science 2014
Mar;70(12):1910–1917. https://doi.org/10.1002/ps.3755.

19. Zhang C, Ye H, Liu F, He Y, Kong W, Sheng K. Deter-
mination and Visualization of pH Values in Anaerobic Di-
gestion of Water Hyacinth and Rice Straw Mixtures Us-
ing Hyperspectral Imaging with Wavelet Transform De-
noising and Variable Selection. Sensors 2016 Feb;16(2):244.
https://doi.org/10.3390/s16020244.

20. Yu X, Lu H, Liu Q. Deep-learning-based regression model
and hyperspectral imaging for rapid detection of nitro-
gen concentration in oilseed rape ( Brassica napus L. )
leaf. Chemometrics and Intelligent Laboratory Systems
2018 Jan;172:188–193. https://doi.org/10.1016/j.chemolab.
2017.12.010.

21. Ge Y, Bai G, Stoerger V, Schnable JC. Temporal dynamics

of maize plant growth, water use, and leaf water content
using automated high throughput RGB and hyperspectral
imaging. Computers and Electronics in Agriculture 2016
Sep;127:625–632. https://doi.org/10.1016/j.compag.2016.
07.028.

22. Rumpf T, Mahlein AK, Steiner U, Oerke EC, Dehne HW,
Plümer L. Early detection and classi�cation of plant dis-
eases with Support Vector Machines based on hyperspec-
tral re�ectance. Computers and Electronics in Agriculture
2010 Oct;74(1):91–99. https://doi.org/10.1016/j.compag.
2010.06.009.

23. Leucker M, Mahlein AK, Steiner U, Oerke EC. Improve-
ment of lesion phenotyping in cercospora beticola–sugar
beet interaction by hyperspectral imaging. Phytopathol-
ogy 2016 Feb;106(2):177–184. https://doi.org/10.1094/
phyto-04-15-0100-r.

24. Behmann J, Bohnenkamp D, Paulus S, Mahlein AK. Spa-
tial referencing of hyperspectral images for tracing of plant
disease symptoms. Journal of Imaging 2018 Dec;4(12):143.
https://doi.org/10.3390/jimaging4120143.

25. Nansen C, Sidumo AJ, Capareda S. Variogram analysis
of hyperspectral data to characterize the impact of biotic
and abiotic stress of maize plants and to estimate biofuel
potential. Applied Spectroscopy 2010 Jun;64(6):627–636.
https://doi.org/10.1366/000370210791414272.

26. Elvanidi A, Katsoulas N, Ferentinos KP, Bartzanas T, Kittas
C. Hyperspectral machine vision as a tool for water stress
severity assessment in soilless tomato crop. Biosystems
Engineering 2018 Jan;165:25–35. https://doi.org/10.1016/
j.biosystemseng.2017.11.002.

27. Moghimi A, Yang C, Miller ME, Kianian S, Marchetto P. Hy-
perspectral imaging to identify salt-tolerant wheat lines.
In: Thomasson JA, McKee M, Moorhead RJ, editors. Au-
tonomous Air and Ground Sensing Systems for Agricul-
tural Optimization and Phenotyping II SPIE; 2017. p. 1182.
https://doi.org/10.1117/12.2262388.

28. Pandey P, Ge Y, Stoerger V, Schnable JC. High throughput
in vivo analysis of plant leaf chemical properties using hy-
perspectral imaging. Frontiers in Plant Science 2017 Aug;8.
https://doi.org/10.3389/fpls.2017.01348.

29. do Prado Ribeiro L, Klock ALS, Filho JAW, Tramontin MA,
TrappMA,Mithöfer A, et al. Hyperspectral imaging to char-
acterize plant–plant communication in response to insect
herbivory. Plant Methods 2018 Jul;14(1). https://doi.org/
10.1186/s13007-018-0322-7.

30. Forster A, Behley J, Behmann J, Roscher R. Hyperspec-
tral Plant Disease Forecasting Using Generative Adversar-
ial Networks. In: IGARSS 2019 - 2019 IEEE International
Geoscience and Remote Sensing Symposium IEEE; 2019. p.
1793–1796. https://doi.org/10.1109/igarss.2019.8898749.

31. Barreto A, Paulus S, Varrelmann M, Mahlein AK. Hy-
perspectral imaging of symptoms induced by Rhizoctonia
solani in sugar beet: comparison of input data and di�er-
ent machine learning algorithms. Journal of Plant Diseases
and Protection 2020;.

32. Berdugo CA, Zito R, Paulus S, Mahlein AK. Fusion of sensor
data for the detection and di�erentiation of plant diseases
in cucumber. Plant Pathology 2014 May;63(6):1344–1356.
https://doi.org/10.1111/ppa.12219.

33. Roscher R, Behmann J, Mahlein AK, Dupuis J, Kuhlmann
H, Plümer L. Detection of disease symptoms on hy-
perspectral 3D plant models. ISPRS Annals of Pho-
togrammetry, Remote Sensing and Spatial Information
Sciences 2016 Jun;III-7:89–96. https://doi.org/10.5194/
isprs-annals-iii-7-89-2016.

34. Lawrence KC, Park B,WindhamWR,Mao C. Calibration of a
pushbroom hyperspectral imaging system for agricultural
inspection. Transactions of the ASAE 2003;46(2). https:

https://doi.org/10.1016/b978-0-12-409548-9.10547-0
https://doi.org/10.1016/b978-0-12-409548-9.10547-0
https://doi.org/10.1016/j.biosystemseng.2017.03.006
https://doi.org/10.1016/j.biosystemseng.2017.03.006
https://doi.org/10.1016/j.isprsjprs.2014.03.016
https://doi.org/10.1016/j.isprsjprs.2014.03.016
https://doi.org/10.1146/annurev-phyto-080417-050100
https://doi.org/10.1146/annurev-phyto-080417-050100
https://doi.org/10.1016/j.chemolab.2012.02.004
https://doi.org/10.1016/j.chemolab.2012.02.004
https://doi.org/10.1016/j.jfoodeng.2012.11.014
https://doi.org/10.1016/j.jfoodeng.2012.11.014
https://doi.org/10.1109/access.2019.2936892
https://doi.org/10.1109/amcon.2018.8614938
https://doi.org/10.1016/j.jphotobiol.2015.02.015
https://doi.org/10.1016/j.jphotobiol.2015.02.015
https://doi.org/10.1109/dicta.2017.8227476
https://doi.org/10.1109/dicta.2017.8227476
https://doi.org/10.1002/ps.3755
https://doi.org/10.3390/s16020244
https://doi.org/10.1016/j.chemolab.2017.12.010
https://doi.org/10.1016/j.chemolab.2017.12.010
https://doi.org/10.1016/j.compag.2016.07.028
https://doi.org/10.1016/j.compag.2016.07.028
https://doi.org/10.1016/j.compag.2010.06.009
https://doi.org/10.1016/j.compag.2010.06.009
https://doi.org/10.1094/phyto-04-15-0100-r
https://doi.org/10.1094/phyto-04-15-0100-r
https://doi.org/10.3390/jimaging4120143
https://doi.org/10.1366/000370210791414272
https://doi.org/10.1016/j.biosystemseng.2017.11.002
https://doi.org/10.1016/j.biosystemseng.2017.11.002
https://doi.org/10.1117/12.2262388
https://doi.org/10.3389/fpls.2017.01348
https://doi.org/10.1186/s13007-018-0322-7
https://doi.org/10.1186/s13007-018-0322-7
https://doi.org/10.1109/igarss.2019.8898749
https://doi.org/10.1111/ppa.12219
https://doi.org/10.5194/isprs-annals-iii-7-89-2016
https://doi.org/10.5194/isprs-annals-iii-7-89-2016
https://doi.org/10.13031/2013.12940
https://doi.org/10.13031/2013.12940


Paulus & Mahlein | 11

//doi.org/10.13031/2013.12940.
35. Rehman SU, Kumar A, Banerjee A. SNR improvement for

hyperspectral application using frame and pixel binning.
In: Xiong XJ, Kuriakose SA, Kimura T, editors. Earth Ob-
serving Missions and Sensors: Development, Implemen-
tation, and Characterization IV SPIE; 2016. p. 134 – 139.
https://doi.org/10.1117/12.2220599.

36. Mahlein AK, Hammersley S, Oerke EC, Dehne HW, Gold-
bach H, Grieve B. Supplemental Blue LED Lighting Ar-
ray to Improve the Signal Quality in Hyperspectral Imag-
ing of Plants. Sensors 2015 Jun;15(6):12834–12840. https:
//doi.org/10.3390/s150612834.

37. Gaigalas AK, Wang L, He HJ, DeRose P. Procedures
for Wavelength Calibration and Spectral Response Correc-
tion of CCD Array Spectrometers. Journal of Research of
the National Institute of Standards and Technology 2009
Jul;114(4):215. https://doi.org/10.6028/jres.114.015.

38. Yao H, Lewis D. Spectral Preprocessing and Calibration
Techniques. In: Hyperspectral Imaging for Food Quality
Analysis and Control Elsevier; 2010.p. 45–78. https://doi.
org/10.1016/b978-0-12-374753-2.10002-4.

39. Sun YC, Huang C, Xia G, Jin SQ, Lu HB. Accurate wave-
length calibration method for compact CCD spectrome-
ter. Journal of the Optical Society of America A 2017
Mar;34(4):498. https://doi.org/10.1364/josaa.34.000498.

40. Kumar VN, Rao DN. Determination of the instrument func-
tion of a grating spectrometer by using white-light in-
terferometry. Applied Optics 1997 Jul;36(19):4535. https:
//doi.org/10.1364/ao.36.004535.

41. Weng J, Cohen P, Herniou M. Camera calibration with
distortion models and accuracy evaluation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence
1992;14(10):965–980. https://doi.org/10.1109/34.159901.

42. Yokoya N, Miyamura N, Iwasaki A. Preprocessing of hy-
perspectral imagery with consideration of smile and key-
stone properties. In: Larar AM, Chung HS, Suzuki M, ed-
itors. Multispectral, Hyperspectral, and Ultraspectral Re-
mote Sensing Technology, Techniques, and Applications III
SPIE; 2010. p. 73 – 81. https://doi.org/10.1117/12.870437.

43. Hruska R, Mitchell J, Anderson M, Glenn NF. Radiometric
and Geometric Analysis of Hyperspectral Imagery Acquired
from an Unmanned Aerial Vehicle. Remote Sensing 2012
Sep;4(9):2736–2752. https://doi.org/10.3390/rs4092736.

44. Durell C. White paper: Top-of-Atmosphere re�ectance
calibration of satellite and airborne sensor systems using
FLARE vicarious calibration network. North Sutton, NH
03260 USA: Labsphere, Inc; 2016.

45. Polder G, van der Heijden GW. Calibration and charac-
terization of spectral imaging systems. In: Tong Q, Zhu
Y, Zhu Z, editors. Multispectral and Hyperspectral Image
Acquisition and Processing SPIE; 2001. p. 10 – 17. https:
//doi.org/10.1117/12.441362.

46. Mahlein AK, Rumpf T, Welke P, Dehne HW, Plümer L,
Steiner U, et al. Development of spectral indices for detect-
ing and identifying plant diseases. Remote Sensing of En-
vironment 2013 Jan;128:21–30. https://doi.org/10.1016/j.
rse.2012.09.019.

47. Savitzky A, Golay MJE. Smoothing and di�erentiation of
data by simpli�ed least squares procedures. Analytical
Chemistry 1964 Jul;36(8):1627–1639. https://doi.org/10.
1021/ac60214a047.

48. Bohnenkamp D, Kuska MT, Mahlein AK, Behmann J. Hy-
perspectral signal decomposition and symptom detection
of wheat rust disease at the leaf scale using pure fun-
gal spore spectra as reference. Plant Pathology 2019
Apr;68(6):1188–1195. https://doi.org/10.1111/ppa.13020.

49. Bodner G, Nakhforoosh A, Arnold T, Leitner D. Hyper-
spectral imaging: a novel approach for plant root pheno-

typing. Plant Methods 2018 Oct;14(1). https://doi.org/10.
1186/s13007-018-0352-1.

50. Asaari MSM, Mishra P, Mertens S, Dhondt S, Inzé D, Wuyts
N, et al. Close-range hyperspectral image analysis for the
early detection of stress responses in individual plants in
a high-throughput phenotyping platform. ISPRS Journal
of Photogrammetry and Remote Sensing 2018 Apr;138:121–
138. https://doi.org/10.1016/j.isprsjprs.2018.02.003.

51. Huang Y, Lee MA, Nandula VK, Reddy KN. Hyperspec-
tral Imaging for Di�erentiating Glyphosate-Resistant and
Glyphosate-Susceptible Italian Ryegrass. American Jour-
nal of Plant Sciences 2018;09(07):1467–1477. https://doi.
org/10.4236/ajps.2018.97107.

52. Kaur D, Kaur Y. Various image segmentation techniques:
a review. International Journal of Computer Science and
Mobile Computing 2014;3(5):809–814.

53. Hillnhütter C, Mahlein AK, Sikora RA, Oerke EC. Use of
imaging spectroscopy to discriminate symptoms caused
by Heterodera schachtii and Rhizoctonia solani on sugar
beet. Precision Agriculture 2011 Jun;13(1):17–32. https:
//doi.org/10.1007/s11119-011-9237-2.

54. Moghimi A, Yang C, Miller ME, Kianian SF, Marchetto PM.
A Novel Approach to Assess Salt Stress Tolerance in Wheat
Using Hyperspectral Imaging. Frontiers in Plant Science
2018 Aug;9. https://doi.org/10.3389/fpls.2018.01182.

55. Williams PJ, Kucheryavskiy S. Classi�cation of maize
kernels using NIR hyperspectral imaging. Food Chem-
istry 2016 Oct;209:131–138. https://doi.org/10.1016/j.
foodchem.2016.04.044.

56. Guyon I, Weston J, Barnhill S, Vapnik V. Gene Selection for
Cancer Classi�cation using Support Vector Machines. Ma-
chine Learning 2002;46(1/3):389–422. https://doi.org/10.
1023/a:1012487302797.

57. Robnik-Šikonja M, Kononenko I. Theoretical and Em-
pirical Analysis of ReliefF and RReliefF. Machine
Learning 2003;53(1/2):23–69. https://doi.org/10.1023/a:
1025667309714.

58. Moghimi A, Yang C, Marchetto PM. Ensemble feature se-
lection for plant phenotyping: a journey from hyperspec-
tral to multispectral imaging. IEEE Access 2018;6:56870–
56884. https://doi.org/10.1109/access.2018.2872801.

59. Cao X, Luo Y, Zhou Y, Duan X, Cheng D. Detection
of powdery mildew in two winter wheat cultivars using
canopy hyperspectral re�ectance. Crop Protection 2013
Mar;45:124–131. https://doi.org/10.1016/j.cropro.2012.
12.002.

60. Bergsträsser S, Fanourakis D, Schmittgen S, Cendrero-
Mateo M, Jansen M, Scharr H, et al. HyperART:
non-invasive quanti�cation of leaf traits using hy-
perspectral absorption-re�ectance-transmittance imag-
ing. Plant Methods 2015;11(1):1. https://doi.org/10.1186/
s13007-015-0043-0.

61. Behmann J, Mahlein AK, Paulus S, Kuhlmann H, Oerke EC,
Plümer L. Calibration of hyperspectral close-range push-
broom cameras for plant phenotyping. ISPRS Journal of
Photogrammetry and Remote Sensing 2015 Aug;106:172–
182. https://doi.org/10.1016/j.isprsjprs.2015.05.010.

62. Paulus S. Measuring crops in 3D: using geometry for plant
phenotyping. Plant Methods 2019 Sep;15(1). https://doi.
org/10.1186/s13007-019-0490-0.

63. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature
2015 May;521(7553):436–444. https://doi.org/10.1038/
nature14539.

64. Pound MP, Atkinson JA, Townsend AJ, Wilson MH, Grif-
�ths M, Jackson AS, et al. Deep machine learning provides
state-of-the-art performance in image-based plant phe-
notyping. GigaScience 2017 Aug;6(10). https://doi.org/10.
1093/gigascience/gix083.

https://doi.org/10.13031/2013.12940
https://doi.org/10.1117/12.2220599
https://doi.org/10.3390/s150612834
https://doi.org/10.3390/s150612834
https://doi.org/10.6028/jres.114.015
https://doi.org/10.1016/b978-0-12-374753-2.10002-4
https://doi.org/10.1016/b978-0-12-374753-2.10002-4
https://doi.org/10.1364/josaa.34.000498
https://doi.org/10.1364/ao.36.004535
https://doi.org/10.1364/ao.36.004535
https://doi.org/10.1109/34.159901
https://doi.org/10.1117/12.870437
https://doi.org/10.3390/rs4092736
https://doi.org/10.1117/12.441362
https://doi.org/10.1117/12.441362
https://doi.org/10.1016/j.rse.2012.09.019
https://doi.org/10.1016/j.rse.2012.09.019
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1111/ppa.13020
https://doi.org/10.1186/s13007-018-0352-1
https://doi.org/10.1186/s13007-018-0352-1
https://doi.org/10.1016/j.isprsjprs.2018.02.003
https://doi.org/10.4236/ajps.2018.97107
https://doi.org/10.4236/ajps.2018.97107
https://doi.org/10.1007/s11119-011-9237-2
https://doi.org/10.1007/s11119-011-9237-2
https://doi.org/10.3389/fpls.2018.01182
https://doi.org/10.1016/j.foodchem.2016.04.044
https://doi.org/10.1016/j.foodchem.2016.04.044
https://doi.org/10.1023/a:1012487302797
https://doi.org/10.1023/a:1012487302797
https://doi.org/10.1023/a:1025667309714
https://doi.org/10.1023/a:1025667309714
https://doi.org/10.1109/access.2018.2872801
https://doi.org/10.1016/j.cropro.2012.12.002
https://doi.org/10.1016/j.cropro.2012.12.002
https://doi.org/10.1186/s13007-015-0043-0
https://doi.org/10.1186/s13007-015-0043-0
https://doi.org/10.1016/j.isprsjprs.2015.05.010
https://doi.org/10.1186/s13007-019-0490-0
https://doi.org/10.1186/s13007-019-0490-0
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1093/gigascience/gix083
https://doi.org/10.1093/gigascience/gix083


12 | GigaScience, 2017, Vol. 00, No. 0

65. Mochida K, Koda S, Inoue K, Hirayama T, Tanaka S, Nishii
R, et al. Computer vision-based phenotyping for improve-
ment of plant productivity: a machine learning perspec-
tive. GigaScience 2018 Dec;8(1). https://doi.org/10.1093/
gigascience/giy153.

66. Golhani K, Balasundram SK, Vadamalai G, Pradhan B. A
review of neural networks in plant disease detection us-
ing hyperspectral data. Information Processing in Agri-
culture 2018 Sep;5(3):354–371. https://doi.org/10.1016/j.
inpa.2018.05.002.

67. Singh AK, Ganapathysubramanian B, Sarkar S, Singh
A. Deep Learning for Plant Stress Phenotyping: Trends
and Future Perspectives. Trends in Plant Science 2018
Oct;23(10):883–898. https://doi.org/10.1016/j.tplants.
2018.07.004.

68. Asaari MSM, Mertens S, Dhondt S, Wuyts N, Scheunders P.
Detection of plant responses to drought using close-range
hyperspectral imaging in a high-throughput phenotyping
platform. In: 2018 9th Workshop on Hyperspectral Im-
age and Signal Processing: Evolution in Remote Sensing
(WHISPERS) IEEE; 2018. p. 121 – 138. https://doi.org/10.
1109/whispers.2018.8747228.

69. Bohnenkamp D, Behmann J, Mahlein AK. In-Field Detec-
tion of Yellow Rust in Wheat on the Ground Canopy and
UAV Scale. Remote Sensing 2019 Oct;11(21):2495. https:
//doi.org/10.3390/rs11212495.

70. Virlet N, Sabermanesh K, Sadeghi-Tehran P, Hawkesford
MJ. Field Scanalyzer: An automated robotic �eld phenotyp-
ing platform for detailed cropmonitoring. Functional Plant
Biology 2017;44(1):143. https://doi.org/10.1071/fp16163.

71. Campbell ZC, Acosta-Gamboa LM, Nepal N, Lorence A. En-
gineering plants for tomorrow: how high-throughput phe-
notyping is contributing to the development of better crops.
Phytochemistry Reviews 2018 Jul;17(6):1329–1343. https:
//doi.org/10.1007/s11101-018-9585-x.

https://doi.org/10.1093/gigascience/giy153
https://doi.org/10.1093/gigascience/giy153
https://doi.org/10.1016/j.inpa.2018.05.002
https://doi.org/10.1016/j.inpa.2018.05.002
https://doi.org/10.1016/j.tplants.2018.07.004
https://doi.org/10.1016/j.tplants.2018.07.004
https://doi.org/10.1109/whispers.2018.8747228
https://doi.org/10.1109/whispers.2018.8747228
https://doi.org/10.3390/rs11212495
https://doi.org/10.3390/rs11212495
https://doi.org/10.1071/fp16163
https://doi.org/10.1007/s11101-018-9585-x
https://doi.org/10.1007/s11101-018-9585-x


Dr. Stefan Paulus 

Institute of Sugar Beet Research 

Holtenser Landstr. 77 

37079 Göttingen 

 

Dear Sir or Madam, 

 

Please find attached our revised manuscript “Technical workflows for hyperspectral plant 

image assessment and processing on the greenhouse and laboratory scale“ for submission in 

GigaScience.  

The comments of the reviewers have been very helpful for the authors to understand the 
problems of possible readers and to improve the quality of the publication. We are very 
thankful for that. All aspects and concerns have been taken into account. Please find below 
the answered questions and suggestions. 

We hope that the study now is acceptable for publication in your journal. 

 

Kind regards, 

 

   Stefan Paulus 

 

 

 

 

 

 

 

 

 

  

Covering Letter and Answers Click here to access/download;Personal
Cover;CoveringLetter.docx

https://www.editorialmanager.com/giga/download.aspx?id=98926&guid=509db100-f7a0-4d1e-bcd0-7612c8385bb6&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=98926&guid=509db100-f7a0-4d1e-bcd0-7612c8385bb6&scheme=1


Reviewer reports: 
 
Reviewer #1: The submitted manuscript reviewed relevant literature and summarized a general 
workflow for the analysis of plant hyperspectral images collected in controlled environments. This 
review could have a great impact to the research community: The general workflow could guide 
researchers to standardize the data acquisition and processing of plant hyperspectral images for 
controlled environment studies, help accumulate global research efforts, promote the data sharing, 
and ultimately advance big data analysis for plant spectral responses and therefore biological 
understanding. Therefore, the manuscript fits well with the journal's scope and could be of great 
interest to readers. There are some parts need to be further improved or explained. 
 
1. In my opinion, a unique feature of spectral imaging is the combination of spatial and spectral 
information for objects rather than the combination of spatial and temporal information, which has 
been stated by the authors in the first paragraph in Background section.  

 We appreciate this suggestion, text has been changed accordingly. 
2. Details and explanations are needed for the data acquisition section. While line-scan 
(pushbroom) systems are widely used, many researchers also used area scanning mode (rarely point 
scanning, aka whiskbroom, mode) for studying plant spectral responses. To the best 
comprehensiveness, it would be better to briefly introduce all three scanning modes including basic 
system setup and pros and cons of using each mode. A figure may be added for the best illustration 
of the system setups.  

 We appreciate this suggestion. A figure showing the different techniques for hyperspectral 
imaging has been added. 

3. Data pre-processing (e.g., reflectance calibration or flat field correction)/meta-data 
information is utmost important for sharing plant hyperspectral images. Authors may consider to 
emphasize this importance and provide more information on how to select reference targets. For 
example, Spectralon targets are generally in good quality with known spectral characteristics, so data 
collected using this type of reference targets could be directly shared as long as the target model 
number and manufacturer are provided. In case Spectralon targets cannot be used (due to either 
cost consideration or spatial limitation), inexpensive alternative references can be used but the 
reference spectral characteristics should be provided as meta-data to ensure the reusability and 
comparableness of shared datasets. 

 The link to the spectralon manufacturer was added, furthermore the sentence: “When 
sharing datasets the reference spectral characteristics should be provided as meta-data to 
ensure the reusability and comparableness.” 

 Now this point should be emphasized. 
4. Authors may consider use "flat field correction" as the name for the section of "reflectance 
calibration /normalizing …". An important feature of applying Eq.1. to images is to reduce 
nonuniformity caused by either the imaging chip, illumination, or both.  

 This has been changed accordingly. 
5. In the section of "preparation for ML", please consider adjusting the description order as 
"training", "validation", and "testing", which is logically natural and widely used by research 
communities. Authors may also consider cite a technical-driven review paper on feature selection. 
This will help readers to further the understanding and knowledge of the techniques can be 
potentially used.  

 This has been changed accordingly. 
6. It would be very interesting and useful if authors could provide a table to list some publicly 
available datasets that were collected by following the general workflow. This will in turn help the 
technical community to obtain domain datasets for the development of new tools in the future.  

 We really appreciate this suggestion. Nevertheless, community is still lacking of 
hyperspectral datasets of plants with open/free access. This defines a todo for the future. 
We hope that this study will give a good basis for publishing a technical proper dataset. 



7. There are some repeated words and typos to be carefully checked by the authors. For 
example: "publications" in the abstract and "bedefined" to "be defined" in the Data acquisition and 
processing section. 

 This has been changed accordingly. 

 
 
Reviewer #2: This is a review paper focusing on close-range hyperspectral imaging for plant 
assessment in the greenhouse and laboratory scales.  Given the broad interest of using hyperspectral 
imaging for plant phenotyping research, as well as the complexity of data structure and analysis 
method, this manuscript is quite timely and relevant. The hyperspectral image is known for its large 
data volume. The topic thus is appropriate for the journal. The paper covered the topics including 
camera and measurement setup, data preprocessing, and data analysis/interpretation. The authors' 
argument is that a standardized workflow for image acquisition, processing and analysis is needed to 
make the data comparable among various labs, which is a valid point. The paper provides a good 
technical summary of hyperspectral imaging (such as camera and imaging stage setup, white 
referencing), and gives a good compilation of its applications on plant assessment that can be useful 
for the phenotyping research community. My major comments for the authors to consider improving 
the manuscript are in the following. 
 
Section of spectral smoothing. The authors only discussed Savitzky-Golay method and missed many 
other methods that are common for spectral preprocessing.  
In addition to spectral averaging (binning) that the authors also discussed, other methods like 
Multiplicative Signal Correction and Standard Normal Variate are also widely used. Other 
preprocessing such as first and second order derivative are also common. Note Savitzky-Golay can 
also be used for differentiation. I think you need to mention these methods rather than just Savitzky-
Golay. 

 We  have added these methods together with  a literature link. 
Preparation for ML. You discussion of calibration set, validation set, and test set are not correct. In 
machine learning, calibration set is for model calibration (to calibrate model parameters), validation 
is for model hyper-parameter tuning, and the test set is to evaluate the performance of the 
developed model. Please make sure you express this correctly. In some implementations, an explicit 
validation set is not used where model calibration and hyper-parameter tuning are conducted 
together.  In these implementations, test set is also referred to as validation set. I would recommend 
the authors to read some of the literature on NIRS analysis, as when the images are reduced to the 
spectrum level, the (pre)processing and analysis share commonalities. There are quite a few 
publications recently on using VIS-NIR-SWIR for leaf analysis in the context of plant phenotyping. 
Please study those so you can see calibration/validation schemes and spectral preprocessing. 

 The description of the machine learning sets has been changed accordingly. 
The explanation following Equation 1 was poor.  I cannot understand it. Please revise.   

 The explanation has been changed. 
There is significant room for the authors to improve the writing and presentation of the manuscript.  
There are quite a few places where the wording and phrases can be improved.  Please see my 
comments on the attached document. 

 Comments in the PDF version of the draft have been inserted and the text changed 
accordingly. 

 

 
Reviewer #3: This paper presents a workflow for researchers using hyperspectral imaging for 
phenotyping applications, specifically based in greenhouses and laboratory settings. This paper is 
very timely and quite necessary, in my opinion. Overall I think the paper is well organized and 
presents information that will be very useful for researchers as they design their experimental 
setups. My background is remote sensing, specifically hyperspectral, so many of my comments and 



suggestions are based on lining up the language in this manuscript with the language used in the 
existing remote sensing literature base. Since remote sensing researchers have been working with 
hyperspectral since the 1980s, I believe this will allow readers to find established and published 
methods that can directly apply to plant phenotyping without having to 'reinvent the wheel'. I am 
also assuming that most of your readers may not be familiar with hyperspectral. Especially since if I 
were new to hyperspectral for phenotyping, I would start with reading this paper! 
 
General Comments: 
* To be technically correct, use the term hyperspectral instead of spectral. RGB imagery is also 
spectral, but it just happens to be broadband and only three bands. 

 This has been changed for the plant imaging sections. For the technical sections we focused 
on the spectral calibration and the techniques, thus we think the term spectral is here 
appropriate. 

* The camera characteristics and measuring setup section should be broken up into two 
sections. One for camera characteristics and one for the measuring setup. The camera characteristics 
description is thorough, but I would like to see more details (or more explicitly stated) on the 
experimental design or measuring setup. Specifically, the authors could elaborate on the following 
topics:  

 As the authors mention, illumination is a significant factor in collecting high-quality data. Not 
all bulbs will work appropriately - what things do researchers need to know not to have 
illumination issues? Why should any fluorescent lights be turned off before collection?  

 We clearly see that illumination is an highly important facor. Thus an extra section “Using 
illumination for measuring” has been added to the text. 

 Side-view versus nadir image collection - why would you choose one over the other? Why 
will side view not translate to outdoor image collections?  

 This has been added accordingly in the section “Measuring setup”. 

 The inclusion of a reference panel (briefly mentioned in a different section) in the scene. 
Should it be all scenes or a preferred location within a scene? 

 This has been added accordingly in the section “Measuring setup”. 

 A discussion on the field of view of the camera and how to determine camera height based 
on the sample being collected and desired spatial resolution. 

 This has been added accordingly in the section “Measuring setup”. 

 Pushbroom versus integrating cameras  

 This has been added accordingly in the section “Camera characteristics”. 

 There needs to be a better description of each of the remote sensing data levels. At the 
moment, the terminology isn't quite correct, and the clarity is missing (Radiometric 
calibration section). Specifically, it would be important to define digital numbers, radiance, 
and reflectance data levels. They each have very different factors that influence them and 
require different corrections.  

 This has been added accordingly in the section “Radiometric calibration”. 

 Do not use the term normalization for reflectance retrieval. Reflectance calibration is ok, but 
to match the remote sensing literature, reflectance retrieval would be more accurate.  

 This has been changed accordingly. 
 
Specific Comments: 
Abstract > Results: "This review describes a general workflow for the assessment and the processing 
of hyperspectral plant data at the greenhouse scale."  I would add greenhouse and laboratory scale 
since this is the first mention of the measurement scale and it will match the title 
 

 This has been changed accordingly. 
 
Abstract > Conclusions: I would have this start on a new line like Background and Results. 



 This has been changed accordingly. 
 
"This publications provides a structured overview on implementing hyperspectral imaging into 
biological studies."  
Publication should be singular. I would also add at the end "at the greenhouse and laboratory scale". 
This paper would not be useful for outdoor collections with UAV or airborne sensors.  

 This has been changed accordingly. 
 
 
Key Words: Make sure to include hyperspectral.  

 This has been changed accordingly. 
 
Key Points: hyperspectral not spectral, needs to be structure for evaluation of what?  

 This has been changed accordingly. 
"During the last years, spectral sensing of plants has developed as a valuable tool for plant 
phenotyping [1] [2]." 
Rewording - "During recent years, hyperspectral sensing…." I think it is important to say 
hyperspectral instead of spectral. RGB is also spectral, but it just happens to be broadband. 

 This has been changed accordingly. 
 
"The principle of hyperspectral imaging (HSI) is based on the fact that all materials reflect 
electromagnetic energy in prominent patterns and specific wavelength due to difference of their 
chemical composition and inner physical structure [3]. Spectroscopy is defined as the method of 
acquiring and explaining the spectral characteristics of an object regarding light intensity emerging 
from molecules at different wavelengths to provide a precise fingerprint of an object." 
 
This sentence needs some rewording. This is not the principle of hyperspectral imaging but remote 
sensing in general. The difference between hyperspectral and other remote sensing is that 
hyperspectral is characterized by measuring hundreds of narrow bands in the electromagnetic 
spectrum. For any remote sensing sensor, the measured signature is the result of a material's 
chemical composition and inner/outer physical structure. It is important to note that the spectral 
signature is not just the inner leaf, especially since that depends on the part of the electromagnetic 
spectrum that is measured. Additionally, it is important to specify HOW hyperspectral is different 
than multi-spectral sensors (specifically RGB cameras are mentioned). In the paper, a lot of great 
examples are shown using hyperspectral. Still, I think the introduction could use one sentence 
saying why someone would invest the extra time/money/effort into using hyperspectral over an 
RGB camera. Lastly, spectroscopy can also be collected with a point spectrometer instead of an 
imager. There is a whole literature base that uses point spectroscopy for phenotyping, which is not 
the focus on this paper. I would add a single sentence acknowledging this difference. Also, it may 
not be apparent to readers that spectroscopy equals hyperspectral, and I would say that 
hyperspectral is more commonly used in the plant sciences literature. 

 This has been changed accordingly. We hope that it now fulfills the claims of the reviewer. 
 
"Spectral cameras have become affordable that increase the visible spectrum (400 - 700nm, VIS) of 
RGB-cameras by the ultra-violet (200 - 400nm, UV,[5]), the near infrared spectrum (700 - 
1000nm,NIR, [6]) or even the short wave infrared spectrum (1000 - 2500nm, SWIR, [7] )." 
This sentence needs rewording. Hyperspectral cameras have become more affordable and as a 
result, more commonly used? Compared to RGB cameras, they increase the spectral resolution and 
spectral range?   

 This has been changed accordingly. 
 



Reflectance imaging of plants has been related to plant tissue characteristics [9], to detect abiotic 
stresses [10] or plant diseases [11].  
This is the first time the term reflectance is used, and it might be easier for readers who are not 
familiar with this data type to use hyperspectral instead (until you get a chance to define reflectance 
in the Data Acquisition and Processing section). This list, as written, suggests these are the only 
applications of hyperspectral imaging of plants. I would add at the end "among others" to give some 
flexibility. 

 This has been changed accordingly. 
 
"To introduce HSI as a state-of-the-art tool for plant phenotyping a literature overview is presented 
showing the different biological objectives what hyperspectral sensors are used for in the laboratory 
and greenhouse scale starting from stress detection and disease classi¬fication to a linking to 
molecular analysis (QTL analysis) grouped by the introduced level-description." 
Suggested rewording - "To introduce HSI as a state-of-the-art tool for plant phenotyping, a literature 
overview is presented showing the different biological objectives can be achieved with hyperspectral 
sensors in the laboratory and greenhouse settings including stress detection, disease classi¬fication, 
and molecular analysis (QTL analysis)." 

 This has been changed accordingly and by suggestion of an other reviewer. 
 
"The following paragraph introduced introduces techniques to overcome different  ..."  
Typos: "The following section introduces techniques ..." 

 This has been changed accordingly. 
 
"A comprehensive literature review shows examples for hyperspectral application from biotic stress 
detection like disease or virus detection, abiotic stress detection like heavy metal or cold stress and 
plant trait extraction like biochemical traits or leaf water content." 
Since this is the start of a paragraph, please include again this is at the greenhouse/laboratory scale. 

 This has been changed accordingly. 
 
 
Table 1: Please include in the caption this is for the greenhouse/laboratory scale. I'm not as familiar 
with hyperspectral greenhouse studies, but there is only one citation for each of these? 

 A describing sentence has been added to the table caption. 
 
"Spectral systems and resulting data differ in the way the camera is calibrated and the data is 
processed." 
These are not the only ways hyperspectral systems differ. As mentioned in the following sections, 
there are many other factors. Perhaps a more generalized sentence? "Hyperspectral systems and 
resulting data will vary due to many factors, including camera characteristics, experimental setup, 
calibration, and data processing. 
 

 This has been changed accordingly. 
 
"… sensor wavelength calibration, the instrument function, the radiometric calibration and spectral 
and pixel binning."  
 What is "the instrument function"?  

 Instrument function and point spread function need a detailed introduction which has been 
given in the section “Instrument function / point spread function - overcoming spectral 
distortion” 

 
 
"Four categories of factors that influence the measured spectrum of plants can bedefi¬ned." 



 Add space between be and defined. 

 This has been changed. 
Also, these four factors are HUGE when collecting hyperspectral data and often result in the most 
errors or incorrectly interpreted data. I love the figure and that these factors are mentioned, but I 
think they could use a little more elaboration. How might each factor impact your data? The last 
sentence starts to address this, but in my opinion, it is too much of a summary of all of them. For 
example, spectra variability due to differences in genotypes is not caused by the optical configuration 
but the plant's properties. 
 

 We clearly see this point and its importance. Nevertheless a quantification of the influence of 
the single error sources is rather complicated and needs test series with high quality 
calibrated recordings. Thus we hope that the summary approach is sufficient for publication. 

 
Camera characteristics and measuring setup As mentioned in general comments, I believe this 
section should be split into two, which would allow authors to go into detail about how the 
measurement setup is critical for high-quality measurements. As I progress through specific 
comments, I will highlight sections that could be expanded on or moved to the measurement set up 
section. 
 

 The section has been split and changed accordingly. 
 
 
"Hyperspectral cameras for plant phenotyping often are line scanners (pushbrooms) as this type of 
sensor is commonly used in plant science or for high throughput analysis as it, unlike snapshot 
cameras, provides a very high spatial and spectral resolution." 
This sentence is awkward and could use rewording. While they are often line scanners there are 
other hyperspectral camera systems. Since this is a literature review, mention those scanners and 
how they are different. In the measurement setup section, the pros/cons of each could be explained.  
 

 This has been changed. Furthermore a complete new figure has been added. 
 
"The next step, the transfer of these sensor types to the field scale has already been started for 
tracking the canopy development in cereals [37] or as an open-source and open data project of 
Terra-Ref [38]." 
My remote sensing background has significant issues with this sentence. Hyperspectral data 
collection has been happening for decades with airborne sensors or point spectrometers for plant 
applications. Including predicting nitrogen content and canopy development. Since this sentence 
doesn't add to the camera characteristics section, I would remove it or reword so that it doesn't 
exclude a whole body of research (which is outside the scope of this paper). 
 

 This has been changed. The sentence has completely been removed. 
 
 
Wavelength calibration: I'm quite confused by this section. The wavelengths that sensor measures 
should be set by the manufacturer. Are there enough people creating their own hyperspectral 
sensors for this section to be applicable? In my experience, wavelengths rarely drift, and if they do, 
the manufacturer would prefer to do the correction. The sentence "The wavelength calibration 
describes the comparison of measured spectral values with known values [40] and consequently, the 
mapping of the dispersed geometric access to wavelength in nm." sounds like it is discussing 
reflectance retrieval, but that is a different section. The sentences "A polynomial ¬fit of the 
geometric position of the atomic emission lines on the chip and the known wavelength is conducted. 
This step is usually performed preliminary by the manufacturer and enables displaying the spectral 



axis in units of wavelength (nm)." Sounds like you are discussing the conversion of digital numbers to 
radiance, but that is also another section. I've also never heard the term dispersed geometric access, 
so it would probably be good to define? Now, it is important to know that each band has a spectral 
response function (again generally provided by sensor manufacturer or estimate by Gaussian 
function). This information is critical to resample a camera to another camera spectral resolution. 
 

 We agree with this comment. A wavelength calibration should be performed by the 
manufacturer. The scope of this publication is to introduce all aspects of hyperspectral 
calibration. After a longer discussion with a specialist of a worldwide spectrometer 
manufacturer we can say that the majority of the users, especially scientists, build 
hyperspectral cameras, especially push broom and whisk broom systems themselves and 
thus need to perform their sensor wavelength calibration by themselves. 

 The sentence has been changed access  axis. The confusion should be solved now. 

 We deeply re-discussed this text section and think that we could improve the quality and 
readability. This passage only focusses on mapping of pixel position on the camera to 
wavelength and not about reflectance or radiance measuring. 

 
"Due to differences in quantum efficiency of the detector and varying efficiency of the grating and 
other optical components (lenses etc.), measurements using different optical systems of the same 
object under same illumination conditions may not be identical [41]." 
A sentence needs to follow this one that spells out to the reader that this data level is called digital 
numbers. This data-level is influenced by sensor characteristics, atmospheric conditions, and surface 
properties (in this example plants). This will emphasize the reason why sensors at this data type level 
are not comparable. 
 
This has been changed accordingly. 
 
"To correct for such instrument related differences, radiometric calibration of the measurement 
device or white referencing is needed."  
* White reference is NOT used for radiometric calibration. Many software programs will 
incorporate the radiance to reflectance step into one which would use the white reference. 
However, the term white referencing is specifically for converting to reflectance. This is a critical 
difference when making measurements outdoors, but it worth separating here.  
This has been changed accordingly. 
* It is also important to tell the reader what the radiance is, especially since there are many 
plant applications (such as photosynthetic studies) that require radiance values, not reflectance. This 
data product is influenced by the light source, atmospheric absorptions, and surface properties, but 
it does remove camera factors.  
Now it should be more clear and more explicit. 
* To convert from DNs to radiance, a gain and offset per band are applied to the data which 
are provided by the sensor designers or engineers. Software provided by the manufacturer should 
have those values automatically provided. IF they don't, then you have to develop them yourself, 
which is the description actually provided in this section.  
"In many applications absolute radiometric calibration is not required. Often it is sufficient to use a 
relative spectral calibration to correct for the spectrally varying system efficiency. A simple white 
referencing and dark subtraction is sufficient for reflectance measurement."  
This needs to be reworded. Right now, it jumps from radiometric calibration to a reflectance 
measurement - which has not been defined. Also, this depends on the camera system. Often it is 
possible to 'skip' the radiance conversion because it a linear regression with DNs, but this is not the 
case with every camera (depending on the camera characteristics it can be non-linear spectrally and 
spatially). 
This has been changed accordingly. And a few more explicit sentences have been added. 
 



 
Spectral and spatial binning: Yes, SNR can be increased when data is binned, but many new users will 
do this incorrectly. For example, many hyperspectral sensors have 'bad bands' towards the upper 
and lower range of the sensor. Bad bands are those defined with having very high noise and 
unreliable measurements. These bad bands are lower SNR ratio than other bands because they are at 
the upper limits of the sensor's capabilities. There can also be bad bands due to atmospheric 
conditions, which in a greenhouse with high water vapor could be strong. I also feel like this is not 
necessary for all cameras and really depends on the SNR of the camera used. My suggestion would 
be to word this as an optional step and explain when a user should consider these methods. 
Especially since there are sections on dimensionality reduction and spectral smoothing which also 
impacts the spectral data. 
 
This has been changed. A new sentence dealing with the lower and upper spectral area and how to 
handle it has been added. 
 
"Thus it can be stated, that a slightly spectral binning will not affect the informative value of the 
remaining spectrum." 
 Slightly? I think a different word might more appropriate. 
 

 This has been changed to “limited” we hope that this is fine now. 
 
"It includes pre-processing steps where the normalization is performed, the spectral smoothing and 
3D correction up to a masking of the object of interest and data splitting, dimension reduction and 
feature selection for ML." 
 This sentence is awkward and could use rewording.  

 The sentence has been changed. 
 
Reflectance Calibration: Do not use the term normalization for reflectance retrieval. Define what the 
reflectance data level is and what the units are. It is important for the readers to know that this data 
level removes camera effects, atmospheric conditions, and lighting effects, so only the surface 
properties remain. THIS data source is comparable across camera systems, whereas the other data 
levels are not. 

 The term normalization has been changed in the complete study article. Furthermore a more 
appropriate definition has been added. 

 
"Most often highly reflective materials like barium sulfate (SphereOptics.com) act as a reference."  
In my opinion, the reference panel is one of the most critical components of making high-quality 
hyperspectral measurements. I would love to see this in an experimental setup section with a lot 
more details. For example, the material does need to be highly reflective but also highly reflective 
across the entire spectral range of the camera measures. Also, probably the most commonly used 
panel (but of course more expensive) is a spectralon panel made by Labsphere. White paint for 
camera measuring 400-1000 nm can also be sufficient.  

 Spectralon has been added as well as “across the entire spectral range” 
 
"Alternatively the use of materials with a known spectral reflectance is established as a standard 
procedure." 
Yes! I always recommend a black, light gray, and dark gray target also. These can be measured with a 
point spectrometer to get a known reflectance value.  

 This sentence has been added to the text. 
 
"Performing the object scan right after including the associated dark image, the normalization step 
can be described by formula 1:" 



This formula is the most basic way of converting from radiance to reflectance, using only a single 
target. In the remote sensing literature, it is referred to as the empirical line correction method. 
However, if you have a variable atmosphere (such as a greenhouse with fluctuating values) or are 
covering a large area, a single target may not be sufficient for good data. This is also true if the 
lighting conditions change or if the data set is a time series. A more advanced empirical line 
correction method incorporates multiple targets, which can make it robust to these changes. 
Conversion to reflectance from radiance generally results in the largest data errors, so in my opinion 
is worth elaborating. 

 To emphasize this point a new sentence was added. 

 “For measurements in a greenhouse with a variable environment like a change in light 
condition, or when measuring time series or measurements that cover a large area it it 
recommended to use multiple targets or periodical re-calibration of the sensor setup.” 

 
"Based on the assumption that the plant spectrum has a smooth spectrum and peaks within the 
spectrum are results of outliers and noise the use of soft smoothing algorithms is valid." 
This sentence needs to be clarified. Plant spectra can have peaks or valleys that are due to 
biophysical or structural conditions that people may be interested in. Very sharp peaks that only span 
one or two wavelengths are definitely noise. This is where a discussion of 'bad bands' that I 
mentioned before would be useful. Again, this may not apply to all cameras and it may not apply to 
the whole spectrum depending on the SNR.  

 We see this point and appreciate this indication. Thus the part “covering just one or two 
bands” was added to clarify this. 

 
"Most established is the Savitzky-Golay smoothing algorithm [49] for hyperspectral data where 15 
centered points and a polynomial of degree 3 has shown its applicability [50]." 
 This is highly dependent on the camera's spectral resolution.  

 That is right. The sentence has been changed and the camera of the example has been 
added. 

 
"Literature shows that an the use of erosion as a binary image processing technique is efficient." 
Typo shown in italics. There should be a citation with this statement or is it the same as the following 
sentence? Might be worth mentioning that some machine learning algorithms are robust to them 
anyway. Also, I'm sure you are aware there is a whole literature for working with mixed pixels which 
might be helpful for readers to know if their spatial resolutions are coarse. 

 The authors think that Moghimi 2018 should be enough as a citation. The fact that some but 
not all methods are robust to mixed pixels is right, but we think that this will be beyond the 
scope of this study as we do not want to focus on ML techniques. But we are thankful for this 
comment.  

 
Preparation for ML: I love that the authors chose to focus on machine learning techniques. I have 
found too many phenotyping papers that rely on a vegetation index to retrieve their trait of interest. 
Why do we have cameras that measure hundreds of bands if we are going to reduce them down to 
one value? I would love to see one sentence on why researchers should use ML approaches rather 
than a vegetation index.  

 This has been changed. A short paragraph has been added in the beginning of “preparation 
for ML” 

 
"To decrease redundancy within the dataset dimension reduction as it can be performed." 
 I would like to suggest a clarification for this sentence - "Dimensionality reduction methods 
can decrease spectral redundancy and reduce data volume within the dataset."  

 This has been changed accordingly. 
 



"State-of-the-art techniques are principal component analysis (PCA, [55]), feature selection using 
recursive feature elimination (RFE), ReliefF or correlation-based feature selection [56]." 
 I would change "state-of-the-art" to common since PCA was one of the very first 
dimensionality reduction techniques. Or split it into two sentences - one with common and another 
with new algorithms.  

 This has been changed. 
 
"If the data is coming from a single plant (trait level 1) the datacube can be used to derive very rough 
information about the plant like the plant canopy [57]." 
 Very rough information? What does this mean? Instead of like, I would suggest "such as" 

 This has been changed. Rought -> low resolved 
 
"The correction of thehyperspectral information according to distance and inclination is needed." 
 Space needed between the and hyperspectral. 

 This has been changed. 
 
"In contrast to SVM or DT approaches, DL is based on N architectures and is based on very huge 
datasets used for training." 
 Consider rewording to remove duplicate "is based on"  

 This has been changed. 
 
"DL approaches have been widely used on RGB images for the demands of plant phenotyping as 
there is a classi¬fication of root tips, shoot and leaves [61] [62] and can be depicted to be state of the 
art." 
 Remove there is. 

 This has been changed. 
 
 
"Usually the results of a classi¬fication are presented by a confusion matrix, which indicates…" 
Since the previous sentence said no labeled data was needed, it might be worth mentioning that the 
confusion matrix does need labeled data. 

 This is right, nevertheless, the labeled data is needed for evaluation. To clarify this, this 
paragraph was moved to the supervised section. 

 
"Thus, the setup has to tailored has to be tailored towards the size of the plantss." 
 Remove duplicate s on plants. 

 This has been changed. 
 
"Beside effects of the geometry, like the correlation between normalized difference vegetation index 
(NDVI) and inclination, have to be taken into account or if possible have to be corrected [7]."  
NDVI is not only influenced by leaf inclination but also more broadly canopy structure.  

 The text clearly says that the datacube is affected by distance and inclination which includes 
effects of the canopy structure. The authors think an additional emphasizing of this aspect is 
not necessary. Thus, the text was not changed . 

 
"When transferring results from the laboratory or greenhouse to the ¬field the work ow for using HSI 
is different and has to be designed individually [66]." 
I think this paragraph should be condensed significantly since it is definitely out of the scope of the 
paper and a single paragraph would not be sufficient to explain how this workflow would be 
transferrable to field settings. The reflectance retrieval process (referred to as normalization here) is 
completely different for field collections. As mentioned most everything is different. I would 



summarize by saying "The workflow proposed is not transferrable to field conditions which requires a 
very different experimental set up to ensure high quality hyperspectral measurements." 

 This has been changed. 
 
"Especially when using high throughput imaging setups [21] combined with hyperspectral cameras 
periodical imaging leads to huge datasets independent of the scale [37]." 
 This sentence is should be reworded. 

 This has been changed. 
 

 


