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Band formation and steady-state structure at
large persistence lengths or low activity
Figure S1 shows the time evolution of a nematic phase
with large persistence length when motors are added. At
short times (a) the system is in a disordered nematic
state. At intermediate times (b) the system forms polar-
sorted bands that subsequently coarsen, and at late times
(c), when the system reaches steady state, two stable
oppositely aligned bands form. This is a typical time
sequence for large persistence lengths and/or for small
activities.

fig. S1. Time sequence of filament self-organisation.
Here, (�, ˜̀p, ñm) = (0.66, 20, 0.89), with time t̃ = tD0/L

2
and

D0 the passive single filament di↵usion coe�cient. (a) t̃ = 0,

nematic phase at zero activity; (b) t̃ = 0.0125 polarity sorting;

(c) t̃ = 2.5 stationary state consisting of two stable bands.
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fig. S2. Normalised parallel velocity vk/vth.
Parallel velocity as a function of lag time ⌧/⌧0

R for

(�, ˜̀p, ñm) = (0.66, 3.4, 0.89). Here vth =

p
kBT/m. Aver-

ages are shown for all filaments, for parallel filaments only,

and for antiparallel filaments only.

Parallel velocity and temporal orientational
autocorrelation function
Figure S2 shows the parallel velocity averaged over
all filaments as a function of the lag time ⌧ . The
average is also performed over only the filaments in
a parallel environment (filaments point in the same
direction), and in a antiparallel environment (filaments
at the interface point in opposite direction) filaments.
Clearly, the velocity of the antiparallel filaments is
much larger than that of the parallel ones. The average
velocity over all filaments is closer to the average
over the parallel filaments because the fraction of
parallel filaments is much larger. In each domain,
parallel filaments form the bulk of the domain interior,
while antiparallel filaments are found at the boundaries.

Intradomain dynamics
Our component-based model provides detailed micro-
scopic information about the filament dynamics within
the polar domains. We studied configurations with a
stable number of bands, an example is shown in fig. S3a.
The corresponding velocity profiles are calculated for var-
ious values of the active force by changing the number of
motors per filament ñm = nm/nf , see fig. S3b. The aver-
age band velocity increases linearly with the number of
antiparallel motors nap

m , in agreement with the results in
fig. 1f. The total length of the interface, Linter ' nbLbox,
varies by changing the number of bands, or by enlarging
the box size. The band velocity is roughly independent
of the persistence length, see fig. S3c, which indicates
that the interfacial structure is not dramatically a↵ected
by the filament flexibility.

Our results demonstrate that the force applied by the
antiparallel motors at the interfaces generates the motion
of the bands. The parallel motors connecting filaments
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fig. S3. Intra-band filament dynamics for narrow and wide bands at steady state.
(a) Snapshots for a system with parallel bands for (�, ˜̀p, nb, ñm) = (0.66, 20, 8, 0.12). (b) Velocity profiles for various ñm.

(�, ˜̀p, nb) = (0.66, 20, 8) (c) Normalised averaged band velocities as a function of the band width wb and the persistence length

`p of the filaments for (nb, ñm) = (6, 0.45). The antiparallel motor density is nap
m /Linter where Linter = nbLb is the total length

of the interface in the system. (d) Normalised velocity profiles for two band widths. Dashed lines are simulation results and

solid lines are guides to the eye.

within the bands transmit this force in the perpendicular
direction, but the friction with the embedding medium
strongly reduces the velocity in the center of the wide
bands. From the velocity profile for the wide bands, see
fig.S3 d, we estimate the velocity decay length to be be-
tween half and two filament lengths.

This is confirmed by an explicit calculation of the ve-
locity correlation length from the velocity correlation
function as outlined in fig. S6, fig. S7 and fig. S8. More-
over, the velocity correlation length is rather insensitive
to a change in activity as was also found in Ref. [17], but
does depend on the persistence length, see fig. S9.

For narrow bands, the velocity profiles of the two
interfaces overlap, resulting in plug flow-type velocity
profiles, as shown in fig. S3d. Note that in most cases
the orientation of the filaments at the interface has
a well-defined inclination angle (15� � 25�), see for
example fig. S3a. Therefore motors between antiparallel
filaments can only attach close to the filament ends and
impose a pushing force from the rear end. Closer to the
center of a band, the filaments are oriented parallel to
the interface.

Fraction of antiparallel motors
Figure S4 shows the number nap

m of antiparallel motors
per filament as a function of the total number of motors
nm in the system for three filament densities. In all cases,
the number of antiparallel motors increases linearly with
nm and saturates at larger nm where motors collide and
detach from the filaments.

For systems evolving from the initial nematic state
towards the buckling of bands, the number of antiparallel
motors varies non-monotonically as a function of time
for various persistence lengths. For very short times, the
parallel and antiparallel orientations of neighbouring fil-
aments are equiprobable and the fraction of antiparallel
motors is nap

m /nm = 1/2. Rapidly, thin bands (width a
few filament thicknesses) appear and nap

m /nm shoots up
to almost unity (not shown), after which coarsening of
the bands leads to a steady decrease of nap

m with time as
is shown in fig. S5. As the active force is proportional
to nap

m , fig. S5 also shows the time evolution of the force
on the filaments. Interestingly, the curves for di↵erent
persistence lengths follow the same time evolution,
indicating that, at this stage, the microstructures are



0.0

0.5

1.0

2.5 5.0

(a)

n
a
p

m
/
n
f

ñm
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very similar.

Velocity correlation function
Additional comparison with existing experimental and
simulation work [9,17] can be done through the spatial
velocity correlation function

Cv(r, ⌧) =

DP
i,j 6=i di(⌧) · dj(⌧)�(r � |ri � rj |)

E

t

⌧2
DP

i,j 6=i �(r � |ri � rj |)
E

t

. (1)

The center of mass displacement di of filament i over a
lag time ⌧ is defined as di(⌧) = ri(t + ⌧) � ri(t) with
ri(t) the center of mass of filament i at time t. The ve-
locity v = d(⌧)/⌧ depends on the lag time ⌧ . Examples
of Cv(r, ⌧) for di↵erent activities at fixed lag time are
shown in fig. S6a. The normalised velocity correlation
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fig. S6. Filament velocity correlation functions.
Velocity correlation functions for three motor densities at

⌧/⌧0
R ⇡ 4 with (�, ˜̀

p)=(0.66, 3.4). (a) Unnormalized corre-

lation functions, nondimensionalised by the parallel velocity

v2k. (b) Normalised correlation functions.

function at a particular lag time in fig. S6b is essentially
independent of the activity, which is consistent with pre-
vious experimental and numerical studies [9,17]. The lag
time ⌧ has to be rescaled to compare MSD, vk(⌧) and
correlation functions for di↵erent parameter sets. The
rescaled time evolution displayed in fig. S7 suggests that
L/vk is the natural intrinsic time scale, so that ⌧vk/L
is the appropriate scaling variable for the active ballistic
regime where MSD / v2k⌧

2.

To gain more understanding, we focus on r > � and
lag times ⌧ , such that the passive system is in the dif-
fusive regime (in fig. S7, this corresponds to the time
window in which the scaled MSDs overlap). In this case,
long-ranged spatial correlations build up [43] and Cv(r, ⌧)
typically shows an exponential decay [44], Cv(r, ⌧) =
A exp[�r/⇠].

The amplitude A and velocity correlation length ⇠ are
shown in fig. S8a and b, respectively, for di↵erent ac-
tivities (changing the number of motors, while keeping
all other parameters constant). Spatial velocity correla-
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ñm = 1.12

b

v |
|(
⌧
)/
v |

|

⌧v||/L

ppp

0.00

0.50

1.00

10�4 10�2 100 102

fig. S7. Time scale renormalization for active motion.
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parallel velocity for di↵erent motor concentrations. In both
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dependent quantity and vk = vk(⌧ = 0).

tions build up at short times and decay at long times.
A maximum amplitude is found at ⌧vk/L ⇡ 1/2, the
time at which filaments have moved about half their
length. Interestingly, the time-dependent velocity cor-
relation lengths ⇠/L for di↵erent activities superimpose
when plotted as a function of ⌧vk/L. The same behaviour
of the velocity correlation length is also found when the
area fraction of filaments is changed, as shown in fig. S8c,
except for very small area fractions (� < 0.3) where the
filaments are still in the isotropic state (see the snapshots
in fig. 6 a,b in the main text).
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fig. S8. Amplitude and decay length of the velocity
correlation function as a function the lag time.
(a,b) Varying the motor density 0.4 < ñm < 1.5, with

(�, ˜̀p)=(0.66, 3.4), (a) Amplitude, (b) Velocity decay length.

(c) Velocity decay length for di↵erent area fractions with

(˜̀p, ñm) = (3.4, 0.89).

However, a di↵erent behaviour is found when the fil-
ament persistence length is varied, see fig. S9; here the
velocity correlation length ⇠ increases with increasing fil-
ament sti↵ness and saturates to a constant value of ap-
proximately ⇠/`p ⇡ 0.04 for large persistence lengths, see
fig. S9a. However, for small persistence lengths `p ⇡ L,



where domain sizes are small, the velocity correlation
length is independent of `p and approaches a constant
⇠/L = 0.16 for ⌧vk/L = 1/2, see fig. S9b. As for most of
the results discussed we have focussed on systems with
a fixed aspect ratio L/� = 20. We also included simula-
tion data for longer filaments L/� = 40 which show that
the scaling proposed in fig. S9 is reasonable but might be
more complicated as the filament thickness is ignored.
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fig. S9. Dependence of the velocity correlation length
on the persistence length.
(a) Normalisation of ⇠ by the persistence length `p, (b) Nor-

malisation of ⇠ by the filament length L. Here all simulations

are for L/� = 20, except for the filled red symbols which are

for L/� =40.

Our system is di↵erent from the experiments in
Ref. [9], where suspensions of extensile bundles of micro-
tubules and kinesin motors are studied and in which the
velocity correlations are measured using displacements of
large tracer particles. It is also di↵erent from the contin-
uum model of Ref. [17] based on the theory of active ne-
matics. Nevertheless, the velocity correlation functions
are in all cases found to be exponential functions, and

in particular the correlation length is rather insensitive
to the activity. Moreover, for larger filament sti↵nesses
`p � L we also find an approximately linear increase
of the velocity correlation length with increasing bend-
ing rigidity (in our case ˜̀

p) as in active gel theory [17].
For small filament sti↵ness our component-based model
predicts universal scaling for ⇠/L for various persistence
lengths.

Spatial orientational correlation function
The sizes of the domains can be estimated through the
segment-based spatial orientational correlation functions,
⌦k(r) and ⌦?(r), which measure the average angle be-
tween filament segments found at a distance r from a
central segment parallel or perpendicular to the orienta-
tion of that central segment,

⌦k(r) =

*P
s,j

�(p̂i
q · r̂ijqs � 1)�(|rijqs|� r) arccos(p̂i

q · p̂j
s)

P
s,j

�(p̂i
q · r̂

ij
qs � 1)�(|rijqs|� r)

+

q,i,t

and

⌦?(r) =

*P
s,j

�(p̂i
q · r̂ijqs)�(|rijqs|� r) arccos(p̂i

q · p̂j
s)

P
s,j

�(p̂i
q · r̂

ij
qs)�(|rijqs|� r)

+

q,i,t

.

Here,
P

s,j is a short notation for the double sum
P

s

P
j ;

the delta functions select the distances and orientations.
The unit orientation vector of a segment is p̂i

q = (ri+1
q �

riq)/|ri+1
q � riq|, the separation between two segments i, j

on filaments q, s is r = |rijqs| = |(riq+ri+1
q )�(rjs+rj+1

s )|/2,
and r̂ijqs = rijqs/|rijqs| is the unit separation vector.

The functions ⌦k(r) and ⌦?(r) are zero for small dis-
tances and saturate to ⇡/2 at large distances, where
parallel and antiparallel orientations are equally prob-
able. Therefore, the displaced and normalised functions
b⌦(r) = 1� 2⌦(r)/⇡ decay rapidly as shown in fig. S10.
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fig. S10. Segment orientational correlation functions
for filaments with various persistence lengths.
(a) Longitudinal b⌦k(r), and (b) transversal b⌦?(r) for

(�, ñm) = (0.66, 0.89).

This decay allows the estimation of the domain sizes
parallel and perpendicular to the filament orientation.
The length lk and the width l? are defined as twice
the peak width at half maximum. The examples of
b⌦(r) displayed in fig. S10 show that the decay length
decreases when the persistence length decreases, i.e.,
domains become smaller. The transversal orientational
correlation function shows oscillations, indicating the
abrupt change of the orientation when the interface
between domains is crossed.

E↵ective persistence length

We study the e↵ect of activity and concentration on the
e↵ective filament sti↵ness or e↵ective persistence length
`⇤p. This e↵ective persistence length is calculated by an
exponential fit of the tangent correlation function (see

fig. S11a) in the motor-filament mixture at filament con-
centration � and motor concentration enm. The calcula-
tions show that for increasing motor concentrations the
exponential decay is faster and the e↵ective persistence
length smaller, see fig. S11b. In fig. S11b we show that
`⇤p follows a universal scaling for with the active force for
large enough activities. However, this universality breaks
down if the density is small, in particular for � < 0.29.
The square-root dependence of the e↵ective persistence
on the activity is weaker than the square dependence
found by Joshi al. [26] but consistent with the scaling
that we find for other length scales.
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Movie captions

Movie S1: Dynamics of polarity sorting and coars-
ening of polar bands from the initial disordered
nematic state.
The parameters are (�, ˜̀p, ñm) = (0.66, 5, 0.89). The
duration of the movie is t̃ ⇡ 2.7⌧0R (500 frames, sampling
every 200 time steps).

Movie S2: Steady state dynamics of polar domains
with repeated creation and annihilation of defect
pairs.
Here (�, ˜̀p, ñm) = (0.66, 3.4, 0.89). The duration of the
movie is t̃ ⇡ 13.5⌧0R (500 frames, sampling every 1000
time steps).

Movie S3: Dynamics of the elastic instability.
Formation and buckling of polar bands leads to the

emergence of the disordered phase. Here the parameters
are (�, L/�, ˜̀p, ñm) = (0.66, 40, 10, 1.0). The duration of
the movie is t̃ ⇡ 2⌧0R (800 frames, sampling every 500
time steps).

Movie S4: Defect dynamics.
Extensile motion of a ±1/2 defect pair. The -1/2 defect
(purple) is nearly immobile, the +1/2 defect (blue) moves.
Here the parameters are (�, ˜̀p, ñm) = (0.66, 5, 0.89).
The duration of the movie is t̃ ⇡ 2.2⌧0R. This movie is
clipped from a larger field of view (70 frames, sampling
every 2000 time steps).

Movie S5: Defect annihilation.
Annihilation of a +1/2 (blue) and -1/2 defect (purple). The
parameters are (�, ˜̀p, ñm) = (0.66, 5, 0.89). The duration
of the movie is t̃ ⇡ 2.2⌧0R. This movie is clipped from a
larger field of view (70 frames, sampling every 2000 time
steps).
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