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Supplementary Information

Supplementary Results

Using the Two-stage Dynamic Signal Detection (2DSD) model to model
the personal phase: To model the personal choice phase, we used the two-stage
dynamic signal detection (2DSD) model. The 2DSD model is an evidence accumu-
lation model that can account for choice and response time (RT) in the personal
choice and the associated confidence judgement. In so doing, it can identify cognitive
mechanisms potentially governing the interrelationships of these behavioral measures
(17). Like other evidence accumulation models, it assumes that individuals gather
evidence over time until the amount of evidence surpasses a threshold. The two key
assumptions of the 2DSD model are that evidence accumulation continues after the
decision is made and that reported confidence depends on the evidence accumulated
at the time of the confidence judgement. Thereby, the evidence state is mapped into
confidence judgements using response criteria that serve as thresholds indicating the
next higher confidence judgements (e.g., from 50 to 60, or 60 to 70). See Pleskac &
Busemeyer (2010) for a detailed description of the 2DSD model.

We fitted the model in the hierarchical Bayesian framework, implemented with
RStan in R (61, 62), with five parallel chains with 10,000 iterations each and a
thinning factor of 10. The first half of the iterations were discarded as burn-in.
Descriptions of the main parameters are given in Supplementary Table ??. For the
Wiener diffusion process, we included boundary separation α, predecisional drift rate
δpre, relative start point z, and nondecision time NDT , which was calculated relative
to the fastest response. Some trials were expected to be more difficult than others,



because the number of sharks could be closer to (i.e., 4 and 6) or further away from
(i.e., 3 and 7) the threshold number of sharks (5). We accounted for variations in
difficulty by varying the predecisional drift rate δpre, depending on trial difficulty:

δpre =

{
δdifficult, if 4 or 6 sharks present

δdifficult + ∆easy, if 3 or 7 sharks present
(9)

with ∆easy describing the additional effect of easy trials on the drift rate. For the
postchoice process, we fitted confidence criteria and the postdecisional drift rate
(δpost). The postdecisional drift rate is influenced by the predecisional drift rate,
with the parameter w controlling its strength, and δchoice describing the influence of
the choice on the subsequent drift:

δpost =

{
w × δpre + δchoice, if correct

w × δpre − δchoice, if incorrect
(10)

The evidence distribution at the time point when confidence is reported Lconf is a
combination of the evidence accumulated at the time point of choice and the evidence
accumulated between choice and confidence judgement. It is normally distributed
with a mean of

E[Lconf ] =

{
α + δpost × IJT, if correct

0 + δpost × IJT, if incorrect
(11)

and a variance of
var[Lconf ] = σ2IJT (12)

with IJT being the interjudgement time (i.e., the time between choice and confidence
reporting).

Each decision maker has confidence criteria cj to map the evidence state Lc into
six possible confidence judgements confj with j = 0, 1, 2, ...5, corresponding to the
confidence levels 50 to 100. The probability of reporting confj is given by the normal
cumulative distribution ∼ N (E[Lc], var[Lc]) with:

P (cj < Lc < cj+1) (13)

where c0 is equal to −∞ and c6 to ∞. The five remaining confidence criteria are
fitted by the model. We assume the locations of the confidence criteria for correct
and incorrect choices to be symmetrical. Hence, we set the locations relative to the
choice thresholds with alpha+ cj and 0− cj for correct and incorrect choices, respec-
tively. For the fitting process, we excluded all choices with RTs below 0.1 sec. To
compare the predictions of the model with the empirical data, we generated choices,
RTs, and confidence judgements using the participant’s mean posterior parameter



estimate. The confidence judgements were generated by sampling from the evidence
distribution at the time point of the judgement and mapping this evidence state to
a confidence judgement. We thus obtained confidence judgements given the individ-
ual’s choice, RT, and interjudgement time. To account for stochasticity generated by
the sampling process, we sampled 100 confidence judgements, choices, and RTs per
individual and trial.

2DSD model results: Participants drifted towards the correct choice threshold
(δdifficult = 0.37, CI = [0.33, 0.41]). Trials with three or seven sharks were easier than
trials with four or six sharks, as indicated by a stronger drift towards the correct op-
tion in the former (∆easy = 0.05, CI = [+0.00, 0.10]). Varying drift rates depending
on difficulty were not included in the social DDM analysis, as the effect was compar-
atively small. After making a choice, participants continued accumulating evidence
and, on average, kept gathering correct evidence (w = 0.72, CI = [0.62, 0.83]). Hence,
participants who made an incorrect decision gathered more evidence over time con-
tradicting their initial choice (resulting in lower confidence), whereas the evidence of
those who made a correct choice was strengthened (resulting in higher confidences).
This process explains the increasing difference in confidence ratings between correct
and incorrect choices as interjudgement time increases (Supplementary Fig. ??A).
Additionally, there was a choice effect on the postdecision drift, whereby participants
accumulated evidence in favour of their already chosen option (δchoice = 1.64, CI =
[1.47, 1.80]). As a result, longer interjudgement times are predicted to lead to higher
confidence judgements (Supplementary Fig. ??B). Figure ??C shows that the 2DSD
recreates the well-established relationship between confidence and accuracy, which is
partly determined by the postdecisional processing evident in Figures ??A and B. In
both the 2DSD and the social DDM analysis, we thus found that confidence is linked
to the evidence state and that participants drifted in the direction of their chosen
option (i.e., reinforced their ‘belief’ in their original choice). Figure ??D shows RT
distributions for the personal choice. Overall, the empirical data (solid lines) cor-
respond closely with the predictions of the 2DSD model (dashed lines), indicating
that the personal phase can be described by a drift diffusion process. One distribu-
tion characteristic the model cannot recover is the higher average RTs for incorrect
choices. This is a well-known property of the drift–diffusion model, and can be ad-
dressed by adding trial-by-trial variability to the drift rates (19). For simplicity, we
have not included trial-by-trial variability.



Supplementary Figures

Figure S1: Improvement during the social phase depended on the quality of
social information. Participants’ choices were increasingly likely to improve/worsen
as the size of the majority for the correct/incorrect option increased. Dots represent
the mean; error bars represent twice the standard error. The dashed line shows the
prediction of the social DDM.



Figure S2: Distributions of key behavioural measures. (A) The proportion
of reported confidence scores for correct and incorrect choices. The higher the con-
fidence score, the larger the proportion of correct choices, resulting in a positive
confidence–accuracy relationship (see also Supplementary Fig. ??C). (B) The pro-
portion of choices made in the presence of different majority sizes. In the social
phase, most choices (≈ 60%) were made in the absence of a majority, and partici-
pants who experienced a majority were more likely to observe a confirming majority
(i.e., negative values) than an opposing majority. Participants facing an opposing
majority were more likely to change their choice the larger the size of this oppos-
ing majority. (C) Observed RT distributions during the social phase as a function of
reported confidence. Participants reporting the highest level of confidence overwhelm-
ingly responded within 4 seconds, whereas the distribution of participants reporting
the lowest confidence level peaked after 4 seconds. (D) Observed RT distributions
during the social phase for correct and incorrect choices. Given that unconfident
participants are more likely to be wrong and waited longer, it follows that individuals
who were wrong, on average, wait longer to respond. (E, F) RT distributions as
predicted by the social DDM. The model recovers not only the relationship of RT
with confidence and accuracy, but also the shape of the RT distributions. The RT
distributions are multimodal because social information was first updated after 3 sec-
onds and then every 2 seconds. Majority sizes often increased with each updating
event resulting in an increasing likelihood of a response by a increase in the drift rate.
(C–F) Dashed vertical lines represent the mean RTs.
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Figure S3: Model recovery. The x-axis shows the actual (input) parameters; the
y-axis shows the recovered parameters. The figure shows the results of a parameter
recovery analysis conducted to ensure that the parameters of the social DDM are in-
terpretable and capture distinct cognitive mechanisms. We repeatedly generated data
with random input parameters and recovered them with the same hierarchical social
DDM used to analyse the empirical data. The input parameters were sampled with a
quasirandom number generator (using the sobol sequence), ensuring an even distribu-
tion across a large multidimensional parameter space. Using these input parameters,
we generated social choices by computing probability density functions while taking
into account the personal choice, reported confidence, and the social information ob-
served by the participant at a given trial. The generated data thus have the same
hierarchical structure as the empirical data, with 141 participants and varying group
size. Again, we report the mean of the posterior distributions and the 95% CI of the
higher order group-level estimate for each group size. To measure the relationship of
input and recovered parameters, we calculated Spearman’s correlation coefficient r for
all parameters (except nondecision time, which is relative to a participant’s fastest
response and thus meaningless on a group level). For all parameters, there was a
strong positive correlation between the generated and the recovered parameters. The
estimates provided by the social DDM thus describe separate identifiable features and
are interpretable in their magnitude.



Figure S4: Results of the 2DSD model. (A) The longer the time between the
personal choice and the confidence judgement (interjudgement time), the larger the
difference in confidence between participants whose choices were correct vs. incor-
rect. Dots represent the average confidence judgements for correct choices minus
the average confidence judgements for incorrect choices for different interjudgement
times. (B) The longer the interjudgement time, the higher the reported confidence
judgements. Dots represent the mean; error bars represent twice the standard error.
(A–B) For visualization purposes, interjudgement times are binned by rounding to
the closest integer. (C) Participants reporting higher confidence were more likely to
be correct. Dots and error bars represent mean and 95% CI of the posterior distribu-
tion. (D) The solid lines represent the observed RT distribution of the personal choice
for correct (blue) and incorrect (red) choices. (A–D) The dashed lines represent the
predictions of the 2DSD model.



Supplementary Tables

Table S1: Bayesian linear regression results

Response
Predictor Estimate Est.Error l−95% CI u−95% CI Eff.Sample Rhat

Accuracy
Intercept (personal choice) 1.1 0.07 0.97 1.23 9657.34 1
Social choice 0.3 0.05 0.2 0.39 32162.95 1

Accuracy
Intercept -1.58 0.17 -1.91 -1.25 20461.1 1
Confidence 3.82 0.24 3.35 4.28 20270.94 1

Accuracy
Intercept (personal choice) 1.65 0.08 1.48 1.81 7563.13 1
RT -0.16 0.01 -0.18 -0.14 15170.53 1
RT: social choice 0.11 0.01 0.09 0.13 18797 1

Likelihood to change
Intercept -3.6 0.18 -3.96 -3.26 7735.1 1
Size of opposing majority 0.62 0.03 0.57 0.67 12889.8 1

RT
Intercept 6.96 0.23 6.49 7.41 4644.56 1
Confidence -4.86 0.18 -5.22 -4.5 9740.24 1

Improvement
Intercept 1.17 0.2 0.78 1.56 22984.38 1
Confidence -4.27 0.31 -4.88 -3.68 21332.94 1

Improvement
Intercept (earlier; more accurate) 0.09 0.01 0.08 0.11 3830.29 1
Earlier; less accurate -0.09 0 -0.09 -0.08 19689.95 1
Later; more accurate -0.04 0.01 -0.05 -0.03 16925.55 1
Later; less accurate -0.04 0.01 -0.06 -0.02 17547.86 1



Table S2: Deviance information criterions (DIC) for different versions of the social
DDM. The version with the lowerst DIC is indicated in bold.

No further drift Drift towards initial choice Drift towards correct
Neither 79493 76026 77854

Varying start point 76364 74183 74851
Social drift 78058 74275 77286

Both 74200 71865 73835

Table S3: Mean paramter estimates and 95% credible intervals of the social DDM for
different group sizes.

Model feature (parameter) Small Medium Large
NDT (τ) 0.4 [0.23, 0.56] 0.33 [0.25, 0.41] 0.31 [0.26, 0.37]

Relative start point (a) 4.2 [3.11, 5.35] 3.43 [2.81, 4.07] 3.9 [3.46, 4.37]
Relative start point (b) 0.5 [0.45, 0.54] 0.48 [0.45, 0.51] 0.5 [0.48, 0.52]

Personal drift (δp) 0.65 [0.45, 0.86] 0.62 [0.5, 0.75] 0.53 [0.47, 0.59]
Social drift (s) 0.51 [0.23, 0.82] 0.31 [0.24, 0.38] 0.36 [0.3, 0.41]
Social drift (q) 1.75 [1.16, 2.36] 0.93 [0.81, 1.05] 0.66 [0.6, 0.72]

Choice threshold (θ) 3.22 [2.58, 3.9] 3.43 [3.09, 3.77] 3.3 [3.04, 3.56]

Table S4: Differences between parameter estimates for different group sizes. Shown
are the mean and the 95% credible intervals.

Model feature (parameter) Small – Medium Small – Large Medium – Large
NDT (τ) 0.06 [-0.12, 0.25] 0.08 [-0.09, 0.26] 0.02 [-0.08, 0.11]

Relative start point (a) 0.77 [-0.48, 2.08] 0.3 [-0.88, 1.51] -0.47 [-1.25, 0.31]
Relative start point (b) 0.01 [-0.04, 0.07] -0.01 [-0.06, 0.04] -0.02 [-0.06, 0.02]

Personal drift (δp) 0.03 [-0.2, 0.27] 0.12 [-0.08, 0.33] 0.09 [-0.04, 0.23]
Social drift (s) 0.2 [-0.09, 0.51] 0.15 [-0.13, 0.46] -0.05 [-0.13, 0.04]
Social drift (q) 0.82 [0.22, 1.44] 1.1 [0.5, 1.71] 0.27 [0.14, 0.41]

Choice threshold (θ) -0.21 [-0.93, 0.54] -0.08 [-0.77, 0.65] 0.13 [-0.3, 0.56]



Table S5: The number of groups per group size.

Group
size

Number
of groups

Number
of participants

Classification

3 5 15 Small
7 3 21 Medium
8 1 8 Medium
9 1 9 Medium
10 1 10 Medium
15 3 45 Large
16 1 16 Large
17 1 17 Large
Total: 16 141



Table S6: Description of the parameters of the 2DSD model.

Model
feature

Parameter Description

Nondecision
time

NDT

A parameter between 0 and 1 ac-
counting for nondecision time (e.g.,
motor response time), parameter-
ized as the time relative to an indi-
vidual’s fastest response.

Relative start
point

z
Describes the initial evidence state
before the evidence sampling pro-
cess begins.

Predecisional
drift rate δpre =

{
δdifficult, if difficult

δdifficult + ∆easy, if easy

The baseline predecisional drift
rate for difficult (i.e., 4 or 6 sharks)
and easy (i.e., 3 or 7 sharks) trials.

Boundary
separation

α

The boundary separation deter-
mines how much evidence an indi-
vidual has to accumulate to make
a decision.

Carryover
effect

w

A parameter controlling how
strongly the predecisional drift
rate carries over to the postdeci-
sional drift rate.

Self-
confirmation

bias
δchoice

A parameter describing the influ-
ence of the choice (i.e., being cor-
rect or incorrect) on the subsequent
drift rate.

Confidence
criteria

cj

Thresholds that divide the evi-
dence space into confidence judge-
ments.



Table S7: 2DSD parameter results

Parameter Estimate l−95% CI u−95% CI Eff.Sample Rhat
Nondecision time 0.63 0.56 0.74 2362.88 1
Relative start point 0.53 0.52 0.54 2085.7 1
Predecisional drift rate (intercept, difficult) 0.37 0.33 0.41 1991.81 1
Predecisional drift rate (effect of easy) 0.05 0 0.1 2256.05 1
Boundary separation 2.5 2.45 2.56 2268.78 1
Carryover effect 0.72 0.62 0.83 2354.22 1
Self-confirmation bias 1.64 1.47 1.8 1962.74 1
Confidence criteria 5 3.27 2.46 4.09 1875.05 1
Confidence criteria 4 4.99 4.54 5.44 2444.76 1
Confidence criteria 3 3.83 3.5 4.17 2160.56 1
Confidence criteria 2 3.04 2.74 3.35 2499.86 1
Confidence criteria 1 2.4 2.11 2.72 2605.37 1
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