

advances.sciencemag.org/cgi/content/full/6/29/eabc0708/DC1

# Supplementary Materials for

# Human endogenous retroviral protein triggers deficit in glutamate synapse maturation and behaviors associated with psychosis

E. M. Johansson\*, D. Bouchet, R. Tamouza, P. Ellul, AS. Morr, E. Avignone, R. Germi, M. Leboyer, H. Perron, L. Groc\*

\*Corresponding author. Email: laurent.groc@u-bordeaux.fr (L.G.); emily.johansson@u-bordeaux.fr (E.M.J.)

Published 17 July 2020, *Sci. Adv.* **6**, eabc0708 (2020) DOI: 10.1126/sciadv.abc0708

### This PDF file includes:

Supplementary Materials and Methods Figs. S1 to S8 Tables S1 to S3

# **Supplementary Materials**

#### **Supplementary Materials and Methods**

Cell cultures and transfection. Animal procedures were conducted in accordance with the European Community guidelines (Directive 2010/63/EU) regulating animal research, and were approved by the local Bordeaux Ethics Committee (APAFIS#3420-2015112610591204). Mixed cultures of hippocampal neurons and glia cells were prepared from E18 Sprague-Dawley rats. In brief, cells were plated at a density of 300-350 x 100 cells per dish on poly-lysine coated coverslips and were maintained in Gibco neurobasal medium (Thermo Fisher Scientific, Massachusetts, USA) containing 3% horse serum for approximately 4 days in vitro (div) at which the medium were changed to a serum-free neurobasal medium. Banker type "glia free" hippocampal cultures were prepared in two steps. Briefly, first glia feeder cultures were prepared in poly-lysine coated dishes from hippocampus then, after two weeks, hippocampal neurons (from the same type of preparation as for the glia cells) were cultured on poly-lysine coated coverslips which were suspended above the glia layer. Cells were kept at 37°C in 5% CO<sub>2</sub> for 22 div at maximum. Human embryonic kidney cells (HEK) 293 were plated on glass coverslips, and Cos7 cells (fibroblast derived from monkey kidney tissue) directly on the plastic in 6 well plates, in Dulbecco's modified Eagle's medium (Thermo Fisher Scientific) with 10% fetal calf serum and used one day later.

Cells were transfected using either Effectene (Qiagen, Hilden, Germany) according to the manufacturer's recommendations or by phosphate calcium transfection. The plasmids used can be found in the Table S3. Verification of the phCMV-MSRV Env (clone pV14, AF 331500) plasmid expression can be observed in figure S3 and that of shTLR-4 in figure S2B. Transfection density (Fig. 3) was estimated by counting transfected cells in relation to DAPI stained cells in 5 randomized fields covering approximately 10% of the coverslip.

**Electrophysiology.** Isoflurane anesthetized rats at postnatal day (P)14 were sacrificed by decapitation, brains were rapidly removed and dissected. 350  $\mu$ m thick sagittal slices were cut with a vibratome (Leica, VT 1000S) in an ice-cold sucrose based artificial cerebral spinal fluid (aCSF) containing in mM: 2 KCl, 26 NaHCO<sub>3</sub>, 1.25 NaH<sub>2</sub>PO<sub>4</sub>, 220 Sucrose, 10 D-Glucose, 0.2 CaCl<sub>2</sub> and 6 MgCl<sub>2</sub>. Slices were then incubated in standard aCSF solution (124 NaCl, 3 KCl, 26

NaHCO<sub>3</sub>, 1.25 NaH<sub>2</sub>PO<sub>4</sub>, 10 D-Glucose, 2 CaCl<sub>2</sub> and 1 MgCl<sub>2</sub> 295-305 mOsm) for 45–60 min at 33°C, and subsequently maintained at room temperature throughout the duration of the experiment. All solutions were constantly bubbled with carbogene (95%  $O_2$ , 5%  $CO_2$ ) to maintain a neutral pH.

Electrophysiological recording. For electrophysiological recordings, individual slices were transferred to a heated submerged recording chamber (30.5  $\pm$  0.5 °C) perfused with aCSF at 3 mL/min. Electrodes, of 4.5–5.5 M $\Omega$  resistance, were prepared from borosilicate pipettes (GC150T-10, Harvard Apparatus, San Diego, CA) with a vertical micropipette puller (PC-10, Narishige, London, UK). Intracellular solution contained in mM: 120 CsMeSO<sub>4</sub>, 4 NaCl, 2 MgCl<sub>2</sub>, 10 Hepes, 0.2 EGTA, 4 Na<sub>2</sub>ATP, 0.3 Na<sub>3</sub>GTP and 5 Phosphocreatine. PH was adjusted to 7.3-7.4 with CsOH. Whole-cell patch-clamp recordings of hippocampal CA1 pyramidal cells were performed using infrared differential interference contrast microscopy (Nikon, Tokyo, Japan) with a 60x water-immersion objective. All recordings were performed using an EPC10 USB amplifier (HEKA Elektronik, Lambrecht/Pfalz, Germany) sampled at 10 kHz. No correction of junction potential was applied. CA1 pyramidal neurons were recognized by their localization within the pyramidal layer and their firing properties. NMDA responses were recorded at a membrane potential of +40mV in the presence of 2,3-Dioxo-6-nitro-1,2,3,4-tetrahydrobenzoquinoxaline-7-sulfonamide (NBOX 10 µM, Tocris, Bristol, UK) and bicuculline (20µM, Tocris). Drugs were applied trough the perfusion system. Glutamatergic responses were evoked in stratum radiatum (SR) through monophasic electrical stimulation of the SR with a tungsten bipolar electrode (TST33A05KT Microelectrode Tungsten, World Precision Instruments, Sarasota, USA) controlled by an ISO-Flex stimulator (AMPI, Jerusalem, Israel). Single stimuli were delivered at 0.05 Hz and the responses were observed in pyramidal neurons as evoked EPSCs in voltageclamp. Under these conditions and after a stable eEPSC recording had been maintained for 10 min, recombinant Env (1µg/ml) was added to the preparation, and responses recorded for 10 minutes prior to wash. Vehicle or boiled protein solution was used as control. The amplitudes and kinetics of eEPSCs were calculated from the baseline current preceding each individual stimulation artefact using Clampfit 10.1 (Molecular Devices, Sunnyvale, USA). For each cell, the median of 15 events amplitude peak before and 5 minutes after drug application was considered.

**Immunocytochemistry.** In general, live surface staining (10min at  $4^{\circ}$ C) was followed by 15 min fixation in 4% paraformaldehyde (PFA), quenching in 50mM NH<sub>4</sub>Cl for 10min, blocking for 1h and incubation with secondary Ab's coupled to Alexa fluorophores for 1h in 1% bovine serum

albumin (BSA) (Sigma-Aldrich, Missouri, USA) at room temperature (R.T.) For staining of fixed cells and tissues, incubation overnight with primary antibodies (see Table S3) at 4°C was done after an initial block and permeabilization step in 1% BSA (Sigma-Aldrich) and 0.1% Triton X-100 (Sigma-Aldrich) in phosphate-buffered saline (PBS) for 1h. Surface or intracellular staining of Env in HEK-cells transfected with cytosolic enhanced green fluorescent protein (EGFP) and Env was obtained after 48h with an anti-Env Ab (GN ENV 01, GeNeuro) (Fig. S3). For the microglia activation study, cells were fixed and stained for Iba1 24h after LPS (1µg/ml, serotype O26:B6, Sigma-Aldrich), Env (1µg/ml, PX'Therapeutics) or saline (Control) application. Before human serum incubation, neurons (10 div) were transfected with either the  $\alpha$ -amino-3-hydroxy-5methyl-4-isoxazolepropionic acid receptor (AMPA)-A1 containing; the N-Methyl-D-Aspartate receptors (NMDA)-N1 containing; the gamma-Aminobutyric acid (GABA)- $\gamma^2$  containing subunits fused to the Super Ecliptic pHluorin (SEP) or the dopamine (D)-1 containing subunit fused to Cyan Fluorescent Protein (CFP). Serum samples from Env negative and Env positive subjects (5 out of 6 and patient 1-4 and 6.7 respectively (see Table S1), due to low amount of available biological material) were slowly thawed and, following incubation with serum samples at 20% for 15min at 37°C, live immunostaining of surface receptors were conducted with an anti-GFP antibody (see Table S3) for 10 min at 4°C (heat inactivation of complement factors in serum samples was considered but not applied due to the known heat sensitivity of human Env-protein). Cells were mounted in Mowiol (Calbiochem, Merck) or Vectashield® + DAPI (Vector Laboratories, Burlingame, CA).

Images were randomly selected for analysis and either collected on a video confocal spinningdisk system (Leica DMI6000B, Wetzlar, Germany) with a CoolSNAP HQ2 camera (Photometrics, Tucson, USA) or, on a Nanozoomer (Hamamatsu, Japan). For surface cluster analysis, dendritic branches were chosen manually (ROIs) in a blinded manner and cluster areas and numbers were obtained using a manual threshold approach based on integrated fluorescence levels in ImageJ (NIH). Dendritic density of glutamatergic synapses was calculated as number of endogenous PSD-95 positive or exogenous Homer 1c clusters/dendritic length. Microglia perimeter ( $\mu$ m) and area ( $\mu$ m<sup>2</sup>) was obtained from all microglia present on entire coverslips and a transformation index (TI) was calculated: (perimeter of cell) 2 / 4p*i* (cell area).

**ELISA multiplex.** Cytokine levels were examined using a Milliplex Map Kit (RECYTMAG-65K, Millipore, Burlington, USA). Culture medium, from 3 different cultures, collected 5 min after vehicle (Control) or Env ( $10\mu g/ml$ ) application were processed according to the manufacturer's recommendations and mean fluorescent intensities were obtained using a Luminex xPONENT software on a Bioplex<sup>®</sup> MAGPIX reader (BioRad, Hercules, USA). Data was normalized to control within each experiment.

**Tissue Preparation.** Brains were removed at P7 or 2-14 days after PPI and either the whole brain was rapidly frozen in isopentane (Sigma-Aldrich) and placed in liquid nitrogen or, it was transferred to ice cold artificial cerebral fluid for dissection of the hippocampal areas and then frozen in liquid nitrogen. The frozen hippocampal tissue was later processed for biochemistry as described below. For immunohistochemistry, 20 µm thick coronal tissue sections from the whole brains were cut on a microtome-cryostat (Leica CM3050S), thaw-mounted onto superfrost ultra plus (Thermo Scientific) slides, and stored at  $-20^{\circ}$ C until further processing. A few animals at age P7: Control (n = 5) and Env (n = 5), and at age P59-70: Control (n = 5) Env (n = 5) were anesthetized with pentobarbital (50 mg/kg) and transcardially perfused with 4% PFA. Brains were removed and postfixed overnight at 4°C and 50-µm-thick slices were prepared with a VT1200S Leica vibratome. Slices were washed three times with PBS and left in 0.03% acid-PBS at 4°C for later use.

Immunohistochemistry/TUNEL Staining. Perfused tissue was blocked and permeabilized in 4% BSA (Sigma-Aldrich) and 0.2% Triton X-100 (Sigma-Aldrich) for 2h at R.T. After rinsing, samples were incubated with primary Ab's (see Table S3) in 2% BSA (Sigma-Aldrich) and 0.2% Triton X-100 (Sigma-Aldrich) overnight at 4°C. Secondary Ab's coupled to Alexa fluorophores were incubated for 2h at R.T. in the same solution as the primary Ab's. Sections were mounted using Mowiol (Calbiochem) or Vectashield<sup>®</sup> + DAPI (Vector Laboratories, Burlingame, CA). DNA fragmentation was examined histologically using the in situ Apoptosis Detection System Fluorescein (TUNEL, Promega, Madison, USA). Briefly, frozen tissue sections from P7 electroporated animals were stained according to the manufacturer's recommendations and mounted with Mowiol (Calbiochem). All images were collected on a video confocal spinningdisk system (Leica DMI6000B, 63X) with a CoolSNAP HQ2 camera (Photometrics) or on a Nanozoomer (Hamamatsu). The measure of microglia density was blindly performed and microglia density was measured in the stratum radiatum/lacunoso moleculare (SR) of CA1 hippocampal region. Microglia density was determined by dividing the manually counted cells by the analyzed area expressed in mm<sup>2</sup>. Only Iba1 cells with identifiable nuclear staining were considered and put in relation to all DAPI positive stained nucleuses (% Iba1 positive cells).

Western blot analyses. Dissected hippocampus from control and Env electroporated rats (P7 and ~P65-70) were processed by subcellular fractionation, including multiple centrifugations and a final ultra-centrifugation step (Fig. 5A), to finally solely collect the synaptic enriched fraction (synaptosomes: synapses, synaptic plasma membranes and synaptic vesicles). Protease and phosphates inhibitors (Thermo Ficher Scientific) were added to the isotonic sucrose for homogenization and fractionation. The protein concentration of each sample was determined with Pierce BCA Protein Assay Kit (Thermo Ficher Scientific) and synaptosomes from 9 animals per condition were examined on two separate experiments. For GFP detection whole hippocampus homogenates were used.

We used a Wes<sup>TM</sup> protein simple apparatus (Protein simple, bio-techne, San Jose, USA) and WES-total protein pack, plus WES-standard pack (12-230 kDa) including anti rabbit secondary or anti mouse antibody. GluN2A, GluN2B or GluA2 detection in relation to PSD-95 was measured (Fig. S7A-D). 0.1µg of each sample was loaded and primary antibodies, rabbit anti-GluN2(A and B) (Agrobio, specific custom-made, Fig. S7A,B) and anti-PSD-95 (Cell Signaling, Danvers, USA), see Table S3. Only values within the range of two standard deviations were included for further analysis. GFP was detected by conventional western blotting. Briefly, 20µg of total protein was loaded in each lane separated with 4-20% precast SDS-polyacrylamide gel electrophoresis and transferred to a nitrocellulose membrane (Bio-Rad, Hercules, USA). The membrane was blocked in 5% non-fat Milk Tris-buffered saline (TBS)/0.1% Tween 20 (TBST) at R.T. for 1 h. Primary antibody mouse anti-GFP (Roche, Basel, Switzerland) were diluted in 0.5 % Milk in TBST for protein immunoblot analysis and incubated O.N. at 4°C under agitation. Incubation with horse radish peroxidase (HRP)-conjugated anti-mouse IgG (Jackson Immunoresearch Laboratories, West Grove, USA) was performed for 2 h at R.T. Specific protein bands were revealed with Clarity<sup>TM</sup> Western ECL Substrate (Bio-Rad) and the membranes were scanned using a Versadoc apparatus (Bio-Rad).

**Immunoprecipitation.** Dynabeads Protein A (Invitrogen, Carlsbad, California, USA) was used following the manufacturer's recommendations. In brief, were incubated for 30min at 4°C under rotation with a rabbit anti-IL-1R antibody (Santa Cruz, Dallas, Texas, USA). Synaptosomes (see above, 50 µg) from P7 and P65 animals was then added and rotated overnight at 4°C. Supernatant was removed and saved, and immunoprecipitates were washed three times in lysis buffer. SDS– PAGE buffer was added to the washed immunoprecipitates, which then were resolved on 7%

precast SDS-polyacrylamide gels (Bio-Rad). Efficiency of the immunoprecipitation was determined by examining the supernatant and wash fractions obtained from the procedure on images obtained from a Versadoc apparatus (Bio-Rad) (see western blots section). Band density values for coimmunoprecipitated GluN2A and GluN2B were normalized to immunoprecipitated IL-1R.

Study Participants. Written informed consent was obtained from all participating subjects and the institutional ethical committee approved the research protocol. Patients with bipolar disorder or schizophrenia meeting the DSM-IV criteria (APA, 1994) were included for an acute episode in the department of psychiatry of Henri Mondor hospital in Creteil, France, under the framework of an ongoing research program (I-GIVE, 13-SAMA-0004-01). Patients were interviewed with the French version of the "Diagnostic Interview for Genetic Studies" (DIGS) for the assessment of lifetime psychiatric disorders as well as for demographic characteristics. For this study, 7 patients (5 with bipolar disorder and 2 with schizophrenia) with high plasma levels of envelope protein (Env), were selected. Manic and depressive symptoms were assessed using, respectively, the Young Mania Rating Scale (YMRS) and the Montgomery-Åsberg Depression Rating Scale (MADRS) for bipolar disorder. Schizophrenic symptomatology was assessed using the Positive And Negative Syndrome Scale (PANSS), see individual patient information in Table S1. Env negative subjects (n = 6), belonging to the healthy control sample, were enrolled through a clinical investigation center (Centre for Biological Resources, Mondor Hospital, Créteil, France). Only controls without any personal or family history of psychotic disorders, affective disorders, addictive or suicidal behavior, or autoimmune diseases were included. Blood samples were collected from patient and control groups within one week of the clinical assessment. Patients and controls were submitted to serological screening and were negative for HIV-1/-2, Hepatitis A, B and C and had no known recent inflammatory, autoimmune disorder, infectious event or a neurological disease at inclusion. Individual participant blood sample data can be found in Table S1 which revealed a significant increase of IL-1β and B-cell type M2 (BM2) in Env positive patients compared to controls.

**HERV-W Env quantification by sandwich ELISA**. Microtiter plates were coated with two MSRV-Env monoclonal antibodies from GeNeuro ( $2.5\mu$ g/ml GN\_ENV\_04/well and  $2.5\mu$ g/ml GN\_ENV\_16/well) or without antibody (uncoated well) overnight at 4°C. The plates were then washed in PBS-0.5% Tween 20 and blocked with 2% BSA solution for 1h at 37°C before sample

incubation for 1 hour at 37°C. The plates were then washed 4 times and the detection antibody, GN\_ENV\_01 (GeNeuro) conjugated to HRP was added for 1 hour at 37 °C. After 4 washes, the HRP substrate (3,3',5,5'-Tetramethylbenzidine, Sigma-Aldrich) was added and plates were incubated for 30 min in the dark at R.T.. The colorimetric reaction was stopped with 1N sulfuric acid and the optical density read at 450 nm on a Plate Reader (BEP III, Siemens Healthineers, Erlangen, Germany). Protein results were expressed as HERV-W Env optical density (O.D.) at 450 nm. The unspecific adsorption of each sample, corresponding to the incubation of sample in uncoated well, was subtracted to O.D. of the respective coated well. The positive threshold was determined as the mean of O.D. of all negative samples plus 2 times its standard deviation (mean + 2SD). Quantification was calculated based on a standard curve using the *E. coli* recombinant monomer and therefore does not represent the real quantity of native antigen, it is thus an approximation of the concentration (Table S1).

# **Supplementary Figures and Tables**



Fig. S1. The HERV-Env increase of synaptic GluN2B-NMDAR surface diffusion is maintained over time and independent from neuronal activity. (A) Extasynaptic GluN2Aand GluN2B-NMDAR surface diffusion 5 min after vehicle (Cont.) or Env (1µg/ml) exposure. GluN2A: Cont. (n = 300/3 trajectories/neurons), Env (n = 445/4) and GluN2B: Cont. (n = 819/10), Env (n = 727/9). \*P = 0.032, Mann-Whitney tests. (B) Synaptic GluN2B-NMDAR diffusion 5 min after Env application at different doses. Note that Env neutralizing Ab does not interfere with basal GluN2B-NMDAR diffusion. Cont. (n = 164/8 trajectories/neurons), Cont.+ Neutral. Ab (n = 261/5), Env: 0.5µg/ml (n = 90/7), 1µg/ml (n = 204/6), 10µg/ml (n = 140/7). \*\*P = 0.002 from Kruskal-Wallis test followed by Dunn's multiple comparisons. (C) Median diffusion coefficient for synaptic GluN2B-NMDAR trajectories from individual neurons (circles). Paired data is shown for pre-exposure and 5min after Cont. (n = 16/12 neurons/cultures), or Env (1µg/ml, n = 17/13) addition. \*P = 0.038, paired t-tests. (D) Mean square displacements (MSDs)

for data in C and main Fig. 2E and 2F. (E) Experimental setup, prolonged Env exposure. (F) Extrasynaptic surface diffusion of GluN2A- and GluN2B-NMDAR after 24h Env exposure. GluN2A: Cont. (n = 2214/28), Env (n = 1670/31), GluN2B: Cont. (n = 3882/65), Env (n = 3872/51). \*\*P = 0,003, Mann-Whitney test. (G) Specific increase of synaptic GluN2B containing NMDAR-receptors surface mobility after prolonged Env exposure. GluN2A: Cont. (n = 382/16 trajectories/neurons), Env: 0.5µg/ml (n = 147/6), 1.0µg/ml (n = 277/16). GluN2B: Cont. (n = 612/22), Env: 0.5µg/ml (n = 485/19), Env: 1.0µg/ml (n = 600/18), Env + Neutralizing Ab (n = 204/14). \*\*\*P < 0,0001, Kruskal-Wallis test followed by Dunn's multiple comparisons. Data are median interquartile range (IQR). (H) Mean square displacements (MSDs) for GluN2B data in (G). (I) Experimental setup. (J) Stable GluN2B dynamics after heat inactivated Cont. (n = 563/7) or Env (n = 443/5). (*right*) MSDs for synaptic data. (K) Co-application of tetradotoxin (TTX, 1µM) and Env do not alter the Env effect, Cont. + TTX (n = 181/3) and Env + TTX (n = 182/4). \*\*\*P = 0.0008, Mann-Whitney test. Data shown are diffusion coefficients normalized to precondition for each individual neuron, mean ± SEM, if no other mentioned.



Fig. S2. LPS triggers increased synaptic GluN2B surface dynamics and distinct microglial activation compared to Env. Specificity of TLR-4 antibody; (A) Representative images with TLR-4 Ab staining (white) on GFP-transfected cells co-stained with cell type marker (blue; neurons (MAP-2), astrocytes (GFAP), microglia (Iba1). Scale bar =  $10\mu$ m. (B) % of cell area occupied by TLR-4 staining. Control (GFP) transfected cells (n = 10 cells), shRNA (GFP + TLR-4 shRNA) transfected cells (n = 13 cells). (C) The neutralizing of TLR-4 with TLR-4 Ab does not interfere with GluN2B surface diffusion. Cont. (n = 168/4, trajectories/neurons), Cont.+TLR-4 Ab (n = 163/5). LPS stimulation; (D) Experimental setup. Increase in synaptic GluN2B-NMDAR diffusion in mixed, not glia free, hippocampal networks 5 min after lipopolysaccharide (LPS) stimulation. Neuron-glia: Cont. (Saline, n = 340/6, trajectories/neurons), LPS:  $0.01\mu$ g/ml (n = 281/5),  $0.1\mu$ g/ml (n = 329/5),  $1\mu$ g/ml (n = 446/6). Glia free: Cont. (n = 547/4), LPS ( $1\mu$ g/ml, n = 312/4). Data are normalized to pre-exposure for each individual neuron, mean  $\pm$  SEM. \*\*\**P* = 0,0004, Kruskal-Wallis test followed by Dunn's multiple comparisons. (E) Representative images of Iba1 positive microglia cells 24h after Env ( $1\mu$ g/ml) or LPS ( $1\mu$ g/ml) exposure. Scale bar =  $10\mu$ m. (F) Quantification of microglial cell areas ( $\mu$ m<sup>2</sup>) 24h after: Cont. (Saline, n = 1763 cells),

Env (n = 1420) and LPS (n = 1279). \*\*\*P < 0,0001 from Kruskal-Wallis test followed by Dunn's multiple comparisons. (G) *(top)* Graphic illustration of microglia morphology in relation to transformation index (TI). *(below)* Cumulative fraction of TI, with values < 3 defined as amoeboid cells. Note the change in percentage of amoeboid cells after LPS stimuli (56%) compared to Cont. (70%) and Env (71%).



Fig. S3. Env expression in different Env-gene transfected cells types. Surface Env expression after live immunostaining or intracellular expression following fixation and permeabilization in HEK 293, glia cells and neurons. Scale bars =  $10\mu m$ .



Fig. S4. The HERV-Env decrease dopamine-D1 surface diffusion. (A) Experimental setup. (B) Dopamine-D1 surface diffusion after 24h Cont. or Env exposure. Cont. (n = 14211/24 trajectories/neurons), Env (n = 9129/24). \*\*\*P = < 0.0001, Mann-Whitney test. Scale bar =  $1\mu m$ .



Fig. S5. Electroporated hippocampal cells are characterized as astrocyte/radial glial (GS+) and neuronal/non-glial (GS-, Iba1-) cells and devoid of cell survival decline. Coronal sections of hippocampal CA1 areas from electroporated animals at P7 (A) co-stained for GFP and glutamine synthetase (GS) or ionized calcium-binding adapter molecule 1 (Iba1). Scale bars =  $10\mu$ m. (B) Representative images of apoptotic cell detection (TUNEL). Scale bars =  $10\mu$ m. (C) Quantification of TUNEL positive cells/mm<sup>2</sup> in different hippocampal regions. Values represent mean ± SEM, n = 3 animals/group. (D) Representative images of Iba1 stained hippocampal sections. Scale bar = 1mm. (E) Representative images of Iba1 stained microglia with identified nuclear (DAPI) staining in CA1 stratum radiatum. Scale bars  $50\mu$ m. (F) The number of Iba1 positive cells is increased in Env-animals at P7 (Cont. n = 16 hippocampi; Env, n = 20) but not at ~P65 (Cont. n = 5; Env, n = 14), \*\*P = 0.005, Student's t-test.



Fig. S6. Hippocampal HERV-Env effects *in vivo*: gene expression *per se* has no effect on weight, anxiety nor PPI response. (A) Normal weight gain in electroporated animals compared to naïve animals (n = 17-31 animals/group). (B) The Env-rats show no alteration in anxiety-like behaviour measured as time spent in centre of the open field (n = 16). (C) No influence of DNA load on pre-pulse inhibition (PPI) response (Cont. n = 11, Cont. + Empty vector n = 14). (D) Clozapine (12mg/kg) improves the PPI response in Env animals (n = 12). (E) PPI response in Control-animals after crosslink protocol with either Cont. IgG or GluN1-Ab (Cont. IgG n = 12, GluN1 n = 11). Values are mean  $\pm$  SEM.



Fig. S7. Characterization of specific custom-made antibodies, WES protein expression and no effect on behavioural response in the PPI-test by early postnatal Ab-injections in control animals. Characterization of custom-made (A) GluN2A and (B) GluN2B polyclonal antibodies specificity by western-blot using non transfected COS-cells, COS-cells electroporated either with GluN2A/GluN1 or GluN2B/GluN1 and cultured neurons from WT mice and GluN2A knockout (KO) or GluN2B KO mice. The total amounts of protein loaded were validated with  $\alpha$ -actin detection. Specific labelling and no cross-reactivity with the other subunit are observed. (C,D) Representative electropherograms from synaptosomes probed on a WES<sup>TM</sup>-apparatus for NMDA(GluN2A)/PSD-95 and AMPA(GluA2)/PSD-95. (E) Env impairs PPI startle response (control experiments for treatment protocol). Group factor: F(1,66) = 12.31, \*\*\*P = 0.0008, two-way ANOVA, Bonferroni's multiple comparisons test, (n = 12). (F) PPI response in control

animals is not affected by early postnatal intra peritoneal treatment with Env neutralizing-Ab. Group factor: F(1,69) = 1.80, two-way ANOVA (n = 12-13).



Fig. S8. HERV Env from sera of patients with psychosis alter NMDAR surface organization. (A and B) Increase of interleukin-1 $\beta$  in envelope-positive (pos., n = 7) human serum samples compared to (neg., n = 6). \**P* = 0.016, Student's t-test. (C) Representative images of (*top*) cultured hippocampal networks (yellow) neurons (MAP-2 positive) and (magenta) glia (GFAP and Iba1 positive) and, (*bottom*) a NMDAR-GluN1-transfected neuron. Scale bars, top/bottom = 30/10µm. (D) Experimental setup. (E) Env-positive serum-samples specifically decrease GluN1 cluster areas (insets). GluA1 (n = 57/43 neurons neg./pos.), GluN1 (n = 56/61), Dopamine1 (n = 54/61) and GABA<sub>γ2</sub> (n = 59/68). Scale bars = 1µm and inset 0.3µm. \**P* = 0.048, Student's t-test, mean ± SEM.

|                        |        | _   |               |          |             |             | Indiv    | vidual patient  | information |               |           |       |          |              |                 |
|------------------------|--------|-----|---------------|----------|-------------|-------------|----------|-----------------|-------------|---------------|-----------|-------|----------|--------------|-----------------|
|                        | Gender | Age | Status        | Polarity | Visit       | MADRS_Tot   | YMRS_Tot | Total_PANSS     | PANSS_Pos   | PANSS_Neg     | PANSS_Gen | CGI   | GAF_SYMP | GAF_HANDICAP | FAST_Total      |
|                        |        |     |               |          | 1           | 6           | 19       | 82              | 24          | 26            | 32        | 5     | 28       | 32           | 59              |
| Patient 1              | F      | 30  | acute SZC     | N/A      | 3           | 2           | 1        | 47              | 9           | 14            | 24        | 3     | 70       | 65           | 20              |
|                        |        |     |               |          | 1           | 10          | 31       | 72              | 27          | 10            | 35        | 5     | 40       | 40           | 36              |
| Patient 2              | M      | 21  | acute Bipolar | Manic    | 3           | 5           | 4        | 41              | 8           | 9             | 24        | 2     | 71       | 71           | 10              |
|                        |        | 42  |               |          | 1           | 9           | 3        | 108             | 27          | 27            | 54        |       | 33       | 33           | 59              |
| Patient 3              | M      | 42  | acute Bipolar | Manic    | 3           | 0           | 0        | 72              | 16          | 23            | 33        | 4     | 55       | 55           | 56              |
|                        |        | 22  |               | N1/A     | 1           | 9           | 23       | 84              | 23          | 19            | 42        |       | 25       | 25           |                 |
| Patient 4              | M      | 32  | acute SZC     | N/A      | 3           | 0           | 0        |                 |             |               |           | 2     |          |              | 17              |
| Dationt C              |        | 21  | an ta Dia dan | Marsia   | 1           | 14          | 27       |                 |             |               |           |       |          |              |                 |
| Patient 5              | IVI    | 31  | acute Bipolar | Manic    | 3           |             |          |                 |             |               |           |       |          |              |                 |
| Datiant C              | -      |     | an ta Dia dan | Marsia   | 1           |             |          |                 |             |               |           |       |          |              |                 |
| Patient 6              | F      | 66  | acute Bipolar | Manic    | 3           |             |          |                 |             |               |           |       |          |              |                 |
| Datiant 7              | -      | 24  | acuto Dipolar | Mixed    | 1           | 17          | 20       | 57              | 17          | 9             | 31        | 5     | 30       | 30           | 38              |
| Patient 7              | F      | 34  | acute Bipolar | (Manic)  | 3           |             |          |                 |             |               |           |       |          |              |                 |
|                        |        |     |               |          |             |             | Inc      | lividual partio | ipant data  |               |           |       |          |              |                 |
|                        | Gender | Age | Visit         | BAFF     | BM2<br>(*P) | CRP         | TNF-α    | IL-6            | IL-1α       | IL-1β<br>(*P) | IFN-γ     | IL-10 | IL-12p40 | IL-17        | Env<br>(µg/ml)* |
| Dationt 1              | -      | 20  | 1             | 728      | 1.17        | 1025044.14  | 0.73     | 0.60            | 0.00        | 0.31          | 8.06      | 0.25  | 27.19    | 0.75         | 0.0719          |
| Patient 1              | г      | 50  | 3             |          | 1.44        |             |          |                 |             |               |           |       |          |              | 0.0428          |
| Patient 2              | м      | 21  | 1             | 823      | 1.43        | 5799527.19  | 1.97     | 0.50            | 0.02        | 0.05          | 2.06      | 0.34  | 67.23    | 0.66         | 0.1154          |
| Fatient 2              | IVI    | 21  | 3             |          | 1.61        |             |          |                 |             |               |           |       |          |              | 0.1639          |
| Patient 2              | м      | 12  | 1             | 815      | 1.23        | 36763586.65 | 6.76     | 0.81            | 0.00        | 0.22          | 4.34      | 0.35  | 36.40    | 0.70         | 0.0973          |
| Fatients               | IVI    | 42  | 3             |          | 1.52        |             |          |                 |             |               |           |       |          |              | > 0.188         |
| Patient 4              | м      | 22  | 1             | 766      | 1.78        | 6102431.02  | 0.87     | 0.14            | 0.00        | 0.00          | 0.43      | 0.04  | 59.42    | 1.20         | 0.0626          |
| Fatient 4              | IVI    | 52  | 3             |          | 1.76        |             |          |                 |             |               |           |       |          |              | 0.0517          |
| Patient 5              | м      | 21  | 1             | 933      | 2.39        | 7010470.89  | 2.62     | 0.77            | 0.00        | 0.09          | 2.93      | 0.35  | 72.98    | 1.75         | 0.0533          |
| Fatients               | IVI    | 21  | 3             |          | 1.76        |             |          |                 |             |               |           |       |          |              | 0.0424          |
| Patient 6              | F      | 66  | 1             | 725      | 1.93        | 374413.61   | 1.24     | 0.21            | 0.00        | 0.19          | 1.86      | 0.10  | 20.18    | 0.85         | 0.176           |
| Fatient                | F      | 00  | 3             |          | 2.64        |             |          |                 |             |               |           |       |          |              | > 0.188         |
| Patient 7              | -      | 24  | 1             | 511      | 1.63        | 32685801.09 | 2.59     | 0.88            | 0.00        | 0.10          | 7.18      | 0.30  | 99.80    | 1.24         | 0.0594          |
| Fatient 7              | F      | 54  | 3             |          | 1.54        |             |          |                 |             |               |           |       |          |              | 0.0495          |
|                        | Gender | Age | Visit         | BAFF     | BM2         | CRP         | TNF-α    | IL-6            | IL-1α       | IL-1β         | IFN-γ     | IL-10 | IL-12p40 | IL-17        | Env<br>(µg/ml)  |
| Control 1              | м      | 34  | 1             | 597      | 0.89        | 1643824.50  | 194      | 0.32            | 0.00        | 0.00          | 4.76      | 0.15  | 50.02    | 0.45         | below LLOQ      |
| Control 2              | F      | 36  | 1             | 789      | 1.25        | 12996743.68 | 2.19     | 0.23            | 0.00        | 0.00          | 6.19      | 0.3   | 88       | 1.27         | below LLOQ      |
| Control 3              | F      | 24  | 1             | 717      | 0.82        | 6201588.00  | 176      | 0.47            | 0.08        | 0.00          | 10.47     | 0.28  | 53.89    | 1.19         | below LLOQ      |
| Control 4 <sup>§</sup> | F      | 47  | 1             |          |             | 9281560.84  | 1.45     | 0.62            | 0.16        | 0.01          | 3.04      | 0.30  | 99.88    | 1.06         | below LLOQ      |
| Control 5              | F      | 36  | 1             | 911      | 1.22        | 3387385.23  | 1.33     | 0.34            | 0.01        | 0.00          | 2.89      | 0.3   | 86.19    | 2.31         | below LLOQ      |
| Control 6              | м      | 33  | 1             | 440      | 146         | 2624758.89  | 150      | 0.35            | 0.04        | 0.00          | 174       | 0.07  | 29.51    | 0.29         | balawi I OO     |

# Table S1. Participant information and data

\*The quantification was calculated based on a standard curve using the *E. coli* recombinant monomer and therefore does not represent the real quantity of native antigen. It is thus an approximation of the concentration. <sup>§</sup>This control was encountered with suspicion of inflammatory disease (Crohn's disease) after conduction of experiments in this work. Significant difference between mean of Control individuals and Env-positive patients is shown by \*P =0.0144 (BM2) and \*P = 0.016 (IL-1 $\beta$ ), Student's t-test. BAFF, B-cell activating factor; BM2, Bcell type M2; CGI, Clinical Global Impressions; FAST, Global Functioning Assessment Short Test; GAF, Global Assessment of Functioning; IFN, Interferon; IL, Interleukin; LLOQ, Lower Limit Of Quantification; MADRS, Montgomery-Åsberg Depression Rating Scale; PANSS, Positive And Negative Syndrome Scale; SZC, schizophrenic; TNF, Tumor necrosis factor; YMRS, Young Mania Rating Scale.

#### Table S2. Statistical details

| Main<br>Figures      | Parameters                                                                                                                               | Sample size             | Nr. Rep.<br>exp. | Sample collection                                                                                                     | Sample collection-<br>Conditions                                                                                              | Values                                                                                                                                          | Statistical (n) value | Statistical test(s)                                                                               | P-value (alpha = 0.05)                                                                         | Assumptions<br>and corrections |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------|
| Figure 1B            | Ratio Ca <sup>2+</sup> transients frequency (Hz,<br>Post/Pre)                                                                            | n = 3-5<br>(cultures)   |                  | Blank, n = 5<br>Control, n = 7<br>Env (0.5µg/ml), n = 6<br>Env (1.0µg/ml), n = 9<br>Env (10µg/ml), n = 1<br>(neurons) | Blank, n = 47<br>Control, n = 92<br>Env (0.5,gg/ml), n = 87<br>Env (1.0,gg/ml), n = 114<br>Env (10,gg/ml), n = 18<br>(spines) | $\begin{array}{c} 0.539 \pm 0.057 \\ 0.489 \pm 0.048 \\ 0.579 \pm 0.049 \\ 0.604 \pm 0.031 \\ 0.479 \pm 0.061 \\ (mean \pm s.e.m.) \end{array}$ | n = spines            | D'Agostino & Pearson<br>onnibus normality test<br>followed by Kruskal-Wallis<br>test              | Kruskal-Wallis statistic = 8.931<br>P = 0.0629                                                 | Non-gaussian                   |
| Figure 1C            | e EPSC amlpitude (pA)                                                                                                                    | n = 4-6<br>(animals)    |                  | Control, $(n = 4)$<br>Env, $(n = 6)$<br>(slices)                                                                      | Control, $(n = 4)$<br>Env, $(n = 6)$<br>(neurons)                                                                             | Dots represent mean<br>amplitude eEPSC (pA)                                                                                                     | n = paired neurons    | Two tailed, paired t-test's                                                                       | Cont. pre vs post, $P = 0.36$<br>Env pre vs post, $P = 0.59$                                   | Gaussian                       |
| Figure 1E            | Synaptic GluN2A and GluN2B<br>instantaneous diffusion coefficient<br>(µn?/s) (normalized to baseline(pre)-<br>condition for each neuron) | n = 3-13<br>(cultures)  |                  | GluN2A: Cont., n = 4,<br>Env, n = 5,<br>GluN2B:<br>Cont., n = 16,<br>Env, n = 17,<br>(neurons)                        | GluN2A:<br>Synaptic: Cont., n = 176<br>Env, n = 200<br>GluN2B:<br>Synaptic: Cont., n = 670<br>Env, n = 792<br>(trajectories)  | $\begin{array}{c} 0.791 \pm 0.083 \\ 0.895 \pm 0.094 \\ 0.946 \pm 0.065 \\ 1.193 \pm 0.061 \\ (mean \pm s.e.m.) \end{array}$                    | n = trajectories      | D'Agostino & Pearson<br>omnibus normality test<br>followed by two tailed Mann<br>Whitney t-test's | GluN2A synaptic:<br>Cont. vs Env. P = 0.680<br>GluN2B synaptic:<br>Cont. vs Env. ***P < 0.0001 | Non-gaussian                   |
| Figure 1F            | Synaptic GluN2B instantaneous<br>diffusion coefficient (µm²/s)<br>(normalized to baseline (pre)-<br>condition for each neuron)           | n = 5<br>(cultures)     |                  | Neutral. Ab. Cont., n = 5<br>Neutral. Ab. Env, n = 5<br>(neurons)                                                     | Neutral. Ab. Cont., n = 261<br>Neutral. Ab. Env, n = 490<br>(trajectories)                                                    | 0.891 ± 0.110<br>0.931 ± 0.070<br>(mean ± s.e.m.)                                                                                               | n = trajectories      | D'Agostino & Pearson<br>omnibus normality test<br>followed by two tailed Mann<br>Whitney test     | Neutral. Ab.<br>Cont. vs. Env, P = 0.178                                                       | Non-gaussian                   |
| Figure 1G            | % Synaptic detections                                                                                                                    | n = 12-13<br>(cultures) |                  | Cont., $n = 16$ ,<br>Env, $n = 17$<br>(neurons)                                                                       |                                                                                                                               | Dots represent mean<br>synaptic detections (%)<br>from each neuron                                                                              | n = paired neurons    | One tailed, paired t-test's                                                                       | Cont. pre $vs$ post, P = 0.183<br>Env pre $vs$ post, *P = 0.037                                | Gaussian                       |
| Figure 1J            | Synaptic cluster area (µm²)<br>(normalized to control)                                                                                   | n = 4<br>(cultures)     |                  | GluN2A:<br>Cont., n = 28<br>Env, n = 28<br>GluN2B:<br>Cont., n = 35<br>Env, n = 35<br>(neurons)                       | GluN2A:<br>Cont., n = 58<br>Env, n = 66<br>GluN2B:<br>Cont., n = 75<br>Env, n = 74<br>(dendrites)                             | GluN2A:<br>$1.00 \pm 0.044$<br>$1.166 \pm 0.047$<br>GluN2B:<br>$1.00 \pm 0.036$<br>$1.096 \pm 0.045$<br>(mean $\pm$ s.e.m.)                     | n = dendrites         | D'Agostino & Pearson<br>omnibus normality test<br>followed by two tailed Mann<br>Whitney test     | <i>GluN2A:</i> Cont. vs Env, *P = 0.031<br><i>GluN2B:</i> Cont. vs Env, P = 0.110              | Non-gaussian                   |
| Figure 2B            | Synaptic GluN2B instantaneous<br>diffusion coefficient (µm²/s)<br>(normalized to baseline (pre)-<br>condition for each neuron)           | n = 6<br>(cultures)     |                  | Cont., n = 7<br>Env, n = 6<br>(neurons)                                                                               | Cont., n = 295<br>Env, n = 377<br>(trajectories)                                                                              | $\begin{array}{c} 0.815 \pm 0.066 \\ 0.889 \pm 0.084 \\ (mean \pm s.e.m.) \end{array}$                                                          | n = trajectories      | D'Agostino & Pearson<br>omnibus normality test<br>followed by two tailed Mann<br>Whitney test     | Cont. vs Env, P = 0.099                                                                        | Non-gaussian                   |
| Figure 2B<br>(right) | Synaptic GluN2B mean square<br>displacement, MSD (µm²), of raw<br>data from 2B                                                           | n = 6<br>(cultures)     |                  | Cont., n = 7<br>Env, n = 6<br>(neurons)                                                                               | Cont., = 295<br>Env, n = 377<br>(trajectories)                                                                                |                                                                                                                                                 |                       |                                                                                                   |                                                                                                |                                |
| Figure 2C            | Synaptic GluN2B instantaneous<br>diffusion coefficient (µm²/s)<br>(normalized to baseline (pre)-<br>condition for each neuron)           | n = 5<br>(cultures)     |                  | Cont., n = 5<br>Env, n = 6<br>(neurons)                                                                               | αTLR-4 + Cont., n = 163<br>αTLR-4 + Env, n = 276<br>(trajectories)                                                            | 1.077 ± 0.107<br>1.018 ± 0.067<br>(mean ± s.e.m.)                                                                                               | n = trajectories      | D'Agostino & Pearson<br>omnibus normality test<br>followed by two tailed Mann<br>Whitney test     | Cont. vs Env, P = 0.667                                                                        | Non-gaussian                   |
| Figure 2C<br>(right) | Synaptic GluN2B mean square<br>displacement, MSD (µm²), of raw<br>data from 2C                                                           | n = 5<br>(cultures)     |                  | Cont., n = 5<br>Env, n = 6<br>(neurons)                                                                               | $\alpha$ TLR-4 + Cont., n = 163<br>$\alpha$ TLR-4 + Env, n = 276<br>(trajectories)                                            |                                                                                                                                                 |                       |                                                                                                   |                                                                                                |                                |

| Main                 | Parameters                                                                                                                                  | Sample size           | Nr. Rep. | Sample collection                                                                                                                                            | Sample collection-                                                                                                                                             | Values                                                                                                                                                                                                                                                                                       | Statistical (n) value | Statistical test(s)                                                                             | P-value (alpha = 0.05)                                                                                                                                                                                                                                                                                                                                                                           | Assumptions                                                            |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Figures              |                                                                                                                                             |                       | exp.     |                                                                                                                                                              | Conditions                                                                                                                                                     |                                                                                                                                                                                                                                                                                              |                       |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                  | and corrections                                                        |
| Figure 2D            | Paired mean flourecence intencity<br>(normalised to control)                                                                                | n = 5<br>(cultures)   | 2        | Cont., n = 5<br>Env, n = 5<br>(cultures)                                                                                                                     | TNF- α: Cont.<br>Env<br>IL-6: Cont.<br>Env<br>IL-1α: Cont.<br>Env<br>IL-1β: Cont.<br>Env<br>INF- γ: Cont.<br>Env<br>IL-18: Cont.<br>Env<br>IL-10: Cont.<br>Env | $\begin{array}{c} 1.000\pm 0.034\\ 1.195\pm 0.094\\ 1.000\pm 0.018\\ 1.136\pm 0.046\\ 1.000\pm 0.027\\ 1.286\pm 0.094\\ 1.000\pm 0.014\\ 1.475\pm 0.257\\ 1.000\pm 0.016\\ 1.199\pm 0.085\\ 1.000\pm 0.037\\ 1.131\pm 0.094\\ 1.000\pm 0.088\\ 1.152\pm 0.125\\ (mean\pm s.e.m) \end{array}$ | n = paired cultures   | One tailed, paired t-test                                                                       | TNF- $\alpha$ :Cont. vs Env, **P = 0.0091<br>IL-6:Cont. vs Env, *P = 0.0374<br>IL-1 $\alpha$ :Cont. vs Env, *P = 0.0087<br>IL-1 $\beta$ :Cont. vs Env, *P = 0.0264<br>INF- $\gamma$ :Cont. vs Env, P = 0.0263<br>IL-18:Cont. vs Env, P = 0.0886<br>IL-10:Cont. vs Env, P = 0.2080                                                                                                                | Gaussian                                                               |
| Figure 2E            | Synaptic GluN2B instantaneous<br>diffusion coefficient (µm <sup>2</sup> /s)<br>(normalized to baseline (pre)-<br>condition for each neuron) | n = 4-6<br>(cultures) |          | Cont., n = 6<br>Env, n = 6<br>aTNF-a + Env, n = 5<br>alL-6 + Env, n = 4<br>IL-1ra + Env, n = 7<br>(neurons)                                                  | Cont., n = 579<br>Env, n = 352<br>αTNF-α + Env, n = 461<br>αIL-6 + Env, n = 404<br>IL-1 ra + Env, n = 365<br>(trajectories)                                    | $\begin{array}{c} 0.878 \pm 0.049 \\ 1.148 \pm 0.070 \\ 1.010 \pm 0.062 \\ 0.814 \pm 0.045 \\ 0.665 \pm 0.063 \\ (mean \pm s.e.m.) \end{array}$                                                                                                                                              | n = trajectories      | D'Agostino & Pearson<br>omnibus normality test<br>followed by Kruskal-Wallis<br>test            | Kruskal-Wallis statistics = 81.15,<br>***P <0.0001,<br>Dunn's multiple comparisons test:<br>Cont. vs GINF- $\alpha$ + Env, P > 0.999<br>Cont. vs $\alpha$ II-6 + Env, P > 0.999<br>Cont. vs $\alpha$ IL-6 + Env, P > 0.999<br>Cont. vs $\alpha$ IL-6 + Env, P = 0.0001<br>Env vs $\alpha$ II-6 + Env, P = 0.0861<br>Env vs $\alpha$ IL-6 + Env, P = 0.0711<br>Env vs IL-1ra + Env, ***P < 0.0001 | Non-gaussian                                                           |
| Figure 2F            | Synaptic GluN2B mean square<br>displacement, MSD (µm²), of raw<br>data from 2E                                                              | n = 4-6<br>(cultures) |          | Cont., n = 6<br>Env, n = 6<br>IL-1ra + Cont., n = 7<br>IL-1ra + Env, n = 7<br>(neurons)                                                                      | Cont., n = 579<br>Env, n = 352<br>IL-1ra + Cont., n = 176<br>IL-1ra + Env, n = 365<br>(trajectories)                                                           |                                                                                                                                                                                                                                                                                              |                       |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                        |
| Figure 2G            | Synaptic GluN2B instantaneous<br>diffusion coefficient (µm²/s)<br>(normalized to baseline (pre)-<br>condition for each neuron)              | n = 7<br>(cultures)   |          | Cont., n = 7<br>IL-1β (1ng/ml), n = 7<br>(neurons)                                                                                                           | Cont., n = 423<br>IL-1β (1ng/ml), n = 480<br>(trajectories)                                                                                                    | $0.785 \pm 0.065$<br>$0.147 \pm 0.095$<br>(mean ± s.e.m.)                                                                                                                                                                                                                                    | n = trajectories      | D'Agostino & Pearson<br>omnibus normality test<br>followed by Two tailed Mann<br>Whitney test   | Cont. vs IL-1β, ***P < 0.0001                                                                                                                                                                                                                                                                                                                                                                    | Non-gaussian                                                           |
| Figure 2H            | Number of IL-1R clusters / µm<br>(normalized to control)                                                                                    | n = 4<br>(cultures)   |          | Cont., n = 32<br>Env, n = 31<br>(neurons)                                                                                                                    | Cont., n = 55<br>Env, n = 51<br>(dendrites)                                                                                                                    | $\begin{array}{c} 1.00 \pm 0.194 \\ 1.938 \pm 0.356 \\ (mean \pm s.e.m.) \end{array}$                                                                                                                                                                                                        | n = dendrites         | D'Agostino & Pearson<br>omnibus normality test<br>followed by Two tailed Mann<br>Whitney test   | Cont. vs Env, *P = 0.0188                                                                                                                                                                                                                                                                                                                                                                        | Non-gaussian                                                           |
| Figure 2I            | Synaptic GluN2B instantaneous<br>diffusion coefficient (µn²/s)<br>(normalized to baseline (pre)-<br>condition for each neuron)              | n = 6<br>(cultures)   |          | PP2 + Cont., n = 6<br>PP2 + Env, n = 6<br>(neurons)                                                                                                          | PP2 + Cont., n = 743<br>PP2 + Env, n = 492<br>(trajectories)                                                                                                   | $0.874 \pm 0.038$<br>$0.702 \pm 0.042$<br>(mean $\pm$ s.e.m.)                                                                                                                                                                                                                                | n = trajectories      | D'Agostino & Pearson<br>omnibus normality test<br>followed by Two tailed Mann<br>Whitney test   | PP2: Cont. vs Env, **P = 0.0067                                                                                                                                                                                                                                                                                                                                                                  | Non-gaussian                                                           |
| Figure 2I<br>(right) | Synaptic GluN2B mean square<br>displacement, MSD (µm²), of raw<br>data from 2I                                                              | n = 6<br>(cultures)   |          | $\begin{array}{c} PP2 + Cont., n = 6\\ PP2 + Env, n = 6\\ (neurons) \end{array}$                                                                             | PP2 + Cont., n = 743<br>PP2 + Env, n = 492<br>(trajectories)                                                                                                   |                                                                                                                                                                                                                                                                                              |                       |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                        |
| Figure 3B            | Ca <sup>2+</sup> transients frequency (Hz)                                                                                                  | n = 3-4<br>(cultures) |          | Cont., n = 8<br>Env, n = 10<br>Cont. + IL-1ra, n = 7<br>Env. + IL-1ra, n = 7<br>(neurons)                                                                    | Cont., n = 88<br>Env, n = 73<br>Cont. + IL- Ira, n = 115<br>Env + IL-1ra, n = 101<br>(spines)                                                                  | $\begin{array}{c} 0.130\pm 0.0052\\ 0.161\pm 0.0071\\ 0.147\pm 0.0042\\ 0.120\pm 0.0050\\ (mean\pm s.e.m.)\end{array}$                                                                                                                                                                       | n = spines            | D'Agostino & Pearson<br>omnibus normality test<br>followed by two-way<br>ANOVA                  | ANOVA table:<br>Interaction: F(1,373) = 35,68, ***P < 0.0001<br>Treatment: F(1,373) = 7,195, ** P = 0.0076<br>Group F(1,373) = 0.733, P = 0.3925<br>Bonferron's multiple comparisons test:<br>Env vs Cont., ***P < 0.0001<br>Env vs Cont. + IL-1ra, P = 0.0837<br>Env vs Env + IL-1ra, ***P < 0.0001                                                                                             | Data was<br>transformed to<br>gaussian<br>distribution by<br>x=sqrt(x) |
| Figure 3D            | Mean spine Ca <sup>2+</sup> transients correlation                                                                                          | n = 3-4<br>(cultures) |          | Cont., n = 8<br>Env, n = 10<br>Cont. + IL-1ra, n =7<br>Env + IL-1ra, n =7<br>(neurons)                                                                       | Cont., n = 88<br>Env, n = 73<br>Cont. + IL-1ra, n = 115<br>Env + IL-1ra, n = 101<br>(spines)                                                                   | $\begin{array}{c} 0.0634 \pm 0.0061 \\ 0.2142 \pm 0.0119 \\ 0.1230 \pm 0.0090 \\ 0.1353 \pm 0.0102 \\ (mean \pm s.e.m.) \end{array}$                                                                                                                                                         | n = spines            | D'Agostino & Pearson<br>onnibus normality test<br>followed by two tailed Mann<br>Whitney test's | Cont. vs Env, ***P < 0.0001<br>Cont. + IL-1ra vs Env + IL-1ra, P = 0.470                                                                                                                                                                                                                                                                                                                         | Non-gaussian                                                           |
| Figure 3F            | Mean spine Ca <sup>2+</sup> transients correlation                                                                                          | n = 4-5<br>(cultures) |          | $            E.vector, n = 8 \\             Env, n = 8 \\             E.vector + IL-1ra, n = 8 \\             Env + IL-1ra, n = 8 \\             (neurons) $ | E vector, n = 126<br>Env, n = 159<br>E.vector + IL-1ra, n = 114<br>Env + IL-1ra, n = 139<br>(spines)                                                           | $\begin{array}{c} 0.11421 \pm 0.0066 \\ 0.2013 \pm 0.0067 \\ 0.1424 \pm 0.0084 \\ 0.1141 \pm 0.0059 \\ (mean \pm s.e.m.) \end{array}$                                                                                                                                                        | n = spines            | D'Agostino & Pearson<br>omnibus normality test<br>followed by two tailed Mann<br>Whitney test's | E. vector vs Env, ***P < 0.0001<br>E. vector + IL-1ra vs Env + IL-1ra,<br>*P = 0.0260                                                                                                                                                                                                                                                                                                            | Non-gaussian                                                           |

| Main                 | Parameters                                                         | Sample size         | Nr. Rep. | Sample collection                                                                               | Sample collection-                                                                                 | Values                                                                                                                                                                                        | Statistical (n) value Statistical test(s) |                                                                                                                 | P-value (alpha = 0.05)                                                                                                                                                                                                                                                                                                                                                                                                               | Assumptions                                       |
|----------------------|--------------------------------------------------------------------|---------------------|----------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Figures              |                                                                    |                     | exp.     |                                                                                                 | Conditions                                                                                         |                                                                                                                                                                                               |                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                      | and corrections                                   |
| Figure 3H            | Synaptic GluA1-AMPAR intencity<br>(a.u.) (cumulative distribution) | n = 4<br>(cultures) |          | Cont., n = 25<br>Env, n = 21<br>(neurons)                                                       | Cont., n = 1071<br>Env, n = 728<br>(spines)                                                        | 540 ± 489-653<br>743 ± 604-1025<br>(median ± IQR)                                                                                                                                             | n = spines                                | D'Agostino & Pearson<br>omnibus normality test<br>followed by Kolmogorov-<br>Smirnov test                       | Cont. vs Env, ***P < 0.0001                                                                                                                                                                                                                                                                                                                                                                                                          | Non-gaussian                                      |
| Figure 3J            | Ratio Synaptic GluA1-AMPAR<br>intencity (a.u.) (post/pre)          | n = 4<br>(cultures) |          | noLTP Cont., n = 13<br>cLTP Cont., n = 12<br>noLTP Env, n = 17<br>cLTP Env, n = 14<br>(neurons) | noLTP Cont., n = 621<br>cLTP Cont., n = 902<br>noLTP Env, n = 461<br>cLTP Env, n = 472<br>(spines) | $\begin{array}{c} 0.972 \pm 0.922\text{-}1.015 \\ 0.982 \pm 0.928\text{-}1.024 \\ 0.994 \pm 0.956\text{-}1.040 \\ 0.949 \pm 0.904\text{-}0.989 \\ (\text{median} \pm \text{IQR}) \end{array}$ | n = spines                                | D'Agostino & Pearson<br>omnibus normality test<br>followed by two tailed Mann<br>Whitney test's                 | Cont.:<br>noLTP vs cLTP, *P = 0.0233<br>Env:<br>noLTP vs cLTP, ***P < 0.0001                                                                                                                                                                                                                                                                                                                                                         | Non-gaussian                                      |
| Figure 4D            | Distance travelled (m)                                             | n = 24<br>(animals) |          | Cont., n = 12<br>Env, n = 12<br>(animals)                                                       | Cont. Day 1<br>Env Day 1<br>Cont. Day 2<br>Env Day 2<br>Cont. Day 3<br>Env Day 3                   | $\begin{array}{c} 40.73 \pm 1.74 \\ 42.36 \pm 2.16 \\ 29.44 \pm 2.64 \\ 29.46 \pm 2.14 \\ 31.51 \pm 2.78 \\ 28.00 \pm 1.66 \\ (mean \pm s.e.m.) \end{array}$                                  | n = animals                               | Repeated measurment, two-<br>way ANOVA                                                                          | ANOVA tabk:<br>Interaction: F(4,64) = 0.2256, P = 0.9231<br>Day: F(2,64) = 24.11, P*** < 0.0001<br>Group: F(2,32) = 0.5953, P = 0.5574<br>Subj. maching: F(32,64) = 2.434,<br>**P = 0.0012                                                                                                                                                                                                                                           | Gaussian                                          |
| Figure 4E            | Distance travelled (m)                                             | n = 22<br>(animals) |          | Cont., n = 10<br>Env, n = 12<br>(animals)                                                       |                                                                                                    |                                                                                                                                                                                               | n = animals                               | Repeated measurment, two-<br>way ANOVA, post MK-801<br>injection, uncorrected Fisher's<br>LSD post-hoc analysis | ANOVA table:<br>Interaction: $F(23,460) = 0.9119$ , $P = 0.5826$<br>Time: $F(23,460) = 22.18$ , *** $P < 0.0001$<br>Group: $F(1,20) = 7.778$ , * $P = 0.0113$<br>Subj. maching: $F(20,460) = 24.32$ ,<br>*** $P < 0.0001$ . Uncorrected Fisher's LSD<br>post-hoc analysis for each timepoint (5min interval):<br>Significant differences:<br>* $P(80-110$ and $125-170) = 0.011-0.039$<br>** $P(t135,140$ and $150) = 0.0048-0.0079$ | Gaussian                                          |
| Figure 4G            | Active interaction (sec.)                                          | n = 13<br>(animals) |          | Cont., n = 6<br>Env, n = 7<br>(animak)                                                          |                                                                                                    | Control<br>Training: $50.67 \pm 1.91$<br>Recall: $40.00 \pm 4.23$<br>Env<br>Training: $52.71 \pm 1.94$<br>Recall: $52.57 \pm 2.57$<br>(mean $\pm$ s.e.m.)                                     | n = animals                               | Repeated measurment, two-<br>way ANOVA followed by<br>Sidak's multiple comparisons<br>test                      | ANOVA table:<br>Interaction: $F(1,11) = 7.837$ , $*P = 0.0173$<br>Trial: $F(1,11) = 8.269$ , $*P = 0.0151$<br>Group: $F(1,11) = 4.579$ , $P = 0.0556$<br>Subj. maching: $F(11,11) = 3.303$ ,<br>*P 0.0297.<br>Sidak's multiple comparisons test<br>Cont. Training vs. Recall: $*P = 0.0052$<br>Env Training vs. Recall: $*P = 0.098$                                                                                                 |                                                   |
| Figure 4I<br>(left)  | % of pre pulse inibition                                           | n = 62<br>(animals) |          | Cont., n = 31<br>Env, n = 31<br>(animals)                                                       | +4dB: Cont.<br>Env<br>+8dB:Cont.<br>Env<br>+12dB: Cont.<br>Env<br>(animals)                        | $\begin{array}{c} 40.12 \pm 3.036 \\ 27.54 \pm 3.244 \\ 49.41 \pm 3.571 \\ 33.70 \pm 3.300 \\ 53.14 \pm 2.661 \\ 46.00 \pm 3.295 \\ (mean \pm s.e.m.) \end{array}$                            | n = animals                               | Two-way ANOVA, followed<br>by Bonferroni's multiple<br>comparisons test                                         | ANOVA table:<br>Interaction: $F(2,180) = 0.9170$ , $P = 0.4016$<br>Prepulse: $F(2,180) = 12.12$ , *** $P < 0.0001$<br>Group: $F(1,180) = 20.46$ ** $P < 0.0001$<br>Bonferroni's multiple comparisons test:<br>+4dB Cont. vs Env * $P = 0.0180$<br>+8dB Cont. vs Env * $P = 0.0019$<br>+12dB Cont. vs Env $P = 0.3472$                                                                                                                | Gaussian                                          |
| Figure 4I<br>(right) | % of pre pulse inibition                                           | n = 24<br>(animals) |          | Cont.+ Clozapine, n=12<br>Env + Clozapine, n=12<br>(animals)                                    | +8dB:Cont.<br>Env<br>(animals)                                                                     | $51.52 \pm 4.233$<br>$49.72 \pm 6.955$<br>(mean $\pm$ s.e.m.)                                                                                                                                 | n = animals                               | D'Agostino & Pearson<br>omnibus normality test<br>followed by two tailed t-test                                 | Cont.vs Env, P = 0.8278                                                                                                                                                                                                                                                                                                                                                                                                              | Gaussian                                          |
| Figure 4K            | % of pre pulse inibition                                           | n = 86<br>(animals) |          | Cont., n = 31<br>Env, n =11-31<br>(animals)                                                     | Cont., n = 31<br>Env, n = 31<br>Cont. IgG: Env, n = 13<br>cross-link: Env, n = 11<br>(animals)     | 49.41 ± 3.571<br>33.70 ± 3.300<br>30.59 ± 4.575<br>41.02 ± 6.530<br>(mean ± s.e.m.)                                                                                                           | n = animals                               | One-way ANOVA, followed<br>by Tukey's multiple<br>comparisons test                                              | ANOVA : F (3,82) = 4.683<br>Tukey's multiple comparisons test:<br>Cont. vs Env, **P = 0.0093<br>Cont. vs Env Cont.IgG, *P = 0.0195<br>Cont. vs Env Cont.IgG, P = 0.5970<br>Env vs Env Cont.IgG, P = 0.9606<br>Env vs Env cross-link, P = 0.6960<br>Env Cont.IgG vs Env cross-link, P = 0.5456                                                                                                                                        | Gaussian,<br>corrected for<br>unweighted<br>means |

| Main              | Parameters                                                                                                                                   | Sample size            | Nr. Rep.         | Sample collection                                                                                | Sample collection-                                                                                                                                                                         | Values                                                                                                                                                                                 | Statistical (n) value | Statistical test(s)                                                                              | P-value (alpha = 0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Assumptions                    |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Figures           |                                                                                                                                              |                        | exp.             |                                                                                                  | Conditions                                                                                                                                                                                 |                                                                                                                                                                                        |                       |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | and corrections                |
| Figure 5D         | Relative protein expression<br>(GluN2A/PSD-95)                                                                                               | n = 33<br>(animals)    | 3                |                                                                                                  | P7: Cont., n = 8<br>Env, n = 9<br>P65: Cont., n = 8<br>Env, n = 8<br>(animals)                                                                                                             | $\begin{array}{c} 0.637 \pm 0.0446 \\ 0.804 \pm 0.0849 \\ 1.030 \pm 0.0417 \\ 0.8986 \pm 0.0283 \\ (mean \pm s.e.m.) \end{array}$                                                      | n = animals           | Two-way ANOVA, followed<br>by Bonferron's multiple<br>comparisons test                           | ANOVA table:<br>Interaction: $F(1,29) = 8.686$ , **P = 0.0063<br>Age: $F(1,29) = 13.85$ , ***P = 0.0008<br>Group: $F(1,29) = 0.523$ , P = 0.4753<br>Bonferron's multiple comparisons test:<br>P7.Control 2A vs. P65Enr v2A, P = 0.0610<br>P7.Control 2A vs. P65Enr v2A, P = 0.0011<br>P7.Enr 2A vs. P65Enr v2A, P = 0.0211<br>P7.Enr 2A vs. P65Enr v2A, P = 0.0411<br>P7.Enr V2A vs. P65Enr v2A, P = 0.9442<br>P65.Control 2A vs. P65Enr v2A, P = 0.4217                                                               | Gaussian                       |
| Figure 5E         | Relative protein expression<br>(GluN2B/PSD-95)                                                                                               | n = 33<br>(animals)    | 3                |                                                                                                  | P7: Cont., n = 9<br>Env, n = 8<br>P65: Cont., n = 8<br>Env, n = 8<br>(animals)                                                                                                             | 2.168 ± 0.1169<br>2.449 ± 0.1991<br>1.145 ± 0.0366<br>1.051 ± 0.0521<br>(mean ± s.e.m.)                                                                                                | n = animals           | Two-way ANOVA, followed<br>by Bonferroni's multiple<br>comparisons test                          | ANOVA table:<br>Interaction: $F(1,29) = 2.457$ , $P = 0.1278$<br>Age: $F(1,29) = 101.9$ ,*** $P < 0.0001$<br>Group: $F(1,29) = 0.609$ , $P = 0.4416$<br>Bonferron's multiple comparisons test:<br>P7.Control 2B vs. P65Env 2B, $P = 0.6170$<br>P7.Control 2B vs. P65Env 2B, $P = 0.6170$<br>P7.Control 2B vs. P65Env 2B, $P = 0.0001$<br>P7.Env 2B vs. P65Env 2B, $***P < 0.0001$<br>P7.Env 2B vs. P65Env 2B, $***P < 0.0001$<br>P7.Env 2B vs. P65Env 2B, $***P < 0.0001$<br>P65.Control 2B vs. P65Env 2B, $P > 0.999$ | Gaussian                       |
| Figure 5F         | Immunoprecipitation: Relative<br>protein expression<br>(normalized to control)                                                               | n = 50<br>(animals)    | 2                | P7: Cont., n = 7<br>Env, n = 6<br>P65: Cont., n = 7<br>Env, n = 6<br>(animak)                    | $ \begin{array}{c} GhlN2A-P7: Cont., n=6\\ Env, n=6\\ GhlN2B-P7: Cont., n=7\\ Env, n=5\\ GhlN2A-P65: Cont., n=7\\ Env, n=6\\ GhlN2B-P65: Cont., n=7\\ Env, n=6\\ (animals)\\ \end{array} $ | $\begin{array}{c} 1.0\pm 0.1147\\ 1.753\pm 0.3103\\ 1.0\pm 0.1306\\ 1.309\pm 0.0630\\ 1.0\pm 0.1469\\ 1.043\pm 0.2130\\ 1.0\pm 0.0794\\ 0.9497\pm 0.0857\\ (mean\pm s.e.m)\end{array}$ | n = animals           | Two tailed unpaired t-test's                                                                     | GluN2A:<br>P7: Cont. vs Env, *P = 0.0462<br>P65: Cont. vs Env, P = 0.0912<br>GluN2B:<br>P7: Cont. vs Env, P = 0.8680<br>P65: Cont. vs Env, P = 0.6748                                                                                                                                                                                                                                                                                                                                                                  | Gaussian                       |
| Figure 5G         | Relative protein expression<br>(GluA2/PSD-95)                                                                                                | n = 17<br>(animals)    | 2                |                                                                                                  | Cont., n = 8<br>Env, n = 9<br>(animals)                                                                                                                                                    | $\begin{array}{c} 0.6725 \pm 0.0212 \\ 0.8136 \pm 0.0408 \\ (mean \pm s.e.m) \end{array}$                                                                                              | n = animals           | D'Agostino & Pearson<br>omnibus normality test<br>followed by two tailed<br>unpaired t-test      | Cont. vs Env, **P = 0.0098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gaussian                       |
| Figure 5H         | Relative protein expression<br>(PSD-95/total protein)                                                                                        | n = 34<br>(animals)    | 3                |                                                                                                  | P7: Cont., n = 9<br>Env, n = 9<br>P65: Cont., n = 8<br>Env, n = 8<br>(animals)                                                                                                             | $\begin{array}{c} 0.3776 \pm 0.0411 \\ 0.3647 \pm 0.0432 \\ 1.582 \pm 0.1683 \\ 2.102 \pm 0.2001 \\ (mean \pm s.e.m) \end{array}$                                                      | n = animals           | Two tailed unpaired t-test's                                                                     | P7: Cont. vs Env, P = 0.8320<br>P65: Cont. vs Env, P = 0.067                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gaussian                       |
| Figure 5J         | % of pre pulse inibition                                                                                                                     | n = 37<br>(animals)    |                  | Cont.+ Neut. Ab, n=13<br>Env + Cont. Ab, n=12<br>Env + Neut. Ab, n=12<br>(animals)               | +12dB:Cont.+ Neut. Ab<br>Env + Cont.<br>Env + Neut. Ab<br>(animals)                                                                                                                        | 59.18 ± 3.817<br>38.98 ± 5.589<br>58.21 ± 7.049<br>(mean ± s.e.m)                                                                                                                      | n = animals           | One-way ANOVA, followed<br>by Tukey's multiple<br>comparisons test                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gaussian                       |
| Suppl.<br>Figures | Parameters                                                                                                                                   | Sample size            | Nr. Rep.<br>exp. | Sample collection                                                                                | Sample collection-<br>Conditions                                                                                                                                                           | Values                                                                                                                                                                                 | Statistical (n) value | Statistical test(s)                                                                              | P-value (alpha = 0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Assumptions<br>and corrections |
| Fig. S1A          | Extrasynaptic GluN2A and GluN2E<br>instantaneous diffusion coefficient<br>(µm?/s) (normalized to baseline(pre)<br>condition for each neuron) | n = 3-13<br>(cultures) |                  | Glulv2A:<br>Cont., n = 3,<br>Env, n = 4<br>Glulv2B:<br>Cont., n = 10,<br>Env, n = 9<br>(neurons) | GluN2A: Extra Syn.:<br>Cont., n = 300<br>Env, n = 445<br>GluN2B: Extra Syn.:<br>Cont., n = 819<br>Env, n = 727<br>(trajectories)                                                           | $\begin{array}{c} 0.863 \pm 0.064 \\ 0.941 \pm 0.056 \\ 0.895 \pm 0.045 \\ 0.955 \pm 0.048 \\ (mean \pm s.e.m.) \end{array}$                                                           | n = trajectories      | D'Agostino & Pearson<br>omibus normality test<br>followed by two tailed Mann<br>Whitney t-test's | GluN2A extrasynaptic:<br>Cont. vs Env. P = 0.4331<br>GluN2B extrasynaptic:<br>Cont. vs Env. *P = 0.0319                                                                                                                                                                                                                                                                                                                                                                                                                | Non-gaussian                   |

| Suppl.<br>Figures   | Parameters                                                                                                                   | Sample size             | Nr. Rep.<br>exp. | Sample collection                                                                                                                                                                                | Sample collection-<br>Conditions                                                                                                                                                                                | Values                                                                                                                                                                                                                                                     | Statistical (n) value | Statistical test(s)                                                                           | P-value (alpha = 0.05)                                                                                                                                                                                                                                                                                               | Assumptions<br>and corrections                        |
|---------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Fig. S1B            | Synaptic GluN2B instantaneous<br>diffusion coefficient (µm?/s)<br>(normalised to baseline for each<br>neuron)                | n = 5-7<br>(cultures)   |                  | Cont., n = 8, Neutral.<br>Ab. Cont., n = 5<br>Env 0.5µg/ml, n = 7<br>Env 1.0µg/ml, n = 6<br>Env 10µg/ml, n = 7<br>(neurons)                                                                      | Cont., n = 164<br>Neutral. Ab. Cont., n = 261<br>Env 0.5µg/ml, n = 90<br>Env 1.0µg/ml, n = 140<br>(trajectories)                                                                                                | 0,861 ± 0,137<br>0.891 ± 0,110<br>0,707 ± 0,168<br>1,129 ± 0,1252<br>1,015 ± 0,146<br>(mean ± s.e.m.)                                                                                                                                                      | n = trajectories      | D'Agostino & Pearson<br>omnibus normality test<br>followed by Kruskal-Wallis<br>test          | Kruskal-Wallis statistic = 40.35,<br>P*** <0.0001<br>Dunn's multiple comparisons test:<br>Cont. vs Env 0.5, P = 0.5142<br>Cont. vs Env 10, **P = 0.0015<br>Cont. vs Env 10, P = 0.7632                                                                                                                               | Non-gaussian,<br>corrected for<br>unweighted<br>means |
| Fig. S1C            | Median GluN2B instantaneous<br>diffusion coefficient (µm²/s)                                                                 | n=12-13<br>(cultures)   |                  | Cont., n= 16 (pre-post),<br>Env, n= 17 (pre-post)<br>(neurons)                                                                                                                                   | Cont., n= 670<br>Env, n= 792<br>(trajectories)                                                                                                                                                                  | Dots represent median<br>diffusion coefficient (µm²/s)<br>from each neuron                                                                                                                                                                                 | n = paired neurons    | Two tailed, paired t-test's                                                                   | Cont. pre $vs$ post, P = 0.081<br>Env pre $vs$ post, *P = 0.038                                                                                                                                                                                                                                                      | Gaussian                                              |
| Fig. S1D            | Synaptic GluN2B mean square<br>displacement, MSD (µm²), of data<br>in main fig 1E and F                                      | n = 12-13<br>(cultures) |                  | Cont., n = 16<br>Env, n = 17<br>(neurons)                                                                                                                                                        | Cont., n = 670<br>Env, n = 792<br>(trajectories)                                                                                                                                                                |                                                                                                                                                                                                                                                            |                       |                                                                                               |                                                                                                                                                                                                                                                                                                                      |                                                       |
| Fig. S1F            | Extra synaptic instantaneous<br>diffusion coefficient (µm²/s)                                                                | n = 2-7<br>(cultures)   |                  | GluN2A: Cont., n = 28 Env, n = 31 GluN2B:<br>Cont., n = 65 Env, n = 51 (neuronal fields)                                                                                                         | GluN2A:<br>Cont., n = 2214<br>Env, n = 1670<br>GluN2B:<br>Cont., n = 3882<br>Env, n = 3872<br>(trajectories)                                                                                                    | $\begin{array}{c} 0.129 \pm 0.027 \text{-} 0.247 \\ 0.074 \pm 0.025 \text{-} 0.270 \\ 0.119 \pm 0.016 \text{-} 0.244 \\ 0.128 \pm 0.025 \text{-} 0.250 \\ (\text{median} \pm \text{IQR}) \end{array}$                                                      | n = trajectories      | D'Agostino & Pearson<br>omnibus normality test<br>followed by two tailed Mann<br>Whitney test | GluN2A:<br>Cont. vs Env, P = 0.0896<br>GluN2B:<br>Cont. vs Env, **P = 0.0029                                                                                                                                                                                                                                         | Non-gaussian                                          |
| Fig. S1G            | Synaptic instantaneous diffusion<br>coefficient (µn²/s)                                                                      | n = 2-4<br>(cultures)   |                  | GluN2A:<br>Cont., n = 15<br>Env. 0.5µg/ml, n = 6<br>Env. 1.0µg/ml, n = 13<br>GluN2B:<br>Cont., n = 22<br>Env. 0.5µg/ml, n = 19<br>Env. 1.0µg/ml, n = 18<br>Neutral. Ab. Env, n = 14<br>(neurons) | GluN2A:<br>Cont., n = 382<br>Env. 0.5µg/ml, n = 147<br>Env. 1.0µg/ml, n = 277<br>GluN2B: :<br>Cont., n = 612<br>Env. 0.5µg/ml, n = 485<br>Env. 1.0µg/ml, n = 600<br>Neutral. Ab. Env, n = 204<br>(trajectories) | $\begin{array}{c} 0.079 \pm 0.021 \\ -0.167 \\ 0.062 \pm 0.015 \\ -0.191 \\ 0.081 \pm 0.017 \\ -0.191 \\ 0.074 \pm 0.010 \\ -0.153 \\ 0.049 \pm 0.011 \\ -0.148 \\ 0.094 \pm 0.026 \\ -0.190 \\ 0.048 \pm 0.015 \\ -0.128 \\ (median \pm 1QR) \end{array}$ | n = trajectories      | D'Agostino & Pearson<br>omnibus normality test<br>followed by Kruskal-Wallis<br>test's        | GluN2A:<br>Kruskal-Wallis statistic = 0.660, P = 0.7190<br>GluN2B:<br>Kruskal-Wallis statistic = 36.44,<br>***P < 0.0001<br>Dunn's multiple comparisons test:<br>Cont. v.s Env 0.5, P = 0.6928<br>Cont. v.s Env 1.0, ***P < 0.0001<br>Env 0.5 v.s Env 1.0, ***P < 0.0001<br>Neutr. Ab Env v.s Env 1.0, ***P < 0.0001 | Non-gaussian,<br>corrected for<br>unweighted<br>means |
| Fig. S1H            | Synaptic GluN2B mean square<br>displacement, MSD (µm²)                                                                       | n = 4<br>(cultures)     |                  | GluN2B:<br>Cont., n = 22<br>Env. 0.5µg/ml, n = 19<br>Env. 1.0µg/ml, n = 18<br>Neutral. Ab. Env, n = 14<br>(neurons)                                                                              | GluN2B: :<br>Cont., n = 612<br>Env. 0.5µg/ml, n = 485<br>Env. 1.0µg/ml, n = 600<br>Neutral. Ab. Env, n = 204<br>(trajectories)                                                                                  |                                                                                                                                                                                                                                                            |                       |                                                                                               |                                                                                                                                                                                                                                                                                                                      |                                                       |
| Fig. S1J<br>(right) | Synaptic GluN2B instantaneous<br>diffusion coefficient (µm²/s)                                                               | n = 5-7<br>(cultures)   |                  | Heat Inact. Cont., n = 7<br>Heat Inact. Env, n = 5<br>(neurons)                                                                                                                                  | Heat Inact. Cont., n = 563<br>Heat Inact. Env, n = 443<br>(trajectories)                                                                                                                                        | $\begin{array}{c} 0.840 \pm 0.047 \\ 0.915 \pm 0.060 \\ (mean \pm s.e.m.) \end{array}$                                                                                                                                                                     | n = trajectories      | D'Agostino & Pearson<br>omnibus normality test<br>followed by two tailed Mann<br>Whitney test | Heat Inact.<br>Cont. vs Env, P = 0.269                                                                                                                                                                                                                                                                               | Non-gaussian                                          |
| Fig. S1J<br>(right) | Synaptic GluN2B mean square<br>displacement, MSD (µm²), of data<br>in J                                                      | n = 5-7<br>(cultures)   |                  | Heat Inact. Cont., n = 7<br>Heat Inact. Env, n = 5<br>(neurons)                                                                                                                                  | Heat Inact. Cont., n = 563<br>Heat Inact. Env, n = 443<br>(trajectories)                                                                                                                                        |                                                                                                                                                                                                                                                            |                       |                                                                                               |                                                                                                                                                                                                                                                                                                                      |                                                       |
| Fig. S1K            | Synaptic GluN2B instantaneous<br>diffusion coefficient (µm²/s)                                                               | n = 3-4<br>(cultures)   |                  | Cont. + TTX, n = 3<br>Env + TTX, n = 4<br>(neurons)                                                                                                                                              | Cont. + TTX, n = 181<br>Env + TTX, n = 182<br>(trajectories)                                                                                                                                                    | $\begin{array}{c} 0.675 \pm 0.081 \\ 1.166 \pm 0.129 \\ (mean \pm s.e.m.) \end{array}$                                                                                                                                                                     | n = trajectories      | D'Agostino & Pearson<br>omnibus normality test<br>followed by two tailed Mann<br>Whitney test | TTX<br>Cont. vs Env, ***P = 0.0008                                                                                                                                                                                                                                                                                   | Non-gaussian                                          |
| Fig. 1K<br>(right)  | Synaptic GluN2B mean square<br>displacement, MSD (µm <sup>2</sup> ), of data<br>in K                                         | n = 3-4<br>(cultures)   |                  | Cont. + TTX, n = 3<br>Env + TTX, n = 4<br>(neurons)                                                                                                                                              | Cont. + TTX, n = 181<br>Env + TTX, n = 182<br>(trajectories)                                                                                                                                                    |                                                                                                                                                                                                                                                            |                       |                                                                                               |                                                                                                                                                                                                                                                                                                                      |                                                       |
| Fig. S2B            | TLR-4 staining (% of area)                                                                                                   | n = 2<br>(cultures)     |                  | Cont. emptyRNA, n = 10<br>TLR-4 shRNA, n = 13<br>(microglia cells)                                                                                                                               |                                                                                                                                                                                                                 | $\begin{array}{c} 1.430 \pm 0.277 \\ 0.701 \pm 0.142 \\ (mean \pm s.e.m.) \end{array}$                                                                                                                                                                     | n = microglia cells   | Two tailed, unpaired t-<br>test                                                               | Cont. <i>vs</i> shRNA, *P = 0.0214                                                                                                                                                                                                                                                                                   | Gaussian                                              |
| Fig. S2C            | Synaptic GluN2B instantaneous<br>diffusion coefficient<br>(µm²/s)(normalized to baseline(pre)-<br>condition for each neuron) | n = 4-5<br>(cultures)   |                  | $Cont., n = 4$ $\alpha TLR-4 + Cont, n = 5$ (neurons)                                                                                                                                            | Cont., n = 168<br>αTLR-4 + Cont, n = 163<br>(trajectories)                                                                                                                                                      | $\begin{array}{c} 1.059 \pm 0,1211 \\ 1.077 \pm 0,107 \\ (mean \pm s.e.m.) \end{array}$                                                                                                                                                                    | n = trajectories      | D'Agostino & Pearson<br>omnibus normality test<br>followed by two tailed Mann<br>Whitney test | Cont. vs Env, P = 0.641                                                                                                                                                                                                                                                                                              | Non-gaussian                                          |

| Suppl.   | Parameters                                                                                                                   | Sample size           | Nr. Rep. | Sample collection                                                                                                                                    | Sample collection-                                                                                                                                                        | Values                                                                                                                                                             | Statistical (n) value | Statistical test(s)                                                                                                     | P-value (alpha = 0.05)                                                                                                                                                                                                                | Assumptions     |
|----------|------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Figures  |                                                                                                                              |                       | exp.     |                                                                                                                                                      | Conditions                                                                                                                                                                |                                                                                                                                                                    |                       |                                                                                                                         |                                                                                                                                                                                                                                       | and corrections |
| Fig. S2D | Synaptic GluN2B instantaneous<br>diffusion coefficient<br>(µn²/s)(normalized to baseline(pre)-<br>condition for each neuron) | n = 4-6<br>(cultures) |          | Cont., n = 6<br>LPS 0.01µg/ml, n = 5<br>LPS 0.1µg/ml, n = 5<br>LPS 1µg/ml, n = 6<br>Gia free Cont., n = 4<br>Gia free LPS 1µg/ml, n = 4<br>(neurons) | Cont., n = 340<br>LPS 0.01 µg/ml, n = 281<br>LPS 0.1 µg/ml, n = 329<br>LPS 1 µg/ml, n = 446<br>Gia free Cont., n = 547<br>Gia free LPS 1 µg/ml, n = 312<br>(trajectories) | $\begin{array}{c} 0.843 \pm 0.078 \\ 0.797 \pm 0.078 \\ 0.993 \pm 0.102 \\ 1.419 \pm 0.096 \\ 0.892 \pm 0.061 \\ 0.965 \pm 0.090 \\ (mean \pm s.e.m.) \end{array}$ | n = trajectories      | D'Agostino & Pearson<br>omnibus normality test<br>followed by Kruskal-Wallis<br>test or two tailed Mann<br>Whitney test | Kruskal-Wallis statistic = $24.65$<br>***P < 0.0001<br>Dunn's multiple comparisons test:<br>Cont. vs Env 0.01, P > 0.9999<br>Cont. vs Env 0.1, P > 0.9999<br>Cont. vs Env 1.0, ***P = 0.0004<br>Glia free:<br>Cont. vs Env P = 0.2824 | Non-gaussian    |
| Fig. S2F | Microglia Area (µm²)                                                                                                         | n = 2<br>(cultures)   |          |                                                                                                                                                      | Cont., n = 1763<br>Env, n = 1420<br>LPS, n = 1279<br>(microglia cells)                                                                                                    | $\begin{array}{c} 404.1 \pm 10.55 \\ 433.5 \pm 13.28 \\ 832.5 \pm 20.30 \\ (mean \pm s.e.m.) \end{array}$                                                          | n = microglia cells   | D'Agostino & Pearson<br>omnibus normality test<br>followed by Kruskal-Wallis<br>test                                    | Kruskal-Wallis statistics = 467.6,<br>***P < 0.0001<br>Dunn's multiple comparisons test:<br>Cont. vs Env, $***P < 0.0001$<br>Cont. vs LPS, $***P < 0.0001$<br>Env vs LPS, $***P < 0.0001$                                             | Non-gaussian    |
| Fig. S2G | Transformation index (a.u.)<br>(cumulative distribution)                                                                     | n = 2<br>(cultures)   |          |                                                                                                                                                      | Cont., n = 1763<br>Env, n = 1420<br>LPS, n = 1279<br>(microglia cells)                                                                                                    | 3.113 ± 2.152-5.029<br>3.042 ± 2.127-4.892<br>4.177 ± 2.773-6.822<br>(median ± IQR)                                                                                | n = microglia cells   | D'Agostino & Pearson<br>omnibus normality test<br>followed by Kruskal-Wallis<br>test                                    | Kruskal-Wallis statistics = 192.2,<br>***P < 0.0001<br>Dum's multiple comparisons test:<br>Cont. v.s fun, $p > 0.9999$<br>Cont. v.s LPS, $***P < 0.0001$<br>Env. v.s LPS, $***P < 0.0001$                                             | Non-gaussian    |
| Fig. S4B | Instantaneous diffusion coefficient<br>(µm²/s)                                                                               | n = 2<br>(cultures)   |          | Dopamine-D1:<br>Cont., n = 24<br>Env, n = 24<br>(neuronal fields)                                                                                    | Dopamine-D1:<br>Cont., n = 14211<br>Env, n = 9129<br>(trajectories)                                                                                                       | 0.0422 ± 0.017-0.087<br>0.0398 ± 0.015-0.084<br>(median ± IQR)                                                                                                     | n = trajectories      | D'Agostino & Pearson<br>omnibus normality test<br>followed by two tailed Mann<br>Whitney test                           | <i>Dopamine-D1:</i><br>Cont. <i>vs</i> Env, ***P = < 0.0001                                                                                                                                                                           | Non-gaussian    |
| Fig. S5C | Tunel positive cells/mm²                                                                                                     | n = 6<br>(animals)    | 2        | Cont., n = 3<br>Env, n = 3<br>(animals)                                                                                                              | DG: Cont.<br>Env<br>Pyr.: Cont.<br>Env<br>SO:Cont.<br>Env                                                                                                                 | 13.95 ± 3.48<br>9.16 ± 1.94<br>23.22 ± 5.60<br>16.21 ± 6.64<br>26.21 ± 7.48<br>27.53 ± 3.42<br>(mean ± s.e.m)                                                      | n = animals           | D'Agostino & Pearson<br>omnibus normality test<br>followed by two-way<br>ANOVA                                          | ANOVA table:<br>Interaction: $F(2,12) = 0.3511$ , $P = 0.7109$<br>Area: $F(2,12) = 4.429$ , $*P = 0.0363$<br>Group: $F(1,12) = 0.6917$ , $P = 0.4218$                                                                                 | Gaussian        |
| Fig. S5E | % Iba1 positive cells                                                                                                        | n = 17<br>(animals)   |          | P7: Cont., n = 4<br>Env, n = 5<br>P65: Cont., n = 3<br>Env, n = 5<br>(animals)                                                                       | P7: Cont., n = 16<br>Env, n = 20<br>P65: Cont., n = 5<br>Env, n = 14<br>(hippocampi)                                                                                      | $\begin{array}{c} 8.265 \pm 0.5509 \\ 10.94 \pm 0.6617 \\ 19.40 \pm 2.319 \\ 16.49 \pm 1.428 \\ (mean \pm s.e.m.) \end{array}$                                     | n = hippocampi        | Two tailed unpaired t-test's                                                                                            | P7: Cont. <i>vs</i> Env, **P = 0.0050<br>P65: Cont. <i>vs</i> Env, P = 0.3070                                                                                                                                                         | Gaussian        |
| Fig. S6B | Time spent in the center<br>(% of total time)                                                                                | n = 32<br>(animals)   |          | Cont., $n = 16$<br>Env, $n = 16$<br>(animals)                                                                                                        | Cont.<br>Env<br>(animals)                                                                                                                                                 | 8.78 ± 4.49<br>9.31 ± 4.87<br>(mean ± SD)                                                                                                                          | n = animals           | Two tailed t -test                                                                                                      | Cont. $\nu s$ Env, P = 0.7533                                                                                                                                                                                                         | Gaussian        |
| Fig. S6C | % of pre pulse inibition                                                                                                     | n = 25<br>(animals)   |          | Cont., n = 11<br>Cont.+ empty vector,<br>n = 14<br>(animals)                                                                                         | +4dB: Cont.<br>Cont. + E. vector<br>+8dB:Cont.<br>Cont. + E. vector<br>+12dB: Cont.<br>Cont. + E. vector<br>(animals)                                                     | $\begin{array}{c} 35.03\pm5.498\\ 33.88\pm3.924\\ 42.98\pm5.699\\ 49.59\pm4.043\\ 49.54\pm6.333\\ 46.29\pm5.919\\ (mean\pm s.e.m) \end{array}$                     | n = animals           | Two-way ANOVA                                                                                                           | ANOVA table:<br>Interaction: F(2,69) = 0.4878, P = 0.6161<br>Prepulse: F(2,69) = 3.912, *P = 0.0246<br>Group: F(1,69) = 0.0292, P = 0.8648                                                                                            | Gaussian        |
| Fig. S6D | % of pre pulse inibition                                                                                                     | n = 24<br>(animals)   |          | Cont. + Clozapine, n = 12<br>Env + Clozapine, n = 12<br>(animals)                                                                                    | +4dB: Cont. + Clozapine<br>Env + Clozapine<br>+8dB:Cont. + Clozapine<br>Env + Clozapine<br>+12dB:Cont. + Clozapine<br>Env + Clozapine<br>(animals)                        | 33.18± 5.232<br>36.65± 6.428<br>51.52± 4.233<br>49.72±6.955<br>57.35± 4.459<br>56.12±7.096<br>(mean± s.e.m.)                                                       | n = animals           | Two-way ANOVA                                                                                                           | ANOVA table:<br>Interaction F(2,66) = 0.1224, P = 0.8850<br>Prepulse F(2,66) = 7.411,**P = 0.0012<br>Group F(1,66) = 0.0009, P = 0.9754                                                                                               | Gaussian        |
| Fig. S6E | % of pre pulse inibition                                                                                                     | n = 24<br>(animals)   |          | Env + Cont. IgG, n = 11<br>Env + GluN1, n = 13<br>(animals)                                                                                          | +4dB: Env + Cont. IgG<br>Env + GluN1<br>+8dB: Env + Cont. IgG<br>Env + GluN1<br>+12dB: Env + Cont. IgG<br>Env + GluN1<br>(animals)                                        | $\begin{array}{c} 34.26\pm 3.790\\ 31.54\pm 3.802\\ 30.59\pm 4.575\\ 41.02\pm 6.530\\ 46.63\pm 5.738\\ 47.08\pm 6.860\\ (mean\pm s.e.m) \end{array}$               | n = animals           | Two-way ANOVA                                                                                                           | ANOVA table:<br>Interaction: F(2,66) = 0.8326, P = 0.4377<br>Prepulse: F(2,66) = 3.858, ***P = 0.026<br>Group: F(1,66) = 0.3957, P = 0.5315                                                                                           | Gaussian        |

| Suppl.<br>Figures | Parameters               | Sample size                                                    | Nr. Rep.<br>exp. | Sample collection                                                                     | Sample collection-<br>Conditions                                                                                                                                                                                    | Values                                                                                                                                                                                                                                                                                                                    | Statistical (n) value Statistical test(s) |                                                                                               | P-value (alpha = 0.05)                                                                                                                                                                                                                                                                                                                     | Assumptions<br>and corrections                                                                         |
|-------------------|--------------------------|----------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| 8                 |                          |                                                                |                  |                                                                                       |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                           |                                           |                                                                                               |                                                                                                                                                                                                                                                                                                                                            |                                                                                                        |
| Fig. S7E          | % of pre pulse inibition | n = 24<br>(animals)                                            |                  | Cont., n = 12<br>Env, n = 12<br>(animals)                                             | +4dB: Cont.<br>Env<br>+8dB:Cont.<br>Env<br>+12dB: Cont.<br>Env<br>(animals)                                                                                                                                         | $\begin{array}{c} 49.08 \pm 3.028 \\ 30.27 \pm 5.516 \\ 49.06 \pm 4.172 \\ 43.04 \pm 5.280 \\ 63.50 \pm 3.631 \\ 51.32 \pm 3.627 \\ (mean \pm s.e.m.) \end{array}$                                                                                                                                                        | n = animals                               | Two-way ANOVA, followed<br>by Bonferroni's multiple<br>comparisons test                       | ANOVA table:<br>Interaction F(2,66) = 1.10, P = 0.33<br>Prepulse F(2,66) = 8.709,***P = 0.0004<br>Group F(1,66) = 12.31, ***P = 0.0008 Bonferroni's<br>multiple comparisons test:<br>+4dB Cont. vs Env **P = 0.0088<br>+8dB Cont. vs Env P = 0.6946<br>+12dB Cont. vs Env P = 0.1415                                                       | Gaussian                                                                                               |
| Fig. S7F          | % of pre pulse inibition | n = 25<br>(animals)                                            |                  | Cont. IgG, n = 12<br>Cont. + Neut. Ab, n = 13<br>(animals)                            | +4dB: Cont.<br>Cont. + Neut. Ab<br>+8dBC:Ont.<br>Cont. + Neut. Ab<br>+12dB: Cont.<br>Cont. + Neut. Ab<br>(animals)                                                                                                  | $\begin{array}{c} 49.08\pm3.028\\ 38.61\pm6.501\\ 49.06\pm4.172\\ 47.91\pm6.240\\ 63.50\pm3.631\\ 59.18\pm3.817\\ (mean\pm s.e.m.)\end{array}$                                                                                                                                                                            | n = animals                               | Two-way ANOVA                                                                                 | ANOVA table:<br>Interaction: $F(2,69) = 0.4786$ , $P = 0.6217$<br>Prepulse: $F(2,69) = 7.010$ , ** $P = 0.0017$<br>Group: $F(1,69) = 1.806$ , $P = 0.1833$                                                                                                                                                                                 | Gaussian                                                                                               |
| Fig. S8B          | Expression (O.D.)        | Env neg. n = 6<br>Env pos. n = 7<br>(patients,<br>individuals) |                  | Env neg. n = 6<br>Env pos. n = 7<br>(patients, individuals)                           |                                                                                                                                                                                                                     | $\begin{array}{c} 1.000 \pm 0.299 \\ 2.129 \pm 0.955 \\ 1.000 \pm 0.079 \\ 1.414 \pm 0.462 \\ 1.000 \pm 0.144 \\ 1.438 \pm 0.285 \\ 1.000 \pm 0.530 \\ 0.059 \pm 0.059 \\ 1.000 \pm 1.000 \\ 82.29 \pm 24.41 \\ 1.000 \pm 0.267 \\ 0.792 \pm 0.222 \\ 1.000 \pm 0.173 \\ 1.060 \pm 0.209 \\ (mean \pm s.e.m) \end{array}$ | n = patients                              | Two tailed unpaired t-test's                                                                  | CRP:<br>Env. neg. vs Env. pos., P = 0,2957<br>TNF-a:<br>Env. neg. vs Env. pos., P = 0,4088<br>IL-6:<br>Env. neg. vs Env. pos., P = 0,2193<br>IL-1a:<br>Env. neg. vs Env. pos., P = 0,0817<br>IL-1b:<br>Env. neg. vs Env. pos., *P = 0,0158<br>INF-y:<br>Env. neg. vs Env. pos., P = 0,5575<br>IL-10:<br>Env. neg. vs Env. pos., P = 0,8313 | Gaussian,<br>Wekh's<br>correction when<br>necessary                                                    |
| Fig. S8E          | Cluster Area (µm²)       | Env neg, n = 5<br>Env pos. n = 6<br>(patients,<br>individuals) | 3-4              | Env neg., (n = 3-6)<br>Env pos., (n = 3-6)<br>(neurons/patient-<br>sample/experiment) | GluA1 : Env neg., n = 57<br>Env pos., n = 43<br>GluN1 : Env neg., n = 56<br>Env pos., n = 61<br>D1 : Env neg., n = 54<br>Env pos., n = 61<br>GABA <sub>22</sub> : Env neg., n = 59<br>Env pos., n = 68<br>(neurons) | $\begin{array}{c} 1.000 \pm 0.099 \\ 0.940 \pm 0.114 \\ 1.000 \pm 0.046 \\ 0.886 \pm 0.034 \\ 1.000 \pm 0.070 \\ 0.913 \pm 0.078 \\ 1.000 \pm 0.054 \\ 0.150 \pm 0.073 \\ (mean \pm s.e.m.) \end{array}$                                                                                                                  | n = neurons                               | D'Agostino & Pearson<br>omnibus normality test<br>followed by Two tailed<br>unpaired t-test's | GhA1:<br>Env. neg. vs Env. pos., P = 0.3946<br>GhN1:<br>Env. neg. vs Env. pos., *P = 0.0479<br>D1:<br>Env. neg. vs Env. pos., P = 0.2211<br>GABAy2:<br>Env. neg. vs Env. pos., P = 0.2457                                                                                                                                                  | Non gaussian<br>data was<br>transformed to<br>gaussian<br>distribution before<br>t-test by<br>x=Log(x) |

| Table S3. Antibodi | es, Products and | Constructs |
|--------------------|------------------|------------|
|--------------------|------------------|------------|

| Antibodies                                                       | Application                        | Epitope (Immunogen)                                                                                                      | Host<br>(Formulation)                                                  | Clone    | Supplier                                                                           | Validation                                                              |
|------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| GFP Tag<br>(1:500)                                               | ICC, IHC                           | The GFP was isolated directly from<br>the jellyfish Aequorea victoria                                                    | Polyclonal Rabbit                                                      |          | Thermo Fisher<br>Scientific, (A6455,<br>Lot:1736965,<br>1826342)                   | ELISA, ICC, IF, IHC<br>(supplier)                                       |
| <b>GFP Tag</b><br>(1:1000)                                       | Western Blot                       | Mixture of two clones (7.1 and 13.1)                                                                                     | Monoclonal Mouse                                                       | 7.1/13.1 | Roche (Mouse ,<br>(11814460001,<br>Lot:11751700 )                                  | Western blot, ion-<br>exchange HPLC<br>analyses (supplier)              |
| <b>GluA2</b><br>(1:100)                                          | WES                                | 834-883AA (cytoplasmic C-<br>terminus), L21/32                                                                           | Polyclonal Rabbit,<br>(Affinity purified on<br>immobilized<br>antigen) |          | Neuromab, USA<br>(75-002, Lot:455-<br>6JD-81c)                                     | Western blot analysis,<br>IHC, Electronmic.<br>(supplier)               |
| <b>GluN1</b> (0.8μg/μl)                                          | Intra hippocampal<br>injection     | 385-399AA (extracellular)                                                                                                | Polyclonal Rabbit,<br>(Affinity purified on<br>immobilized<br>antigen) |          | Alomone labs,<br>Jerusalem, Israel<br>(AGC-001,<br>Lot:AN0302)                     | Western blot analysis<br>(supplier)                                     |
| <b>GluN2A</b><br>(1:400)                                         | Qdot-experiment                    | 41-53AA (extracellular)                                                                                                  | Polyclonal Rabbit                                                      |          | Alomone labs,<br>(AGC-002,<br>Lot:AN0402,<br>AN0502)                               | Western blot analysis<br>(supplier)                                     |
| GluN2A<br>(1:200)                                                | WES, IHC                           | 41-53AA (extracellular)                                                                                                  | Polyclonal Rabbit                                                      |          | Agrobio, specific<br>custom-made                                                   | Western blot, ICC<br>(in lab see Fig. S6)                               |
| GluN2B<br>(1:200)                                                | Qdot-experiment                    | 323-337AA (extracellular)                                                                                                | Polyclonal Rabbit                                                      |          | Alomone labs,<br>(AGC-003,<br>Lot:AN1202,<br>AG0540)                               | Western blot analysis<br>(supplier)                                     |
| GluN2B<br>(1:250)                                                | WES, IHC                           | 323-337AA (extracellular)                                                                                                | Polyclonal Rabbit                                                      |          | Agrobio, specific<br>custom-made                                                   | Western blot, ICC<br>(in lab see, Fig. S6)                              |
| GN_ENV_01<br>(block 30µg/ml,<br>staining 1:200)                  | ELISA, IHC,<br>Neutralization      | Targeting an epitope within the<br>ectodomain of MSRV-Env protein                                                        | Monoclonal Mouse                                                       | 13H5/A5  | Geneuro,Geneva,<br>Switzerland<br>(GN_01,<br>Lot:060.13144.1)                      | Western blot , ELISA<br>(supplier)                                      |
| GN_ENV_03<br>(block 30µg/ml,<br>neutralizing in vivo<br>30mg/kg) | Neutralization                     | Targeting an epitope (different from<br>GN_01) within the ectodomain of<br>MSRV-Env protein                              | Monoclonal Mouse                                                       |          | Geneuro, (GN_03,<br>Lot:SQ18AK01104<br>, SQ17AK01201)                              | Western blot , ELISA<br>(supplier)                                      |
| GN_Gag_06<br>(control in vivo<br>30ma/ka)                        | Control-<br>Neutralization         | Targeting an epitope within the<br>MSRV-Gag protein                                                                      | Monoclonal Mouse                                                       |          | Geneuro, (GN_03,<br>Lot:SQ18AK01102<br>. SQ17AK01410)                              | Western blot , ELISA<br>(supplier)                                      |
| MsxGlutamine<br>(1:1000)                                         | ICC, IHC                           | Glutamine synthetase                                                                                                     | Monoclonal Mouse<br>IgG2a                                              | GS-6     | Merck Millipore,<br>(MAB302, Lot:<br>2266470)                                      | Western Blot (supplier)                                                 |
| <b>Iba1</b><br>(1:1000)                                          | ICC, IHC                           | lba1 carboxy-terminal sequence                                                                                           | Polyclonal Rabbit                                                      |          | WAKO, Neuss,<br>Germany (#019-<br>19741, Lot:<br>WEE4506,<br>SAE6921)              | ICC, Western Blot<br>(supplier)                                         |
| <b>IL-1R</b><br>(1:800)                                          | Western Blot,<br>Immunopersipition | C-terminus of IL-1RI of mouse origin                                                                                     | Polyclonal Rabbit                                                      |          | Santa Cruz,<br>Dallas, Texas,<br>USA (M-20, #sc-                                   | ICC, Western Blot<br>(supplier)                                         |
| <b>MAP-2</b><br>(1:500)                                          | ICC, IHC                           | Projection domain sequence of<br>recombinant human MAP2, amino<br>acids 377-1505.                                        | Polyclonal Chicken<br>lgY                                              |          | EnCor<br>Biotechnology<br>Inc.,Gainesville,<br>USA (CPCA-<br>MAP2, Lot:2-<br>1102) | ICC, Western Blot<br>(supplier)                                         |
| <b>MBP</b><br>(1:1000)                                           | IHC                                | Reacts with the sequence Ala-Ser-<br>Asp-Tyr-Lys-Ser in position 131-136<br>of the classic human myelin basic<br>protein | Monoclonal Mouse<br>IgG2b kappa                                        | SMI 99   | BioLegend Way,<br>San Diego, CA,<br>USA (#808403)                                  | IHC (supplier)                                                          |
| Neutral. IL-6<br>(1µg/ml)                                        | Neutralization                     | <i>E-coli</i> derived recombinant IL-6<br>Phe25-Thr211, Accession # P20607                                               | Polyclonal Goat                                                        |          | R&D Systems<br>(AF506, Lot:<br>BC20615101)                                         | ICC, Western Blot,<br>Neutralization (supplier)                         |
| <b>Neutral. TNF-α</b><br>(1µg/ml)                                | Neutralization                     | <i>E-coli</i> derived recombinant TNF-<br>alpha Leu80-leu235                                                             | Polyclonal Goat                                                        |          | R&D Systems (AF-<br>510-NA, Lot:<br>X10715081)                                     | ICC, Western Blot,<br>Neutralization (supplier)                         |
| <b>PSD-95</b><br>(1:250)                                         | IHC                                | Purified recombinant rat PSD-95                                                                                          | Monoclonal Rabbit                                                      | 7E3-1B8  | Thermo Fisher<br>Scientific, (#MA1-<br>046)                                        | Thermo scientific<br>Cellomics High Content<br>Screening kit (supplier) |

| Antibodies                                                                | Application                                           | Epitope (Immunogen)                                        | Host<br>(Formulation)                                              | Clone                           | Supplier                                                           | Validation                                                                                                               |
|---------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| <b>PSD-95</b><br>(1:50)                                                   | WES                                                   | Synthetic peptide corresponding to residues of human PSD95 | Polyclonal Rabbit                                                  |                                 | Cell signaling,<br>Danvers, USA,<br>(#2507, Lot: 2)                | Thermo scientific<br>Cellomics High Content<br>Screening kit (supplier)                                                  |
| Rabbit IgG<br>(0.8µg/µl)                                                  | Intra hippocampal<br>injection                        | Gamma Immunoglobins Heavy and<br>Light chains              | Polyclonal Goat<br>IgG, highly cross-<br>absorbed                  |                                 | Novex, (A16112,<br>Lot:36-96-032615)                               |                                                                                                                          |
| TLR-4<br>(block 20µg/ml,<br>staining 1:100)                               | ICC,<br>Neutralization                                | Anti-human CD284 (TLR4)                                    | Monoclonal Mouse<br>IgG2a, kappa<br>(Functional grade<br>purified) | HTA125                          | Affymetrix,Wien,<br>Austria (#16-9917-<br>82, Lot:E06988-<br>1633) | Flow cytometric analysis<br>of normal human<br>peripheral blood cells<br>(supplier), ICC (in lab)                        |
| Secondary<br>Antibodies                                                   | Application                                           | Epitope (Immunogen)                                        | Host<br>(Formulation)                                              | Clone                           | Supplier                                                           | Validation                                                                                                               |
| Alexa Fluor® 488<br>(1:500)                                               | ICC, IHC                                              | Gamma Immunoglobins Heavy and<br>Light chains from Rabbit  | Polyclonal Goat                                                    |                                 | ThermoFisher,<br>(A11008,<br>Lot:982425)                           | Flow Cytometry, ICC, IF,<br>IHC, Certificate of<br>analysis of absorption/<br>fluorecence and ICC<br>provided (supplier) |
| Alexa Fluor® 488<br>(1:500)                                               | ICC, IHC                                              | Gamma Immunoglobins Heavy and<br>Light chains from Mouse   | Polyclonal Goat                                                    |                                 | ThermoFisher,<br>(A11001,<br>Lot:1664729)                          | Flow Cytometry, ICC, IF,<br>IHC, Certificate of<br>analysis of absorption/<br>fluorecence and ICC<br>provided (supplier) |
| Alexa Fluor® 568<br>(1:500)                                               | ICC, IHC                                              | Gamma Immunoglobins Heavy and<br>Light chains from Rabbit  | Polyclonal Goat                                                    |                                 | ThermoFisher,<br>(A11011,<br>Lot:1670154)                          | Flow Cytometry, ICC, IF,<br>IHC, Certificate of<br>analysis of absorption/<br>fluorecence and ICC<br>provided (supplier) |
| Alexa Fluor® 568<br>(1:500)                                               | ICC, IHC                                              | Gamma Immunoglobins Heavy and<br>Light chains from Mouse   | Polyclonal Goat                                                    |                                 | ThermoFisher,<br>(A11004,<br>Lot:927620)                           | Flow Cytometry, ICC, IF,<br>IHC, Certificate of<br>analysis of absorption/<br>fluorecence and ICC<br>provided (supplier) |
| Alexa Fluor® 647<br>(1:500)                                               | ICC, IHC                                              | Gamma Immunoglobins Heavy and<br>Light chains from Mouse   | Polyclonal Donkey                                                  |                                 | ThermoFisher,<br>(A37571,<br>Lot:1252811)                          | Flow Cytometry, ICC, IF,<br>IHC, Certificate of<br>analysis of absorption/<br>fluorecence and ICC<br>provided (supplier) |
| Alexa Fluor® 647<br>(1:500)                                               | ICC, IHC                                              | Gamma Immunoglobins Heavy and<br>Light chains from Chicken | Polyclonal Goat                                                    |                                 | ThermoFisher,<br>(A21449)                                          | Flow Cytometry, ICC, IF,<br>IHC, Certificate of<br>analysis of absorption/<br>fluorecence and ICC<br>provided (supplier) |
| Peroxidase<br>AffiniPure<br>Donkey Anti-<br>Mouse IgG (H+L)<br>(1:10 000) | Western Blot                                          | Mouse IgG (H+L)                                            | Polyclonal Donkey                                                  |                                 | Jackson<br>ImmunoResearch<br>(#715-035-150,<br>Lot: 129117)        | Immuno-electrophoresis<br>and/or ELISA provided<br>(supplier)                                                            |
| Qdot® 655,<br>F(ab')2 Fragment<br>(1:10000)                               | Qdot-experiment                                       | Gamma Immunoglobins Heavy and<br>Light chains from Rabbit  | Polyclonal Goat                                                    |                                 | ThermoFisher,<br>(Q11422MP)                                        | IF (supplier), Groc et al.<br>2006, Specificity was<br>checked for each batch<br>on a routine basis (live<br>ICC in lab) |
| Product                                                                   | Distributer                                           |                                                            | Protein                                                            | Construct                       | Tagg                                                               | Provider                                                                                                                 |
| Bicuculline                                                               | Tocris (#0131,<br>Batch:34)                           |                                                            | Dopamine-<br>receptor                                              | D1-CFP                          | Cyan Fluorescent<br>Protein (CFP)                                  | Gift from D. Choquet<br>(IINS, Bordeaux)                                                                                 |
| Clozapine                                                                 | Abcam<br>(ab120019,<br>Lot:APN10083-1-<br>1)          |                                                            | Empty vector                                                       | pcDNA3                          |                                                                    | In Lab                                                                                                                   |
| D-AP5                                                                     | Tocris (#0106,<br>Batch:73)                           |                                                            | GABA-γ <sup>2</sup>                                                | Gabaar y2 phluorin              | Super Ecliptic<br>pHluorin (SEP)                                   | Gift from S.Levi<br>(Kittlerprims lab)                                                                                   |
| Envelope-protein                                                          | PX Therapeutics<br>(Grenoble,<br>France)              |                                                            | GCamP3                                                             | N1-LcK-GCaMP3                   |                                                                    | Gift from Khakh Lab<br>(UCLA, USA)                                                                                       |
| Glycine                                                                   | Euromedex (26-<br>128-6405-C, Lot:<br>1063521/165246) |                                                            | GCamP6                                                             | pZac2.1 GfaABC1D<br>Lck-GCaMP6f |                                                                    | Gift from Khakh Lab                                                                                                      |
| IL-1β                                                                     | R&D Systems<br>(501-RL, Lot:<br>QZ2514101)            |                                                            | GFP                                                                | pEGFP-C1                        |                                                                    | Clontech, California,<br>USA                                                                                             |

| Product                  | Distributer                                              | Protein  | Construct                                                           | Tagg          | Provider                                                         |
|--------------------------|----------------------------------------------------------|----------|---------------------------------------------------------------------|---------------|------------------------------------------------------------------|
| IL-ra                    | R&D Systems<br>(480-RM, Lot:<br>U11014081,<br>U11815071) | GluA1    | HA SEP<br>GluA1(pRK5)                                               | SEP           | Gift from D. Choquet                                             |
| LPS (serotype<br>O26:B6) | Sigma,<br>(L5543,<br>Lot:123M4052V)                      | GluN1    | GluN1-SEP, N-<br>Term (JN)                                          | SEP           | Gift from D. Choquet                                             |
| (+)-MK 801<br>maleate    | Tocris (#0924,<br>Batch:10)                              | Homer    | pcDNA3.1 -<br>Homer1c                                               | DsRed dimeric | In Lab                                                           |
| NBQX                     | Tocris (#0373,<br>Batch:14)                              | MSRV-Env | phCMV-MSRV Env<br>(clone pV14, AF<br>331500)                        |               | Geneuro,Geneva,<br>Switzerland                                   |
| Nifedipine               | Tocris (#1075,<br>Batch:2)                               | shTLR-4  | Small-hairpin RNA<br>(shRNA)-encoding<br>TLR-4 supression<br>vector |               | Gift from P. Küry<br>(Heinrich-Heine-<br>University, Düsseldorf) |
| Picrotoxin               | Tocris (#1128,<br>Batch:8)                               |          |                                                                     |               |                                                                  |
| PP2                      | Calbiochem<br>(#529576)                                  |          |                                                                     |               |                                                                  |
| Tetrodotoxin             | Tocris (#1078,<br>Batch:47)                              |          |                                                                     |               |                                                                  |
| TUNEL-kit                | Promega<br>(#G7362+1, Lot:<br>0000222644+0000<br>223921) |          |                                                                     |               |                                                                  |