Zn-Mediated Decarboxylative Carbagermatranation of Aliphatic

N-Hydroxyphthalimide Esters: Evidence for alkylzinc Intermediate

Wei-Tao Jiang, Shuo Yang, Meng-Yu Xu, Xiu-Ying Xie and Bin Xiao*

Department of Chemistry, University of Science and Technology of China, Hefei 230026, China

Supporting Information

List of Contents

1. General information	2
1.1 Reagent information	2
1.2 Analytical information	.2
2. Experimental Procedure and Compound Characterization Data for Table 1-3	2
2.1 Activation of Zn powder	2
2.2 Condition optimization	3
2.3 Preparation of alkyl carboxylic acid NHP esters and characterization	.3
2.4 Procedure for decarboxylative carbagermatranation characterization1	.2
3. Experimental Procedure and Compound Characterization Data for scheme 2-62	25
3.1 Scheme 2. Radical probe experiments2	25
3.2 Scheme 3. Ruling-out of radical involvement in Ge-C bond formation step2	27
3.3 Scheme 4. Interference experiment with Ni catalyst2	28
3.4 Scheme 5. Comparison of ¹ H-NMR spectra of alkyl zinc reagent of our strategy and classic alkyl zinc regent	y 29
3.5 Scheme 6. Br/I-containing substrates and orthogonal experiment with Suzuki	
cross-coupling reaction	\$2
4. Reference	\$7
5. NMR spectra	39

1. General information

1.1 Reagent information

All of the reagents were purchased from commercial source and used without further purification unless otherwise noted. DMF was purchased from Sigma-Aldrich. THF was freshly distilled before used. Zn powder was activated before used. Silica gel (300-400 mesh, pH = 6-7, HG/T2354-2010) was purchased from Branch Qingdao Haiyang Chemical Co., Ltd. Reagents and solvents were used as received unless otherwise noted.

1.2 Analytical information

¹H-NMR spectra were recorded on 400 MHz spectrometers. Chemical shifts of ¹H-NMR spectra were reported in parts per million relative to tetramethylsilane ($\delta = 0$) or the residual solvent peak for DMF ($\delta = 8.03$ ppm), CD₂Cl₂ ($\delta = 5.32$ ppm). Data for ¹H-NMR were reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz), and integration. ¹³C-NMR spectra were recorded on 101 MHz spectrometers. Chemical shifts were reported in parts per million relative to the solvent resonance as the internal standard (CDCl₃, δ 77.2 ppm; C₆D₆, δ 128.1 ppm; (CD₃)₂CO, δ 30.0 ppm & δ 206.3 ppm; CD₂Cl₂ δ 53.8 ppm). Data for ¹³C-NMR are reported in terms of chemical shift (δ ppm), multiplicity, and coupling constant (Hz). High-resolution mass spectra (HRMS) were recorded on an Acquity UPLC-Xevo G2 QTof instrument with ESI mode unless otherwise stated. Gas chromatographic (GC) analysis was acquired on a Shimadzu GC-2014 Series GC system equipped with a flame-ionization detector. Organic solutions were concentrated under reduced pressure on a Buchi rotary evaporator. Chromatographic purification of products was accomplished using column chromatography on silica gel.

2. Experimental Procedure and Compound Characterization Data for Table 1-3

2.1 Activation of Zn powder

To a 100 mL round-bottom flask was charged with 10 g Zn powder followed by the addition of 20 mL HCl (5% aq), stirred at room temperature for 2 hours, then filtered and washed with H₂O, ethanol and ethyl ether three times respectively, then dried under vacuum at 120 °C for 2 hours and stored under argon atmosphere.

2.2 Condition optimization

To an oven-dried screw-cap tube equipped with stir bar was charged with 0.1 mmol $GeBr^1$, corresponding NHP ester and Zn powder. The tube was vacuumed and backfilled with argon for three cycles. Solvent was added through syringe and the tube was sealed with a teflon stopper and stirred at indicated temperature for indicated time. The reaction was quenched with NH₄Cl (sat, aq), extracted with ethyl acetate. Organic layer was separated, dried over Na₂SO₄ and concentrated under reduced pressure. 0.1 mmol mesitylene was added as internal standard for NMR analysis.

Ge Br	+ Alkyl O N Zn powder (2.0 equiv.) DMF (0.2 M), RT, 12 h Br 2.0 equiv. 2	Ge Alkyl
Entry	Variations	Yield [%]
Alkyl = ⁿ Pr		
1	none	99
2	Mn powder instead of Zn powder	0
3	Mg powder instead of Zn powder	0
4	TDAE instead of Zn powder	0
5	THF instead of DMF	57
6	DMAc instead of DMF	56
7	1.0 equiv. of NHPI ester was used	42
8	1.5 equiv. of NHPI ester was used	65
Alkyl = ^s Bu		
9	none	<5
10	60 °C instead of RT	32
11	DMAc instead of DMF, 60 °C	8
12	THF instead of DMF, 60 °C	68
13	THF instead of DMF, 60 ^o C, 18 h	70
14	THF instead of DMF, 60 °C, 18 h, 3.0 equiv. Zn pow	der 80

2.3 Preparation of alkyl carboxylic acid NHP esters and characterization

2a-c, **2e-f**, **2q-ac**, **2af-aj**, **2am-2ap**, **2as** and **2au** were synthesized according reported literatures.²⁻¹²

2d, 2g-p, 2ad-ae, 2ak-al, 2aq-ar, 2at and 2av were synthesized as follow:

General procedure A:

To a solution of NHPI (N-Hydroxyphthalimide, 1.1 equiv.), alkyl carboxylic acid (1.0 equiv.) and DMAP (4-Dimethylaminopyridine, 10 mol%) in DCM (0.2 M) was added DCC (Dicyclohexylcarbodiimide, 1.1 equiv.). The resulting mixture was stirred at room temperature and monitored by TLC technique. After the alkyl carboxylic acid was consumed, the mixture was filtered through a pad of silica gel, and filtrate was collected and concentrated under reduced pressure. Further purification can be accomplished by silica gel column chromatography or recrystallization as needed.

1,3-dioxoisoindolin-2-yl (S)-3-methylpentanoate (2d). 10 mmol (S)-3methylpentanoic acid¹³ was applied in the general procedure A. Purified by silica gel column chromatography using petroleum ether/ethyl acetate = 8/1 as eluent. Isolated in 85% yield as 2.24 g white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.90 – 7.86 (m, 2H), 7.81 – 7.76 (m, 2H), 2.70 – 2.62 (m, 1H), 2.50 – 2.42 (m, 1H), 2.08 – 1.98 (m, 1H), 1.56 – 1.45 (m, 1H), 1.42 – 1.31 (m, 1H), 1.09 (d, *J* = 6.7 Hz, 3H), 0.96 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.2, 162.1, 134.8, 129.0, 124.0, 38.0, 32.3, 29.3, 19.2, 11.3.

HRMS (ESI) *m/z* ([M+H]⁺) Calcd for C₁₄H₁₆NO₄: 262.1079; Found: 262.1101.

1,3-dioxoisoindolin-2-yl 4-(naphthalen-2-yloxy)butanoate (2g). 10 mmol 4-(naphthalen-2-yloxy)butanoic acid¹⁴ was applied in the general procedure A. Purified by silica gel column chromatography using petroleum ether/ethyl acetate = 4/1 as eluent. Isolated in 90% yield as 3.37 g white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.89 – 7.83 (m, 2H), 7.78 – 7.70 (m, 5H), 7.46 – 7.40 (m, 1H), 7.35 – 7.30 (m, 1H), 7.19 – 7.14 (m, 2H), 4.19 (t, *J* = 6.0 Hz, 2H), 2.95 (t, *J* = 7.3 Hz, 2H), 2.38 – 2.27 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 169.4, 161.9, 156.6, 134.8, 134.5, 129.5, 129.0, 128.9, 127.6, 126.8, 126.4, 124.0, 123.7, 118.8, 106.7, 66.0, 27.9, 24.5.

HRMS (ESI) *m/z* ([**M**+**Na**]⁺) Calcd for C₂₂H₁₇NNaO₅: 398.1004; Found: 398.1006.

1,3-dioxoisoindolin-2-yl 2-methoxyacetate (2h). 5 mmol 2-methoxyacetic acid was applied in the general procedure A. Purified by recrystallization from DCM/MeOH. Isolated in 66% yield as 775 mg white solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.92 – 7.87 (m, 2H), 7.84 – 7.79 (m, 2H), 4.46 (s, 2H), 3.55 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.8, 161.7, 135.0, 128.8, 124.1, 67.7, 59.9. HRMS (ESI) *m/z* ([M+Na]⁺) Calcd for C₁₁H₉NNaO₅: 258.0378; Found: 258.0383.

Tert-butyl (1,3-dioxoisoindolin-2-yl) succinate (2i). 28.5 mmol 4-(tert-butoxy)-4oxobutanoic acid was applied in the general procedure A. Purified by recrystallization from DCM/MeOH. Isolated in 85% yield as 7.8 g white solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.91 – 7.86 (m, 2H), 7.82 – 7.77 (m, 2H), 2.98 (t, *J* = 7.0 Hz, 2H), 2.70 (t, *J* = 7.0 Hz, 2H), 1.48 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 170.2, 168.9, 161.8, 134.9, 128.9, 124.1, 81.5, 30.0, 28.0, 26.6.

HRMS (ESI) *m/z* ([**M**+**Na**]⁺) Calcd for C₁₆H₁₇NNaO₆: 342.0954; Found: 342.0955.

1,3-dioxoisoindolin-2-yl ethyl glutarate (2j). To a solution of 285mg (1.6 mmol) ethyl 5-chloro-5-oxopentanoate in 8 mL DCM was added 287 mg (1.76 mmol) NHPI, followed by addition of 0.244 mL (1.76 mmol) Et₃N over 10 min. The resulting mixture was then stirred at room temperature overnight. After the reaction was finished, the mixture was concentrated under reduced pressure to give crude product, which was purified by silica gel column chromatography using petroleum ether/ethyl acetate = 4/1 as eluent to give 305 mg white solid in 62% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.92 – 7.87 (m, 2H), 7.83 – 7.77 (m, 2H), 4.16 (q, *J* = 7.1 Hz, 2H), 2.78 (t, *J* = 7.3 Hz, 2H), 2.50 (t, *J* = 7.3 Hz, 2H), 2.17 – 2.05 (m, 2H), 1.28 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.6, 169.2, 162.0, 134.9, 129.0, 124.1, 60.7, 32.8, 30.2, 20.0, 14.3.

HRMS (ESI) *m/z* ([M+Na]⁺) Calcd for C₁₅H15NNaO₆: 328.0797; Found: 328.0794.

1,3-dioxoisoindolin-2-yl 6-((tert-butoxycarbonyl)amino)hexanoate (2k). 10 mmol 6-((tert-butoxycarbonyl)amino)hexanoic acid was applied in the general procedure A. Purified by silica gel chromatography using petroleum ether/ethyl acetate = 2/1 as eluent. Isolated in 70% yield as 2.63 g white solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.94 – 7.86 (m, 2H), 7.85 – 7.77 (m, 2H), 4.67 (s, 1H), 3.15 (s, 2H), 2.68 (t, *J* = 7.3 Hz, 2H), 1.86 – 1.77 (m, 2H), 1.60 – 1.40 (m, 13H).

¹³**C NMR** (101 MHz, CDCl₃) δ 169.6, 162.1, 156.1, 134.9, 129.0, 124.1, 79.2, 40.3, 31.0, 29.6, 28.5, 26.0, 24.4.

HRMS (ESI) *m/z* ([M+Na]⁺) Calcd for C₁₉H₂₄N₂NaO₆: 399.1532; Found: 399.1535.

1,3-dioxoisoindolin-2-yl 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentanoate (2l). To a 25 mL oven-dried screw-cap tube was charged with 0.05 mmol (46.2 mg) Rh(PPh₃)₃Cl. The tube was then vacuumed and backfilled with argon for three cycles. 5 mL THF, 5 mmol **2f** in 2 mL DCM and 5 mmol (0.725 mL) H-Bpin was added through syringe sequentially. The resulting mixture was then stirred at 0 °C, allowed to warm up slowly to room temperature overnight. After the reaction was complete, the mixture was concentrated under reduced pressure to give crude product, which was purified by silica gel column chromatography using petroleum ether/ethyl acetate = 4/1 as eluent to give 600 mg white solid in 32% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.91 – 7.86 (m, 2H), 7.82 – 7.76 (m, 2H), 2.67 (t, *J* = 7.6 Hz, 2H), 1.85 – 1.75 (m, 2H), 1.61 – 1.52 (m, 2H), 1.25 (s, 12H), 0.84 (t, *J* = 7.8 Hz, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 169.7, 162.1, 134.8, 129.0, 124.0, 83.2, 30.9, 27.2, 24.9, 23.6.

HRMS (ESI) *m/z* ([**M**+**Na**]⁺) Calcd for C₁₉H₂₄BNNaO₆: 396.1594; Found: 396.1603.

1,3-dioxoisoindolin-2-yl hept-6-ynoate (2m). 5 mmol hept-6-ynoic acid was applied in the general procedure A. Purified by silica gel column chromatography using petroleum ether/ethyl acetate = 4/1 as eluent. Isolated in 90% yield as 1.23 g white solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.91 – 7.85 (m, 2H), 7.83 – 7.76 (m, 2H), 2.75 – 2.68 (m, 2H), 2.31 – 2.23 (m, 2H), 2.00 – 1.98 (m, 1H), 1.97 – 1.87 (m, 2H), 1.74 – 1.64 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 169.4, 162.0, 134.9, 128.9, 124.0, 83.6, 69.1, 30.5, 27.4, 23.7, 18.1.

HRMS (ESI) *m/z* ([M+Na]⁺) Calcd for C₁₅H₁₃NNaO₄: 294.0742; Found: 294.0743.

1,3-dioxoisoindolin-2-yl 3-(2,4-dichlorophenyl)propanoate (2n). 4.56 mmol 3-(2,4-dichlorophenyl)propanoic acid was applied in the general procedure A. Purified by recrystallization from DCM/MeOH. Isolated in 84% yield as 1.39g white solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.90 – 7.84 (m, 2H), 7.82 – 7.76 (m, 2H), 7.37 (s, 1H), 7.29 – 7.25 (m, 1H), 7.23 – 7.19 (m, 1H), 3.17 (t, *J* = 7.5 Hz, 2H), 2.99 (t, *J* = 7.5 Hz, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.6, 161.9, 135.3, 134.9, 134.6, 133.4, 131.6, 129.5, 128.9, 127.5, 124.1, 30.6, 28.1.

HRMS (ESI) *m/z* ([M+Na]⁺) Calcd for C₁₇H₁₁NNaO₄: 385.9963; Found: 385.9954.

1,3-dioxoisoindolin-2-yl 6-chlorohexanoate. (20). 6.67 mmol of 6-chlorohexanoic acid was applied in the general procedure A. Purified by recrystallization from DCM/MeOH. Isolated in 81% yield as 1.6 g white solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.92 – 7.85 (m, 2H), 7.83 – 7.77 (m, 2H), 3.62 – 3.53 (m, 2H), 2.76 – 2.66 (m, 2H), 1.90 – 1.77 (m, 4H), 1.66 – 1.54 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 169.5, 162.1, 134.9, 129.0, 124.1, 44.7, 32.2, 30.9, 26.2, 24.1.

HRMS (**ESI**) *m/z* ([**M**+**H**]⁺) Calcd for C₁₄H₁₅ClNO₄: 296.0690; Found: 296.0691.

1,3-dioxoisoindolin-2-yl 6-hydroxyhexanoate (2p). 10 mmol of 6-hydroxyhexanoic acid¹⁵ was applied in the general procedure A. Purified silica gel column chromatography using petroleum ether/ethyl acetate = 1/1 as eluent. Isolated in 27% yield as 750 mg white solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.91 – 7.86 (m, 2H), 7.83 – 7.78 (m, 2H), 3.67 (t, *J* = 6.3 Hz, 2H), 2.70 (t, *J* = 7.3 Hz, 2H), 2.30 (s, 1H), 1.90 – 1.77 (m, 2H), 1.70 – 1.48 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 169.6, 162.1, 134.9, 128.8, 124.0, 62.3, 32.1, 31.0, 25.0, 24.4.

HRMS (ESI) *m*/*z* ([**M**+**Na**]⁺) Calcd for C₁₄H₁₆NNaO₅: 300.0848; Found: 300.0845.

1,3-dioxo-2,3-dihydro-1H-inden-2-yl

(Z)-2-(3-oxo-2-(pent-2-en-1-

yl)cyclopentyl)acetate (2ad). 3.2 mmol Jasmonic acid was applied in the general procedure A. Purified by silica gel column chromatography using petroleum ether/ethyl actate = 3:1 as eluent. Isolated in 43% yield as 468 mg viscous oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.93 – 7.87 (m, 2H), 7.85 – 7.79 (m, 2H), 5.57 – 5.46 (m, 1H), 5.37 – 5.25 (m, 1H), 3.09 (dd, *J* = 15.2, 3.7 Hz, 1H), 2.65 (dd, *J* = 15.2, 9.1 Hz, 1H), 2.53 – 2.33 (m, 4H), 2.24 – 1.97 (m, 4H), 1.74 – 1.58 (m, 2H), 1.01 – 0.96 (t, *J* = 7.5 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 218.3, 168.2, 162.0, 135.0, 134.7, 129.0, 124.8, 124.2, 53.9, 38.3, 37.8, 35.8, 26.9, 25.6, 20.8, 14.2.

HRMS (ESI) *m/z* ([M+Na]⁺) Calcd for C₁₀H₂₁NNaO₅: 378.1317; Found: 378.1322.

1,3-dioxoisoindolin-2-yl (**R,Z)-12-hydroxyoctadec-9-enoate** (**2ae**). 10 mmol Ricinoleic acid was applied in the general procedure A. Purified by silica gel column chromatography using petroleum ether/ethyl acetate = 4/1 as eluent. Isolated in 40% yield as 1.8 g viscous oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.92 – 7.86 (m, 2H), 7.82 – 7.77 (m, 2H), 5.62 – 5.53 (m, 1H), 5.45 – 5.37 (m, 1H), 3.65 – 3.58 (m, 1H), 2.66 (t, *J* = 7.5 Hz, 2H), 2.22 (t, *J* = 6.6 Hz, 2H), 2.10 – 2.01 (m, 2H), 1.84 – 1.73 (m, 2H), 1.65 (s, 1H), 1.51 – 1.24 (m, 18H), 0.88 (t, *J* = 6.7 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 169.8, 162.2, 134.9, 133.5, 129.1, 125.4, 124.1, 71.6, 37.0, 35.5, 32.0, 31.1, 29.7, 29.5, 29.1, 29.1, 28.9, 27.5, 25.9, 24.8, 22.8, 14.2.

HRMS (ESI) *m/z* ([M+Na]⁺) Calcd for C₂₆H₃₇NNaO₅: 466.2569; Found: 466.2562.

1,3-dioxoisoindolin-2-yl

4-((tert-butoxycarbonyl)amino)-3-(4-

chlorophenyl)butanoate (**2ak**). To a solution of 14 mmol (560 mg) NaOH in dixoane/H₂O (14 mL/14 mL) was added 4.68 mmol (1 g) Baclofen. Then the solution was cooled to 0 °C followed by the addition of 4.9 mmol (1.125 mL) (Boc)₂O. After the addition of (Boc)₂O, the resulting solution was stirred at room temperature. 4 hours later, the solution was acidified by diluted HCl (aq) to pH = 2, extracted with ethyl ether (30 mL x 3), then the organic layer was combined, washed with brine, dried over Na₂SO₄, concentrated under reduced pressure to give viscous oil. The oil was dissolved in 23 mL DCM, followed by the addition of 5.5 mmol (896 mg) NHPI, 0.55 mmol (61 mg) DMAP and 5.5 mmol (1.13 g) DCC sequentially, and allowed to stir at room temperature until the reaction was complete. The resulting mixture was filtered through a pad of silica gel, and filtrate was collected and concentrated under reduced pressure. Purified by silica gel column chromatography using petroleum ether/ethyl acetate = 3/1 as eluent. Isolated in 51% yield (two steps) as 1.1 g white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.87 – 7.83 (m, 2H), 7.80 – 7.75 (m, 2H), 7.35 – 7.31 (m, 2H), 7.22 (d, *J* = 8.3 Hz, 2H), 4.75 (s, 1H), 3.57 – 3.33 (m, 3H), 3.06 (dd, *J* = 15.9, 6.0 Hz, 1H), 2.94 (dd, *J* = 15.9, 8.0 Hz, 1H), 1.41 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 167.9, 161.8, 156.0, 138.7, 134.9, 133.4, 129.2, 129.1, 128.9, 124.1, 79.8, 45.5, 42.0, 35.1, 28.4.

HRMS (ESI) *m/z* ([M+Na]⁺) Calcd for C₂₃H₂₃ClN₂NaO₆: 481.1142; Found: 481.1143.

5-(1,3-dioxoisoindolin-2-yl) 1-methyl ((benzyloxy)carbonyl)-L-glutamate (2al). 10 mmol Cbz-Glu-OMe was applied in the general procedure A. Purified by silica gel column chromatography using petroleum ether/ethyl acetate = 1/1 as eluent. Isolate in 45% yield as 2 g light yellow solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.89 – 7.84 (m, 2H), 7.82 – 7.75 (m, 2H), 7.39 – 7.28 (m, 5H), 5.64 (d, *J* = 8.1 Hz, 1H), 5.12 (s, 2H), 4.55 – 4.46 (m, 1H), 3.75 (s, 3H), 2.88 – 2.69 (m, 2H), 2.43 – 2.32 (m, 1H), 2.23 – 2.09 (m, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 171.9, 168.9, 161.9, 156.1, 136.1, 134.9, 128.9, 128.6, 128.3, 128.2, 124.1, 67.3, 53.1, 52.9, 27.5, 27.4.

HRMS (ESI) *m/z* ([**M**+**Na**]⁺) Calcd for C₂₂H₂₀N₂NaO₈: 463.1117; Found: 463.1123.

1,3-dioxoisoindolin-2-yl 5-bromohexanoate (2aq). 43 mmol (5 g) δ -Hexalactone was dissolve in 10 mL 33 wt% HBr/HOAc in a 100 mL round-bottom falsk and stirred at room temperature for 48 hours. The resulting solution was neutralized with Na₂CO₃ (aq), acidified with diluted HCl (aq) to pH = 1, extracted with DCM (30 mL x 3). The combined organic layer was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure to give viscous liquid. The liquid was dissolved in 70 mL DCM, followed by the addition of 14 mmol (2.28 g) NHPI, 1.4 mmol (170 mg) DMAP and 14 mmol (2.88 g) DCC sequentially and allowed to stir at room temperature until the reaction was complete. The resulting mixture was filtered through a pad of silica gel, and filtrate was collected and concentrated under reduced pressure. Purified by silica gel column chromatography using petroleum ether/ethyl acetate = 8/1 as eluent. Isolated in 7% yield (two steps) as 1.05 g white solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.92 – 7.86 (m, 2H), 7.83 – 7.77 (m, 2H), 4.22 – 4.12 (m, 1H), 2.76 – 2.70 (m, 2H), 2.11 – 1.89 (m, 4H), 1.75 (d, *J* = 6.7 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 169.3, 162.0, 134.9, 129.0, 124.1, 50.5, 39.7, 30.3, 26.5, 23.1.

HRMS (ESI) *m/z* ([M+Na]⁺) Calcd for C₁₄H₁₄BrNNaO₄: 362.0004; Found: 362.0005.

1,3-dioxoisoindolin-2-yl 6-iodohexanoate (2ar). To a 100 mL round-bottom flask equipped with a stir bar, 10 mmol (1.95 g) 6-bromohexanoic acid and 20 mmol (3 g) NaI was added followed by the addition of 20 mL acetone. Resulting mixture was allowed to reflux for 20 hours. Then solvent was removed under reduced pressure to give crude product, which was washed with 50 mL Na₂S₂O₃ (sat. aq) and extracted with ethyl ether (30 mL x 3). Combined organic layer was washed with brine, dried over Na₂SO₄ and concentrated under reduce pressure to give viscous oil. The oil was dissolved in 50 mL DCM followed by the addition of 11 mmol (1.79 g) NHPI, 1.1 mmol (134 mg) DMAP and 11 mmol (2.27 g) DCC sequentially and allowed to stir at room temperature until the reaction was complete. The resulting mixture was filtered through a pad of silica gel, and filtrate was collected and concentrated under reduced pressure. Purified by recrystallization from DCM/MeOH. Isolated in 77% yield (two steps) as 3 g light yellow solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.91 – 7.86 (m, 2H), 7.83 – 7.76 (m, 2H), 3.22 (t, *J* = 7.0 Hz, 2H), 2.70 (t, *J* = 7.4 Hz, 2H), 1.95 – 1.77 (m, 4H), 1.62 – 1.52 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 169.4, 162.0, 134.9, 129.0, 124.1, 33.1, 30.9, 29.7, 23.7, 6.2.

HRMS (ESI) *m/z* ([M+Na]⁺) Calcd for C₁₄H₁₄INNaO₄: 409.9865; Found: 409.9860.

1,3-dioxoisoindolin-2-yl 3-(4-iodophenyl)propanoate (2at). 3.6 mmol 3-(4-iodophenyl)propanoic acid was applied in the general procedure. Purified by recrystallization from DCM/MeOH. Isolated in 91% yield as 1.38 g white solid. **¹H NMR** (400 MHz, CDCl₃) δ 7.92 – 7.85 (m, 2H), 7.84 – 7.77 (m, 2H), 7.65 (d, *J* =

8.3 Hz, 2H), 7.02 (d, *J* = 8.2 Hz, 2H), 3.08 – 3.01 (m, 2H), 2.99 – 2.92 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.8, 162.0, 138.9, 137.9, 134.9, 130.5, 129.0, 124.1, 92.1, 32.5, 30.1.

HRMS (ESI) *m/z* ([M+Na]⁺) Calcd for C₁₇H₁₂INNaO₄: 443.9709; Found: 443.9723.

1,3-dioxoisoindolin-2-yl 6-(2-iodophenoxy)hexanoate (2av). In a 200 mL roundbottom flask equipped with a stir bar, 15 mmol (3.3 g) 2-Iodophenol was added followed by the addition of 37 mL 10% KOH (aq) and 45 mL EtOH. To this solution, 16.5 mmol (3.22 g) 6-bromohexanoic acid in 15 mL sat. K₂CO₃ was added. Resulting mixture was stirred at refluxed for 5 hours. After which, the mixture was cooled and acidified with diluted HCl (aq) slowly to pH = 2, extracted with ethyl ether (30 mL x 3). Combined organic layer was washed with brine, dried over Na₂SO₄ and concentrated under reduce pressure to give viscous oil. Purified by flash column chromatography gave target acid as 1.71g (5 mmol) solid, which was dissolved in 25 mL DCM followed by the addition of 5.5 mmol (896 mg) NHPI, 0.55 mmol (67 mg) DMAP and 5.5 mmol (1.13 g) DCC sequentially and allowed to stir at room temperature until the reaction was complete. The resulting mixture was filtered through a pad of silica gel, and filtrate was collected and concentrated under reduced pressure. Purified by recrystallization from DCM/MeOH. Isolated in 27% yield (two steps) as 2 g white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.91 – 7.85 (m, 2H), 7.82 – 7.74 (m, 3H), 7.31 – 7.25 (m, 1H), 6.82 – 6.76 (m, 1H), 6.72 – 6.65 (m, 1H), 4.04 (t, *J* = 6.2 Hz, 2H), 2.74 (t, *J* = 7.5 Hz, 2H), 1.96 – 1.86 (m, 4H), 1.76 – 1.68 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 169.6, 162.0, 157.5, 139.4, 134.8, 129.5, 128.9, 124.0, 122.5, 112.1, 86.8, 68.7, 31.0, 28.6, 25.6, 24.4.

HRMS (ESI) *m/z* ([M+Na]⁺) Calcd for C₂₀H₁₈INNaO₅: 502.0127; Found: 502.0133.

2.4 Procedure for decarboxylative carbagermatranation and characterization

General Method A: To an oven-dried screw-cap tube equipped with stir bar was charged with 0.1 mmol (29.2 mg) *GeBr*, 0.2 mmol corresponding NHP ester and 0.2 mmol (13 mg) Zn powder. The tube was vacuumed and backfilled with argon for three cycles. 0.5 mL DMF was added through syringe and the tube was sealed with a teflon stopper and stirred at room temperature for 12 hours. The reaction was quenched with NH₄Cl (sat, aq), extracted with ethyl acetate. Organic layer was separated, dried over Na₂SO₄, concentrated under reduced pressure to give crude product, which was purified by silica gel column chromatography.

General Method B: To an oven-dried screw-cap tube equipped with stir bar was charged with 0.1 mmol (29.2 mg) *Ge*Br, 0.2 mmol corresponding NHP ester and 0.3 mmol (19.5 mg) Zn powder. The tube was vacuumed and backfilled with argon for three cycles. 0.5 mL THF was added through syringe and the tube was sealed with a teflon stopper and stirred at 60 °C for 18 hours. The reaction was quenched with NH₄Cl (sat, aq), extracted with ethyl acetate. Organic layer was separated, dried over Na₂SO₄, concentrated under reduced pressure to give crude product, which was purified by silica gel column chromatography.

5-propyl-1-aza-5-germabicyclo[3.3.3]undecane (3a). Synthesized by Method A, purified by silica gel column chromatography using petroleum ether as eluent. ¹**H NMR** (400 MHz, C₆D₆) δ 2.20 – 2.13 (t, *J* = 5.8 Hz, 6H), 1.54 – 1.37 (m, 8H), 1.07 (t, *J* = 7.2 Hz, 3H), 0.70 – 0.63 (m, 6H), 0.62 – 0.54 (m, 2H). ¹³**C NMR** (101 MHz, C₆D₆) δ 53.9, 24.8, 23.9, 19.4, 19.2, 11.9. **HRMS (ESI)** *m/z* ([**M**+**H**]⁺) Calcd for C₁₂H₂₆⁷⁴GeN: 258.1277; Found: 258.1283.

5-(sec-butyl)-1-aza-5-germabicyclo[3.3.3]undecane (3b). Synthesized by Method B, purified by silica gel column chromatography using petroleum ether as eluent ¹**H NMR** (400 MHz, C₆D₆) δ 2.24 – 2.15 (m, 6H), 1.71 – 1.60 (m, 1H), 1.49 – 1.39 (m, 6H), 1.33 – 1.23 (m, 1H), 1.11 (d, J = 7.4 Hz, 3H), 1.04 (t, J = 7.3 Hz, 3H), 0.73 – 0.63 (m, 6H), 0.63 – 0.54 (m, 1H).

¹³C NMR (101 MHz, C₆D₆) δ 54.0, 27.8, 26.6, 24.0, 15.3, 14.1, 9.8. HRMS (ESI) *m/z* ([M+H]⁺) Calcd for C₁₃H₂₈⁷⁴GeN: 272.1434; Found: 272.1427.

5-isopentyl-1-aza-5-germabicyclo[3.3.3]undecane (**3c**). Synthesized by Method A, purified by silica gel column chromatography using petroleum ether as eluent to give title compound as colorless oil in 97% yield, 28 mg.

¹**H** NMR (400 MHz, C₆D₆) δ 2.20 (t, *J* = 5.8 Hz, 6H), 1.59 – 1.39 (m, 7H), 1.38 – 1.30 (m, 2H), 1.00 (d, *J* = 6.6 Hz, 6H), 0.69 (t, *J* = 6.4 Hz, 6H), 0.59 – 0.51 (m, 2H).

¹³**C NMR** (101 MHz, C_6D_6) δ 53.9, 35.3, 31.9, 23.9, 22.7, 19.2, 11.7.

HRMS (ESI) *m/z* ([M+H]⁺) Calcd for C₁₄H₃₀⁷⁴GeN: 286.1590; Found: 286.1592.

(S)-5-(2-methylbutyl)-1-aza-5-germabicyclo[3.3.3]undecane (3d). Synthesized by Method A, purified by silica gel column chromatography using petroleum ether as eluent to give title compound as colorless oil in 99% yield, 28 mg.

¹**H NMR** (400 MHz, C₆D₆) δ 2.20 (t, *J* = 5.6 Hz, 6H), 1.68 – 1.53 (m, 1H), 1.51 – 1.37 (m, 7H), 1.34 – 1.21 (m, 1H), 1.05 – 0.91 (m, 6H), 0.78 – 0.65 (m, 7H), 0.51 – 0.38 (m, 1H).

¹³C NMR (101 MHz, C₆D₆) δ 54.0, 33.9, 32.8, 30.8, 24.0, 23.1, 13.0, 12.0. HRMS (ESI) *m/z* ([M+H]⁺) Calcd for C₁₄H₃₀⁷⁴GeN: 286.1590; Found: 286.1593.

5-(3-phenylpropyl)-1-aza-5-germabicyclo[3.3.3]undecane (**3e**). Synthesized by Method A, purified by silica gel column chromatography using petroleum ether as eluent to give title compound as colorless oil in 81% yield, 24 mg.

¹**H NMR** (400 MHz, C₆D₆) δ 7.24 – 7.17 (m, 4H), 7.13 – 7.06 (m, 1H), 2.64 (t, *J* = 7.6 Hz, 2H), 2.17 (t, *J* = 5.7 Hz, 6H), 1.78 – 1.68 (m, 2H), 1.45 – 1.36 (m, 6H), 0.64 (t, *J* = 6.5 Hz, 6H), 0.60 – 0.53 (m, 2H).

¹³**C NMR** (101 MHz, C₆D₆) δ 143.6, 128.9, 128.6, 125.9, 53.8, 41.1, 28.5, 23.8, 21.8, 11.8.

HRMS (ESI) *m/z* ([**M**+**H**]⁺) Calcd for C₁₈H₃₀⁷⁴GeN: 334.1590; Found: 286.1543.

5-(but-3-en-1-yl)-1-aza-5-germabicyclo[3.3.3]undecane (**3f**). Synthesized by Method A, purified by silica gel column chromatography using petroleum ether as eluent to give title compound as colorless oil in 95% yield, 26 mg.

¹**H** NMR (400 MHz, C_6D_6) δ 6.02 (ddt, J = 16.6, 10.0, 6.4 Hz, 1H), 5.13 (ddd, J = 17.0, 3.8, 1.6 Hz, 1H), 5.00 (ddt, J = 10.1, 2.3, 1.2 Hz, 1H), 2.28 - 2.11 (m, 8H), 1.52 - 1.31(m, 6H), 0.77 - 0.55 (m, 8H).

¹³**C NMR** (101 MHz, C_6D_6) δ 143.2, 112.3, 53.8, 30.4, 23.8, 21.0, 11.9. HRMS (ESI) *m/z* ([M+H]⁺) Calcd for C₁₃H₂₆⁷⁴GeN: 270.1277; Found: 270.1284.

5-(3-(naphthalen-2-yloxy)propyl)-1-aza-5-germabicyclo[3.3.3]undecane (3g). Synthesized by Method A, purified by silica gel column chromatography using petroleum ether as eluent to give title compound as colorless oil in 68% yield, 27 mg. ¹**H** NMR (400 MHz, C_6D_6) δ 7.69 – 7.58 (m, 2H), 7.54 (d, J = 8.9 Hz, 1H), 7.35 – 7.26 (m, 2H), 7.24 - 7.11 (m, 2H), 3.86 (t, J = 6.9 Hz, 2H), 2.16 (t, J = 5.8 Hz, 6H), 1.95 - 6.91.85 (m, 2H), 1.47 - 1.37 (m, 6H), 0.67 (t, J = 5.8 Hz, 6H), 0.62 - 0.51 (m, 2H).¹³C NMR (101 MHz, C₆D₆) δ 158.0, 135.5, 129.8, 129.5, 128.2, 127.1, 126.5, 123.6, 119.7, 107.0, 71.5, 53.8, 25.8, 23.8, 17.4, 11.8.

HRMS (ESI) m/z ([M+H]⁺) Calcd for C₂₂H₃₂⁷⁴GeNO: 400.1696; Found: 400.1697.

5-(methoxymethyl)-1-aza-5-germabicyclo[3.3.3]undecane (3h). Synthesized by Method A, purified by silica gel column chromatography using petroleum ether as eluent to give title compound as colorless oil in 66% yield, 17 mg.

¹**H** NMR (400 MHz, C_6D_6) δ 3.31 (s, 3H), 3.13 (s, 2H), 2.12 (t, J = 5.8 Hz, 6H), 1.47 -1.37 (m, 6H), 0.82 (t, J = 6.6 Hz, 6H).

¹³C NMR (101 MHz, C₆D₆) δ 72.8, 63.3, 53.9, 23.5, 10.6

HRMS (ESI) m/z ([M+H]⁺) Calcd for C₁₃H₂₄⁷⁴GeNO: 260.1070; Found: 260.1064.

3-(1-aza-5-germabicyclo[3.3.3]undecan-5-yl)propanoate (**3i**). **Tert-butyl** Synthesized by Method A, purified by silica gel column chromatography using petroleum ether/ethyl acetate = 50/1 as eluent to give title compound as colorless oil in 78% yield, 27 mg.

¹**H NMR** (400 MHz, C_6D_6) $\delta 2.36 - 2.30$ (m, 2H), 2.11 (t, J = 5.8 Hz, 6H), 1.45 (s, 9H), 1.39 - 1.30 (m, 6H), 0.93 - 0.86 (m, 2H), 0.62 - 0.55 (m, 6H).

¹³C NMR (101 MHz, C₆D₆) δ 174.9, 78.8, 53.7, 32.1, 28.3, 23.7, 16.8, 11.6.

HRMS (ESI) *m/z* ([**M**+**H**]⁺) Calcd for C₁₆H₃₂⁷⁴GeNO₂: 344.1645; Found: 344.1643.

Ethyl 4-(1-aza-5-germabicyclo[3.3.3]undecan-5-yl)butanoate (3j). Synthesized by Method A, purified by silica gel column chromatography using petroleum ether/ethyl acetate = 20/1 as eluent to give title compound as colorless oil in 80% yield, 26 mg. ¹H NMR (400 MHz, Acetone- d_6) δ 4.06 (q, J = 7.1 Hz, 2H), 2.43 (t, J = 5.7 Hz, 6H), 2.21 (t, J = 7.3 Hz, 2H), 1.65 – 1.51 (m, 8H), 1.20 (t, J = 7.1 Hz, 3H), 0.66 (t, J = 6.6 Hz, 6H), 0.39 – 0.29 (m, 2H).

¹³C NMR (101 MHz, Acetone-*d*₆) δ 173.8, 60.3, 54.4, 39.1, 24.1, 22.2, 22.0, 14.8, 12.2. HRMS (ESI) *m/z* ([M+H]⁺) Calcd for $C_{15}H_{30}^{74}$ GeNO₂: 330.1488; Found: 330.1478.

Tert-butyl (5-(1-aza-5-germabicyclo[3.3.3]undecan-5-yl)pentyl)carbamate (3k). Synthesized by Method A, purified by silica gel column chromatography using petroleum ether/ethyl acetate = 10/1 as eluent to give title compound as colorless oil in 75% yield, 30 mg.

¹**H** NMR (400 MHz, Acetone- d_6) δ 5.88 (s, 1H), 3.08 – 2.97 (m, 2H), 2.43 (t, J = 5.7 Hz, 6H), 1.59 – 1.51 (m, 6H), 1.46 (m, 2H), 1.39 (s, 9H), 1.35 – 1.23 (m, 4H), 0.65 (t, J = 6.5 Hz, 6H), 0.39 – 0.31 (m, 2H).

¹³**C NMR** (101 MHz, Acetone-*d*₆) δ 156.7, 78.3, 54.4, 41.3, 32.1, 30.8, 28.8, 26.1, 24.2, 22.3, 12.3.

HRMS (ESI) m/z ([M+H]⁺) Calcd for C₁₉H₃₉⁷⁴GeN₂O₂: 401.2223; Found: 401.2200.

5-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl)-1-aza-5-

germabicyclo[3.3.3]undecane (31). Synthesized by Method A, purified by silica gel column chromatography using petroleum ether/ethyl acetate = 20/1 as eluent to give title compound as colorless oil in 70% yield, 28 mg.

¹**H** NMR (400 MHz, Acetone-*d*₆) δ 2.43 (t, *J* = 5.7 Hz, 6H), 1.59 – 1.50 (m, 6H), 1.39 – 1.24 (m, 4H), 1.21 (s, 12H), 0.70 – 0.62 (m, 8H), 0.38 – 0.32 (m, 2H). ¹³**C** NMR (101 MHz, Acetone-*d*₆) δ 83.5, 54.5, 29.4, 29.1, 25.3, 24.2, 22.2, 12.3. **HRMS (ESI)** *m/z* ([**M**+**H**]⁺) Calcd for C₁₉H₃₉B⁷⁴GeNO₂: 398.2286; Found: 398.2284.

5-(hex-5-yn-1-yl)-1-aza-5-germabicyclo[3.3.3]undecane (**3m**). Synthesized by Method A, purified by silica gel column chromatography using petroleum ether as eluent to give title compound as colorless oil in 65% yield, 19 mg.

¹**H** NMR (400 MHz, C₆D₆) δ 2.20 – 2.15 (m, 6H), 2.08 (td, J = 6.9, 2.7 Hz, 2H), 1.81 (t, J = 2.7 Hz, 1H), 1.56 – 1.37 (m, 10H), 0.67 – 0.60 (m, 6H), 0.46 – 0.40 (m, 2H). ¹³C NMR (101 MHz, C₆D₆) δ 84.9, 68.7, 53.8, 33.2, 25.1, 23.8, 21.2, 18.5, 11.8 HRMS (ESI) m/z ([M+H]⁺) Calcd for C₁₅H₂₈⁷⁴GeN: 296.1434; Found: 296.1439.

5-(2,4-dichlorophenethyl)-1-aza-5-germabicyclo[3.3.3]undecane (3n). Synthesized by Method A, purified by silica gel column chromatography using petroleum ether as eluent to give title compound as colorless oil in 80% yield, 31 mg.

¹**H** NMR (400 MHz, C₆D₆) δ 7.26 (d, *J* = 2.2 Hz, 1H), 6.92 (dd, *J* = 8.2, 2.2 Hz, 1H), 6.79 (d, *J* = 8.2 Hz, 1H), 2.69 – 2.59 (m, 2H), 2.16 (t, *J* = 5.7 Hz, 6H), 1.46 – 1.37 (m, 6H), 0.74 – 0.63 (m, 8H).

¹³**C NMR** (101 MHz, C₆D₆) δ 134.5, 131.7, 130.8, 129.4, 127.3, 53.8, 29.5, 23.7, 22.1, 11.7.

HRMS (ESI) *m/z* ([M+H]⁺) Calcd for C₁₇H₂₆Cl₂⁷⁴GeN: 388.0654; Found: 388.0641.

5-(5-chloropentyl)-1-aza-5-germabicyclo[3.3.3]undecane (30). Synthesized by Method A, purified by silica gel column chromatography using petroleum ether as eluent to give title compound as colorless oil in 79% yield, 25 mg.

¹**H NMR** (400 MHz, C₆D₆) δ 3.18 (t, *J* = 6.8 Hz, 2H), 2.19 (t, *J* = 5.7 Hz, 6H), 1.61 – 1.52 (m, 2H), 1.49 – 1.39 (m, 6H), 1.37 – 1.24 (m, 4H), 0.65 (t, *J* = 6.6 Hz, 6H), 0.49 – 0.41 (m, 2H).

¹³C NMR (101 MHz, C₆D₆) δ 53.8, 45.2, 32.8, 31.5, 25.2, 23.8, 21.6, 11.8.

HRMS (ESI) *m/z* ([M+H]⁺) Calcd for C₁₄H₂₉Cl⁷⁴GeN: 320.1200; Found: 320.1200.

5-(1-aza-5-germabicyclo[3.3.3]undecan-5-yl)pentan-1-ol (**3p**). Synthesized by Method A, purified by silica gel column chromatography using petroleum ether/ethyl acetate = 4/1 as eluent to give title compound as colorless oil in 33% yield, 10 mg. ¹**H NMR** (400 MHz, Acetone-*d*₆) δ 3.55 – 3.46 (m, 2H), 2.43 (t, *J* = 5.7 Hz, 6H), 1.60 – 1.44 (m, 8H), 1.37 – 1.26 (m, 4H), 0.65 (t, *J* = 6.6 Hz, 6H), 0.40 – 0.32 (m, 2H). ¹³**C NMR** (101 MHz, Acetone-*d*₆) δ 62.6, 54.3, 33.7, 31.1, 26.2, 24.1, 22.3, 12.1. **HRMS (ESI)** *m/z* ([**M**+**H**]⁺) Calcd for C₁₄H₃₀⁷⁴GeNO: 302.1539; Found: 302.1539.

5-isopropyl-1-aza-5-germabicyclo[3.3.3]undecane (3q). Synthesized by Method B, purified by silica gel column chromatography using petroleum ether as eluent to give title compound as colorless oil in 80% yield, 21 mg.

¹**H NMR** (400 MHz, C_6D_6) δ 2.18 (t, J = 2.8 Hz, 6H), 1.47 – 1.39 (m, 6H), 1.14 (d, J = 7.3 Hz, 6H), 0.81 – 0.72 (m, 1H), 0.68 – 0.64 (m, 6H).

¹³C NMR (101 MHz, C₆D₆) δ 53.9, 23.9, 20.0, 19.4, 9.2.

HRMS (ESI) *m/z* ([**M**+**H**]⁺) Calcd for C₁₂H₂₆⁷⁴GeN: 258.1277; Found: 258.1276.

5-(heptan-3-yl)-1-aza-5-germabicyclo[3.3.3]undecane (3r). Synthesized by Method B at 90 °C instead of 60 °C, purified by silica gel column chromatography using petroleum ether as eluent to give title compound as colorless oil in 57% yield, 18 mg. ¹H NMR (400 MHz, C₆D₆) δ 2.21 (t, *J* = 5.7 Hz, 6H), 1.72 – 1.28 (m, 14H), 1.05 – 0.95 (m, 6H), 0.72 (t, *J* = 6.5 Hz, 6H), 0.67 – 0.59 (m, 1H).

¹³C NMR (101 MHz, C₆D₆) δ 54.1, 33.9, 32.2, 30.6, 24.1, 24.0, 23.7, 14.5, 14.3, 11.1. HRMS (ESI) *m/z* ([M+H]⁺) Calcd for C₁₆H₃₄⁷⁴GeN: 314.1903; Found: 314.1892.

5-(1-phenylpropyl)-1-aza-5-germabicyclo[3.3.3]undecane (**3s**). Synthesized by Method B, purified by silica gel column chromatography using petroleum ether as eluent to give title compound as colorless oil in 66% yield, 22 mg.

¹**H NMR** (400 MHz, C₆D₆) δ 7.27 – 7.21 (m, 2H), 7.12 – 7.07 (m, 2H), 7.06 – 7.01 (m, 1H), 2.15 – 1.96 (m, 6H), 1.93 – 1.76 (m, 3H), 1.43 – 1.23 (m, 6H), 0.99 (t, *J* = 7.0 Hz, 3H), 0.70 – 0.61 (m, 6H).

¹³C NMR (101 MHz, C₆D₆) δ 147.2, 127.7, 123.7, 53.7, 45.4, 24.2, 23.9, 15.1, 10.3. HRMS (ESI) *m/z* ([M+H]⁺) Calcd for C₁₈H₃₀⁷⁴GeN: 334.1590; Found: 334.1590.

3-(1-aza-5-germabicyclo[3.3.3]undecan-5-yl)cyclobutan-1-one (3t). Synthesized by Method B, purified by silica gel column chromatography using petroleum ether/ethyl acetate = 10/1 as eluent to give title compound as colorless oil in 42% yield, 12 mg. ¹**H NMR** (400 MHz, C₆D₆) δ 3.06 – 2.88 (m, 2H), 2.75 – 2.62 (m, 2H), 2.06 (t, *J* = 5.9 Hz, 6H), 1.37 – 1.24 (m, 6H), 1.13 – 1.01 (m, 1H), 0.48 (t, *J* = 6.6 Hz, 6H). ¹³**C NMR** (101 MHz, C₆D₆) δ 206.9, 53.7, 50.1, 23.4, 13.9, 9.9 **HRMS (ESI)** *m/z* ([**M**+**H**]⁺) Calcd for C₁₃H₂₄⁷⁴GeNO: 284.1070; Found: 284.1073.

5-(1,2,3,4-tetrahydronaphthalen-1-yl)-1-aza-5-germabicyclo[3.3.3]undecane (3u). Synthesized by Method B, purified by silica gel column chromatography using petroleum etheras eluent to give title compound as colorless oil in 66% yield, 23 mg. ¹H NMR (400 MHz, C₆D₆) δ 7.13 – 6.98 (m, 4H), 2.84 – 2.65 (m, 2H), 2.39 – 2.33 (m, 1H), 2.17 – 2.07 (m, 3H), 2.07 – 1.89 (m, 5H), 1.73 – 1.63 (m, 2H), 1.44 – 1.23 (m, 6H), 0.72 – 0.61 (m, 6H).

¹³**C NMR** (101 MHz, C₆D₆) δ 143.7, 135.5, 129.5, 127.5, 125.5, 123.5, 53.9, 36.7, 30.3, 26.7, 24.1, 23.0, 11.8.

HRMS (ESI) *m/z* ([**M**+**H**]⁺) Calcd for C₁₉H₃₀⁷⁴GeN: 346.1590; Found: 346.1577.

5-(cyclopent-3-en-1-yl)-1-aza-5-germabicyclo[3.3.3]undecane (3v). Synthesized by Method B, purified by silica gel column chromatography using petroleum ether as eluent to give title compound as colorless oil in 71% yield, 20 mg.

¹**H** NMR (400 MHz, C_6D_6) δ 5.89 (s, 2H), 2.70 – 2.59 (m, 2H), 2.35 – 2.23 (m, 2H), 2.17 (t, *J* = 5.8 Hz, 6H), 1.47 – 1.31 (m, 7H), 0.66 (t, *J* = 6.6 Hz, 6H).

¹³C NMR (101 MHz, C₆D₆) δ 131.7, 53.9, 36.2, 27.3, 23.8, 10.1.

HRMS (ESI) *m/z* ([**M**+**Na**]⁺) Calcd for C₁₄H₂₅⁷⁴GeNNa: 304.1096; Found: 304.1117.

5-(1-phenoxyethyl)-1-aza-5-germabicyclo[3.3.3]undecane (**3w**). Synthesized by Method B at 90 °C instead, purified by silica gel column chromatography using petroleum ether as eluent to give title compound as colorless oil in 38% yield, 13 mg. ¹H NMR (400 MHz, C₆D₆) δ 7.22 – 7.17 (m, 2H), 7.06 – 7.01 (m, 2H), 6.87 – 6.80 (m, 1H), 3.95 (q, *J* = 7.0 Hz, 1H), 2.10 (t, *J* = 5.9 Hz, 6H), 1.48 – 1.32 (m, 9H), 0.86 – 0.70 (m, 6H).

¹³C NMR (101 MHz, C_6D_6) δ 160.9, 129.7, 120.0, 115.9, 72.1, 53.8, 23.5, 16.5, 9.5. HRMS (ESI) *m/z* ([M+H]⁺) Calcd for $C_{17}H_{28}^{74}$ GeNO: 336.1383; Found: 336.1380.

5-(1-phenylpropan-2-yl)-1-aza-5-germabicyclo[3.3.3]undecane (3x). Synthesized by Method B, purified by silica gel column chromatography using petroleum ether as eluent to give title compound as colorless oil in 36% yield, 12 mg.

¹**H NMR** (400 MHz, C₆D₆) δ 7.26 – 7.09 (m, 5H), 2.93 (dd, *J* = 13.6, 3.6 Hz, 1H), 2.31 (dd, *J* = 13.5, 11.0 Hz, 1H), 2.17 (t, *J* = 6.5 Hz, 6H), 1.48 – 1.38 (m, 6H), 1.02 – 0.89 (m, 4H), 0.65 (t, *J* = 6.5 Hz, 6H).

¹³C NMR (101 MHz, C₆D₆) δ 144.2, 129.3, 128.4, 125.7, 53.9, 40.1, 27.9, 23.9, 15.3, 9.6.

HRMS (ESI) *m/z* ([**M**+**H**]⁺) Calcd for C₁₈H₃₀⁷⁴GeN: 334.1590; Found: 334.1592.

5-cyclobutyl-1-aza-5-germabicyclo[3.3.3]undecane (3y). Synthesized by Method B, purified by silica gel column chromatography using petroleum ether as eluent to give title compound as colorless oil in 86% yield, 23.0 mg.

¹**H NMR** (400 MHz, C_6D_6) δ 2.28 – 2.16 (m, 9H), 2.15 – 1.99 (m, 3H), 1.91 – 1.80 (m, 1H), 1.49 – 1.39 (m, 6H), 0.69 (t, *J* = 6.6 Hz, 6H).

¹³C NMR (101 MHz, C₆D₆) δ 53.9, 28.8, 25.3, 23.9, 23.6, 9.6.

HRMS (ESI) *m/z* ([**M**+**H**]⁺) Calcd for C₁₃H₂₆⁷⁴GeN: 270.1277; Found: 270.1281.

5-cyclohexyl-1-aza-5-germabicyclo[3.3.3]undecane (3z). Synthesized by Method B, purified by silica gel column chromatography using petroleum ether as eluent to give title compound as colorless oil in 30% yield, 9 mg.

¹**H NMR** (400 MHz, C₆D₆) δ 2.19 (t, *J* = 5.8 Hz, 6H), 1.87 – 1.74 (m, 5H), 1.49 – 1.40 (m, 6H), 1.36 – 1.19 (m, 5H), 0.68 – 0.57 (m, 7H).

¹³C NMR (101 MHz, C₆D₆) δ 53.9, 32.4, 29.4, 29.3, 27.9, 23.9, 9.2.

HRMS (ESI) *m/z* ([M+H]⁺) Calcd for C₁₅H₃₀⁷⁴GeN: 298.1590; Found: 298.1580.

(5S,8R,9S,10S,13R,14S,17R)-17-((R)-4-(1-aza-5-germabicyclo[3.3.3]undecan-5yl)butan-2-yl)-10,13-dimethyldodecahydro-3H-cyclopenta[a]phenanthrene-3,7,12(2H,4H)-trione (3aa). Synthesized by Method A using 1.0 mL DMF as solvent

instead, purified by silica gel column chromatography using petroleum ether/ethyl acetate = 8/1 as eluent to give title compound as white solid in 72% yield, 41 mg.

¹**H** NMR (400 MHz, CD₂Cl₂) δ 2.97 – 2.80 (m, 3H), 2.41 (t, *J* = 5.8 Hz, 6H), 2.36 – 2.07 (m, 8H), 2.03 – 1.92 (m, 4H), 1.84 – 1.74 (m, 1H), 1.64 – 1.58 (m, 1H), 1.57 – 1.48 (m, 6H), 1.46 – 1.36 (m, 4H), 1.32 – 1.22 (m, 2H), 1.19 – 1.03 (m, 5H), 0.79 (d, *J* = 6.5 Hz, 3H), 0.63 (t, *J* = 6.5 Hz, 6H), 0.43 (td, *J* = 13.0, 4.1 Hz, 1H), 0.17 (td, *J* = 12.7, 4.6 Hz, 1H).

¹³**C NMR** (101 MHz, CD₂Cl₂) δ 212.5, 209.3, 209.3, 57.2, 54.1, 52.3, 49.4, 47.2, 46.0, 45.7, 45.4, 43.2, 39.2, 39.1, 36.9, 36.4, 35.6, 31.0, 28.1, 25.6, 23.9, 22.1, 18.8, 17.2, 12.1, 11.8.

HRMS (ESI) m/z ([M+H]⁺) Calcd for C₃₂H₅₂⁷⁴GeNO₃: 572.3159; Found: 572.3163.

(3R,5R,8R,9S,10S,13R,14S,17R)-17-((R)-4-(1-aza-5-germabicyclo[3.3.3]undecan-5-yl)butan-2-yl)-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-3ol (3ab). Synthesized by Method A using 0.5 mL THF as solvent instead, 55% yieldwas determined by ¹H NMR spectra using mesitylene as internal standard. Purificationby silica gel column chromatography using petroleum ether/ethyl acetate = 4/1 as eluent

resulted in 30 mg white solid mixture of target product and protonation product with a

ratio of 2.1/1. Adjusted yield of corresponding carbagermatranes was 43%. **HRMS (ESI)** m/z ([M+H]⁺) Calcd for C₃₂H₅₈⁷⁴GeNO: 546.3730; Found: 546.3741.

5-((8Z,11Z)-heptadeca-8,11-dien-1-yl)-1-aza-5-germabicyclo[3.3.3]undecane (3ac). Synthesized by Method A, purified by silica gel column chromatography using petroleum ether as eluent to give title compound as colorless oil in 95%, 42 mg.

¹**H NMR** (400 MHz, C₆D₆) δ 5.53 – 5.43 (m, 4H), 2.94 – 2.84 (m, 2H), 2.19 (t, *J* = 5.8 Hz, 6H), 2.15 – 2.02 (m, 4H), 1.51 – 1.23 (m, 22H), 0.89 (t, *J* = 6.9 Hz, 3H), 0.70 (t, *J* = 6.5 Hz, 6H), 0.63 – 0.55 (m, 2H).

¹³C NMR (101 MHz, C₆D₆) δ 130.6, 130.4, 128.5, 128.4, 53.9, 34.7, 31.9, 30.3, 29.9, 29.9, 29.8, 27.8, 27.6, 26.2, 26.1, 23.9, 23.0, 22.0, 14.3, 11.9.

HRMS (ESI) *m/z* ([M+H]⁺) Calcd for C₂₆H₅₀⁷⁴GeN: 450.3155; Found: 450.3126.

(Z)-3-((1-aza-5-germabicyclo[3.3.3]undecan-5-yl)methyl)-2-(pent-2-en-1yl)cyclopentan-1-one (3ad). Synthesized by Method A at 60 °C instead, purified by silica gel column chromatography using petroleum ether/ethyl acetate = 10/1 as eluent to give title compound as colorless oil in 74% yield, 28 mg.

¹**H** NMR (400 MHz, C₆D₆) δ 5.58 – 5.43 (m, 2H), 2.59 – 2.49 (m, 1H), 2.46 – 2.37 (m, 1H), 2.26 – 2.06 (m, 9H), 1.86 – 1.72 (m, 3H), 1.58 – 1.51 (m, 1H), 1.48 – 1.35 (m, 6H), 1.04 – 0.88 (m, 5H), 0.71 – 0.58 (m, 6H), 0.22 (dd, *J* = 13.3, 11.0 Hz, 1H).

¹³C NMR (101 MHz, C₆D₆) δ 218.1, 133.1, 126.6, 58.8, 53.8, 39.3, 38.4, 30.5, 27.7, 25.0, 23.8, 21.1, 14.6, 13.0.

HRMS (ESI) m/z ([M+H]⁺) Calcd for C₂₀H₃₆⁷⁴GeNO: 380.2009; Found: 380.2006.

(**R**,**Z**)-17-(1-aza-5-germabicyclo[3.3.3]undecan-5-yl)heptadec-9-en-7-ol (3ae). Synthesized by Method A, purified by silica gel column chromatography using petroleum ether/ethyl acetate = 8/1 as eluent to give title compound as colorless oil in 47% yield, 22 mg.

¹**H** NMR (400 MHz, Acetone- d_6) δ 5.51 – 5.39 (m, 2H), 3.61 – 3.52 (m, 1H), 3.40 (d, J = 5.0 Hz, 1H), 2.43 (t, J = 5.8 Hz, 6H), 2.27 – 2.14 (m, 2H), 1.60 – 1.51 (m, 6H), 1.50 – 1.43 (m, 2H), 1.40 – 1.24 (m, 20H), 0.89 (t, J = 6.8 Hz, 3H), 0.65 (t, J = 6.5 Hz, 6H), 0.39 – 0.32 (m, 2H).

¹³C NMR (101 MHz, Acetone-*d*₆) δ 131.9, 127.2, 71.6, 54.3, 37.8, 36.4, 34.9, 32.7, 30.5, 28.0, 26.5, 26.2, 24.1, 23.3, 22.2, 14.4, 12.2.

HRMS (ESI) m/z ([M+H]⁺) Calcd for C₂₆H₅₂⁷⁴GeNO: 468.3261; Found: 468.3267.

5-(1-(4-isobutylphenyl)ethyl)-1-aza-5-germabicyclo[3.3.3]undecane (3af). Synthesized by Method B, purified by silica gel column chromatography using petroleum ether eluent to give title compound as colorless thick oil in 81% yield, 31 mg.

¹**H NMR** (400 MHz, C₆D₆) δ 7.13 – 7.04 (m, 4H), 2.41 (d, *J* = 7.2 Hz, 2H), 2.13 – 1.99 (m, 7H), 1.87 – 1.76 (m, 1H), 1.48 (d, *J* = 7.5 Hz, 3H), 1.40 – 1.26 (m, 6H), 0.88 (d, *J* = 6.4 Hz, 6H), 0.75 – 0.61 (m, 6H).

¹³C NMR (101 MHz, C₆D₆) δ 146.7 136.4, 129.0, 126.7, 53.7, 45.5, 35.0, 30.7, 23.9, 22.7, 16.6, 10.0.

HRMS (ESI) m/z ([M+H]⁺) Calcd for C₂₁H₃₆⁷⁴GeN: 376.2060; Found: 376.2039.

2-(1-(1-aza-5-germabicyclo[3.3.3]undecan-5-yl)ethyl)-6-chloro-9H-carbazole (3ag). Synthesized by Method B, purified by silica gel column chromatography using petroleum ether/ethyl acetate = 10/1 as eluent to give title compound as yellow thick oil in 70% yield, 31 mg.

¹**H** NMR (400 MHz, C₆D₆) δ 7.97 (d, J = 2.0 Hz, 1H), 7.72 (d, J = 8.1 Hz, 1H), 7.35 – 7.30 (m, 1H), 7.04 – 6.98 (m, 1H), 6.88 (s, 1H), 6.76 (d, J = 8.5 Hz, 1H), 6.50 (s, 1H), 2.30 (q, J = 7.4 Hz, 1H), 2.14 – 2.00 (m, 6H), 1.61 (d, J = 7.4 Hz, 3H), 1.45 – 1.29 (m, 6H), 0.81 – 0.68 (m, 6H).

¹³**C NMR** (101 MHz, C₆D₆) δ 149.0, 141.2, 138.1, 125.6, 124.9, 124.7, 120.2, 120.1, 119.8, 119.1, 111.4, 107.9, 53.7, 36.5, 23.9, 16.9, 10.1.

HRMS (ESI) *m/z* ([M+H]⁺) Calcd for C₂₃H₃₀Cl⁷⁴GeN₂: 443.1309; Found: 443.1276.

(3-((1-aza-5-germabicyclo[3.3.3]undecan-5-yl)methyl)-5-methoxy-2-methyl-1Hindol-1-yl)(4-chlorophenyl)methanone (3ah). Synthesized by Method A, purified by silica gel column chromatography using petroleum ether/ethyl acetate = 6/1 as eluent to give title compound as yellow thick oil in 89% yield, 47 mg.

¹**H** NMR (400 MHz, C₆D₆) δ 7.27 – 7.21 (m, 2H), 7.13 (d, *J* = 2.5 Hz, 1H), 7.06 (d, *J* = 8.9 Hz, 1H), 6.97 – 6.92 (m, 2H), 6.65 – 6.61 (m, 1H), 3.52 (s, 3H), 2.35 (s, 3H), 2.06 (t, *J* = 5.9 Hz, 6H), 1.97 (s, 2H), 1.40 – 1.27 (m, 6H), 0.75 (t, *J* = 6.6 Hz, 6H).

¹³**C NMR** (101 MHz, C₆D₆) δ 167.6, 156.4, 138.1, 135.6, 132.8, 131.8, 131.3, 130.5, 128.9, 122.1, 115.4, 110.6, 103.3, 55.3, 53.5, 23.7, 19.2, 14.5, 13.4.

HRMS (ESI) *m/z* ([M+H]⁺) Calcd for C₂₇H₃₄Cl⁷⁴GeN₂O₂: 527.1521; Found: 527.1522.

(3-(1-(1-aza-5-germabicyclo[3.3.3]undecan-5-yl)ethyl)phenyl)(phenyl)methanone (3ai). Synthesized by Method B, purified by silica gel column chromatography using petroleum ether/ethyl acetate = 20/1 as eluent to give title compound as white solid in 57% yield, 24 mg.

¹**H** NMR (400 MHz, C₆D₆) δ 7.88 – 7.83 (m, 2H), 7.79 (s, 1H), 7.54 (d, *J* = 7.4 Hz, 1H), 7.21 – 7.04 (m, 5H), 2.09 – 1.94 (m, 7H), 1.39 (d, *J* = 7.4 Hz, 3H), 1.35 – 1.21 (m, 6H), 0.67 – 0.54 (m, 6H).

¹³**C NMR** (101 MHz, C₆D₆) δ 196.5, 150.1, 138.9, 137.9, 131.9, 130.5, 130.4, 127.9, 125.6, 53.6, 35.5, 23.7, 16.3, 9.9.

HRMS (ESI) *m/z* ([**M**+**H**]⁺) Calcd for C₂₄H₃₂⁷⁴GeNO: 424.1696; Found: 424.1682.

5-(1-(6-methoxynaphthalen-2-yl)ethyl)-1-aza-5-germabicyclo[3.3.3]undecane

(3aj). Synthesized by Method B from enantiomerically pure naproxen NHP ester, purified by silica gel column chromatography using petroleum ether as eluent to give racemic product as white solid in 75% yield, 30 mg, 0% ee.

¹**H** NMR (400 MHz, C₆D₆) δ 7.68 – 7.57 (m, 2H), 7.50 (s, 1H), 7.34 (d, *J* = 8.5 Hz, 1H), 7.24 – 7.19 (m, 1H), 7.00 (s, 1H), 3.42 (s, 3H), 2.24 (q, *J* = 7.4 Hz, 1H), 2.12 – 1.96 (m, 6H), 1.58 (d, *J* = 7.4 Hz, 3H), 1.41 – 1.23 (m, 6H), 0.77 – 0.63 (m, 6H).

¹³C NMR (101 MHz, C₆D₆) δ 157.1, 144.9, 132.5, 130.2, 129.1, 127.9, 126.4, 123.6, 118.9, 106.2, 54.8, 53.7, 35.5, 23.8, 16.7, 10.1. HRMS (ESI) *m/z* ([M+H]⁺) Calcd for C₂₂H₃₂⁷⁴GeNO: 400.1696; Found: 400.1694.

Column	CHIRALCEL AD-H(ADH0CE-TD152)
Column size	0.46 cm I.D. × 25 cm L
Injection	2.5 uL
Mobile phase	Hexane / Isopropanol = $100 / 0(V/V)$
Flow rate	0.7 mL / min
Wave length	UV 220 nm
Temperature	25 °C

Tert-butyl(3-(1-aza-5-germabicyclo[3.3.3]undecan-5-yl)-2-(4-chlorophenyl)propyl)carbamate (3ak).Synthesized by Method A at 60 °C instead,

purified by silica gel column chromatography using petroleum ether/ethyl acetate = 10/1 as eluent to give title compound as white solid in 31% yield, 15 mg.

¹**H** NMR (400 MHz, Acetone- d_6) δ 7.28 (d, J = 8.1 Hz, 2H), 7.21 (d, J = 8.2 Hz, 2H), 5.72 (s, 1H), 3.25 – 3.17 (m, 1H), 3.13 – 3.03 (m, 1H), 3.01 – 2.91 (m, 1H), 2.36 (t, J = 5.7 Hz, 6H), 1.51 - 1.42 (m, 6H), 1.33 (s, 9H), 0.80 - 0.65 (m, 2H), 0.60 - 0.41 (m, 6H).

¹³C NMR (101 MHz, Acetone-*d*₆) δ 156.6, 146.3, 131.9, 130.6, 129.0, 78.4, 54.4, 50.3, 43.6, 28.7, 27.6, 24.1, 13.0.

HRMS (ESI) m/z ([M+Na]⁺) Calcd for C₂₃H₃₇Cl⁷⁴GeN₂NaO₂: 505.1653; Found: 505.1648.

Methyl

(S)-2-(((benzyloxy)carbonyl)amino)-4-(1-aza-5germabicyclo[3.3.3]undecan-5-yl)butanoate (3al). Synthesized by Method A at 60 °C instead of room temperature, purified by silica gel column chromatography using petroleum ether/ethyl acetate = 3/1 as eluent to give title compound as colorless thick oil in 53% yield, 25 mg.

¹**H NMR** (400 MHz, Acetone- d_6) δ 7.40 – 7.28 (m, 5H), 6.48 (d, J = 7.6 Hz, 1H), 5.07 (s, 2H), 4.14 – 4.06 (m, 1H), 3.67 (s, 3H), 2.42 (t, *J* = 6.6 Hz, 6H), 1.84 – 1.61 (m, 2H), 1.59 - 1.50 (m, 6H), 0.66 (t, J = 6.6 Hz, 6H), 0.46 - 0.29 (m, 2H).

¹³C NMR (101 MHz, Acetone-*d*₆) δ 173.9, 157.1, 138.4, 129.3, 128.7, 66.7, 58.2, 54.4, 52.1, 29.1, 24.0, 17.4, 12.1.

HRMS (ESI) m/z ([M+H]⁺) Calcd for C₂₂H₃₅⁷⁴GeN₂O₄: 465.1809; Found: 465.1810.

3. Experimental Procedure and Compound Characterization Data for scheme 2-6

3.1 Scheme 2. Radical probe experiments

To an oven-dried screw-cap tube equipped with stir bar was charged with 0.1 mmol (29.2 mg) GeBr, 0.2 mmol (49 mg) 2am and 0.2 mmol (13 mg) Zn powder. The tube was vacuumed and backfilled with argon for three cycles. 0.5 mL DMF was added through syringe and the tube was sealed with a teflon stopper and stirred at room temperature for 12 hours. The reaction was quenched with NH₄Cl (sat, aq), extracted with ethyl acetate. Organic layer was separated, dried over Na₂SO₄, concentrated under reduced pressure to give crude product, which was purified by silica gel column chromatography using petroleum ether as eluent to give 3f in 99% yield as 26.6 mg colorless oil.

To an oven-dried screw-cap tube equipped with stir bar was charged with 0.1 mmol (29.2 mg) *Ge*Br, 0.2 mmol (54.6 mg) **2an** and 0.2 mmol Zn (13 mg) powder. The tube was vacuumed and backfilled with argon for three cycles. 0.5 mL DMF was added through syringe and the tube was sealed with a teflon stopper and stirred at room temperature for 12 hours. The reaction was quenched with NH₄Cl (sat, aq), extracted with ethyl acetate. Organic layer was separated, dried over Na₂SO₄, concentrated under reduced pressure to give crude product, which was purified by silica gel column chromatography give inseparable mixture of **3an** and **3an'** in total 80% yield as 23.7 mg colorless oil. The ratio was determined by ¹H NMR spectra.

3.2 Scheme 3. Ruling-out of radical involvement in Ge-C bond formation step

Upper: To an oven-dried screw-cap tube equipped with stir bar was charged with 0.4 mmol (93.2 mg) **2a**, 0.2 mmol (58.4 mg) *Ge*Br and 0.4 mmol (26 mg) Zn powder. The tube was vacuumed and backfilled with argon for three cycles. 1.0 mL DMF was added through syringe and the tube was sealed with a teflon stopper and stirred at room temperature for 12 hours. GC analysis detected 14% of TEMPO-captured product and **3a** was not detected.

The TEMPO-captured product is a known compound, and can be synthesized based on reported literature¹⁶. ¹H NMR (400 MHz, CDCl3) δ 3.69 (t, J = 6.7 Hz, 2H), 1.59 – 1.49 (m, 4H), 1.47 – 1.42 (m, 4H), 1.15 (s, 6H), 1.10 (s, 6H), 0.94 (t, J = 7.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl3) δ 78.4, 59.8, 39.8, 33.2, 22.1, 20.2, 17.3, 11.1. NMR data of Synthesized TEMPO-captured product matched with previous report¹⁷. GC response factor was determined using this synthesized compound as analyte and benzophenone as internal standard.

Middle: To an oven-dried screw-cap tube equipped with stir bar was charged with 0.4 mmol (93.2 mg) **2a** and 0.4 mmol (26 mg) Zn powder. The tube was vacuumed and backfilled with argon for three cycles. 1.0 mL DMF was added through syringe and the tube was sealed with a teflon stopper and stirred at room temperature for 12 hours. 12 hours later, a clean yellow solution was obtained, to which 0.2 mmol *GeBr* (58.4 mg) was added under argon atmosphere. The mixture was stirred for further 12 hours, then quenched with NH₄Cl (sat, aq), extracted with ethyl acetate. Organic layer was separated, dried over Na₂SO₄, concentrated under reduced pressure to give crude

product, which was purified by silica gel column chromatography using petroleum as eluent in 61% yield, colorless oil, 31.2 mg.

Under: To an oven-dried screw-cap tube equipped with stir bar was charged with 0.4 mmol (93.2 mg) **2a** and 0.4 mmol (26 mg) Zn powder. The tube was vacuumed and backfilled with argon for three cycles. 1.0 mL DMF was added through syringe and the tube was sealed with a teflon stopper and stirred at room temperature for 12 hours. 12 hours later, a clean yellow solution was obtained, which was further stirred at room temperature for 4 days followed by the addition of 0.4 mmol (62.5 mg) TEMPO under argon atmosphere. After TEMPO was added, the mixture was stirred at room temperature for 3 hours followed by the addition of 0.2 mmol (58.4 mg) *Ge*Br under argon atmosphere and stirred for further 12 hours. TEMPO-captured product was not detected by GC-MS analysis. The reaction was quenched with NH4Cl (sat, aq), extracted with ethyl acetate. Organic layer was separated, dried over Na₂SO₄, concentrated under reduced pressure to give crude product, which was purified by silica gel column chromatography using petroleum ether as eluent in 55% yield, colorless oil, 28 mg.

3.3 Scheme 4. Interference experiment with Ni catalyst

Without catalyst: To an oven-dried screw-cap tube equipped with stir bar was charged with 0.2 mmol (58.4 mg) *Ge*Br, 0.4 mmol (123.6 mg) **2e** and 0.4 mmol (26 mg) Zn powder. The tube was vacuumed and backfilled with argon for three cycles. 1.0 mL DMF was added through syringe and the tube was sealed with a teflon stopper and stirred at room temperature for 12 hours. Yields were determined by GC analysis using benzophenone internal standard.

With Ni catalyst: To an oven-dried screw-cap tube equipped with stir bar was charged with 0.02 mmol (7 mg) NiBr₂ diglyme, 0.024 mmol (6.4 mg) 4,4'-di-tert-butyl-2,2'-bipyridine, 0.2 mmol (58.4 mg) *GeBr*, 0.4 mmol (123.6 mg) **2e** and 0.4 mmol (26 mg) Zn powder. The tube was vacuumed and backfilled with argon for three cycles. 0.5 mL DMF was added through syringe and the tube was sealed with a teflon stopper and stirred at room temperature for 12 hours. Yields were determined by GC analysis using benzophenone internal standard.

3.4 Scheme 5. Comparison of ¹H-NMR spectra of alkyl zinc reagent of our strategy and classic alkyl zinc regent

a) Zinc-mediating decarboxylation of NHP esters

To an oven-dried screw-cap tube equipped with stir bar was charged with 0.02 mmol (43.8 mg) **2ao** and 0.2 mmol (13 mg) Zn powder. The tube was vacuumed and backfilled with argon for three cycles. 0.5 mL DMF- d_7 was added through syringe and the tube was sealed with a teflon stopper and stirred at room temperature for 12 hours. Under argon atmosphere, the resulting solution was transferred to NMR tube for analysis. ¹H NMR (400 MHz, DMF- d_7) δ -CH₃ 1.18 (t, J = 7.9 Hz, 3H), -CH₂-Zn 0.07 (q, J = 7.5 Hz, 2H).

¹H NMR spectra for scheme 5a

¹H-¹H COSY spectra for scheme 5a

HSQC spectra for scheme 5a

b) Classic synthesis of alkyl zinc

To an oven-dried screw-cap tube equipped with stir bar was charged with 0.3 mmol (19.5 mg) Zn powder. The tube was vacuumed and backfilled with argon for three cycles then 1.0 mL THF was added through syringe. To this mixture was added 0.05 mmol (4.3 μ L) 1,2-dibromoethane followed by stirring at 65 °C for 5 minutes. Then the mixture was cooled, and 0.05 mmol (6.3 μ L) TMSCl was added and stirred at room temperature for 15 minutes. Following, THF was removed under vacuum and 1.0 mL DMF-*d*₇ and 0.15 mmol (12 μ L) iodoethane was added through syringe. The tube was sealed with a teflon stopper and stirred at 40 °C for 12 hours. When the mixture was cooled, 0.15 mmol (27.8 mg) Potassium phthalimide was added and stirred for 3 hours. Under argon atmosphere, the resulting solution was transferred to NMR tube for

analysis. ¹**H NMR** (400 MHz, DMF-*d*₇) δ -CH₃ 1.16 (t, *J* = 7.6 Hz, 3H), -CH₂-Zn 0.06 (q, *J* = 8.0 Hz, 2H).

3.5 Scheme 6. Br/I-containing substrates and orthogonal experiment with Suzuki cross-coupling reaction

5-(5-bromopentyl)-1-aza-5-germabicyclo[3.3.3]undecane (3ap). Synthesized by Method A, purified by silica gel column chromatography using petroleum ether as eluent to give title compound as colorless oil in 77% yield, 28 mg.

¹**H NMR** (400 MHz, C₆D₆) δ 3.03 (t, *J* = 6.9 Hz, 2H), 2.19 (t, *J* = 5.8 Hz, 6H), 1.67 – 1.57 (m, 2H), 1.47 – 1.39 (m, 6H), 1.34 – 1.22 (m, 4H), 0.65 (t, *J* = 6.6 Hz, 6H), 0.46 – 0.39 (m, 2H).

¹³C NMR (101 MHz, C₆D₆) δ 53.8, 34.0, 33.0, 32.8, 25.1, 23.8, 21.6, 11.8. HRMS (ESI) *m/z* ([M+H]⁺) Calcd for C₁₄H₂₉Br⁷⁴GeN: 364.0695; Found: 364.0677.

5-(4-bromopentyl)-1-aza-5-germabicyclo[3.3.3]undecane (3aq). Synthesized by Method A, purified by silica gel column chromatography using petroleum ether as eluent to give title compound as colorless oil in 87% yield, 32 mg.

¹**H** NMR (400 MHz, C₆D₆) δ 3.99 – 3.89 (m, 1H), 2.18 (t, *J* = 5.8 Hz 6H), 1.87 – 1.75 (m, 1H), 1.62 – 1.37 (m, 12H), 0.66 (t, *J* = 6.5 Hz, 6H), 0.51 – 0.26 (m, 2H).

¹³C NMR (101 MHz, C₆D₆) δ 53.8, 51.8, 45.8, 26.6, 24.2, 23.8, 20.9, 11.8.

HRMS (ESI) *m/z* ([**M**+**H**]⁺) Calcd for C₁₄H₂₉Br⁷⁴GeN: 364.0695; Found: 364.0667.

5-(5-iodopentyl)-1-aza-5-germabicyclo[3.3.3]undecane (3ar). Synthesized by Method A, purified by silica gel column chromatography using petroleum ether as eluent to give title compound as colorless oil in 27% yield, 11 mg.

¹**H** NMR (400 MHz, C₆D₆) δ 2.79 (t, *J* = 7.1 Hz, 2H), 2.19 (t, *J* = 5.7 Hz, 6H), 1.63 – 1.53 (m, 2H), 1.49 – 1.39 (m, 6H), 1.30 – 1.20 (m, 4H), 0.65 (t, *J* = 6.5 Hz, 6H), 0.47 – 0.39 (m, 2H).

¹³C NMR (101 MHz, C₆D₆) δ 53.5, 34.8, 33.4, 24.5, 23.5, 21.2, 11.5, 6.8.

HRMS (ESI) *m/z* ([**M**+**H**]⁺) Calcd for C₁₄H₂₉I⁷⁴GeN: 412.0566; Found: 412.0499.

5-(4-bromophenethyl)-1-aza-5-germabicyclo[3.3.3]undecane (3as). Synthesized by Method A using 0.5 mL THF as solvent instead, purified by silica gel column chromatography using petroleum ether as eluent to give title compound as colorless oil in 68% yield, 27 mg.

¹**H** NMR (400 MHz, C₆D₆) δ 7.31 (d, *J* = 8.1 Hz, 2H), 6.83 (d, *J* = 8.1 Hz, 2H), 2.48 (t, *J* = 8.8 Hz, 2H), 2.16 (t, *J* = 5.7 Hz, 6H), 1.45 – 1.35 (m, 6H), 0.73 – 0.65 (m, 2H), 0.61 (t, *J* = 6.5 Hz, 6H).

¹³C NMR (101 MHz, C₆D₆) δ 145.9, 131.6, 130.1, 119.2, 53.8, 31.6, 23.8, 23.7, 11.7. HRMS (ESI) *m/z* ([M+Na]⁺) Calcd for C₁₇H₂₆Br⁷⁴GeNNa: 420.0358; Found: 420.0326.

5-(4-iodophenethyl)-1-aza-5-germabicyclo[3.3.3]undecane (3at). Synthesized by Method A, purified by silica gel column chromatography using petroleum ether as eluent to give title compound as colorless oil in 70% yield, 31 mg.

¹**H NMR** (400 MHz, C₆D₆) δ 7.53 – 7.44 (m, 2H), 6.75 – 6.65 (m, 2H), 2.51 – 2.41 (m, 2H), 2.15 (t, *J* = 5.8 Hz, 6H), 1.44 – 1.33 (m, 6H), 0.71 – 0.64 (m, 2H), 0.60 (t, *J* = 6.6 Hz, 6H).

¹³C NMR (101 MHz, C₆D₆) δ 146.6, 137.6, 130.4, 90.3, 53.8, 31.7, 23.8, 23.7, 11.7. HRMS (ESI) *m/z* ([M+H]⁺) Calcd for C₁₇H₂₇I⁷⁴GeN: 446.0400; Found: 446.0391.

5-(2-iodophenethyl)-1-aza-5-germabicyclo[3.3.3]undecane (3au). Synthesized by Method A using 0.5 mL THF as solvent instead, purified by silica gel column chromatography using petroleum ether as eluent to give title compound as colorless oil in 64% yield, 29 mg.

¹**H** NMR (400 MHz, C₆D₆) δ 7.77 – 7.68 (m, 1H), 7.09 – 7.05 (m, 1H), 7.03 – 6.96 (m, 1H), 6.54 – 6.48 (m, 1H), 2.80 – 2.72 (m, 2H), 2.16 (t, *J* = 5.8 Hz, 6H), 1.46 – 1.36 (m, 6H), 0.85 – 0.75 (m, 2H), 0.72 (t, *J* = 6.6 Hz, 6H).

¹³**C NMR** (101 MHz, C₆D₆) δ 149.4, 139.8, 129.1, 128.6, 127.3, 100.7, 53.8, 37.8, 23.8, 23.1, 11.8.

HRMS (ESI) m/z ([M+H]⁺) Calcd for C₁₇H₂₇I⁷⁴GeN: 446.0400; Found: 446.0380.

5-(5-(2-iodophenoxy)pentyl)-1-aza-5-germabicyclo[3.3.3]undecane (3av). Synthesized by Method A using 0.5 mL THF as solvent instead, purified by silica gel column chromatography using petroleum ether as eluent to give title compound as colorless oil in 70% yield, 35 mg.

¹**H** NMR (400 MHz, C₆D₆) δ 7.72 – 7.67 (m, 1H), 6.98 – 6.92 (m, 1H), 6.42 – 6.36 (m, 2H), 3.58 (t, *J* = 6.5 Hz, 2H), 2.20 (t, *J* = 5.8 Hz, 6H), 1.74 – 1.66 (m, 2H), 1.56 – 1.40 (m, 10H), 0.69 (t, *J* = 6.5 Hz, 6H), 0.63 – 0.54 (m, 2H).

¹³**C NMR** (101 MHz, C₆D₆) δ 158.2, 139.8, 129.4, 122.4, 112.2, 87.2, 69.3, 53.9, 30.8, 29.4, 25.8, 23.9, 21.9, 11.9.

HRMS (ESI) m/z ([M+H]⁺) Calcd for C₂₀H₃₃⁷⁴GeINO: 504.0819; Found: 504.0824.

3,4,5,6-tetrahydro-2H-benzo[*b*]**oxocine** (**4a**). To an oven-dried screw-cap tube equipped with stir bar was added 0.1 mmol (50.2 mg) **3av**, 0.004 mmol (2.3 mg) Pd(dba)₂ and 0.012 mmol (8.3 mg) Me-Xuphos or (9.3 mg) ⁱPr-Xuphos. The tube was vacuumed and backfilled with argon for three cycles. 10 mL CH₃CN was added through syringe and the tube was sealed with a teflon stopper and stirred at 100 °C for 24 hours. When the reaction was finished, solvent was removed under reduced pressure. 70% ¹H NMR yield was determined using mesitylene as internal standard for ⁱPr-Xuphos. For Me-Xuphos 82% ¹H NMR yield was determined using mesitylene as internal standard. Resulting crude was purified by silica gel column chromatography using petroleum ether as eluent to give **4a** in 61% yield as colorless liquid, 10 mg. Isolated yield lost due to the low volatility.

¹**H NMR** (400 MHz, CDCl3) δ 7.21 – 7.15 (m, 1H), 7.14 – 7.11 (m, 1H), 7.07 – 7.01 (m, 2H), 4.09 (t, *J* = 5.5 Hz, 2H), 2.79 – 2.73 (m, 2H), 1.73 – 1.57 (m, 4H), 1.52 – 1.45 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 156.8, 137.6, 129.9, 127.7, 124.5, 121.7, 76.6, 31.7, 30.6, 27.9, 26.9.

HRMS (ESI) *m/z* (**[M+H]**⁺) Calcd for C₁₁H₁₅O: 163.1123; Found: 163.0397. **GC-MS (EI)** *m/z* (**M**⁺) Calcd for C₁₁H₁₄O: 162.10; Found: 162.17.

5-(5-(2-(4-methoxyphenethyl)phenoxy)pentyl)-1-aza-5-

germabicyclo[3.3.3]**undecane** (3**aw**) To an oven-dried screw-cap tube equipped with stir bar was charged with 0.1 mmol (50.2 mg) **3av**, 0.002 mmol (1.8 mg) Pd₂(dba)₃, 0.004 mmol (1.9 mg) Ruphos and 0.3 mmol (28.8 mg) NaO^tBu. The tube was vacuumed and backfilled with argon for three cycles. 0.15 mmol (39.2 mg) 2-(4methoxyphenethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane and 1.0 mL toluene/H₂O = 1/1 was added through syringe and the tube was sealed with a teflon stopper and stirred at 80 °C for 24 hours. When the reaction was finished, the mixture was extracted with ethyl acetate/brine, organic phase was collected, dried over Na₂SO₄, concentrated under reduced pressure to give crude product, which was purified by silica gel column chromatography using petroleum ether/ethyl acetate = 80/1 as eluent to give **3aw** in 90% yield as colorless thick oil, 46 mg.

¹**H** NMR (400 MHz, C_6D_6) δ 7.14 – 7.08 (m, 3H), 7.08 – 7.04 (m, 1H), 6.88 – 6.83 (m, 1H), 6.82 – 6.77 (m, 2H), 6.70 – 6.67 (m, 1H), 3.73 (t, *J* = 6.4 Hz, 2H), 3.33 (s, 3H), 3.11 – 3.04 (m, 2H), 3.02 – 2.93 (m, 2H), 2.18 (t, *J* = 5.8 Hz, 6H), 1.80 – 1.70 (m, 2H), 1.57 – 1.38 (m, 10H), 0.68 (t, *J* = 6.5 Hz, 6H), 0.59 – 0.53 (m, 2H).

¹³**C NMR** (101 MHz, C₆D₆) δ 158.5, 157.6, 134.9, 130.7, 130.4, 129.8, 127.5, 120.5, 114.2, 111.5, 68.0, 54.8, 53.8, 36.1, 33.9, 31.1, 29.7, 25.9, 23.9, 22.0, 11.9.

HRMS (ESI) m/z ([M+Na]⁺) Calcd for C₂₉H₄₃⁷⁴GeNNaO₂: 534.2403; Found: 534.2403.
4. Reference

(1) Xu, M.-Y.; Jiang, W.-T.; Li, Y.; Xu, Q.-H.; Zhou, Q.-L.; Yang, S.; Xiao, B., Alkyl Carbagermatranes Enable Practical Palladium-Catalyzed sp²-sp³ Cross-Coupling. *J. Am. Chem. Soc.* **2019**, *141*, 7582-7588.

(2) Fawcett, A.; Pradeilles, J.; Wang, Y.; Mutsuga, T.; Myers, E. L.; Aggarwal, V. K., Photoinduced decarboxylative borylation of carboxylic acids. *Science* **2017**, *357*, 6348.

(3) Schwarz, J.; Koenig, B., Metal-free, visible-light-mediated, decarboxylative alkylation of biomass-derived compounds. *Green Chemistry* **2016**, *18*, 4743-4749.

(4) Garrido-Castro, A. F.; Choubane, H.; Daaou, M.; Carmen Maestro, M.; Aleman, J., Asymmetric radical alkylation of N-sulfinimines under visible light photocatalytic conditions. *Chem. Comm.* **2017**, *53*, 7764-7767.

(5) Cheng, W.-M.; Shang, R.; Fu, M.-C.; Fu, Y., Photoredox-Catalysed Decarboxylative Alkylation of N-Heteroarenes with N-(Acyloxy)phthalimides. *Chem. Eur. J.* **2017**, *23*, 2537-2541.

(6) Cornella, J.; Edwards, J. T.; Qin, T.; Kawamura, S.; Wang, J.; Pan, C.-M.; Gianatassio, R.; Schmidt, M.; Eastgate, M. D.; Baran, P. S., Practical Ni-Catalyzed Aryl-Alkyl Cross-Coupling of Secondary Redox-Active Esters. *J. Am. Chem. Soc.* **2016**, *138*, 2174-2177.

(7) Toriyama, F.; Cornella, J.; Wimmer, L.; Chen, T.-G.; Dixon, D. D.; Creech, G.; Baran, P. S., Redox-Active Esters in Fe-Catalyzed C-C Coupling. *J. Am. Chem. Soc.* **2016**, *138*, 11132-11135.

(8) Zhao, W.; Wurz, R. P.; Peters, J. C.; Fu, G. C., Photoinduced, Copper-Catalyzed Decarboxylative C-N Coupling to Generate Protected Amines: An Alternative to the Curtius Rearrangement. *J. Am. Chem. Soc.* **2017**, *139*, 12153-12156.

(9) Wang, D.; Zhu, N.; Chen, P.; Lin, Z.; Liu, G., Enantioselective Decarboxylative Cyanation Employing Cooperative Photoredox Catalysis and Copper Catalysis. *J. Am. Chem. Soc.* **2017**, *139*, 15632-15635.

(10) Suzuki, N.; Hofstra, J. L.; Poremba, K. E.; Reisman, S. E., Nickel-Catalyzed Enantioselective Cross-Coupling of N-Hydroxyphthalimide Esters with Vinyl Bromides. *Org. Lett.* **2017**, *19*, 2150-2153.

(11) Zheng, C.; Wang, Y.; Xu, Y.; Chen, Z.; Chen, G.; Liang, S. H., Ru-Photoredox-Catalyzed Decarboxylative Oxygenation of Aliphatic Carboxylic Acids through N-(acyloxy)phthalimide. *Org. Lett.* **2018**, *20*, 4824-4827.

(12) Hu, D.; Wang, L.; Li, P., Decarboxylative Borylation of Aliphatic Esters under Visible-Light Photoredox Conditions. *Org. Lett.* **2017**, *19*, 2770-2773.

(13) Larionov, O. V.; de Meijere, A., Enantioselective total syntheses of belactosin A, belactosin C, and its homoanalogue. *Org. Lett.* **2004**, *6*, 2153-2156.

(14) Tandon, V. K.; Singh, K. A.; Goswamy, G. K., 1-And 2-substituted naphthalenes: a new class of potential hypotensive agents. *Bioorganic & Medicinal Chemistry Letters* **2004**, *14*, 2797-2800.

(15) Takizawa, K.; Tang, C.; Hawker, C. J., Molecularly defined caprolactone oligomers and polymers: Synthesis and characterization. *J. Am. Chem. Soc.* **2008**, *130*, 1718-1726.

(16) Ding, S.; Tian, S.; Zhao, Y.; Ma, Q.; Zhu, M.; Ren, H.; Li, K.; Miao, Z., Facial strategy for radical species through Ag(I)-mediated oxidation of the alkyl trifluoroborates. *Synthetic Communications* **2018**, *48*, 936-945.

(17) Andersen, T. L.; Donslund, A. S.; Neumann, K. T.; Skrydstrup, T., Carbonylative Coupling of Alkyl Zinc Reagents with Benzyl Bromides Catalyzed by a Nickel/NN(2)Pincer Ligand Complex. *Angew. Chem., Int. Ed.* **2018,** *57*, 800-804.

5. NMR spectra

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

