SUPPLEMENTAL MATERIAL

Methods

Patient population

We consecutively recruited 190 unrelated patients with BrS (SADS-TW BrS registry)¹ from January 2000 to December 2016 in the Taiwanese population. Aborigines were excluded from this study. BrS was diagnosed by 2 independent cardiologists according to established criteria.² Demographic and clinical data, including age of onset, gender, clinical presentation, and family history of SCA or syncope, were recorded. In addition, the parameters of 12-lead ECGs, including heart rate, PR interval, QRS duration, QT interval, and QRS axis, were collected when patients were enrolled. Before enrolling patients with BrS, we ascertained that the SCA events were caused by ventricular fibrillation or polymorphic ventricular tachycardia which was successfully converted by an automated external defibrillator (AED) or direct current electrical shock. Syncope was defined as non-traumatic, abrupt, transient loss of consciousness with loss of awareness, characterized by amnesia for the period of unconsciousness, abnormal motor control, loss of responsiveness, a short duration, and spontaneous complete recovery. It was reported by patients and/or bystanders and was ascertained by blinded and independent certificated cardiologists through careful history taking, physical examinations, and laboratory tests (e.g. ECG, 24 hours Holter monitoring, head-up tilt testing, electrophysiological studies, blood tests, etc.). This study was approved by the local ethical committee of National Taiwan University Hospital, and all participants gave informed consent before participating.

Datasets

We used a genome-wide SNP dataset which contains a total of 648,629 SNPs and 16,171 samples from a Taiwanese cohort, of which 190 samples were BrS patients from the SADS-TW registry. The remaining 15,981 samples were healthy controls from the Taiwan Biobank (TWB) project.³ All samples were genotyped using the Affymetrix Axiom Genome-wide TWB array version 1.0. In order to obtain the genotypes of SNPs that were not examined in this microarray platform, an imputation approach was applied in which a reference panel was used to infer missing genotypes from the target genotype dataset for each study sample. In this study, the 1000 Genomes phase 3 dataset^{4, 5} was used as the reference panel for imputation.

Quality control

To achieve high-quality imputation results, two quality control filters for performing a GWAS were applied to the target genotype dataset with the goal of excluding both low quality SNPs and samples. To deal with both per-SNP and per-individual filtering, we used Plink1.9⁶ to remove SNPs with call rates <95% and samples with missing rates >95%, which removed 24,604 SNPs. All 16,171 samples passed the quality control steps, suggesting the high quality of the genotype data. The target genotype array data also includes rare variants with minor allele frequency (MAF) <1% and SNPs in the common (>5%) and low (1-5%) MAF ranges. We excluded very rare SNPs by removing variants with MAF <0.01%, which resulted in 4,264 SNPs being removed. Lastly, the remaining 619,761 SNPs were analyzed based on a processing pipeline including SHAPEIT 2⁷ followed by imputation with IMPUTE 2.0⁸ (**Figure 1**).

Candidate SNP selection, phasing, and imputation

The main objective in this study was to validate the 88 previously reported BrS- or ECG traits-associated SNPs⁹ in Taiwanese BrS patients. For examples, these SNPs were in the following genes: SCN5A, SCN10A, HEY2, NCOA7, HEATR5B, MEIS1, HAND1, SAP3OL, GJA1, FADS1, TBX3, TBX5, KLF12, MYH6, and KCNE. The previously reported SNPs could be divided into 3 sets. The first set included the 3 most important SNPs previously associated with susceptibility to BrS and were included in the BrS-PRS: rs11708996 in SCN5A, rs10428132 in SCN10A, and rs9388451 near HEY2.9 The second set included 12 SNPs reaching genome-wide significance in the GWAS from Dr. Bezzina et al. (rs6599240, rs11129801, rs9874633, rs10428132, rs7428167, rs10428168, rs12638572, rs7641844, rs7430439, and rs6599257 in SCN10A; rs1268070, rs9388451 in HEY2/NCOA7).⁹ The third set included the 75 hit-SNPs associated with ECG traits identified from previous GWASs on ECG traits.⁹⁻¹⁸ The list of SNPs in these 3 sets is shown in **Table S3**. The genotype calls from the microarrays were aligned to the forward strand, and the SHAPEIT2⁷ algorithm was utilized to align alleles between the study samples and the reference panel, by inverting the alleles and/or the target set. Previous studies have demonstrated that the best strategy for imputing genotype data with IMPUTE2 is first to phase the study population with SHAPEIT2 and then impute the phased data with IMPUTE2.^{19, 20} Therefore, samples analyzed in this study were compared with the 1000 Genomes phase 3 reference panel using SHAPEIT2, focusing on populations with East-Asian ancestry. The SHAPEIT2 algorithm iteratively updates each individual's haplotype estimation by conditioning upon the current haplotype estimates of all other individuals. The enormous amount of information present in the 1000 Genomes reference panel can be best exploited through phased haplotypes, which identify the SNPs that are co-located on the same chromosome. The potential haplotypes are compared for each individual with all other observed haplotypes in the reference panel to impute missing genotypes using IMPUTE2 version 2.3.1 with default parameters. Imputation was performed by splitting the region of each of the chromosomes containing the gene of interest into 5 Mb chunks as recommended. The effective population size was set at 20,000 as recommended by the authors. To avoid margin effects while chunking genotypic regions, the IMPUTE2 algorithm uses an internal buffer region of 250 kb on either side of the analysis interval.

Single marker analysis and development of polygenic risk score models

A single marker test was performed to determine whether a DNA variant was enriched in BrS patients, and logistic regression was utilized accordingly. Considering the genetic effect of one variant is usually not strong, a polygenic risk score (PRS) that summarizes the effects of all variants was developed. The odds ratio (OR) for each variant was calculated by using an additive model, and these ORs in all variants were integrated through their logarithm transformed values after being divided by standard errors. Notably, the log-ORs divided by standard errors were set as the weights for these developed PRS models in this study. For the set 2 SNPs, a linkage disequilibrium (LD) association was calculated because many of the SNPs were located in chromosome 3 led by SCN5A. If a SNP pair has a high correlation (R^2 > 0.7), only the SNP showing lowest p-value between BrS patients and healthy controls was kept for further analyses. In addition, we performed a condition analysis for each SNP located in chromosome 3 by conditioning on the most significant SNP, rs6599257, and only the significant SNPs (P < 0.05) were kept for further analyses. To stratify BrS patients, they were divided into two subgroups depending on whether they possessed a putative BrS1-associated variant in SCN5A or not. To determine the associations between the developed PRS models and three clinical outcomes (SCA, syncope, combined SCA and syncope) respectively, logistic regression models were utilized. Furthermore, we developed two weighting schemes by using the BrS patients with and without SCN5A variants versus healthy controls.

Statistical and survival analysis

Either Chi-square or Fisher exact tests were used to compare categorical variables. Student's t-test was applied for continuous variables. All continuous data are expressed as mean \pm standard deviation and all categorical data are expressed as numbers and percentages. A twotailed *P*-value <0.05 was considered statistically significant. Statistical analysis was performed using SPSS Statistics for Windows, Version 22.0 (Armonk, NY: IBM Corp.). To remove the potential biases resulting from the left truncation and censoring of data, a Cox's proportional hazards model was utilized to evaluate the associations between a SNP and the 3 clinical outcomes (SCA, syncope, or both). The end date of this study date was set as December 31, 2018.

PCR and Sanger sequencing

With permission from study subjects, 10 mL of peripheral venous blood was drawn for genetic analysis. We used a DNA extraction kit (Qiagen, Germany) to extract DNA from the buffy coat of patients' peripheral blood. PCR experiments were performed in a total reaction volume of 50 μ L, which contained 1 μ g of genomic DNA from patient samples and 2.0 mM Mg²⁺ when used at a 1X concentration. The final concentration of dNTPs was 200 μ M of each deoxynucleotide. Each primer was used at a final concentration of 0.5 μ M in the reaction. The concentration of Q5 Hot Start High-Fidelity DNA Polymerase in the 2X Master Mix has been optimized for best results under a wide range of conditions (New England BioLabs, USA). Conventional direct sequencing was performed on *SCN5A* using an ABI 3730 instrument (Applied Biosystems, Foster City, CA, USA). The candidate variants were classified as pathogenic or benign according to the definition of the American College of Medical Genetics and Genomics (ACMG).²¹

CHR	SNP	Р
3	rs6599240	0.4554
3	rs11129801	0.0373^{*}
3	rs9874633	0.1876
3	rs7428167	0.0305^{*}
3	rs10428168	0.0154^{*}
3	rs7641844	0.0177^*
3	rs7430439	0.0363*
3	rs6599257	0.0515
6	rs1268070	0.0233^{*}
6	rs9388451	0.0009^{*}

Supplementary Table 1. The p-value of the conditional analysis of each individual SNP from set 2 versus rs10428132.

* indicates statistical significance (p < 0.05).

Set 1 SNPs	SCN5A mutation-negative	SCN5A mutation-positive
PRS range		
0%-20%*	1	1
21%-40%	0.12 (0.03-0.38) [‡]	0.4 (0.08-2.06)
41%-60%	2.27 (1.43-3.61) [‡]	1.2 (0.37-3.93)
61%-80%	1.92 (1.19-3.1) [‡]	2.6 (0.93-7.3)
81%-100%	0.85 (0.48-1.5)	0.4 (0.08-2.06)
Set 2 SNPs		
PRS range		
0%-20% *	1	1
21%-40%	1.57 (0.8-3.08)	1.33 (0.3-5.96)
41%-60%	2.50 (1.34-4.66) [‡]	0.67 (0.11-3.99)
61%-80%	2.00 (1.05-3.81) [‡]	1.67 (0.4-6.98)
81%-100%	3.36 (1.84-6.11) [‡]	3.67 (1.02-13.16) [‡]
Set 3 SNPs		
PRS range		
0%-20%*	1	1
21%-40%	3.25 (1.06-10.03) [‡]	3 (0.6-14.94)
41%-60%	4.50 (1.52-13.37) [‡]	2 (0.37-10.96)
61%-80%	9.26 (3.28-26.13) [‡]	3 (0.6-14.94)
81%-100%	14.5 (5.24-40.16) [‡]	2.5 (0.48-12.93)

Supplementary Table 2. The odds ratios from the PRS models generated using the 3 sets of SNPs individually

PRS: polygenic risk score; SNP: single nucleotide polymorphism

* Here showed the raw odds ratios. In order to make the axis symmetrical in **Figure 4**, we showed the ORs on a log scale in **Figure 4**.

[†]Reference group

.

^{\ddagger} indicates statistical significance (p < 0.05).

Cause susceptibility to BrS (set 1)	Gene or nearest gene	Reaching genome-wide significance in the GWAS (set 2)	Gene or nearest gene	SNPs previously associated with ECG traits (set 3)	Gene or nearest gene
rs11708996	SCN5A	rs6599240	SCN10A	rs846111	RNF207,NPHP4,CHDS,ACOT7,PLE KHG5,KLH20
rs10428132	SCN10A	rs11129801	SCN10A	rs9436640	NFIA
rs9388451	HEY2, NCOA7	rs9874633	SCN10A	rs4074536	CASQ2
		rs10428132	SCN10A	rs2880058	NOSIAP
		rs7428167	SCN10A	rs12143842	NOSIAP
		rs10428168	SCN10A	rs10494366	NOSIAP
		rs12638572	SCN10A	rs16857031	NOSIAP
		rs7641844	SCN10A	rs12029454	NOSIAP
		rs7430439	SCN10A	rs4657178	NOSIAP
		rs6599257	SCN10A	rs10919071	ATP1B1
		rs1268070	HEY2	rs12731740	CD46,CD34,PLXNA2PLXNA2
		rs9388451	HEY2, NCOA7	rs2745967	CD34
				rs17391905	Clorf185,RNF11,CDKN2C,FAF1
				rs7562790	CRIM1
				rs17020136	HEATR5B,STRN
				rs10865355	MEIS1
				rs11897119	MEIS1
				rs2051211	SCN5A,SCN10A
				rs10865879	SCN5A,SCN10A
				rs11129795	SCN5A,SCN10A
				rs12053903	SCN5A
				rs3922844	SCN5A,SCN10A
				rs11708996	SCN5A,SCN10A

Supplementary Table 3. List of the 88 previously reported SNPs that were associated with BrS or reaching genome-wide significance or associated with ECG traits

rs6599222	SCN5A,SCN10A
rs11710077	SCN5A,SCN10A
rs9851724	SCN5A,SCN10A
rs6795970	SCN5A,SCN10A
rs6798015	SCN5A,SCN10A
rs7627552	SCN5A,SCN10A
rs4687718	TKT
rs2242285	LRIG-SLC25A26
rs7660702	ARHGAP24
rs13165478	HAND1,SAP30L
rs251253	C5orf41,NKX2.5
rs1321311	PI16,CDKN1A
rs281868	C6orf204,SLC35F1,PLN,BRD7P3,AS
	FIA
rs11153730	C6orf204,SLC35F1,PLN,BRD7P3,AS
	FIA
rs11970286	C6orf204,SLC35F1,PLN,BRD7P3,AS
	<i>F1A</i>
rs12210810	C6orf204,SLC35F1,PLN,BRD7P3,AS
1012210010	F1A
rs11154022	GJA1
	GJA1
	TBX20
	IGFBP3
	SLC12A9,UFSP1
	CAV1/CAV2
	KCNH2
	KCNH2
	DKK2
	VTIIA
	KCNQ1
	KCNQ1
	KCNQ1
	rs11710077 rs9851724 rs6795970 rs6798015 rs7627552 rs4687718 rs2242285 rs7660702 rs13165478 rs251253 rs1321311

rs174547	FADS1
rs4944092	WNT11
rs17287293	SOX5,BCAT1
rs11047543	SOX5,BCAT1
rs883079	TBX3,TBX5
rs3825214	TBX5
rs7312625	TBX3,TBX5
rs1896312	TBX3,TBX5
rs10850409	TBX3,TBX5
rs885389	GPR133
rs2478333	TBX3,TBX5
rs1886512	SUCLA2
rs365990	KLF12
rs223116	MYH6,MYH7,NDNG,ZFHX2
rs11848785	MYH6,MYH7,NDNG,ZFHX2
rs8049607	SIPA1L1
rs37062	LITAF,CLEC16A,SNN,ZC3H7A,TNF
	RSF16
rs2074518	CNOT1,GINS3,SLC38A7,GOT1
rs17608766	LIG3,RFFL
rs9912468	GOSR2
rs17779747	PRKCA
rs991014	KCNJ2
rs1805128	SETBP1

BrS: Brugada syndrome, SNP: single nucleotide polymorphism, ECG: electrocardiogram, GWAS: genome-wide association study

SNP_ID	SCN5A mutation-		SCN5A mutati	on+	All BrS patients		
	HR (95% CI)	P value	HR (95% CI)	P value	HR (95% CI)	P value	
rs4687718	1.95 (0.98-3.86)	0.057	12.99 (1.18-143.31)	0.036^{*}	2.13 (1.11-4.08)	0.022^{*}	
rs7784776	1.54 (1.14-2.07)	0.005^{*}	1.15 (0.44-2.99)	0.771	1.48 (1.12-1.96)	0.006^{*}	
rs2968863	0.50 (0.23-1.07)	0.075	0.28 (0.07-1.06)	0.061	0.41 (0.21-0.79)	0.008^*	

Supplementary Table 4. The associations between single SNP and composite clinical outcomes (SCA plus syncope).

CI: confidence interval; HR: hazard ratio; SCA: sudden cardiac arrest; P<0.05 is highlighted in red color

* indicates statistical significance (p < 0.05).

SNP	Chromosome	Location	Major allele	Minor allele	P-value
rs78412897	1	165186203	С	А	6.90E-32
rs9842169	3	77714832	G	А	1.60E-10
rs77867179	4	168402906	С	Т	8.58E-48
rs77739912	5	42366688	G	А	5.97E-32
rs1360590	9	22041443	С	Т	6.76E-12
rs1828774	15	29013164	G	А	3.41E-125
rs9925311	16	53767648	G	А	6.85E-20
rs162400	21	44950305	С	A	9.65E-18

Supplementary Table 5. Significant SNPs in the primary Taiwanese BrS-Control GWAS.

	Chr. Position (Build 37)	Gene or nearest gene	Risk allele	Protective allele	RAF (case/control) in Taiwanese	RAF (case/control) in Caucasian	-	atients in Taiwan althy controls
SNPs causing s	usceptibility to Brug	ada syndrome ⁹ (set	1)				P value*	Odds ratio
rs11708996	Chr3:38633923	SCN5A	С	G	0.011/0.007	0.23/0.15	4.27E-01	1.5 (0.46-3.57)
rs10428132	Chr3:38777554	SCN10A	Т	G	0.305/0.193	0.69/0.41	5.92E-08 [‡]	1.84 (1.47-2.29)
rs9388451	Chr6:126090377	HEY2, NCOA7	С	Т	0.818/0.742	0.65/0.50	7.94E-04 [‡]	1.56 (1.21-2.05)
SNPs reaching	genome-wide signifi	cance in the GWAS	⁹ (set 2)					
rs6599240	Chr3:38738717	SCN10A	А	G	0.195/0.138	NA/0.435	1.65E-03 [‡]	1.51 (1.16-1.94)
rs11129801	Chr3:38750375	SCN10A	G	A	0.645/0.535	NA/0.72	8.91E-06 [‡]	1.56 (1.28-1.89)
rs9874633	Chr3:38771994	SCN10A	А	G	0.789/0.784	NA/NA	9.94E-01	1 (0.79-1.28)
rs10428132	Chr3:38777554	SCN10A	Т	G	0.305/0.193	NA/NA	5.92E-08 [‡]	1.84 (1.47-2.29)
rs7428167	Chr3:38778191	SCN10A	Т	C	0.521/0.396	NA/NA	1.08E-06 [‡]	1.66 (1.35-2.03)
rs10428168	Chr3:38780059	SCN10A	Т	C	0.663/0.669	NA/NA	8.08E-01	0.97 (0.79-1.21)
rs12638572	Chr3:38787797	SCN10A	А	G	0.318/0.205	NA/NA	9.04E-08 [‡]	1.81 (1.45-2.25)
rs7641844	Chr3:38802251	SCN10A	А	G	0.447/0.318	NA/NA	1.05E-07 [‡]	1.74 (1.42-2.13)
rs7430439	Chr3:38803639	SCN10A	G	A	0.418/0.294	NA/NA	1.91E-07 [‡]	1.73 (1.4-2.12)
rs6599257	Chr3:38804588	SCN10A	С	Т	0.226/0.13	NA/NA	4.78E-08 [‡]	1.97 (1.54-2.5)
rs1268070	Chr6:126041164	HEY2	С	Т	0.853/0.804	NA/NA	3.79E-02 [‡]	1.33 (1.02-1.75)
rs9388451	Chr6:126090377	HEY2, NCOA7	С	Т	0.818/0.742	NA/0.49	7.94E-04 [‡]	1.56 (1.21-2.05)
SNPs previousl	y associated with EC	CG traits ^{10-18, 22} (set	3)					
rs846111	Chr1:6279370	RNF207,NPHP4 ,CHDS,ACOT7, PLEKHG5,KLH 20	G	С	0.824/0.835	0.253/0.268	4.23E-01	0.9 (0.7-1.17)
rs9436640	Chr1:61873677	NFIA	Т	G	1/1	0.468/0.448	9.76E-01	$NA(0-Inf)^{\dagger}$
rs4074536	Chr1:116310967	CASQ2	Т	С	0.524/0.517	0.309/0.290	8.65E-01	1.02 (0.83-1.24)
rs2880058	Chr1:162014632	NOSIAP	А	G	0/0	0.358/0.337	NA	$NA(0-Inf)^{\dagger}$
rs12143842	Chr1:162033890	NOS1AP	С	Т	0/0	0.274/0.254	NA	$NA(0-Inf)^{\dagger}$
rs10494366	Chr1:162085685	NOS1AP	G	Т	0/0	0.399/0.365	NA	$NA(0-Inf)^{\dagger}$
rs16857031	Chr1:162112910	NOS1AP	С	G	0/0	0.146/0.145	NA	$NA(0-Inf)^{\dagger}$

Supplementary Table 6. Validation of the 88 previously reported SNPs in the Taiwanese BrS patients

rs12029454	Chr1:162133117	NOSIAP	G	А	0.231/0.217	0.176/0.165	5.46E-01	1.08 (0.84-1.36)
rs4657178	Chr1:162210610	NOSIAP	С	Т	0/0	0.272/0.275	NA	$NA(0-Inf)^{\dagger}$
rs10919071	Chr1:169099483	ATP1B1	А	G	0/0	0.109/0.138	NA	$NA(0-Inf)^{\dagger}$
rs12731740	Chr1:208024820	CD46,CD34,PL XNA2PLXNA2	С	Т	0/0	0.115/0.101	NA	$NA(0-Inf)^{\dagger}$
rs2745967	Chr1:208128722	<i>CD34</i>	G	А	0/0	0.372/0.371	NA	$NA(0-Inf)^{\dagger}$
rs17391905	Chr1:51546140	Clorf185,RNF1 1,CDKN2C,FAF 1	G	А	0.079/0.059	NA/NA	1.08E-01	1.36 (0.92-1.95)
rs7562790	Chr2:36673555	CRIM1	Т	G	0.379/0.378	0.396/0.406	9.57E-01	1.01 (0.81-1.24)
rs17020136	Chr2:37248015	HEATR5B,STR N	Т	С	0.443/0.509	0.213/0.182	7.36E-03 [‡]	0.76 (0.62-0.93)
rs10865355	Chr2:66764997	MEIS1	А	G	0.221/0.174	0.402/0.377	1.62E-02 [‡]	1.35 (1.05-1.72)
rs11897119	Chr2:66772000	MEIS1	Т	С	0.779/0.825	0.401/0.377	1.14E-02 [‡]	0.73 (0.58-0.94)
rs2051211	Chr3:38559749	SCN5A,SCN10A	А	G	0.739/0.699	0.217/0.255	8.97E-02	1.22 (0.97-1.54)
rs10865879	Chr3:38577362	SCN5A,SCN10A	А	С	0.931/0.91	0.282/0.233	9.40E-02	1.37 (0.97-2.04)
rs11129795	Chr3:38589163	SCN5A,SCN10A	G	А	0.932/0.91	0.284/0.233	1.77E-17 [‡]	3.89 (2.91-5.46)
rs12053903	Chr3:38593393	SCN5A	Т	С	0.437/0.455	0.394/0.327	5.00E-01	0.93 (0.76-1.14)
rs3922844	Chr3:38624253	SCN5A,SCN10A	Т	С	0.087/0.099	0.233/0.298	9.86E-01	1 (0.69-1.4)
rs11708996	Chr3:38633923	SCN5A,SCN10A	G	С	0.987/0.992	0.228/0.151	9.25E-02	0.56 (0.31-1.23)
rs6599222	Chr3:38648062	SCN5A,SCN10A	С	Т	0/0.002	0.286/0.218	9.67E-01	0 (0-0.41)
rs11710077	Chr3:38657899	SCN5A,SCN10A	А	Т	0.947/0.937	0.166/0.197	4.03E-01	1.21 (0.79-1.96)
rs9851724	Chr3:38719935	SCN5A,SCN10A	С	Т	0.255/0.244	0.226/0.307	5.88E-01	1.07 (0.84-1.34)
rs6795970	Chr3:38766675	SCN5A,SCN10A	А	G	0.263/0.152	0.668/0.410	5.10E-09 [‡]	1.98 (1.57-2.49)
rs6798015	Chr3:38798836	SCN5A,SCN10A	С	Т	0.315/0.194	0.607/0.364	3.96E-09 [‡]	1.92 (1.54-2.39)
rs7627552	Chr3:38666036	SCN5A,SCN10A	-	G	0/0	NA/NA	NA	$NA(0-Inf)^{\dagger}$
rs4687718	Chr3:53282303	TKT	А	G	0.029/0.036	0.120/0.118	4.47E-01	0.79 (0.41-1.37)
rs2242285	Chr3:66431602	LRIG- SLC25A26	А	G	0.171/0.166	0.436/0.400	8.02E-01	1.04 (0.78-1.34)
rs7660702	Chr4:86651464	ARHGAP24	Т	С	0.074/0.081	0.277/0.303	6.35E-01	0.91 (0.61-1.31)
rs13165478	Chr5:153869040	HAND1,SAP30L	G	А	0.607/0.593	0.339/0.380	5.84E-01	1.06 (0.86-1.3)
rs251253	Chr5:172480336	C5orf41,NKX2.5	С	Т	0.813/0.817	0.438/0.377	9.05E-01	0.98 (0.76-1.28)

rs1321311	Chr6:36622900	PI16,CDKN1A	С	А	0.811/0.839	0.267/0.248	1.45E-01	0.82 (0.64-1.08)
rs281868	Chr6:118574061	C6orf204,SLC3 5F1,PLN,BRD7 P3,ASF1A	G	А	0.758/0.72	0.478/0.490	9.53E-02	1.22 (0.97-1.56)
rs11153730	Chr6:118667522	C6orf204,SLC3 5F1,PLN,BRD7 P3,ASF1A	Т	С	0/0	0.470/0.463	NA	$NA(0-Inf)^{\dagger}$
rs11970286	Chr6:118680374	C6orf204,SLC3 5F1,PLN,BRD7 P3,ASF1A	С	Т	0.247/0.258	0.427/0.422	6.72E-01	0.95 (0.75-1.2)
rs12210810	Chr6:118653204	C6orf204,SLC3 5F1,PLN,BRD7 P3,ASF1A	Т	С	0.262/0.27	NA/NA	2.08E-01	1.16 (0.92-1.44)
rs11154022	Chr6:121748542	GJA1	А	G	0.537/0.49	0.337/0.339	6.22E-02	1.21 (0.99-1.49)
rs9398652	Chr6:122146034	GJA1	С	А	0.526/0.539	0.085/0.099	6.50E-01	0.95 (0.78-1.17)
rs1362212	Chr7:35305306	TBX20	G	А	0.929/0.923	0.226/0.182	6.02E-01	1.11 (0.77-1.68)
rs7784776	Chr7:46620145	IGFBP3	А	G	0.229/0.243	0.430/0.420	5.26E-01	0.93 (0.72-1.17)
rs314370	Chr7:100453208	SLC12A9,UFSP 1	Т	С	0.928/0.955	0.176/0.189	2.65E-09 [‡]	2.33 (1.8-3.15)
rs3807989	Chr7:116186241	CAV1/CAV2	А	G	0.263/0.248	0.471/0.401	4.87E-01	1.09 (0.86-1.36)
rs2968863	Chr7:150623137	KCNH2	С	Т	0.974/0.964	0.245/0.277	2.84E-01	1.41 (0.8-2.82)
rs4725982	Chr7:150637863	KCNH2	С	Т	0.352/0.373	0.221/0.204	3.76E-01	0.91 (0.73-1.12)
rs1733724	Chr10:54223977	DKK2	А	G	0.053/0.051	0.260/0.238	8.73E-01	1.04 (0.64-1.6)
rs7342028	Chr10:114479262	VTI1A	G	Т	0.405/0.461	0.260/0.277	3.56E-02 [‡]	0.8 (0.65-0.98)
rs2074238	Chr11:2484803	KCNQ1	Т	С	0.024/0.026	0.093/0.079	9.58E-01	1.02 (0.48-1.88)
rs12296050	Chr11:2489342	KCNQ1	С	Т	0.7/0.652	0.180/0.196	5.07E-02	1.24 (1-1.56)
rs12576239	Chr11:2502319	KCNQ1	С	Т	0.916/0.899	0.124/0.134	2.45E-01	1.24 (0.88-1.81)
rs174547	Chr11:61570783	FADS1	Т	С	0.45/0.411	0.329/0.305	1.30E-01	1.17 (0.95-1.43)
rs4944092	Chr11:75909619	WNT11	А	G	0.766/0.771	0.291/0.307	8.52E-01	0.98 (0.77-1.25)
rs17287293	Chr12:24770878	SOX5,BCAT1	А	G	0.892/0.876	0.171/0.158	3.22E-01	1.18 (0.86-1.65)
rs11047543	Chr12:24788339	SOX5,BCAT1	G	А	0.892/0.878	0.176/0.159	2.36E-01	1.21 (0.89-1.69)
rs883079	Chr12:114793240	TBX3,TBX5	С	Т	0.542/0.548	0.356/0.280	8.64E-01	0.98 (0.8-1.2)
rs3825214	Chr12:114795443	TBX5	G	А	0.429/0.438	0.252/0.190	7.38E-01	0.97 (0.79-1.18)

rs7312625	Chr12:114799974	TBX3,TBX5	G	А	0.172/0.186	0.338/0.264	4.78E-01	0.91 (0.69-1.18)
rs1896312	Chr12:115346424	TBX3,TBX5	С	Т	0.611/0.553	0.303/0.286	2.35E-02 [‡]	1.27 (1.03-1.56)
rs10850409	Chr12:115381740	TBX3,TBX5	G	А	0.382/0.441	0.278/0.269	2.69E-02 [‡]	0.79 (0.64-0.97)
rs885389	Chr12:131621762	GPR133	А	G	0.553/0.557	0.375/0.332	9.41E-01	0.99 (0.81-1.21)
rs2478333	Chr13:48162558	SUCLA2	С	А	0.932/0.933	0.252/0.190	9.70E-01	0.99 (0.68-1.52)
rs1886512	Chr13:74520186	KLF12	Т	А	0.751/0.737	0.364/0.353	5.01E-01	1.08 (0.86-1.37)
rs365990	Chr14:23861811	MYH6,MYH7,N DNG,ZFHX2	А	G	0.834/0.825	0.363/0.378	6.10E-01	1.07 (0.82-1.42)
rs223116	Chr14:23977010	MYH6,MYH7,N DNG,ZFHX2	А	G	0.337/0.352	0.383/0.378	5.62E-01	0.94 (0.76-1.16)
rs11848785	Chr14:72057355	SIPA1L1	G	А	0.082/0.088	0.265/0.253	6.68E-01	0.92 (0.62-1.31)
rs8049607	Chr16:11691753	LITAF,CLEC16 A,SNN,ZC3H7A, TNFRSF16	Т	С	0.411/0.41	0.296/0.270	9.69E-01	1 (0.82-1.23)
rs37062	Chr16:58567238	CNOT1,GINS3, SLC38A7,GOT1	А	G	0.573/0.612	0.484/0.481	7.35E-02	0.83 (0.68-1.02)
rs2074518	Chr17:33324382	LIG3,RFFL	С	Т	0.732/0.704	0.260/0.239	2.07E-01	1.16 (0.93-1.46)
rs17608766	Chr17:45013271	GOSR2	Т	С	1/1	0.479/0.456	9.68E-01	$NA(0-Inf)^{\dagger}$
rs9912468	Chr17:64318357	PRKCA	G	С	0.474/0.437	0.136/0.135	1.76E-01	1.15 (0.94-1.41)
rs17779747	Chr17:68494992	KCNJ2	G	Т	0.924/0.936	0.473/0.454	3.85E-01	0.84 (0.59-1.26)
rs991014	Chr18:42439886	SETBP1	С	Т	0.666/0.642	0.353/0.332	3.08E-01	1.12 (0.9-1.39)
rs1805128	Chr21:35821680	KCNE1	Т	С	0.003/0.004	0.405/0.403	7.06E-01	0.69 (0.04-3.03)

NA: only one genotype exists

**P*-value was obtained by using logistic regression.

[†]Unable to estimate due to extremely imbalanced sample distributions

^{\ddagger} indicates statistical significance (p < 0.05).

	Without So	CN5A mutations	With SCN5	A mutations
SNPs (set 1)	P-value*	OR	P-value *	OR
rs11708996	2.66E-01	1.76 (0.54-4.22)	9.85E-01	NA(0-Inf) [‡]
rs10428132	1.97E-06 ⁺	1.79 (1.4-2.27)	6.68E-03 ⁺	2.16 (1.21-3.72)
rs9388451	5.69E-04 ⁺	1.66 (1.25-2.24)	6.57E-01	1.15 (0.64-2.22)
SNPs (set 2)				
rs6599240	3.79E-03 ⁺	1.51 (1.13-1.97)	2.10E-01	1.53 (0.75-2.84)
rs11129801	7.81E-05 ⁺	1.53 (1.24-1.89)	3.68E-02 ⁺	1.73 (1.04-2.93)
rs9874633	8.36E-01	0.97 (0.76-1.27)	6.32E-01	1.17 (0.64-2.37)
rs10428132	$1.97E-06^{+}$	1.79 (1.4-2.27)	6.68E-03 ⁺	2.16 (1.21-3.72)
rs7428167	2.69E-05 ⁺	1.6 (1.28-1.99)	8.81E-03 ⁺	2.03 (1.2-3.48)
rs10428168	7.45E-01	0.96 (0.77-1.22)	8.81E-01	1.04 (0.61-1.87)
rs12638572	1.68E-06 ⁺	1.78 (1.4-2.25)	1.47E-02 ⁺	2 (1.12-3.43)
rs7641844	$2.68E-06^{+}$	1.7 (1.36-2.12)	9.60E-03 ⁺	2 (1.18-3.39)
rs7430439	3.64E-06 ⁺	1.69 (1.35-2.11)	1.41E-02 ⁺	1.94 (1.13-3.28)
rs6599257	5.81E-07 ⁺	1.96 (1.49-2.53)	$2.51E-02^{+}$	2.04 (1.05-3.69)
rs1268070	$1.00E-02^{+}$	1.49 (1.11-2.04)	4.21E-01	0.79 (0.45-1.47)
rs9388451	5.69E-04 ⁺	1.66 (1.25-2.24)	6.57E-01	1.15 (0.64-2.22)
SNPs (set 3)				
rs846111	3.51E-01	0.88 (0.67-1.17)	8.77E-01	1.06 (0.55-2.29)
rs9436640	9.76E-01	NA(0-Inf) [‡]	9.86E-01	NA(0-Inf) [‡]
rs4074536	6.36E-01	1.05 (0.85-1.31)	4.86E-01	0.83 (0.49-1.4)
rs2880058	NA	NA(0-Inf) [‡]	NA	NA(0-Inf) [‡]
rs12143842	NA	NA(0-Inf) [‡]	NA	NA(0-Inf) [‡]
rs10494366	NA	NA(0-Inf) [‡]	NA	NA(0-Inf) [‡]
rs16857031	NA	NA(0-Inf) [‡]	NA	NA(0-Inf) [‡]
rs12029454	3.50E-01	1.13 (0.87-1.45)	4.99E-01	0.79 (0.38-1.5)
rs4657178	NA	NA(0-Inf) [‡]	NA	NA(0-Inf) [‡]
rs10919071	NA	NA(0-Inf) [‡]	NA	NA(0-Inf) [‡]
rs12731740	NA	NA(0-Inf) [‡]	NA	NA(0-Inf) [‡]
rs2745967	NA	NA(0-Inf) [‡]	NA	NA(0-Inf) [‡]
rs17391905	2.62E-01	1.27 (0.81-1.89)	1.36E-01	1.91 (0.73-4.15)
rs7562790	7.61E-01	1.04 (0.82-1.3)	5.54E-01	0.85 (0.48-1.45)
rs17020136	2.72E-03 ⁺	0.71 (0.57-0.89)	8.11E-01	1.07 (0.63-1.8)
rs10865355	6.72E-03 ⁺	1.44 (1.1-1.86)	7.92E-01	0.91 (0.42-1.77)
rs11897119	3.99E-03 ⁺	0.69 (0.54-0.89)	7.30E-01	1.13 (0.59-2.47)
rs2051211	1.06E-01	1.23 (0.96-1.58)	5.92E-01	1.17 (0.67-2.18)
rs10865879	1.27E-01	1.37 (0.94-2.1)	4.85E-01	1.42 (0.61-4.57)
rs11129795	3.95E-15 ⁺	3.9 (2.85-5.66)	1.06E-03 ⁺	3.77 (1.94- 10.24)
rs12053903	2.54E-01	0.88 (0.7-1.1)	3.23E-01	1.3 (0.77-2.2)

Supplementary Table 7. Comparisons of the 88 previously reported SNPs between BrS patients with and without *SCN5A* mutations

rs3922844	7.30E-01	1.07 (0.72-1.53)	3.83E-01	0.6 (0.15-1.61)
rs11708996	3.85E-02 ⁺	0.49 (0.27-1.08)	9.83E-01	NA(0-Inf) [‡]
rs6599222	9.68E-01	NA(0-Inf) [‡]	9.88E-01	NA(0-Inf) [‡]
rs11710077	4.32E-01	1.22 (0.77-2.06)	7.69E-01	1.19 (0.44-4.86)
rs9851724	5.06E-01	1.09 (0.84-1.39)	8.48E-01	0.94 (0.49-1.69)
rs6795970	1.79E-07 ⁺	1.94 (1.51-2.48)	6.83E-03 ⁺	2.22 (1.21-3.89)
rs6798015	1.54E-07 ⁺	1.88 (1.48-2.38)	5.98E-03 ⁺	2.17 (1.22-3.73)
rs7627552	NA	NA(0-Inf) [‡]	NA	NA(0-Inf) [‡]
rs4687718	6.02E-01	0.85 (0.42-1.5)	4.73E-01	0.49 (0.03-2.18)
rs2242285	8.65E-01	1.03 (0.76-1.36)	8.04E-01	1.09 (0.52-2.07)
rs7660702	9.93E-01	1 (0.65-1.46)	2.36E-01	0.43 (0.07-1.36)
rs13165478	1.83E-01	1.16 (0.93-1.46)	7.68E-02	0.63 (0.37-1.05)
rs251253	6.95E-01	1.06 (0.8-1.42)	2.11E-01	0.68 (0.38-1.29)
rs1321311	1.98E-01	0.83 (0.63-1.11)	4.82E-01	0.79 (0.42-1.61)
rs281868	2.19E-01	1.17 (0.91-1.52)	1.64E-01	1.6 (0.86-3.25)
rs11153730	NA	NA(0-Inf) [‡]	NA	NA(0-Inf) [‡]
rs11970286	8.75E-01	0.98 (0.76-1.25)	4.68E-01	0.79 (0.4-1.44)
rs12210810	8.04E-02	1.24 (0.97-1.57)	3.53E-01	0.73 (0.35-1.36)
rs11154022	1.31E-01	1.18 (0.95-1.48)	2.17E-01	1.4 (0.82-2.4)
rs9398652	9.41E-01	1.01 (0.81-1.26)	1.74E-01	0.7 (0.41-1.17)
rs1362212	4.91E-01	1.16 (0.78-1.84)	7.64E-01	0.87 (0.39-2.48)
rs7784776	8.72E-01	1.02 (0.79-1.31)	4.61E-02 ⁺	0.45 (0.19-0.92)
rs314370	1.92E-08 ⁺	2.48 (1.85-3.5)	5.68E-02	1.78 (1.05-3.57)
rs3807989	3.19E-01	1.13 (0.88-1.45)	5.59E-01	0.83 (0.41-1.52)
rs2968863	1.56E-01	1.72 (0.88-4)	5.18E-01	0.69 (0.26-2.78)
rs4725982	3.88E-01	0.9 (0.72-1.13)	8.18E-01	0.94 (0.53-1.61)
rs1733724	3.72E-01	1.23 (0.75-1.9)	9.83E-01	NA(0-Inf) [‡]
rs7342028	2.82E-02 ⁺	0.78 (0.62-0.97)	8.42E-01	0.95 (0.56-1.6)
rs2074238	8.65E-01	1.06 (0.48-2.03)	7.86E-01	0.76 (0.04-3.56)
rs12296050	1.10E-01	1.21 (0.96-1.54)	2.11E-01	1.46 (0.83-2.71)
rs12576239	2.60E-01	1.25 (0.86-1.9)	7.45E-01	1.16 (0.52-3.32)
rs174547	1.60E-01	1.17 (0.94-1.46)	5.69E-01	1.17 (0.68-1.97)
rs4944092	7.50E-01	0.96 (0.75-1.25)	7.79E-01	1.1 (0.6-2.17)
rs17287293	8.28E-02	1.39 (0.97-2.07)	1.12E-01	0.59 (0.32-1.19)
rs11047543	5.95E-02	1.43 (1-2.11)	1.46E-01	0.62 (0.34-1.24)
rs883079	8.19E-01	0.97 (0.78-1.21)	9.16E-01	1.03 (0.61-1.75)
rs3825214	9.78E-01	1 (0.8-1.25)	3.49E-01	0.77 (0.44-1.31)
rs7312625	3.19E-01	0.86 (0.64-1.14)	5.81E-01	1.2 (0.61-2.18)
rs1896312	1.46E-02 ⁺	1.32 (1.06-1.66)	9.81E-01	1.01 (0.6-1.71)
rs10850409	1.95E-02 ⁺	0.76 (0.61-0.96)	8.80E-01	0.96 (0.56-1.62)
rs885389	9.41E-01	0.99 (0.8-1.23)	9.88E-01	1 (0.59-1.69)
rs2478333	6.60E-01	1.11 (0.72-1.8)	2.50E-01	0.61 (0.28-1.58)
rs1886512	2.22E-01	1.17 (0.91-1.52)	2.37E-01	0.72 (0.42-1.27)
rs365990	5.65E-01	1.09 (0.82-1.48)	9.58E-01	0.98 (0.52-2.06)
rs223116	5.04E-01	0.92 (0.73-1.16)	9.24E-01	1.03 (0.58-1.76)

rs11848785	9.29E-01	0.00 (0.65.1.40)		
	<i></i>	0.98 (0.65-1.43)	3.69E-01	0.59 (0.14-1.6)
rs8049607	4.51E-01	0.92 (0.73-1.15)	5.73E-02	1.67 (0.98-2.84)
rs37062	2.95E-01	0.89 (0.71-1.11)	3.30E-02 ⁺	0.57 (0.33-0.95)
rs2074518	$2.52E-02^{+}$	1.34 (1.04-1.74)	3.68E-02 ⁺	0.57 (0.34-0.98)
rs17608766	9.79E-01	NA(0-Inf) [‡]	9.88E-01	NA(0-Inf) [‡]
rs9912468	3.38E-01	1.11 (0.89-1.38)	2.23E-01	1.38 (0.82-2.35)
rs17779747	2.78E-01	0.8 (0.55-1.23)	7.26E-01	1.23 (0.45-5.05)
rs991014	4.56E-01	1.09 (0.87-1.38)	3.85E-01	1.29 (0.74-2.33)
rs1805128	9.71E-01	NA(0-Inf) [‡]	1.28E-01	4.52 (0.26-19.8)

SNP: single nucleotide polymorphism; OR, odds ratio

NA: only one genotype exists

* *P*-value was obtained by using logistic regression;

^{\dagger} indicates statistical significance (p < 0.05).

^{*}Unable to estimate due to extremely imbalanced sample distributions

Acknowledgements

We are sincerely grateful to many cardiologists, including Dr. Shoei K. Stephen Huang, Dr. Tsu-Juey Wu, Dr. Shih-Ann Chen, Dr. Yenn-Jiang Lin, Dr. Chun-Chieh Wang, Dr. Chi-Tai Kuo, Dr. Yu-Feng Hu, Dr. Kwo-Chang Ueng, Dr. Hsuan-Ming Tsao, Dr. Kuan-Cheng Chang, Dr. Meng-Huan Lei, Dr. An-Ning Feng, Dr. Chi-Woon Kong, Dr. Wen-Chin Ko, Dr. Jin-Long Huang, Dr. Wen-Chin Tsai, Dr. Chin-Feng Tsai, Dr. Li-Wei Lo, Dr. Huey-Ming Lo, Dr. Meng-Cheng Chiang, Dr. Chun-Chieh Wang, Dr. Chih-Ping Hsia, Dr. Jen-Fu Liu, Dr. Shuenn-Nan Chiu, Dr. Mei-Hwan Wu, Dr. Ming-Tai Lin, Dr. Shuenn-Nan Chiu, Dr. Su-Kiat Chua and many other doctors in other medical centers or hospitals for referring patients to our hospital.

Supplementary References

1. Wu CK, Juang JJ, Chiang JY, Li YH, Tsai CT, Chiang FT. The taiwan heart registries: Its influence on cardiovascular patient care. *J Am Coll Cardiol*. 2018;71:1273-1283

2. Priori SG, Wilde AA, Horie M, Cho Y, Behr ER, Berul C, Blom N, Brugada J, Chiang CE, Huikuri H, et al. Executive summary: Hrs/ehra/aphrs expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes. *Europace*. 2013;15:1389-1406

3. Fan CT, Lin JC, Lee C. Taiwan biobank: A project aiming to aid taiwan's transition into a biomedical island. *Pharmacogenomics*. 2008;9:235-246

4. Genomes Project C, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, Hurles ME, McVean GA. A map of human genome variation from population-scale sequencing. *Nature*. 2010;467:1061-1073

5. Genomes Project C, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA. An integrated map of genetic variation from 1,092 human genomes. *Nature*. 2012;491:56-65

6. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, et al. Plink: A tool set for whole-genome association and population-based linkage analyses. *Am J Hum Genet*. 2007;81:559-575

7. Delaneau O, Zagury JF, Marchini J. Improved whole-chromosome phasing for disease and population genetic studies. *Nature Methods*. 2013;10:5-6

8. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. *Plos Genetics*. 2009;5

9. Bezzina CR, Barc J, Mizusawa Y, Remme CA, Gourraud JB, Simonet F, Verkerk AO, Schwartz PJ, Crotti L, Dagradi F, et al. Common variants at scn5a-scn10a and hey2 are associated with brugada syndrome, a rare disease with high risk of sudden cardiac death. *Nat Genet*. 2013;45:1044-1049

10. Chambers JC, Zhao J, Terracciano CM, Bezzina CR, Zhang W, Kaba R, Navaratnarajah M, Lotlikar A, Sehmi JS, Kooner MK, et al. Genetic variation in scn10a influences cardiac conduction. *Nat Genet*. 2010;42:149-152

11. Holm H, Gudbjartsson DF, Arnar DO, Thorleifsson G, Thorgeirsson G, Stefansdottir H, Gudjonsson SA, Jonasdottir A, Mathiesen EB, Njolstad I, et al. Several common variants modulate heart rate, pr interval and qrs duration. *Nat Genet*. 2010;42:117-122

12. Pfeufer A, van Noord C, Marciante KD, Arking DE, Larson MG, Smith AV, Tarasov KV, Muller M, Sotoodehnia N, Sinner MF, et al. Genome-wide association study of pr interval. *Nat Genet*. 2010;42:153-159

13. Sotoodehnia N, Isaacs A, de Bakker PI, Dorr M, Newton-Cheh C, Nolte IM, van der Harst P, Muller M, Eijgelsheim M, Alonso A, et al. Common variants in 22 loci are associated with qrs duration and cardiac ventricular conduction. *Nat Genet*. 2010;42:1068-1076

14. Arking DE, Pfeufer A, Post W, Kao WH, Newton-Cheh C, Ikeda M, West K, Kashuk C, Akyol M, Perz S, et al. A common genetic variant in the nos1 regulator nos1ap modulates cardiac repolarization. *Nat Genet*. 2006;38:644-651

15. Newton-Cheh C, Eijgelsheim M, Rice KM, de Bakker PI, Yin X, Estrada K, Bis JC, Marciante K, Rivadeneira F, Noseworthy PA, et al. Common variants at ten loci influence qt interval duration in the qtgen study. *Nat Genet*. 2009;41:399-406

16. Pfeufer A, Sanna S, Arking DE, Muller M, Gateva V, Fuchsberger C, Ehret GB, Orru M, Pattaro C, Kottgen A, et al. Common variants at ten loci modulate the qt interval duration in the qtscd study. *Nat Genet*. 2009;41:407-414

17. Eijgelsheim M, Newton-Cheh C, Sotoodehnia N, de Bakker PI, Muller M, Morrison AC, Smith AV, Isaacs A, Sanna S, Dorr M, et al. Genome-wide association analysis identifies multiple loci related to resting heart rate. *Hum Mol Genet*. 2010;19:3885-3894

18. Marroni F, Pfeufer A, Aulchenko YS, Franklin CS, Isaacs A, Pichler I, Wild SH, Oostra BA, Wright AF, Campbell H, et al. A genome-wide association scan of rr and qt interval duration in 3 european genetically isolated populations: The eurospan project. *Circ Cardiovasc Genet*. 2009;2:322-328

19. Delaneau O, Marchini J, Consortium GP. Integrating sequence and array data to create an improved 1000 genomes project haplotype reference panel. *Nature Communications*. 2014;5

20. Roshyara NR, Scholz M. Impact of genetic similarity on imputation accuracy. *Bmc Genetics*. 2015;16

21. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the american college of medical genetics and genomics and the association for molecular pathology. *Genet Med.* 2015;17:405-424

22. Bezzina CR, Barc J, Mizusawa Y, Remme CA, Gourraud JB, Simonet F, Verkerk AO, Schwartz PJ, Crotti L, Dagradi F, et al. Common variants at scn5a-scn10a and hey2 are associated with brugada syndrome, a rare disease with high risk of sudden cardiac death. *Nature Genetics*. 2013;45:1044-+