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Study 1: Within-Family Association Between IQ
and Measures of Brain Size
Sex, Age, Height, and Weight as Covariates
Earlier studies of the within-family correlation between IQ and external measures
of head size have been criticized for lack of clarity over the appropriate choice of
covariates (Nisbett et al., 2012). Because poorly chosen covariates can increase the
bias in the estimate of a causal effect (Pearl, 2009; Lee, 2012), such criticism must
be taken seriously. Here we explain why we think our particular choice of covariates
is appropriate.

In the HCP data, some families include full siblings of different sexes and born
at different times. There is a large sex difference in mean brain volume (Ritchie et
al., 2018) and possibly a small one in performance on Raven’s Standard Progressive
Matrices (Lynn & Irwing, 2004; Savage-McGlynn, 2012). The relevance of the sex
difference in brain volume to behavioral phenotypes is currently uncertain, and thus
we would like to see any relationship between brain volume and g observed in each
sex. We chose to standardize both brain volume and IQ within each sex separately,
as this eliminates not only eliminates the large sex difference in mean brain volume
but also the large difference in variance. Including sex as a covariate in an analysis
of non-standardized variables led to larger apparent effects (results not shown).
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Brain volume does vary with age, and Raven’s Standard Progressive Matrices has
not been age-normed in the HCP data. Since the older sibling may then differ from
the younger in both brain volume and IQ solely because by virtue of being older, it
is reasonable to treat age as a confounder. In all analyses where age varies within
families, we used the first three powers mean-centered age as covariates.

Jensen and Johnson (1994) used the first three powers of height and weight
as additional covariates. These investigators did recognize, however, that such a
procedure may be overly conservative. Here is an additional reason for potential
downward bias that they did not consider. Lower intelligence may in fact be a cause
of being overweight, although O’Connor and Price (2018) did not find statistically
significant evidence of such a relationship with the LCV method. If this causal
relationship does hold, then the use of weight as a covariate may be equivalent to the
unblocking of a collider, inducing negative correlations between brain size and other
causes of g that may bias the estimate of the causal effect. In the primary analyses
whose results are given in Table 2, we did not use height and weight as covariates.

As a robustness check, we did include the first three powers of mean-centered
height and weight as additional covariates and obtained similar results (Table S3).
This methodological choice thus does not appear to be especially consequential.

Study 2: Causal Inference Based on GWAS Data
Bivariate LD Score Regression
Respective Properties of LDSC and GREML

We here compare the assumptions underlying bivariate LD Score regression (LDSC;
the method that we used to compute genetic correlations) to those underlying the
genomic relatedness-matrix restricted maximum-likelihood (GREML) method (Lee,
Yang, Goddard, Visscher, & Wray, 2012). The latter can also be used to calculate
genetic correlations, although it requires individual-level data and thus will not work
with GWAS summary statistics. GREML has been successfully used in many ap-
plications, including a study showing that both twin analyses and GREML produce
similarly large estimates of the genetic correlations between different mental tests
(Trzaskowski et al., 2013).

We proceed through the numbered list of summary points at the end of Ni, Moser,
Schizophrenia Working Group of the Psychiatric Genomics Consortium, Wray, and
Lee (2018), a recent work comparing the two methods.

1. If LDSC and GREML estimates are dissimilar, then Ni et al. (2018) recom-
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mend that the estimate with the lower standard error (SE) should be regarded
as the primary output. Since we lack an individual-level dataset with both ge-
netic data and measures of the relevant phenotypes, we unfortunately cannot
follow this suggestion. The points below, however, convince us that our LDSC
estimates are valid.

2. If the number of SNPs surviving quality-control filters and employed in the
analysis is small, then the standard error of LDSC estimates can become much
larger than those of GREML. In all of our calculations using LDSC, the number
of SNPs ranged from 1,044,377 to 1,167,435. This was always at least 79 percent
of all HapMap3 SNPs with LD Scores precomputed by the developers. Ni et al.
(2018) simulated no more than 800,000 SNPs in their comparison of the two
methods and found that at this point the ratio of LDSC to GREML standard
errors had already approached an asymptote of roughly 1.5.
Since it is unlikely that any individual-level genetic dataset with the relevant
phenotypes and a sample size in the several hundreds of thousands currently
exists, we do not regard it as possible at the current time to realize this theo-
retical reduction in the SE.

3. When used to estimate SNP-based heritability, both GREML and LDSC can be
biased as for a number of reasons, including the existence of some relationship
between causal effect size and LD Score over SNPs (Speed, Hemani, Johnson,
& Balding, 2012; Lee & Chow, 2014; Lee, McGue, Iacono, & Chow, 2018a).
However, when used to calculate the genetic correlation (the genetic covariance
divided by the square root of the two heritabilities), both methods are quite
robust as a result of biases cancelling from numerator and denominator, as
acknowledged by Ni et al. (2018).

4. LDSC requires that the reference sample used to calculate the LD Scores closely
match the sample providing the GWAS statistics in ancestral background. If
the match is insufficiently close, LDSC can be biased enough as a result of
differing LD structure to warrant the use of GREML in a smaller sample of
individual-level data where both phenotypes are available.
In our application, we used the precomputed LD Scores provided by the devel-
opers, based on the European samples in 1000 Genomes (Bulik-Sullivan et al.,
2015). To get some notion of how well this reference sample matches the meta-
analytic sample in the GWAS of EduYears, we looked to the one cohort (the
UK Biobank) contributing a majority of the individuals in the GWAS summary
statistics of EduYears. The developer-provided LD Scores from 1000 Genomes
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show a correlation of 0.946 with LD Scores from the UK Biobank (Ni et al.,
2018). With this level of match in LD between reference and GWAS samples,
LDSC was shown to provide an unbiased estimate of the genetic correlation in
simulations and real-data results similar to those of GREML.
To further ensure the robustness of our own results, we reran the LCV im-
plementation of LDSC, using EduYears summary statistics based on the UK
Biobank and produced by the BOLT-LMM software (Loh, Kichaev, Gazal,
Schoech, & Price, 2018). That is, we based the summary statistics of EduYears
exclusively on a sample whose LD Scores are known to be highly similar to the
precomputed LD Scores that we employed in our analyses. We continued to
use the same GWAS summary statistics for intracranial volume (ICV). We
obtained very similar results (rg = 0.43, SE = 0.08; GCP = 0.78, SE = 0.15);
the assumption of reasonable similarity in LD between reference and GWAS
samples seems to be satisfied well enough.

5. Ni et al. (2018) point out that “the distribution of causal variants and pleiotropic
effects may different across heterogeneous sources such that the estimates can
be biased (capturing only common effects between heterogeneous sources)”
(p. 1192). We do not regard any such bias in our case as a serious limitation.
If we are examining the effects on brain size and cognition that are most consis-
tent across settings, then the resulting estimate may be in fact quite appealing
to investigators seeking reason for further biological and evolutionary inquiry.

6. Ni et al. (2018) argue that an advantage of an individual-level method such
as GREML is greater precision in the partitioning of heritability and genetic
covariance. We have raised the partitioning of the genetic covariance between
brain size and intelligence as a future research direction (Lu et al., 2017); not
having undertaken this task in the current investigation, we do not consider
further the relative merits of individual-level and summary-statistic approaches
to this matter.

Population Stratification

One strength of bivariate LD Score regression as a method for estimating the genetic
correlation is that it can absorb the contribution of confounding (and other biases
such as sample overlap) into the intercepts of the relevant regressions. This is an
elegant and powerful use of the method, although GREML can be extended in this
direction as well (Yang et al., 2011; de Vlaming, Johannesson, Magnusson, Ikram, &
Visscher, 2017). The key assumption underlying this aspect of LD Score regression
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is that the extent to which a single-nucleotide polymorphism (SNP) is confounded
with environmental factors affecting one or the other phenotype is unrelated to its
LD Score.

Bulik-Sullivan et al. (2015) found that a SNP’s LD Score is essentially uncorre-
lated with its FST , a measure of population divergence in allele frequency. If gener-
alizable, this finding would indeed provide strong evidence that LD Score regression
provides robust estimates even in the face of population stratification—the sampling
of the study cohort from groups differing in both allele frequency and exposure to
environmental factors affecting the trait. This study, however, only examined pop-
ulations from Northern Europe (see its Supplementary Table 2). More recent work
suggests that a SNP’s LD Score is indeed predictive of FST defined with respect
to populations from Northern and Southern Europe respectively; this correlation
seems to have led to some biases in follow-up analyses based on the GWAS of height
(Berg et al., 2018). The GWAS of EduYears used in our investigation drew upon
European populations of varying latitudes, ranging from Iceland to Sardina (Okbay
et al., 2016; Lee et al., 2018b), and thus one may reasonably worry that LD Score
regression will not properly remove any impact of population stratification from the
summary statistics of this GWAS.

To address the possibility of uncorrected population stratification, we turned to
our robustness check replacing the full EduYears summary statistics with those based
on the UK Biobank and produced by BOLT-LMM (Loh et al., 2018). (Recall that
we already used this check to address the possibility of a poor match in LD between
GWAS and reference samples.) It has been shown that these GWAS statistics are
largely free of the bias that renders alleles more common in Northern Europe spuri-
ously associated with height (Sohail et al., 2018). As stated earlier, with respect to
the genetic correlation between ICV and EduYears, we obtained very similar results
(rg = 0.43, SE = 0.08; GCP = 0.78, SE = 0.15). This suggests that population
stratification in the GWAS of EduYears is not a serious concern in our analyses.

Recently it has been reported that GWAS of EduYears, our proxy for intelligence,
suffer from a peculiar form of confounding: an individual derives his genetic material
from his parents, whose EduYears appears to then influence the individual’s own
EduYears through an environmental mechanism (Sacerdote, 2007; Kong et al., 2018;
Bates et al., 2018; Belsky et al., 2018). Intuitively, however, confounding of this
kind should merely inflate the coefficients of SNPs that are truly associated with the
trait by amounts proportional to their true coefficients (Lee, 2012) and thus leave
the results of bivariate LD Score regression unaffected. We have recently carried out
a more detailed analysis to confirm this intuition (Lee et al., 2018a).

The GWAS of ICV used in our investigation did not explicitly report the country-
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level ancestry of its European-ancestry cohorts (Hibar et al., 2015). Nevertheless any
latitudinal gradient in ICV across Europe is very unlikely to explain the moderate
ICV-EduYears genetic correlation that we calculated. If such a gradient coincided
with that of height, then the genetic correlation between ICV and height would be
inflated. We used bivariate LD Score regression to calculate this genetic correlation,
using the height GWAS summary statistics that are known to suffer from a bias
rendering alleles more common in Northern Europe spuriously associated with height
(Wood et al., 2014). We obtained an estimate of 0.24 with a standard error of 0.06,
in good agreement with a more recent and larger GWAS of ICV (Adams et al.,
2016). Genetic correlations are on average slightly larger than their corresponding
phenotypic correlations (Sodini, Kemper, Wray, & Trzaskowski, 2018), and the sex-
averaged phenotypic correlation between height and brain volume in our HCP dataset
is in fact 0.24. The sex-averaged phenotypic correlation between height and head
circumference among the 17-year-olds in our MCTFR dataset is 0.29. In summary,
we found no evidence of population stratification in the ICV GWAS leading to severe
upward biases in estimates of genetic correlations with other traits.

Latent Causal Variable
Intuition and Background

We first provide an extremely informal explanation of the Latent Causal Variable
(LCV) method (O’Connor & Price, 2018). We then provide a somewhat more formal
explanation and additional methodological details.

The domino model of causality that underlies frameworks such as that of Pearl
(2009) provides excellent intuition here. If the falling of domino 1 knocks down
domino 2, then we expect any domino (e.g., domino 0) that knocks down 1 to in-
variably knock down 2 as well. But suppose that there are other chains of dominos
leading to 2, chains that do not pass through 1. Knocking down the dominos in such
a chain will lead to the falling of 2, but not of 1.

This simple model provides exactly the intuition behind LCV. Suppose that brain
size (domino 1) does indeed affect intelligence (domino 2). Then a given SNP in the
genome (domino 0) with an effect on brain size must show some downstream effect
on intelligence as well. But there are certainly many causes of intelligence or years
of education that do not act through brain size; perhaps one of these is individual
differences in the time course of synaptic plasticity. There should thus be many SNPs
affecting intelligence that will show no evidence of having affected brain size.

The LCV method implements these notions by producing a numerical summary of
whole-genome statistics that is positive if the statistics support brain size affecting
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intelligence and negative if the statistics support the reverse causal direction. A
value close to zero indicates that neither causal direction is well supported; we can
analogize this to domino 0 setting off a forking chain that knocks down both 1 and
2, without 1 directly falling on 2 or vice versa.

More formally, the LCV method assumes that the existence of a heritable latent
variable L that sends causal arrows to the traits X and Y . This is not necessarily
a latent variable in the sense taken by some psychometricians (McDonald, 2003;
Lee, 2012) but rather perhaps a concrete anatomical or physiological variable that
happens not to have been measured. A given individual’s breeding (genetic value)
with respect to L is a linear combination of genotypes, the weights being the average
effects of gene substitution on this L (Fisher, 1941; Lee & Chow, 2013). Let π denote
the vector of these average effects. This gives us the causal fork

SNPj
πj−→ L,

X
qX←− L

qY−→ Y.

We now adopt the convention that L, X, and Y in the system above stand not for the
actual variables but rather their breeding values (i.e., heritable components). This
is justified because if SNP j has the effect πj on the latent phenotype L, then it will
have that same effect on the breeding value of L (i.e., the latent phenotype without
its environmental component). Taking away the environmental perturbation of a
trait does not change the fact that an alteration of genotype has a certain average
effect on that trait. Similarly, SNP j has the effect πjqX (πjqY ) on both the trait
X (Y ) itself and also on the trait’s breeding value. We suppose that the breeding
values L, X, and Y have been standardized.

The LCV method estimates the path coefficients qX and qY . Note that the genetic
correlation rg = qXqY . If qX = 1 and qY = rg, then the model becomes equivalent
to the causal chain SNPj → X → Y for each j affecting X. To the extent that the
path coefficient qX approaches one (i.e., as residual genetic influences on X that are
not propagated to Y begin to vanish), the genetic causality proportion

GCP :=
log |qY | − log |qX |
log |qY |+ log |qX |

also approaches one. The developers consider GCP > 0.6 to indicate a good approx-
imation of a causal relationship; in this case X is a reasonably good proxy for L,
which has a causal effect on Y roughly in line with the genetic correlation between
X and Y reflecting a wholly causal relationship.

We now give some rough intuition for how LCV estimates the quantities above.
Let βX be the effect of a given SNP on trait X and βY the effect of the same SNP on
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trait Y . LCV makes use of the mixed fourth moments E(β3
XβY ) = E(β2

X × βXβY )
and E(βXβ

3
Y ) = E(β2

Y × βXβY ), where E denotes the operator yielding the average
of the quantity over all SNPs. If G → X

b−→ Y is true, then SNPs with relatively
large values of β2

X will also have relatively large values of βXβY . Many SNPs with
relatively large values of β2

Y , on the other hand, may well show βX = 0 and hence
βXβY = 0. The finding E(β3

XβY ) > E(βXβ
3
Y ) then indicates stronger support for

X → Y over Y → X; the two mixed fourth moments being close in value indicates
pleiotropic confounding. (In scatterplots of the kind displayed in Fig. 1, closeness of
the two mixed fourth moments has the same interpretation as both panels having
the same qualitative appearance.)

Another intuitive manner of understanding the mixed fourth moments E(β3
XβY )

and E(β3
Y βX) is to regard them as weighted correlations over SNPs between βX

and βY , the weight of a given SNP being β2
X in one moment and β2

Y in the other.
E(β3

XβY ) > E(β3
Y βX) thus means that the correlation βXβY is particularly strong

when β2
X is large but not when β2

Y is large. We can thus see how this comparison of
mixed fourth moments generalizes the method of Pickrell et al. (2016) to genome-
wide summary statistics.

With the LCV model assumptions, one can write each mixed fourth moment as
a function of the path coefficients qX and qY . As defined above, the GCP is in turn a
function of these path coefficients. Note that the absolute value of the GCP ranges
from zero (pleiotropic confounding) to one (perfect causal chain).

The LCV developers used college completion as one of the variables in their real-
data analyses. The genetic correlation between college completion and EduYears is
indistinguishable from one (Okbay et al., 2016). With the exception of low-density
lipoprotein (LDL), no trait showed a potential causal effect on college completion
stronger than that of height (ĜCP = 0.33). LDL showed ĜCP = 0.68 but with a
large standard error of 0.3; in any case the genetic correlation between LDL and
college completion was estimated to be small (−0.13). We regard these results as
satisfactory outcomes of a negative-control analysis.

Respective Properties of LCV and MR

We now discuss the respective data requirements, outputs, and assumptions of LCV
and a better-known family of methods for causal inference from GWAS data called
Mendelian randomization (MR).

Data Requirements As stated earlier, LCV requires GWAS summary statistics
from the entire genome; SNPs are thus included in LCV regardless of statistical

8



significance. In contrast, MR methods typically recommend a restriction to SNPs
clearing the threshold of genome-wide significance. If there are only a handful of such
SNPs, then testing frameworks accompanying MR methods may lack the statistical
power to reject the null model. In this respect LCV can be considered an advance
over MR in that it draws upon genome-wide summary statistics rather than a subset
of SNPs reaching statistical significance.

Outputs MR will provide an estimate of the coefficient b in the causal chain X
b−→

Y . However, as discussed in more detail below, the circumstances under which this
coefficient is unbiased and thus validly interpretable are relatively narrow. LCV will
provide an estimate of the GCP parameter (defined above). Besides its estimate
being unbiased according to the criterion of Goddard, Wray, Verbyla, and Visscher
(2009) in cases where the MR estimate of b is not, we think that the LCV GCP
has the advantage of being interpretable in cases where the truth lies somewhere
between no causality and a perfect causal chain. For instance, suppose that X is not
actually a cause of Y but rather a very good proxy for some unmeasured variable
that does affect Y . This will typically result in a GCP that is less than one but
greater than zero; the developers recommend GCP > 0.6 as a cutoff for a sufficiently
close approximation to a causal relationship between X and Y .

Assumptions It is rather difficult to compare the respective assumptions of MR
and LCV, because the former uses ascertained SNPs and the latter does not. There
are also different versions of MR (e.g., Bowden, Davey Smith, & Burgess, 2015); one
set of assumptions does not suffice to describe all versions. To simplify matters, we
assume that the MR instrument is a polygenic score for X based on all SNPs where
both alleles are common. Then the assumptions of MR can be stated as follows:

(1) Those SNPs that affect Y do so through through the causal chain X → Y .

(2) SNPs have no effect on Y when X is held constant. This is the so-called
“exclusion restriction”: any SNPs with joint effects on X and Y must reflect
the hypothesized G → X → Y causal relation exclusively rather than the
pleiotropic fork X ← G→ Y .

On the other hand, the assumptions of LCV can be stated thusly:

(1’) There exists a subset of SNPs where each SNP j makes the contributions πjqX
and πjqY to its total effects on traits X and Y respectively.
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(2’) Other effects on the two traits have a bivariate density that is mirror symmetric
across both axes.

It turns out that (1) is a special case of (1’) and (2) a special case of (2’). We might
thus suspect that LCV should produce an output that can be validly interpreted in
every case where MR does so and in additional cases as well.

The wider applicability of LCV was convincingly borne out in the extensive sim-
ulations conducted by the developers (see their Table 1 and Supplementary Tables
S2–S9), which showed that LCV produces near-zero estimates of the GCP and reason-
ably well-calibrated false-positive rates in many null situations where MR methods
(including MR-Egger) are strongly biased, including a genetic correlation reflecting
pure pleiotropy, unequal numbers of genetic sites affecting the two traits (i.e., poly-
genicity), and unequal GWAS sample sizes. That is, conditions such as uncorrelated
pleiotropic effects, correlated pleiotropic effects, unequal polygenicity, and unequal
GWAS sample size were typically found to elevate the Type I error slightly, if at all,
in the case of the true GCP equaling zero. Here we describe the exceptions to this
trend.

1. Given a candidate causal trait with a small GWAS sample size and hence a
LD Score regression slope Z-statistic of 1.4, LCV erroneously returned posi-
tive mean values of ĜCP (see the developers’ Supplementary Table S6). The
biased estimates averaged 0.11 when the (non-causal) genetic correlation was
set to 0.2; this increased to 0.27 when the genetic correlation was set to zero.
The standard deviation of ĜCP dramatically increased as well. Note that low
statistical power to resolve effects on X also increased the false-positive rate of
MR methods (see their Supplementary Table S2), so poor performance in this
case should not be regarded as a unique fault of LCV.
We do not think the relatively small sample size of the ICV GWAS is cause for
concern in our real-data analysis. First, if the genetic correlation is non-causal,
then higher values seem to alleviate the bias induced by small sample size. Our
estimate of the ICV-EduYears genetic correlation exceeding 0.4 is more than
twice as large as the 0.2 simulated by the developers. Second, ICV showed an
LD Score regression slope Z-statistic greater than 4, closer to the value of 5
found by the developers to be adequate.

2. LCV assumes in essence that only a single latent trait is responsible for the
genetic correlation. If there are multiple latent traits of varying effect and un-
equal polygenicity, then the equality of the mixed fourth components following
from the LCV assumptions (1’) and (2’) in null cases may no longer hold.
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In the example simulated by the developers (see their Supplementary Table S5),
there was one latent trait accounting for 15 percent of X’s heritability and 35
percent of Y ’s heritability. A second latent trait accounted for 35 percent of X’s
heritability and 15 percent of Y ’s heritability. Shared genetic influences thus
account altogether for equal proportions (50 percent) of each trait’s heritability,
and in this sense the true GCP is equal to zero. Making the first latent trait less
polygenic than the second led to upward biases in the GCP estimates; according
to the developers, “[w]e expected that LCV would produce false positives, as
the intermediary with lower polygenicity would disproportionately affect the
mixed fourth moments” (O’Connor & Price, 2018, p. 6). Estimates of the
GCP as large as ∼0.50 were produced by making the second latent trait 32
times as polygenic as the first. Note that multiple latent traits of varying effect
and polygenicity also increased the false-positive rate of MR methods (see the
developers’ Supplementary Table S5).
We do not think that the possibility of multiple latent traits with unequal
effect and polygenicity gives credence to a near-zero value of the GCP in our
real data. Note that the case simulated by the developers qualifies as null only
as a result of fine tuning. If there is one latent trait that makes a dominant
contribution to the GCP, or if all latent traits make contributions to the GCP of
the same sign, then the GCP estimate may not be particularly misleading. The
developers themselves note that the problem of multiple latent traits requires
rather extreme parameter settings (e.g., a 32-fold difference in polygenicity) to
lead to a bias from zero as large as 0.5. “Thus, proportionality violations of
LCV model assumptions can cause LCV (and other methods) to produce false
positives, but genetic causality remains the most parsimonious explanation for
high [i.e., > 0.6] GCP estimates” (O’Connor & Price, 2018, p. 7).
We think that the effect-size distributions of infant head circumference, IQ,
and EduYears estimated by Zhang, Qi, Park, and Chatterjee (2018) provide
evidence against such extreme genetic architectures, but do not pursue this
point further here.

A Recent MR Analysis of Intracranial Volume and Intelligence We con-
sider a recent application of an MR technique (Zhu et al., 2018) to the relationship
between ICV and intelligence (Savage et al., 2018). This GWAS of intelligence re-
ported significant inferred causal effects of not only ICV on IQ but also a stronger
reverse effect of IQ on ICV. We performed this analysis with the same software tool
(GSMR v1.0.6), employing our EduYears in the place of this study’s IQ. We also
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augmented the 7 significant ICV SNPs with the 4 additional SNPs becoming signifi-
cant upon meta-analysis with HC rather than lowering the significance threshold to
10−5. We obtained numerically very similar estimates (results not shown).

Since this analysis makes uses of the same data displayed in Fig. 1, the inference
that intelligence has a stronger effect on ICV than the other way around is difficult
to credit.

MR is in essence a two-stage regression. If G a−→ X
b−→ Y is the case, then the

estimate of the causal effect b is the coefficient in the regression of Y on G divided
by the coefficient in the regression of X on G. If the other MR assumptions hold, it
is clear that this procedure yields the desired quantity, ab/a = b. Conversely, an MR
mistakenly treating Y as the causal variable is estimating the quantity p[a/(ab)] =
p/b, where p is the fraction of SNPs ascertained for significant association with Y
that affect Y through X. If p is about 0.1—which seems plausible from the degree
of sign concordance in the right panel of Fig. 1—then b ≈ 0.3 produces a value
reasonably close to what was obtained by Savage et al. (2018). It is not necessarily
the case that a significant forward result will inevitably lead to a significant reverse
result, particularly if SNPs affecting Y through X are not likely to be among the
first to become genome-wide significant in a GWAS of Y .

Mistakenly treating Y as the causal variable can also be regarded as a violation of
the MR assumptions. The exclusion restriction (2) states that the SNPs should not
affect the treatment when the exposure is held constant. At the ascertained SNPs
that in reality affect Y (exposure) through X (treatment), however, manipulations of
genotype will show an effect on X even if Y is experimentally clamped to a constant
value. The estimate of the effect of Y on X, which should be zero in expectation,
will then converge to some nonzero value as a result of the assumption violation.

The GSMR method calls a procedure called HEIDI-outlier that removes SNPs
from the analysis where the ratio of regression coefficients estimating the reverse
causal effect is significantly atypical. One might hope that this procedure would
remove all SNPs violating the exclusion restriction—that is, all SNPs affecting ICV
or both traits pleiotropically. But the default setting of HEIDI-outlier (p < .01)
removed only 7 of the 1,044 SNPs in the right panel of Fig. 1. If at least 100 SNPs in
this panel affect EduYears through brain size and have a correctly estimated sign of
its effect on ICV—as suggested by the concordance of 57 percent—then the removal
of 7 SNPs cannot greatly alter the estimate of the reverse causal effect. Indeed, the
estimated effect of EduYears on ICV hardly changes upon turning off HEIDI-outlier
(results not shown). Ours is apparently not a case where HEIDI-outlier accurately
identifies and removes SNPs that violate the exclusion restriction; this may be due
to the noisiness of the coefficient ratios, as a result of the relatively small GWAS
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sample size for ICV.
It is also worth pointing out that the GSMR method produces estimates similar

to those of MR-Egger (Zhu et al., 2018), one of the methods to which LCV was
compared in the simulations of O’Connor and Price (2018). MR-Egger produced an
elevated false-positive rate in a number of situations where the GCP was unbiased,
including a genetic correlation reflecting pure pleiotropy rather than a causal relation.
Note that LCV does not require specifying a causal direction, because the GCP takes
on a negative value if it is really Y affecting X.
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Table S1: Descriptive statistics of the sibling samples.
HCP MCTFR 11 yrs MCTFR 17 yrs

Number of individuals 1,022 2,010 688
Percentage female 54.7 62.7 48.0
Age 28.9 (3.7) 11.8 (0.4) 17.4 (0.4)
Verbal IQ 109.7 (15.2) 99.1 (13.7) 95.2 (13.5)
Non-Verbal IQ 17.0 (4.8) 107.6 (15.6) 113.9 (20.8)
Brain/head size (male) 1,268 (101) 541 (17.1) 569 (16.0)
Brain/head size (female) 1,110 (88) 541 (17.9) 552 (16.1)
MZ families 138 642 223
DZ families 79 363 121

Standard deviations are given in parentheses when appropriate. See the
main text for details of the intelligence testing. The unit of Non-Verbal
IQ in the Human Connectome Project (HCP) is number correct out of
24, whereas the unit of all other tests is IQ point (population SD =
15). The unit of brain volume is cm3 in the HCP, whereas the unit of
head circumference is cm in the Minnesota Center for Twin and Family
Research (MCTFR). A “family” means a complete twin pair; there are
additional twins in the HCP dataset whose co-twins are absent but whose
non-twin full siblings are present.

Table S2: Within-family associations between brain/head size and IQ sub-
tests.
Dataset Brain/head measure IQ subtest β ± SE p-value
HCP

All sibs Brain volume Vocabulary 0.120 ± 0.039 0.002
All sibs Brain volume Matrices 0.125 ± 0.049 0.01

MCTFR
All sibs Head circumference Verbal 0.138 ± 0.028 1× 10−6

All sibs Head circumference Performance 0.155 ± 0.044 4× 10−4

β is the estimated partial regression coefficient of brain/head size in a
model predicting the test score with family fixed effects. Both size and
IQ were standardized.
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Table S3: Within-family associations between brain size and IQ controlling for
body size.
Dataset Measure β ± SE ρ p-value
HCP

All sibs Brain volume 0.124 ± 0.041 0.157 0.003
MZ Brain volume 0.194 ± 0.189 0.246 0.31
DZ Brain volume 0.047 ± 0.111 0.060 0.67
Non-twins Brain volume 0.144 ± 0.066 0.183 0.03

MCTFR
All sibs Head circumference 0.148 ± 0.037 0.165 7× 10−5

MZ 11 yr Head circumference 0.106 ± 0.058 0.117 0.07
DZ 11 yr Head circumference 0.225 ± 0.065 0.248 6× 10−4

MZ 17 yr Head circumference −0.110 ± 0.107 −0.121 0.31
DZ 17 yr Head circumference 0.180 ± 0.124 0.199 0.15
β is the estimated partial regression coefficient of brain/head size in a model
predicting IQ with family fixed effects. Both size and IQ were standardized.
In contrast to the analyses reported in Table 2 of the main text, here we
included the first three powers of height and weight as additional covariates.
In the HCP dataset, height and weight were standardized separately within
each sex; in the MCTFR dataset, they were standardized separately within
each combination of sex and age cohort. ρ, the partial regression coefficient
(β) divided by the square root of the IQ test’s internal-consistency reliability.
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