

Figure S1: Normal distributions of relative treatment effect estimates from frequentist setting (red line) superimposed on posterior distributions of the relative treatment effects from Bayesian model (black line) for a network with Spearman's ρ of 0.6 between SUCRA_F and SUCRA_B. The network meta-analysis used analysed the effects of four inodilators and placebo on survival in adult cardiac surgery patients (Greco et al., Br J Anaesth 2015). LOR = log odds ratios; number in square brackets represents the different interventions in the network.

Figure S2: Scatter plots of the average variance in a network and the pairwise agreement between hierarchies from different ranking metrics.

Figure S3: Scatter plots of the relative range of variance in a network and the pairwise agreement between hierarchies from different ranking metrics.

Figure S4: Scatter plots of the total sample size over the number of treatments in a network and the pairwise agreement between hierarchies from different ranking metrics.

Table S1: Pairwise agreement between treatment hierarchies from illustrative network example. Medians, 1^{st} and 3^{rd} quartiles are reported. p_{BV} : probability of producing the best value; $SUCRA_F$: surface under the cumulative ranking curve; relative treatment effect stands for the relative treatment effect against fictional treatment of average performance. The first three column from the left-hand side present the agreements between rankings obtained using the original data; the equivalent three columns on the right-hand side show the agreements between rankings obtained after reducing the standard error of the Conventional versus ARB treatment effect from 0.7 to a fictional value of 0.01.

	Original data			Fictional data with increased precision for Conventional treatment versus ARB		
	p_{BV} vs $SUCRA_F$	p_{BV} vs relative treatment effect	SUCRA _F vs relative treatment effect	p_{BV} vs $SUCRA_F$	p_{BV} vs relative treatment effect	SUCRA _F vs relative treatment effect
Spearman ρ	0.64	0.85	0.93	0.89	0.91	1
Kendall τ	0.54	0.69	0.87	0.78	0.82	0.99
Yilmaz τ_{AP}	0.39	0.44	0.87	0.76	0.81	0.96
Average Overlap	0.48	0.54	0.85	0.85	0.94	0.92

APPENDIX – YILMAZ'S au_{AP} AND AVERAGE OVERLAP

The Yilmaz's τ_{AP} calculates the difference between the probability of observing concordance and the probability of observing discordance between two rankings X and Y, penalising more the discordance between top ranks. It can be computed as

$$\tau_{AP}(X,Y) = \frac{2}{N-1} \sum_{i=2}^{N} \sum_{j < i} \frac{C_{ij}}{i-1} - 1$$

where cij is 1 in case the items i and j are concordant and 0 otherwise; N is the total number of items in the ranking.

As Yilmaz's τ_{AP} is not symmetric, the authors proposed an alternative measure that takes the average between the two τ_{AP} , with the second being the one calculated after swapping the two rankings

$$symm \tau_{AP}(X,Y) = (\tau_{AP}(X|Y) + \tau_{AP}(Y|X))/2$$

As with the original Kendall's τ , also the Yilmaz's τ_{AP} formula above does not handle ties. Similarly, two formulations to account for this have been proposed and we selected the one that considers correlation as a measure of agreement because more relevant for our purpose. In our chosen version of the Yilmaz's τ_{AP} , the $\tau_{AP,b}$, neither of the two rankings is considered "true and objective" and ties can be present in either or both of them. The formula appears as follows

$$\tau_{AP,b} = \left(\tau_{AP,ties}(X|Y) + \tau_{AP,ties}(Y|X)\right)/2 \qquad \qquad \tau_{AP,ties} = \frac{2}{n-t_1} \sum_{i=t_1+1}^{n} \sum_{i < p_i} \frac{c_{ij}}{p_{i-1}} - 1$$

where t_1 is the number of items tied in position i=1 and pi is the rank of the first item in i's group.

The Average Overlap is a top-weighted measure for top-k rankings that considers the intersection (or overlap) between the two lists, $|X \cap Y|/k$. It calculates the cumulative overlap at increasing depths d, $d \in \{1...k\}$ and average it over the depth (cut-off point) k.

$$AO(X,Y,k) = \frac{1}{k} \sum_{d=1}^{k} A_d$$
 where $A_d = |X \cap Y|/d$

Unlike the previous measures, the average overlap takes values between 0 and 1.

ⁱ Julián Urbano and Mónica Marrero, 'The Treatment of Ties in AP Correlation', in *Proceedings of the ACM SIGIR International Conference on Theory of Information Retrieval - ICTIR '17* (the ACM SIGIR International Conference, Amsterdam, The Netherlands: ACM Press, 2017), 321–24, https://doi.org/10.1145/3121050.3121106.