

Supporting information for

Hydrogen Bonding Phase-Transfer Catalysis with Ionic Reactants: Enantioselective Synthesis of γ-Fluoroamines

Giulia Roagna,^{§,†} David M. H. Ascough,^{§,†} Francesco Ibba, [†] Anna Chiara Vicini, [†] Alberto Fontana,[‡] Kirsten E. Christensen,[†] Aldo Peschiulli,[∥] Daniel Oehlrich, [∥] Antonio Misale,[‡] Andrés A.Trabanco, [‡] Robert S. Paton,^{†,f} Gabriele Pupo,^{†*} and Véronique Gouverneur^{†*}

[†] University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK

[‡] Janssen Cilag Research and Development, Calle Jarama 75A, Toledo 45007, Spain

Discovery Sciences Medicinal Chemistry, Janssen Research & Development, Janssen Pharmaceutica N.V., Turnhoutseweg 30, Beerse B-2340, Belgium

^f Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA

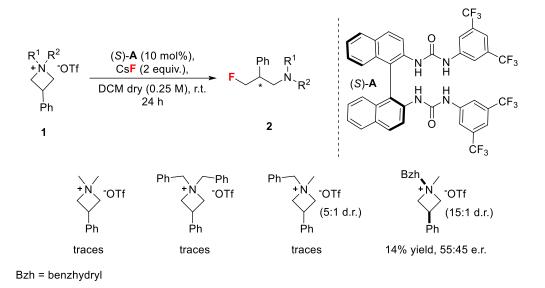
[§] These authors contributed equally to this work.

* To whom correspondence should be addressed: <u>gabriele.pupo@chem.ox.ac.uk</u> and <u>veronique.gouverneur@chem.ox.ac.uk</u>.

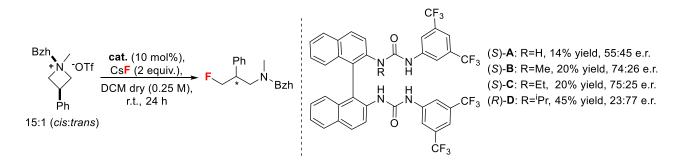
Table of Contents

General Information	3
Catalysts Synthesis and Characterization	4
Optimization of Reaction Conditions	4
HB-PTC/Homogeneous Conditions Comparison	8
Effect of Water	9
Counteranion effect	9
Non-linear Effect Studies	10
Anion Binding Studies	11
Fluorination under Chiral Anion Phase Transfer (CAPT)	
General Procedure for the Asymmetric Nucleophilic Fluorination of Azetidinium Ions	17
Substrates Synthesis and Characterization	
Substrates Synthesis	
General Procedures	
Characterization of Substrate Precursors	
Stereochemical Assignment of Substrates	
Characterization of Substrates	
Product Characterization	55
Additional Unsuccessful Substrates	73
Determination of the Absolute Configuration (Single Crystal X-ray Diffraction Studies)	74
Computational Studies	77
Level of Theory	77
Azetidinium Substrate Reactivity	
CsF Phase-Transfer	
Enantioselective Fluorination of cis-Azet _{Bzh,Me}	
Enantioselective Fluorination of trans-Azet _{Bzh,Me}	
Summary of Computational Work	
Tabulated Thermochemical Data	
Copies of NMR Spectra	135
Copies of HPLC traces	
References	383

General Information

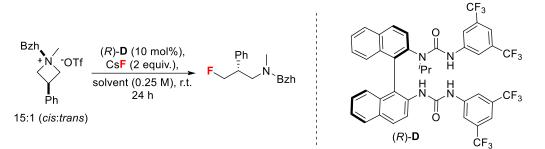

Unless otherwise stated, all reagents were purchased from commercial suppliers (Sigma-Aldrich, Alfa Aesar, Fluorochem, Apollo Scientific and CombiBlock) and used without further purification. Unless otherwise stated, solvents were used without prior drying/degassing. Reactions requiring anhydrous conditions are clearly stated and were conducted after flame-drying of the appropriate reaction vessel (round-bottom twoneck flasks, Schlenks or microwave vials) and under an inert atmosphere of N_2 . Dry solvents were purchased from commercial suppliers. The dry 1,2-dichloroethane (DCE) employed in the fluorination was purchased from Sigma-Aldrich (99.8%, anhydrous). CsF (99.9% trace metal basis from Sigma-Aldrich) was ground prior to the reaction and used without pre-drying. KF (99.9% trace metal basis from Alfa Aesar) was used as provided by the supplier (fine powder) and used without pre-drying. Reactions were monitored by thin layer chromatography (TLC) on silica gel pre-coated aluminium sheets (Merck Kieselgel 60 F₂₅₄ plates). Visualization was accomplished by irradiation with UV light at 254 nm, and/or phosphomolybdic acid (PMA) stain, and/or cerium ammonium molybdate (CAM) stain, and/or permanganate stain. Flash column chromatography (FCC) was performed on Merck silica gel (60, particle size 0.040-0.063 mm). Optical rotations were measured on an Autopol L 2000 (Schmidt-Haensh) or a Rudolf Autopol V plus at 589 nm, 25 °C. Data are reported as: $[\alpha]_D^T$, concentration (c in g/100 mL), and solvent. The absolute configuration was determined by X-ray analysis of compounds (S)-2ma HCl and (R)-3ab. The configuration of the other products was assigned by analogy. All NMR spectra were recorded on Bruker AVIIIHD 400, AVIIIHD 500 or VII 500. ¹H and ¹³C NMR spectral data are reported as chemical shifts (δ) in parts per million (ppm) relative to the solvent peak using the Bruker internal referencing procedure (edlock). ¹⁹F NMR spectra are referenced relative to CFCl₃. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q =quartet, pent = pentet, sept = septet, br = broad, m = multiplet), coupling constants (Hz) and integration. NMR spectra were processed with MestReNova 11.0 or Topsin 3.5. High resolution mass spectra (HRMS, m/z) were recorded on a Thermo Exactive mass spectrometer equipped with Waters Acquity liquid chromatography system using the heated electrospray (HESI-II) probe for positive electrospray ionization (ESI⁺). Infrared spectra were recorded as the neat compound or in solution using a Bruker tensor 27 FT-IR spectrometer. Absorptions are reported in wavenumber (cm⁻¹). Melting points of solids were measured on a Griffin apparatus and are uncorrected. The enantiomeric ratios were determined by HPLC analysis on a Shimadzu i-Prominence LC-2030 (PDA detector) or SFC analysis on an Agilent Aurora SFC-1260 Infinity system (DAD detector) or a Waters SFC UPC2 (PDA and QDa MS detector), employing a chiral stationary phase column specified in the individual experiment by comparing the samples with the appropriate racemic mixtures.

Catalysts Synthesis and Characterization


Catalyst A-D were prepared according to literature procedures and their analytical data were in agreement with the literature values.¹

Optimization of Reaction Conditions

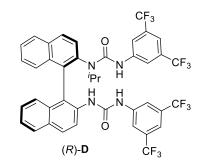
General reaction conditions: 0.05 mmol of **1**, CsF and the organocatalyst were stirred in the appropriate solvent at 900 rpm at r.t. Yields determined by ¹⁹F NMR using 4-fluoroanisole as internal standard; e.r. = enantiomeric ratio, determined by HPLC using a chiral stationary phase.



Scheme S1: Preliminary N-protecting groups screening

Scheme S2: Catalyst Screening

Table S1: Solvent Screening (using catalyst (*R*)-**D**)



Entry	Solvent	NMR Yield	e.r.	Background reactivity [1]
1	CH_2Cl_2 (dry)	45%	77:23	6%
2	CH_2Cl_2	34%	76:24	6%
3	CHCl ₃	56%	67:33	33%
4 ^[2]	1,2-DCE (dry)	55%	81:19	8%
5 ^[3]	1,2-DCE (dry)	51%	81:19	
6	1,2-DCE	37%	81:19	8%
7	Toluene	51%	79:21	4%
8	1,2-DFB	47%	79:21	12%
9	α, α, α -trifluorotoluene (dry)	69%	78:22	0%
10	Fluorobenzene	63%	76.5:23.5	0%
11	CH ₃ CN	4%	61.5:38.5	traces
12	EtOAc	9%	77.5:22.5	0%

^[1] Background reactivity = ¹⁹F-NMR yield of the corresponding reaction in the absence of catalyst. ^[2] Under otherwise identical reaction conditions, when KF (5 equiv.) was employed instead of CsF (2 equiv.), only traces of product were obtained; ^[3] CsF was dried for 3d at 190 °C prior to usage. 1,2-DFB = 1,2-difluorobenzene; 1,2-DCE = 1,2-dichloroethane.

Table S2: Nucleophile Equivalents Screening (using catalyst (R)-D)

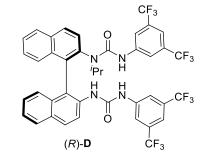

CsF equiv.	NMR Yield	e.r.
1.2	28%	82:18
2	55%	80.5:19.5
3	69%	70:30
5	68%	70:30

Table S3: Concentration and Catalyst Loading Screening (using catalyst (R)-D)

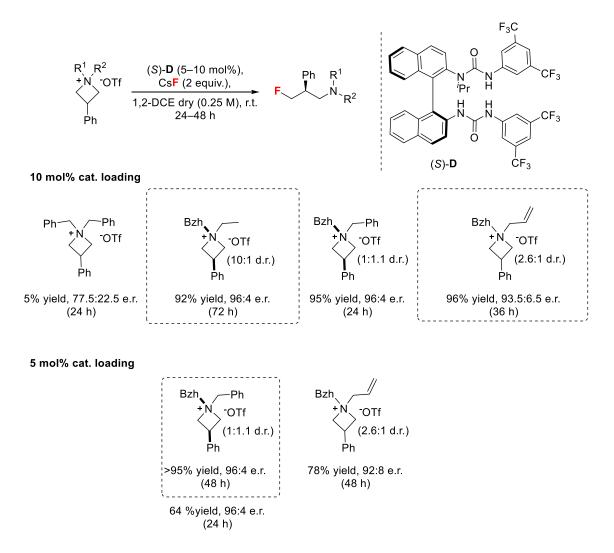
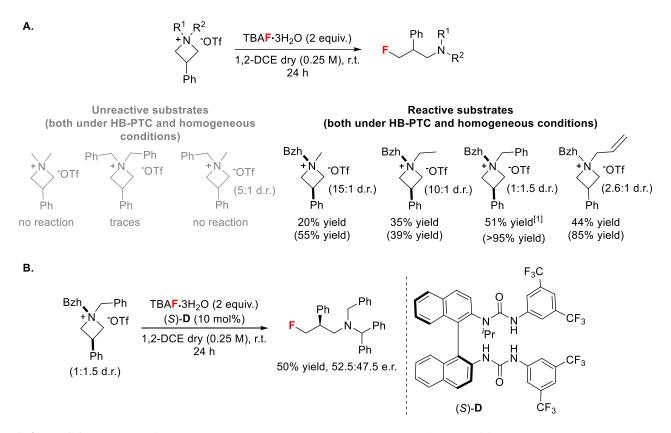
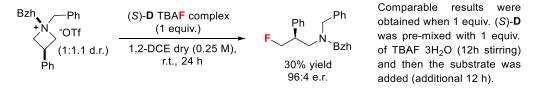

	+N OTF	R)- D (x mol%), CsF (2 equiv.), → F OCE dry (y M), r.t., 24–48 h	Ph N Bzh	(R)-D	CF_3 CF_3 CF_3 CF_3 CF_3
-	Molarity [M]	Cat. Loading	Time	NMR Yield	e.r.
-	0.1	10 mol%	24 h	50%	80:20
	0.25	10 mol%	24 h	55%	80.5:19.5
	0.5	10 mol%	24 h	34%	81.5:18.5
=	0.25	10 mol%	48 h	93%	80:20
	0.25	5 mol%	48 h	46%	79.5:20.5

Table S4: Reaction Time and Diastereomeric Ratio of Substrate (using catalyst (R)-D)

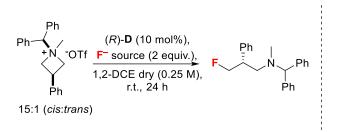


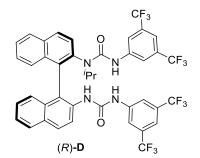
Diastereomeric ratio of	Time	NMR	6 M	
substrate	1 mie	Yield	e.r.	
15:1	24 h	55%	80.5:19.5	
15:1	48 h	93%	80:20	
15:1	72 h	> 95%	80.5:19.5	
>99:1 (cis)	24 h	57%	80.5:19.5	
>99:1 (cis)	72 h	>95%	80.5:19.5	
>1:99 (trans)	24 h	35%	80:20	
>1:99 (trans)	72 h	53%	81.5:19.5	



Scheme S3: Final *N*-protecting groups screening and determination of the optimized conditions for the substrate scope using catalyst (*S*)-**D**. Reaction times are optimized to achieve full conversion.

HB-PTC/Homogeneous Conditions Comparison


Scheme S4: A) Comparison between HB-PTC and homogeneous reaction conditions. In parenthesis, the yield obtained under the optimized HB-PTC conditions using 10 mol% of (*S*)-**D** and 2 equiv. of CsF (24 h); B) Fluorination under homogeneous conditions with the addition of 10 mol% of (*S*)-**D**.



Scheme S5: Asymmetric reaction using stoichiometric amounts of (*S*)-**D**·TBAF complex.

Effect of Water

Table S5: Effect of water on reactivity and enantioselectivity.

Entry	F ⁻ source	H ₂ O added (equiv.)	Catalyst	Yield	e.r.	Background reactivity
1	CsF	//	(<i>R</i>)- D	55%	80.5:19.5	8%
2	CsF	1 equiv.	(<i>R</i>)- D	40%	81:19	0%
3	CsF	5 equiv.	(<i>R</i>)- D	2%	82:18	0%
4	TBAF·3H ₂ O	//	//	51%	//	//
5	TBAF·3H ₂ O	1 equiv.	//	32%	//	//
6	$TBAF \cdot 3H_2O$	5 equiv.	//	16%	//	//

Counteranion effect

Table S6: Effect of the counteranion on reactivity and enantioselectivity.

Bzh +N X-	(S)- D (x mol%.), Cs F (2 equiv.)	Ph Ph
Ph (1:1.1 d.r.)	1,2-DCE dry (0.25 M), r.t. 24 h	Bzh

Entry	X ⁻	Cat. loading	Yield	e.r.	Background reactivity
1	OTf	5 mol%	64%	96:4	17%
2^{a}	OTf	10 mol%	>95%	96:4	17%
3	BF_4	5 mol%	>95%	85:15	95% ^b
4	BF_4	10 mol%	>95%	90:10	95% ^b
5	BF_4	20 mol%	>95%	95:5	95% ^b
6	PF_6	5 mol%	31%	96:4	9%

^a 48h reaction;^b In the absence of CsF no product was obtained. Background reactivity due to the tetrafluoroborate anion itself as a fluoride source is therefore absent.

Non-linear Effect Studies

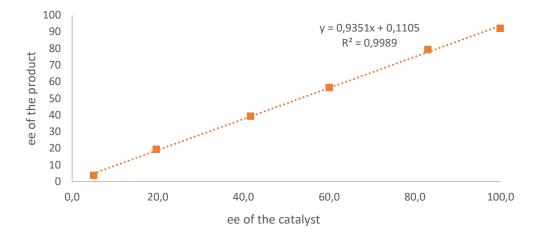

The non-linear effect study was conducted with (*R*) and (*S*) mixtures of catalyst **D** by employing the previously described protocol for reaction optimization (see detailed conditions in scheme below). Under these conditions (1,2-DCE as solvent, r.t.), (*S*)-**3d** affords the product in 92% ee (96:4 e.r.).

Table S7. Non-linear effect study

Bhz +N -OTf Ph 1:1.1 (<i>cis:trans</i>)	D (5 mol%), CsF (2 equiv.), 1,2-DCE, r.t., 48 h	• F K N Bzh
Entry	ee of catalyst [1]	ee of product ^[2]
1	5.0	3.6
-		
2	19.6	19.3
3	41.6	39.2
4	60.0	56.4
5	83.0	79.2
6	99.9	92.0

^[1] (*R*)-**D** and (*S*)-**D** were premixed in a ratio between 50:50 and 0:100, respectively. The precise ee of the catalyst was determined by HLPC analysis using a chiral stationary phase at 254 nm (DAICEL CHIRALPAK[®] IG, 96:4 Heptane:EtOH, 1mL/min).

^[2] The ee of the product was determined by HLPC analysis using a chiral stationary phase at 254 nm (DAICEL CHIRALCEL® OJ-H, 95:5 Heptane:EtOH, 1mL/min).

Conclusion: No non-linear effect was observed. The computed transition state model (see computational analysis section) involving only one molecule of the urea catalyst is thus consistent with the experimental data.

Anion Binding Studies

A stock solution of urea (*S*)-**D** (2 mM) in CH₂Cl₂:CD₂Cl₂ (3:2) was prepared in a volumetric flask. A *ca.* 80 mM solution of the appropriate tetrabutylammonium salt (OTf⁻, BF₄⁻ or PF₆⁻) was then prepared by accurately weighting the solid and dissolving it in the previously prepared urea solution using a volumetric flask. An aliquot of 0.5 mL of stock solution was transfered into an NMR tube to which increasing amounts of TBA salt (1 – 200 μ L) were added using a microsyringe. After every addition a ¹H NMR spectrum was acquired, using a dedicated pulse sequence to suppress the CH₂Cl₂ resonance at 5.37 ppm (perfect echo excitation sculpting sequence).² The chemical shift variation of three diagnostic aromatic protons was monitored and plotted against the concentration of added anion. The association constants were determined from the experimental data by non-linear curve fitting using Bindfit (http://supramolecular.org)³ and expressed as an averaged value of three replicated experiments. Different binding model were evaluated, 1:1 resulting in the one giving consistently better fit. For every experiment a representative example of data analysis (in each case, only replica **I** is shown) is reported below. The full data set are made available open access on http://supramolecular.org.

Tetrabutylammonium trifluoromethanesulfonate (TBAOTf)

(S) -D	TBAOTf		δ^{1} H-(A)	δ^{1} H-(B)	δ^{1} H-(C)
	concentration Equ	Equivalents			
concentration [M]	[M]		[ppm]	[ppm]	[ppm]
0.0019	0.0000	0.00	8.178	7.879	6.943
0.0019	0.0002	0.09	8.181	7.876	6.933
0.0019	0.0003	0.17	8.183	7.874	6.926
0.0019	0.0005	0.26	8.185	7.871	6.918
0.0019	0.0008	0.43	8.189	7.867	6.906
0.0019	0.0012	0.60	8.192	7.863	6.896
0.0019	0.0015	0.76	8.195	7.859	6.887
0.0019	0.0018	0.93	8.198	7.857	6.879
0.0019	0.0023	1.18	8.201	7.853	6.869
0.0019	0.0032	1.66	8.206	7.848	6.854
0.0019	0.0048	2.45	8.212	7.842	6.836
0.0019	0.0077	3.93	8.218	7.835	6.818
0.0019	0.0140	7.21	8.224	7.830	6.800
0.0019	0.0195	9.98	8.225	7.827	6.794

Table S8: Input data for the titration of (S)-D with TBAOTf (variation of three distinct protons in replica I).

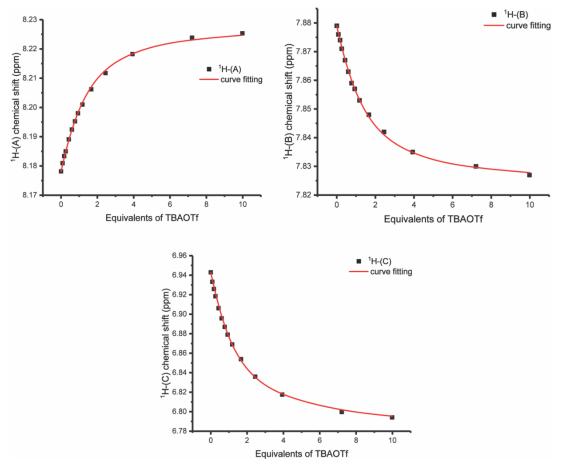
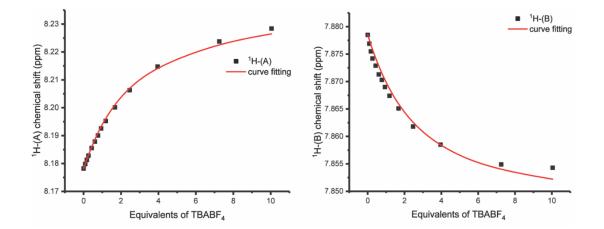


Figure S1: Titration profiles of diagnostic protons in replica I, experimental data point and curve fitting.

	$K_{a(1:1)} [M^{-1}]$	Residual sum of	Covfit
		squares	Covint
Replica I	617	6.9469 x 10 ⁻⁵	7.0739 x 10 ⁻⁴
Replica II	545	6.0937 x 10 ⁻⁵	7.0157 x 10 ⁻⁴
Replica III	528	6.9531 x 10 ⁻⁵	7.5339 x 10 ⁻⁴


Table S10: Calculated association constant, $K_{a (1:1)}$, and relative binding free energy (averaged value of three replicated experiments).

$K_{a\ (1:1)}\ [M^{-1}]$	∆G [kJ/mol]
560 ± 47	-15.7 ± 0.20

Tetrabutylammonium tetrafluoroborate (TBABF₄)

(<i>S</i>)-D	TBABF ₄		δ^{1} H-(A)	δ ¹ H -(B)	δ^{1} H-(C)
concentration	concentration	Equivalents	[ppm]	[ppm]	[ppm]
[M]	[M]		լեհայ	լիհայ	լիհայ
0.0020	0.0000	0.00	8.178	7.879	6.942
0.0020	0.0002	0.09	8.180	7.877	6.937
0.0020	0.0003	0.17	8.181	7.876	6.934
0.0020	0.0005	0.26	8.183	7.874	6.931
0.0020	0.0009	0.43	8.186	7.873	6.925
0.0020	0.0012	0.60	8.188	7.871	6.920
0.0020	0.0015	0.77	8.190	7.870	6.916
0.0020	0.0019	0.94	8.193	7.869	6.912
0.0020	0.0024	1.19	8.195	7.867	6.907
0.0020	0.0033	1.67	8.200	7.865	6.899
0.0020	0.0049	2.46	8.206	7.862	6.888
0.0020	0.0079	3.96	8.215	7.859	6.874
0.0020	0.0145	7.25	8.224	7.855	6.856
0.0020	0.0200	10.04	8.228	7.854	6.848

Table S11: Input data for the titration of (*S*)-D with TBABF₄ (variation of three distinct protons in replica I).

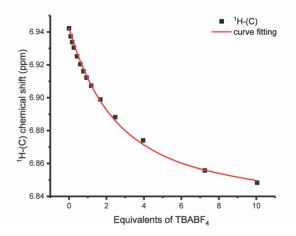


Figure S2: Titration profiles of diagnostic protons in replica I, experimental data point and curve fitting. Table S12: Calculated association constant, $K_{a\,(1:1)}$, and fit quality parameters for each single experiment.

	$K_{a(1:1)}[\mathrm{M}^{-1}]$	Residual sum of squares	Cov _{fit}
Replica I	254	6.8255 x 10 ⁻⁵	1.55384 x 10 ⁻³
Replica II	248	3.9894 x 10 ⁻⁵	1.12533 x 10 ⁻³
Replica III	287	1.4294 x 10 ⁻⁴	3.32541 x 10 ⁻³

Table S13: Calculated association constant, $K_{a (1:1)}$, and relative binding free energy (averaged value of three replicated experiments).

$K_{a (1:1)} [M^{-1}]$	∆G [kJ/mol]
260 ± 20	-13.8 ± 0.19

Tetrabutylammonium hexafluorophosphate (TBAPF₆)

TBAPF ₆ concentration [M]	Equivalents	δ ¹ H-(A) [ppm]	δ ¹ H-(B) [ppm]	δ ¹ H-(C) [ppm]
0.0000	0.00	8.178	7.879	6.942
0.0002	0.09	8.179	7.878	6.941
0.0005	0.28	8.179	7.878	6.941
0.0017	0.92	8.180	7.877	6.938
0.0026	1.36	8.181	7.876	6.937
0.0058	3.06	8.183	7.874	6.932
0.0116	6.10	8.186	7.871	6.925
0.0178	9.36	8.188	7.868	6.920
0.0230	12.13	8.190	7.866	6.915
0.0276	14.52	8.191	7.864	6.911
0.0329	17.36	8.193	7.862	6.904
	concentration [M] 0.0000 0.0002 0.0005 0.0017 0.0026 0.0058 0.0116 0.0178 0.0230 0.0276	concentrationEquivalents[M]Conconstant0.00000.000.00020.090.00050.280.00170.920.00261.360.00583.060.01166.100.01789.360.023012.130.027614.52	$\delta^{1}H-(A)$ [ppm][M][ppm]0.00000.008.1780.00020.098.1790.00050.288.1790.00170.928.1800.00261.368.1810.00583.068.1830.01166.108.1860.01789.368.1880.023012.138.1900.027614.528.191	concentrationEquivalents δ^1 H-(A) δ^1 H-(B)[M][ppm][ppm]0.00000.008.1787.8790.00020.098.1797.8780.00050.288.1797.8780.00170.928.1807.8770.00261.368.1817.8760.00583.068.1837.8740.01166.108.1867.8710.023012.138.1907.8660.027614.528.1917.864

Table S14: Input data for the titration of (S)-D with TBAPF₆ (variation of three distinct protons in replica I).

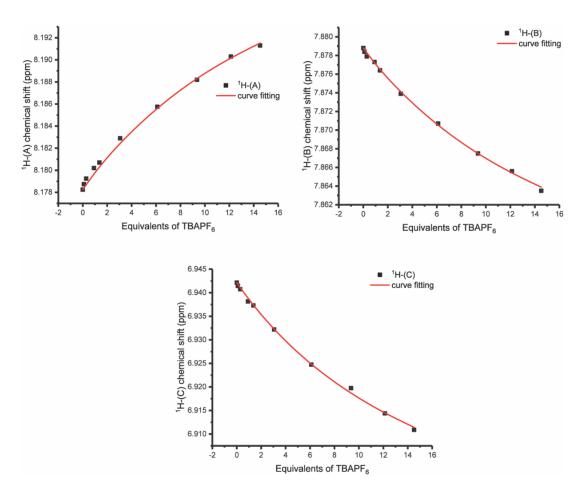


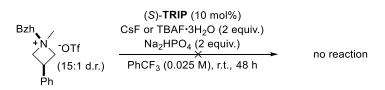
Figure S3: Titration profiles of diagnostic protons in replica I, experimental data point and curve fitting.

	$K_{a(1:1)}[\mathrm{M}^{-1}]$	Residual sum of	Cov _{fit}	
	$\mathbf{A}_{\mathbf{a}}$ (1:1) [1VI]	squares	Cov _{fit}	
Replica I	30	3.8713 x 10 ⁻⁶	1.16848 x 10 ⁻³	
Replica II	32	5.8417 x 10 ⁻⁶	1.73996 x 10 ⁻³	
Replica III	30	6.0144 x 10 ⁻⁶	2.13053 x 10 ⁻³	

Table S15 Calculated association constant, $K_{a (1:1)}$, and fit quality parameters for each single experiment.

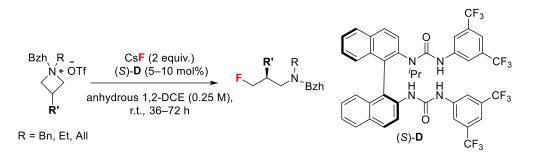
Table S16: Calculated association constant, $K_{a (1:1)}$, and relative binding free energy (averaged value of three replicated experiments).

$K_{a\ (1:1)}\ [M^{-1}]$	∆G [kJ/mol]
31 ± 1.2	-8.51 ± 0.096


Conclusion

The binding affinity of (*S*)-**D** towards three different anions, encountered as counter ions in the desymmetrization of aziridininium salts (OTf⁻, BF₄⁻ and PF₆⁻), were evaluated to assess whether these counterions could be involved in competitive binding interactions to $F^-(K_{a(U:F^-)})$ was previously measured by UV-Vis titrations).¹ The experimental data shows the following trend:

 $K_{a(U:X^{-})}: F^{-}(10^{6}\,M^{\text{-}1}) >> OTf^{-}(10^{2}\,M^{\text{-}1}) > \sim BF_{4}^{-}(10^{2}\,M^{\text{-}1}) > PF_{6}^{-}(10^{1}\,M^{\text{-}1}).$


This shows that hydrogen bonding to fluoride is at least four order of magnitude higher than the hydrogen bonding interactions with the other studied anions. These findings combined with the reactivity/enantioselectivity data of the three salts (Table S6) suggest that an anion binding/ion pairing catalysis mechanism⁴ is unlikely.

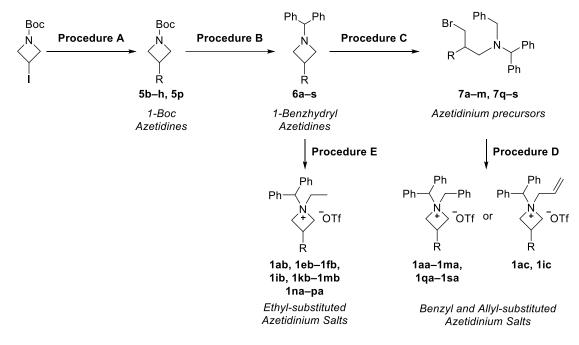
Fluorination under Chiral Anion Phase Transfer (CAPT)

Scheme S6: Fluorination under CAPT conditions (Sun *et al.*),⁵ no product formation was observed.

General Procedure for the Asymmetric Nucleophilic Fluorination of Azetidinium Ions

In a screw-capped vial equipped with a magnetic stirring bar were added CsF (2 equiv., 0.2 mmol), organocatalyst (*S*)-**D** (5–10 mol%) and the substrate (1 equiv., 0.1 mmol). Anhydrous 1,2-DCE (0.25M, 0.4 mL) was added, the vial was sealed and the reaction mixture was stirred at 900 rpm at r.t. for the indicated time. The crude mixture was then directly purified by flash column chromatography (FCC).

For reaction optimization was filtered through a small plug of silica, evaporated to dryness and the crude mixture was analyzed by ¹H and ¹⁹F NMR (4-fluoroanisole as internal standard) to determine the yield; an aliquot of the reaction mixture was purified by preparative TLC and analyzed by HPLC (chiral stationary phase) to determine the e.r.


Note: CsF (99.9% trace metal basis from Sigma-Aldrich) was ground prior to the reaction and used without pre-drying.

<u>*Racemate synthesis:*</u> The racemic reference products for HPLC analysis were obtained using stoichiometric amounts of TBAF·3H₂O in THF (0.25 M, r.t., 12h). Alternatively, the substrate was reacted with CsF (2 equiv.) in 1,2-DCE (0.25 M) at 60 °C for 6 h.

Substrates Synthesis and Characterization

Substrates Synthesis

Substrate precursors 5 and 6 (1-Boc and 1-benzhydryl azetidines) were commercially available and used without further purification or synthesized according to the following route:

General Procedures

Azetidines (5, 6) and Brominated Precursors (7)

General Procedure A: Synthesis of 1-Boc Azetidines (5)

The appropriate boronic acid (2 equiv.), NiI₂ (6 mol%) and *trans*-2-aminocyclohexanol hydrochloride (6 mol%) were weighed into a microwave vial and placed under an inert atmosphere. Commercially available 1-Boc-3-iodoazetidine (1 equiv.) and dry isopropanol (2 mL/mmol) were then added, followed by NaHMDS (1M in THF, 2 equiv.) at r.t. The mixture was heated at 80 °C for 30 min under microwave irradiation. After cooling to r.t., the mixture was diluted with EtOH (0.25 mmol/mL) and filtered through a celite plug. The filter cake was rinsed with EtOH and the filtrate was concentrated *in vacuo*. The crude mixture was purified by flash column chromatography (Heptane:EtOAc as eluent) to afford the desired 1-Boc-azetidine.

General procedure B: Synthesis of 1-benzhydryl Azetidines (6)

The appropriate 1-Boc-azetidine (1 equiv.) was dissolved in CH_2Cl_2 (10 mL/mmol) and TFA (5.8 mL/mmol) was slowly added at 0 °C. The reaction was stirred at r.t. for 12 h, the solvent was removed *in vacuo* and the obtained oil was washed twice with pentane to obtain the desired azetidinium TFA salt. The salt was then dissolved in dry CH_3CN (1 M) before DIPEA (5 equiv.) was added dropwise. Bromodiphenylmethane (1 equiv.) was then added and the reaction mixture was stirred at 100 °C for 2 h. The reaction mixture was then concentrated *in vacuo* and the residual slurry was purified by flash column chromatography (Heptane:EtOAc as eluent) to afford the desired 1-benzhydryl azetidines.

General procedure C: Synthesis of brominated azetidinium precursors (7)

Under a flow of N_2 , an oven-dried flask was charged with 1-benzhydryl-azetidine and dry CH₃CN (1.0 mL/mmol). Benzyl or allyl bromide (1.6 equiv.) were added and the mixture was stirred at 60 °C for 12 h. The solvent was removed under vacuum and the crude mixture was purified by flash column chromatography (Hexane:EtOAc) to afford the desired azetidinium precursor.

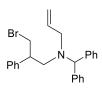
Azetidinium substrates (1)

General procedure D: Synthesis of 1-Benzyl and 1-Allyl Azetidinium TFA Salts*

Under a N_2 atmosphere, to an oven-dried flask charged with AgOTf (1 equiv.), a solution of 1-benzhydryl-1benzyl-3-bromo-propan-1-amine (1 equiv.) in dry CH₂Cl₂ (10 mL/mmol) was added. The reaction mixture was stirred at r.t. for 12 h in the dark. The mixture was then filtered through celite and the filtrate was evaporated under reduced pressure. The resulting powder was washed with cold Et₂O to afford the desired azetidinium salt.

* The tetrafluoroborate and hexafluorophosphate salts (Table S6) were prepared according to the same procedure by employing AgBF₄ and AgPF₆ respectively instead of AgOTf.

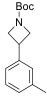
General procedure E: Synthesis of 1-Methyl and 1-Ethyl Azetidinium Salts


To a solution of 1-benzhydryl-azetidine in dry CH_2Cl_2 (2 M) at 0 °C, methyl or ethyl triflate (1.5 equiv.) were added dropwise and the reaction was stirred overnight at r.t. The solvent was then evaporated, the white precipitate was washed with Et_2O and filtered. The solid was further washed with cold Et_2O to afford the desired compound.

Azetidines, Brominated Precursors and Intermediates

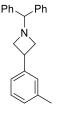
1-benzhydryl-1-benzyl-3-bromo-2-phenylpropan-1-amine (7aa)

Prepared according to a slightly modified version of general procedure C. Under a flow of Ph Br₊ N2, an oven-dried flask was charged with commercially available 1-benzhydryl-3-P۲ phenylazetidine (8.48 mmol, 2.52 g) in dry CH₃CN (1 M, 8.4 mL). Benzyl bromide (0.95 Ρ'n equiv., 8.06 mmol, 0.95 mL) was added and the mixture was stirred at 60 °C for 12 h. The 7aa crude mixture was purified by flash column chromatography (Pentane:EtOAc = 100:0 to 98:2, gradient) to afford the desired product in 85% yield (7.21 mmol, 3.36 g) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.42 – 7.20 (m, 18H), 7.01 – 6.91 (m, 2H), 4.96 (s, 1H), 3.76 (dd, J = 10.0, 5.6 Hz, 1H), 3.65 (s, 2H), 3.34 (dd, J = 10.0, 8.6 Hz, 1H), 3.19 - 3.07 (m, 1H), 2.89 (dd, J = 13.3, 7.6 Hz, 1H), 2.75 (dd, J = 13.3, 7.2Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ ppm: 141.58, 140.72, 140.51, 139.40, 129.51, 129.22, 129.11, 128.52, 128.44, 128.40, 128.31, 128.04, 127.34, 127.17, 127.15, 69.67, 55.77, 55.72, 46.96, 36.58. **IR** (thin layer film) v (cm⁻¹) = 3027, 2834, 1601, 1493, 1452, 1265, 1122, 1076, 1029, 920, 741, 697. **HRMS** (ESI⁺) m/z $C_{29}H_{29}BrN^{+}$ [M+H]⁺: calculated 470.1483, found 470.1487. Spectroscopic data were in agreement with the ones previously reported in literature.⁵


1-benzhydryl-1-(3-bromo-2-phenylpropyl)prop-2-en-1-amine (7ab)

Prepared according to general procedure C using commercially available 1-benzhydryl-3phenylazetidine (6.68 mmol, 2.0 g) and allyl bromide (11.13 mmol, 0.96 mL) The crude mixture was purified by flash column chromatography (Heptane 100%) to afford the desired product in 75% yield (5.00 mmol, 2.10 g) as a colorless oil. ¹H NMR (500 MHz,

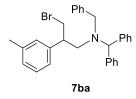
7ab CDCl₃) δ ppm: 7.33 – 7.27 (m, 6H), 7.26 (dt, J = 2.8, 1.4 Hz, 1H), 7.25 – 7.17 (m, 6H), 7.08 – 7.02 (m, 2H), 5.83 (ddt, J = 17.0, 10.2, 6.6 Hz, 1H), 5.12 (ddt, J = 10.2, 2.2, 1.2 Hz, 1H), 5.05 (dq, J = 17.1, 1.5 Hz, 1H), 4.86 (s, 1H), 3.86 (dd, J = 10.0, 5.4 Hz, 1H), 3.50 (dd, J = 10.0, 8.6 Hz, 1H), 3.25 – 3.15 (m, 2H), 3.13 – 3.05 (m, 1H), 2.85 (dd, J = 13.4, 8.3 Hz, 1H), 2.69 (dd, J = 13.3, 6.7 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ ppm: 141.74, 141.63, 141.61, 135.36, 128.92, 128.84, 128.51, 128.44, 128.41, 128.02, 127.21, 127.17, 127.15, 118.01, 70.69, 55.48, 53.96, 46.92, 36.69. **IR** (thin layer film) v (cm⁻¹) = 3062, 3027, 2980 1600, 1493, 1452, 1249, 1155, 1078, 1030, 996, 922, 759, 699, 611. **HRMS** (ESI⁺) m/z C₂₅H₂₇BrN⁺ [M+H]⁺: calculated 420.1321, found 420.1325.


tert-butyl 3-(m-tolyl)azetidine-1-carboxylate (5b)

Prepared according to general procedure A using commercially available 1-Boc-3-iodoazetidine (7.56 mmol, 2.14 g) and 3-methylphenylboronic acid (15.1 mmol, 2.06 g). The crude mixture was purified by flash column chromatography (Heptane:EtOAc = 100:0 to 90:10, gradient) to give the desired product in 57% yield (4.34 mmol, 1.07 g) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ ppm: 7.24 (t, *J* = 7.6 Hz, 1H), 7.15 – 7.04 (m, 3H), 4.31 (t, *J* = 8.6 Hz, 2H), 4.03 – 3.94 (m, 2H),

3.70 (tt, J = 8.7, 6.0 Hz, 1H), 2.36 (s, 3H), 1.47 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ ppm: 156.45, 142.23, 138.40, 128.61, 127.70, 127.48, 123.81, 79.49, 56.74, 33.44, 28.45, 21.43. **IR** (thin layer film) v (cm⁻¹) = 2973, 2883, 1702, 1609, 1479, 1392, 1366, 1296, 1255, 1163, 1133, 863, 781, 702. **HRMS** (ESI⁺) *m/z* C₁₅H₂₂NO₂⁺ [M+H]⁺: calculated 248.1645, found 248.1646.

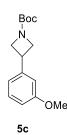
1-benzhydryl-3-(m-tolylphenyl)azetidine (6b)



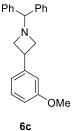
6b

Prepared according to general procedure B using 1-Boc-3-(m-tolylphenyl)azetidine 5b (4.04 mmol, 1.00 g). The crude mixture was purified by flash column chromatography (Heptane:EtOAc = 100:0 to 85:15, gradient) to give the desired product in 65% yield (2.63 mmol, 0.82 g) as a colorless oil. ¹**H NMR** (500 MHz, CDCl₃) δ ppm: 7.56 – 7.50 (m, 4H), 7.35 (dd, J =8.4, 6.9 Hz, 4H), 7.29 – 7.24 (m, 3H), 7.20 – 7.13 (m, 2H), 7.10 (d, J = 7.5 Hz, 1H), 4.48 (s, 1H), 3.81 - 3.69 (m, 3H), 3.27 - 3.19 (m, 2H), 2.41 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ ppm: 143.06, 142.35, 138.05, 128.56, 128.44, 127.84, 127.67, 127.20, 127.14, 124.00, 78.42, 60.73, 34.86, 21.57.

IR (thin layer film) v (cm⁻¹) = 3025, 2945, 2826, 1607, 1490, 1452, 1346, 1275, 1204, 1147, 1075, 1029, 927, 778, 742, 698, 639, 621, 611. **HRMS** (ESI⁺) m/z C₂₃H₂₄N⁺ [M+H]⁺: calculated 314.1903, found 314.1902. Spectroscopic data were in agreement with the ones previously reported in literature.⁶

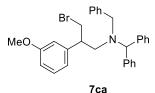

1-benzhydryl-1-benzyl-3-bromo-2-(m-tolyl)propan-1-amine (7ba)

Prepared according to general procedure C using 1-benzhydryl-3-(m-tolyl)azetidine **6b** (1.28 mmol, 0.40 g) and benzyl bromide (2.04 mmol, 0.24 mL). The crude mixture was purified by flash column chromatography (Pentane:EtOAc = 100:0 to 98:2, gradient) to afford the desired product in 46% yield (0.58 mmol, 0.28 g) as a colorless


oil. ¹**H NMR** (500 MHz, CDCl₃) δ ppm: 7.38 (d, J = 4.4 Hz, 4H), 7.34 – 7.22 (m, 11H), 7.22 - 7.16 (m, 1H), 7.12 - 7.08 (m, 1H), 6.81 - 6.77 (m, 1H), 6.75 (d, J = 1.9 Hz, 1H), 4.97 (s, 1H), 3.73 (dd, *J* = 10.0, 5.9 Hz, 1H), 3.70 – 3.61 (m, 2H), 3.35 (dd, *J* = 10.0, 8.5 Hz, 1H), 3.13 (qd, *J* = 7.5, 5.8 Hz, 1H), 3.70 – 3.61 (m, 2H), 3.35 (dd, *J* = 10.0, 8.5 Hz, 1H), 3.13 (qd, *J* = 7.5, 5.8 Hz, 1H), 3.70 – 3.61 (m, 2H), 3.35 (dd, *J* = 10.0, 8.5 Hz, 1H), 3.13 (qd, *J* = 7.5, 5.8 Hz, 1H), 3.70 – 3.61 (m, 2H), 3.35 (dd, *J* = 10.0, 8.5 Hz, 1H), 3.13 (qd, *J* = 7.5, 5.8 Hz, 1H), 3.70 – 3.61 (m, 2H), 3.35 (dd, *J* = 10.0, 8.5 Hz, 1H), 3.13 (qd, *J* = 7.5, 5.8 Hz, 1H), 3.14 (qd, *J* = 7.5, 5.8 Hz, 1H), 3.15 (qd, *J* = 7.5, 5.8 Hz, 1H), 3.15 (qd, *J* = 10.0, 8.5 Hz, 1H), 3.15 (qd, *J* = 7.5, 5.8 Hz, 1H), 3.15 (qd, *J* = 10.0, 8.5 Hz, 1H), 3.15 (qd, *J* = 7.5, 5.8 Hz, 1H), 3.15 (qd, *J* = 10.0, 8.5 Hz, 1H), 3.15 (qd, J = 10.0, 8.5 Hz, 1H), 3.5 Hz, 1H), 3.5 Hz, 1H), 3 1H), 2.89 (dd, J = 13.3, 7.3 Hz, 1H), 2.74 (dd, J = 13.3, 7.4 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ ppm: 141.51, 140.81, 140.41, 139.49, 138.02, 129.58, 129.22, 129.07, 128.77, 128.41, 128.40, 128.38, 128.27, 127.97, 127.33, 127.12, 127.11, 125.14, 69.51, 55.67, 55.65, 46.90, 36.56, 21.63. **IR** (thin layer film) v (cm⁻¹) = 3026, 2921, 2838, 1604, 1493, 1451, 1247, 1076, 1029, 970, 910, 784, 763, 743, 700. **HRMS** (ESI⁺) $m/z C_{30}H_{31}BrN^+ [M+H]^+$: calculated 484.1634, found 484.1634.

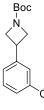
tert-butyl 3-(3-methoxyphenyl)azetidine-1-carboxylate (5c)

Prepared according to general procedure procedure A using commercially available 1-Boc-3iodoazetidine (7.50 mmol, 2.12 g) and 3-methoxyphenylboronic acid (15.0 mmol, 2.28 g). The crude mixture was purified by flash column chromatography (Heptane:EtOAc = 100:0 to 90:10, gradient) to give the desired product in 69% yield (5.20 mmol, 1.97 g) as a colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ ppm: 7.26 (t, J = 7.9 Hz, 1H), 6.92 – 6.87 (m, 1H), 6.86 – 6.83 (m, 1H), 6.82 - 6.77 (m, 1H), 4.35 - 4.25 (m, 2H), 4.01 - 3.94 (m, 2H), 3.81 (s, 3H), 3.70 (tt, J = 8.7, 6.0 Hz, 1H), 1.47 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ ppm: 160.03, 156.51, 143.99, 129.85, 119.18, 112.70, 112.27, 79.62, 56.53, 55.35, 33.63, 28.53. **IR** (thin layer film) v (cm⁻¹) = 2971, 2884, 1698, 1603, 1586, 1481, 1456, 1390, 1366, 1293, 1254, 1158, 1130, 1041, 980, 918, 863, 774, 697. **HRMS** (ESI⁺) m/z C₁₅H₂₂NO₃⁺ [M+H]⁺: calculated 264.1594, found 264.1595. Spectroscopic data were in agreement with the ones previously reported in literature.^{6,7}

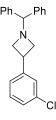

1-benzhydryl-3-(3-methoxyphenyl)azetidine (6c)

Prepared according to general procedure procedure B using 1-Boc-3-(3methoxyphenyl)azetidine **5c** (4.44 mmol, 1.17 g). The crude mixture was purified by flash column chromatography (Heptane:EtOAc = 100:0 to 85:15, gradient) to give the desired product in 45% yield (2.03 mmol, 0.67 g) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ ppm: 7.45 (dd, *J* = 8.2, 1.4 Hz, 4H), 7.29 (dd, *J* = 8.3, 6.9 Hz, 4H), 7.24 (t, *J* = 7.9 Hz, 1H),

7.22 - 7.17 (m, 2H), 6.92 - 6.85 (m, 2H), 6.80 - 6.74 (m, 1H), 4.40 (s, 1H), 3.81 (s, 3H), 3.73 - 3.61 (m, 3H), 3.19 - 3.12 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ ppm: 159.83, 144.97, 142.35, 129.52, 128.59, 127.66, 127.23, 119.46, 112.99, 111.54, 78.39, 60.66, 55.33, 34.96; **IR** (thin layer film) v (cm⁻¹) = 3026, 2942, 2832.34, 1601, 1583, 1489, 1451, 1434, 1290, 1267, 1207, 1158, 1076, 1046, 927, 868, 778, 744, 697, 638. **HRMS** (ESI⁺) m/z C₂₃H₂₄NO⁺ [M+H]⁺: calculated 330.1852, found 330.1851. Spectroscopic data were in agreement with the ones previously reported in literature.⁶

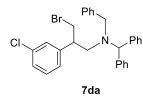

1-benzhydryl-1-benzyl-3-bromo-2-(3-methoxyphenyl)propan-1-amine (7ca)

Prepared according to general procedure C using 1-benzhydryl-3-(3methoxyphenyl)azetidine **6c** (1.21 mmol, 0.40 g) and benzyl bromide (1.94 mmol, 0.23 mL). The crude mixture was purified by flash column chromatography (Pentane:EtOAc = 100:0 to 98:2, gradient) to afford the desired product in


83% yield (1.00 mmol, 0.50 g) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ ppm: 7.40 – 7.35 (m, 4H), 7.34 – 7.24 (m, 11H), 7.24 – 7.19 (m, 1H), 6.82 (dd, J = 8.0, 2.6 Hz, 1H), 6.60 – 6.55 (m, 1H), 6.48 (t, J = 2.1 Hz, 1H), 4.96 (s, 1H), 3.76 (s, 4H), 3.65 (d, J = 1.7 Hz, 2H), 3.32 (dd, J = 10.0, 8.6 Hz, 1H), 3.09 (qd, J = 7.4, 5.4 Hz, 1H), 2.89 (dd, J = 13.4, 7.5 Hz, 1H), 2.75 (dd, J = 13.3, 7.1 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ ppm: 159.68, 143.28, 140.77, 140.57, 139.43, 129.51, 129.49, 129.22, 129.10, 128.44, 128.41, 128.32, 127.35, 127.18, 127.17, 120.41, 113.80, 112.44, 69.77, 55.84, 55.80, 55.25, 47.10, 36.39. IR (thin layer film) ν (cm⁻¹) = 3027, 2934, 2834, 1600, 1492, 1453, 1262, 1156, 1047, 970, 873, 764, 744, 699, 616. HRMS (ESI⁺) m/z C₃₀H₃₁BrNO⁺ [M+H]⁺: calculated 500.1583, found 500.1581.

tert-butyl 3-(3-chlorophenyl)azetidine-1-carboxylate (5d)

Prepared according to general procedure procedure A using commercially available 1-Boc-3iodoazetidine (15.1 mmol, 4.28 g) and 3-chlorophenylboronic acid (30.3 mmol, 4.73 g). The crude mixture was purified by flash column chromatography (Heptane:EtOAc = 100:0 to 90:10, gradient) to give the desired product in 71% yield (10.7 mmol, 2.86 g) as a colorless oil. ¹H NMR (400 MHz, CI $CDCl_3$) δ ppm: 7.32 - 7.27 (m, 2H), 7.25 - 7.15 (m, 2H), 4.37 - 4.28 (m, 2H), 3.99 - 3.89 (m, 2H), 5d 3.69 (tt, J = 8.8, 5.9 Hz, 1H), 1.47 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ ppm: 156.48, 144.46, 134.75, 130.14, 127.31, 127.17, 125.09, 79.85, 56.50, 33.36, 28.55. **IR** (thin layer film) v (cm⁻¹) = 2974, 2885, 1698, 1599, 1573, 1479, 1390, 1366, 1296, 1255, 1129, 1082, 999, 977, 913, 860, 775, 693. HRMS (ESI⁺) m/z C₁₄H₁₉ClNO₂⁺ [M+H]⁺: calculated 268.1099, found 268.1099. Spectroscopic data were in agreement with the ones previously reported in literature.⁸


1-benzhydryl-3-(*m*-chlorophenyl)azetidine (6d)

Prepared according to general procedure procedure B using 1-Boc-3-(m-chlorophenyl)azetidine 5d (2.05 mmol, 0.55 g). The crude mixture was purified by flash column chromatography (Heptane: EtOAc = 100:0 to 85:15, gradient) to give the desired product in 40% yield (0.75 mmol, 0.25 g) as a colorless oil. ¹**H NMR** (500 MHz, CDCl₃) δ ppm: 7.53 – 7.39 (m, 4H), 7.32 – 7.27 (m, 5H), 7.25 – 7.17 (m, 5H), 4.40 (s, 1H), 3.72 – 3.57 (m, 3H), 3.18 – 3.08 (m, 2H);

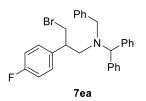
¹³C NMR (126 MHz, CDCl₃) δ ppm: 145.40, 142.19, 134.38, 129.81, 128.63, 127.64, 127.33, 6d 127.30, 126.62, 125.33, 78.36, 60.53, 34.70. **IR** (thin layer film) v (cm⁻¹) = 3026, 2953, 2828, 2360, 1598, 1571, 1489, 1452, 1432, 1347, 1275, 1198, 1153, 1078, 1029, 1000, 927, 876, 782, 745, 702, 694, 637, 621, 611. **HRMS** (ESI⁺) *m/z* C₂₂H₂₁ClN⁺ [M+H]⁺: calculated 334.1357, found 334.1356.

1-benzhydryl-1-benzyl-3-bromo-2-(3-chlorophenyl)propan-1-amine (7da)

Prepared according to a slightly modified version of general procedure C. Under a flow of N₂, an oven-dried flask was charged with 1-benzhydryl-3-(3chlorophenyl)azetidine 6d (5.72 mmol, 1.91 g) in dry CH₃CN (0.8 M, 7.0 mL). Benzyl bromide (1.2 equiv., 6.87 mmol, 0.82 mL) was added and the mixture was stirred at 60 °C for 12 h. The crude mixture was purified by flash column

chromatography (Pentane: EtOAc = 100:0 to 98:2, gradient) to afford the desired product in 89% yield (5.09 mmol, 2.62 g) as a colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ ppm: 7.45 – 7.18 (m, 17H), 6.91 (t, J = 1.9 Hz, 1H), 6.87 - 6.80 (m, 1H), 4.94 (s, 1H), 3.72 - 3.58 (m, 3H), 3.28 (dd, J = 10.1, 8.4 Hz, 1H), 3.14 - 3.14 Hz3.03 (m, 1H), 2.88 (dd, J = 13.4, 7.0 Hz, 1H), 2.75 (dd, J = 13.3, 7.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ ppm: 143.66, 140.85, 140.23, 139.21, 134.32, 129.72, 129.55, 129.08, 129.06, 128.51, 128.47, 128.39, 128.15, 127.46, 127.38, 127.30, 127.25, 126.44, 69.98, 55.95, 55.61, 46.80, 35.84. **IR** (thin layer film) v (cm⁻¹) = 3060, 3027, 2924, 2842, 1598, 1573, 1493, 1452, 1246, 1079, 1029, 809, 784, 763, 744, 699, 623. HRMS $(ESI^{+}) m/z C_{29}H_{28}BrClN^{+} [M+H]^{+}$: calculated 504.1088, found 504.1087.

tert-butyl 3-(4-fluorophenyl)azetidine-1-carboxylate (5e)


Boc Prepared according to general procedure procedure A using 4-fluorophenylboronic acid (30.3 mmol, 4.24 g). The crude mixture was purified by flash column chromatography (Heptane:EtOAc = 100:0 to 90:10, gradient) to give the desired product in 84% yield (12.6 mmol, 3.18 g) as a colorless oil. **H NMR** (500 MHz, CDCl₃) δ ppm: 7.31 – 7.24 (m, 2H), 7.07 – 6.99 (m, 2H), 4.38 – 4.29 (m, 2H), 3.97 – 3.89 (m, 2H), 3.71 (tt, J = 8.7, 6.0 Hz, 1H), 1.47 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ ppm: 161.93 (d, J = 245.4 Hz), 156.51, 138.13 (d, J = 3.1 Hz) 128.42 (d, J = 8.0 Hz), 115.66 (d, J = 21.5 Hz), 79.74, 56.65, 33.01, 28.54; ¹⁹F NMR (377 MHz, CDCl₃) δ ppm: -115.78 (tt, J = 8.8, 5.4 Hz, 1F). **IR** (thin layer film) v (cm⁻¹) = 3658, 3492, 2980, 2927, 2344, 2116, 1983, 1703, 1607, 1513, 1457, 1392, 1228, 1158, 1138, 953, 832, 774, 705, 640, 621. **HRMS** (ESI⁺) m/z C₁₄H₁₈FNNaO₂⁺ [M+Na]⁺: calculated 274.1214, found 274.1215. Spectroscopic data were in agreement with the ones previously reported in literature.⁷

1-benzhydryl-3-(4-fluorophenyl)azetidine (6e)

Ph Ph Prepared according to general procedure procedure B using 1-Boc-3-(4-fluorophenyl)azetidine **5e** (12.3 mmol, 3.1 g). The crude mixture was purified by flash column chromatography (Heptane:EtOAc = 100:0 to 85:15, gradient) to give the desired product in 39% yield (4.8 mmol, 1.50 g) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ ppm: 7.49 – 7.44 (m, 4H), 7.34 – 7.27 (m, 6H), 7.23 – 7.18 (m, 2H), 7.05 – 6.98 (m, 2H), 4.42 (s, 1H), 3.71 – 3.61 (m, 3H), 3.18 – 3.09 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ ppm: 161.62 (d, *J* = 244.4 Hz), 142.23, 138.97 (d, *J* = 3.2 Hz), 128.61, 128.54 (d, *J* = 8.0 Hz), 127.63, 127.27, 115.27 (d, *J* = 21.3 Hz), 78.37, 60.91, 34.35; ¹⁹F NMR {¹H} (470 MHz, CDCl₃) δ ppm: -116.85 (s, 1F). IR (thin layer film) v (cm⁻¹) = 3027, 2947, 2827,

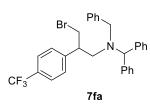
Find K (11) (470 MHz, CDCl₃) *b* ppm. -110.85 (s, 11). **IK** (unit layer min) *v* (cm³) = 3027, 2947, 2827, 1600, 1510, 1491, 1452, 1223, 1157, 1098, 1076, 1029, 924, 830, 743, 702. **HRMS** (ESI⁺) m/z C₂₂H₂₁FN⁺ [M+H]⁺: calculated 318.1653, found 318.1652. Spectroscopic data were in agreement with the ones previously reported in literature.⁶

1-benzhydryl-1-benzyl-3-bromo-2-(3-fluorophenyl)propan-1-amine (7ea)

Prepared according to a slightly modified version of general procedure C. Under a flow of N₂, an oven-dried flask was charged with 1-benzhydryl-3-(3-fluorophenyl)azetidine **6e** (2.52 mmol, 0.80 g) in dry CH₃CN (1 M, 2.5 mL). Benzyl bromide (0.95 equiv., 42.39 mmol, 0.28 mL) was added and the mixture was stirred at 60 °C for 12 h. The crude mixture was purified by flash column chromatography

(Pentane:EtOAc = 100:0 to 98:2, gradient) to afford the desired product in 89% yield (2.24 mmol, 1.09 g) as a colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ ppm: 7.53 – 7.33 (m, 15H), 7.15 – 7.06 (m, 2H), 7.01 (ddd, J = 8.7, 5.3, 2.6 Hz, 2H), 5.08 (s, 1H), 3.88 – 3.79 (m, 1H), 3.77 (d, J = 5.6 Hz, 2H), 3.40 (dd, J = 10.1, 8.5 Hz, 1H), 3.27 – 3.15 (m, 1H), 3.00 (dd, J = 13.3, 7.3 Hz, 1H), 2.85 (dd, J = 13.3, 7.4 Hz, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ ppm: 161.99 (d, J = 245.1 Hz), 140.80, 140.35, 139.31, 137.26 (d, J = 3.2 Hz), 129.52, 129.46 (d, J = 7.9 Hz), 129.14, 129.11, 128.47, 128.44, 128.36, 127.42, 127.25, 127.23, 115.31 (d, J = 21.2 Hz), 69.88,

55.93, 55.75, 46.22, 36.55; ¹⁹**F NMR** (377 MHz, CDCl₃) δ ppm: -115.63 (tt, J = 8.7, 5.3 Hz, 1F). **IR** (thin layer film) v (cm⁻¹) = 3027, 2833, 1603, 1509, 1493, 1451, 1225, 1159, 1123, 1076, 1028, 968, 919, 830, 764, 738, 698, 627. **HRMS** (ESI⁺) m/z C₂₉H₂₈BrFN⁺ [M+H]⁺: calculated 488.1384, found. 488.1385.


tert-butyl 3-(4-(trifluoromethyl)azetidine-1-carboxylate (5f)

Boc Prepared according to general procedure A using commercially available 1-Boc-3-iodoazetidine (15.1 mmol, 4.28 g) and 4-(trifluoromethylphenylboronic acid (30.3 mmol, 5.75 g). The crude mixture was purified by flash column chromatography (Heptane:EtOAc = 100:0 to 90:10, gradient) to give the desired product in 69% yield (10.5 mmol, 3.16 g) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ cF₃ ppm: 7.61 (d, *J* = 8.0 Hz, 2H), 7.43 (d, *J* = 8.1 Hz, 2H), 4.36 (m, *J* = 8.7 Hz, 2H), 3.97 (m, 2H), 3.78 ⁵f (tt, *J* = 8.8, 5.9 Hz, 1H), 1.47 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ ppm: 156.47, 146.45, 129.48 (q, *J* = 32.5 Hz), 127.30, 125.84 (q, *J* = 3.8 Hz), 124.24 (q, *J* = 271.9 Hz), 79.93, 56.55, 33.45, 28.53; ¹⁹F NMR (470 MHz, CDCl₃) δ -62.51 (s, 3F). **IR** (thin layer film) v (cm⁻¹) = 2976, 1702, 1620, 1393, 1367, 1326, 1256, 1164, 1125, 1069, 1017, 909, 836, 774. **HRMS** (ESI⁺) *m/z* C₁₅H₁₉F₃NO₂⁺ [M+H]⁺: calculated 302.1362, found 302.1363. Spectroscopic data were in agreement with the ones previously reported in literature.⁷

1-benzhydryl-3-(4-(trifluoromethyl)phenyl)azetidine (6f)

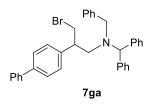
Ph Prepared according to general procedure B using 1-Boc-3-(4-(trifluoromethyl)phenyl) azetidine **5f** (10.5 mmol, 3.16 g). The crude mixture was purified by flash column chromatography (Heptane:EtOAc = 100:0 to 90:10, gradient) to give the desired product in 45% yield (6.68 mmol, 1.36 g) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ ppm: 7.58 (d, *J* = 8.1 Hz, 2H), 7.48 – 7.42 (m, 6H), 7.33 – 7.26 (m, 4H), 7.24 – 7.17 (m, 2H), 4.41 (s, 1H), 3.75 – 3.68 (m, 1H), 3.68 – 3.61 **6f** (m, 2H), 3.20 – 3.14 (m, 2H); ¹³C NMR {¹H, ¹⁹F} (126 MHz, CDCl₃) δ ppm: 147.49, 142.12, 128.75, 128.65, 127.60, 127.43, 127.33, 125.50, 124.42, 78.30, 60.43, 34.78; ¹⁹F NMR (470 MHz, CDCl₃) δ ppm: -62.48 (s, 3F). **IR** (thin layer film) v (cm⁻¹) = 2954, 2830, 1619, 1491, 1453, 1326, 1164, 1121, 1069, 1018, 835, 744, 704, 641. **HRMS** (ESI⁺) *m*/z C₂₃H₂₁F₃N⁺ [M+H]⁺: calculated 368.1621, found 368.1620.

1-benzhydryl-1-benzyl-3-bromo-2-(4-(trifluoromethyl)phenyl)propan-1-amine (7fa)

Prepared according to a slightly modified version of general procedure C. Under a flow of N₂, an oven-dried flask was charged with 1-benzhydryl-3-(4-(trifluoromethyl) phenylazetidine **6f** (2.18 mmol, 0.80 g) in dry CH₃CN (1 M, 2.1 mL). Benzyl bromide (0.95 equiv., 2.07 mmol, 0.25 mL) was added and the mixture was stirred at 60 °C for 12 h. The crude mixture was purified by flash

column chromatography (Pentane:Et₂O = 100:0 to 98:2, gradient) to afford the desired product in 87% yield (1.90 mmol, 1.02 g) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.41 (d, *J* = 8.0 Hz, 2H), 7.33 – 7.07 (m, 15H), 6.90 (d, *J* = 8.0 Hz, 2H), 4.83 (s, 1H), 3.64 – 3.53 (m, 2H), 3.50 (d, *J* = 13.7 Hz, 1H), 3.18 (dd, *J* = 10.1, 8.6 Hz, 1H), 3.08 – 2.96 (m, 1H), 2.79 (dd, *J* = 13.4, 7.1 Hz, 1H), 2.66 (dd, *J* = 13.4, 7.4 Hz,

1H); ¹³C NMR {¹H, ¹⁹F} (126 MHz, CDCl₃) [overlapping signals] δ ppm: 145.70, 140.79, 140.19, 139.14, 130.22, 129.52, 129.38, 129.11, 129.05, 128.51, 128.40, 127.51, 127.34, 127.30, 125.42, 124.35, 70.09, 56.12, 55.77, 46.92, 35.65; ¹⁹F NMR (377 MHz, CDCl₃) δ ppm: -62.38. **IR** (thin layer film) ν (cm⁻¹) = 3028, 1619, 1494, 1452, 1325, 1165, 1123, 1069, 1018, 836, 764, 745, 700. **HRMS** (ESI⁺) *m*/*z* C₃₀H₂₈BrF₃N⁺ [M+H]⁺: calculated 538.1352, found. 538.1350.


tert-butyl 3-([1,1'-biphenyl]-4-yl)azetidine-1-carboxylate (5g)

Boc Prepared according to general procedure A using commercially available 1-Boc-3-iodoazetidine (7.57 mmol, 2.14 g) and [1,1'-biphenyl]-4-ylboronic acid (15.1 mmol, 3.00 g). The crude mixture was purified by flash column chromatography (Heptane:EtOAc = 100:0 to 90:10, gradient) to give the desired product in 77% yield (5.82 mmol, 1.80 g) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ ph ppm: 7.62 – 7.57 (m, 4H), 7.45 (dd, J = 8.4, 7.0 Hz, 2H), 7.42 – 7.38 (m, 2H), 7.38 – 7.33 (m, 1H), ^{5g} 4.43 – 4.31 (m, 2H), 4.10 – 3.99 (m, 2H), 3.78 (tt, J = 8.8, 6.0 Hz, 1H), 1.49 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ ppm: 156.54, 141.43, 140.82, 140.08, 128.91, 127.55, 127.43, 127.34, 127.15, 79.66, 56.95, 33.35, 28.56. **IR** (thin layer film) v (cm⁻¹) = 2972, 2884, 1697, 1485, 1391, 1366, 1296, 1254, 1130, 1008, 966, 909, 834, 764, 730, 698. **HRMS** (ESI⁺) *m/z* C₂₀H₂₄NO₂⁺ [M+H]⁺: calculated 310.1802, found 310.1802.

1-benzhydryl-3-([1,1'-biphenyl]-4-yl)azetidine (6g)

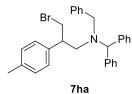
Ph Prepared according to general procedure B using 1-Boc-3-([1,1'-biphenyl]-4-yl)phenyl)azetidine **5g** (4.95 mmol, 1.53 g). The crude mixture was purified by flash column chromatography (Heptane:EtOAc = 100:0 to 85:15, gradient) to give the desired product in 46% yield (2.28 mmol, 0.85 g) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ ppm: 7.63 – 7.54 (m, 4H), 7.51 – 7.47 (m, 4H), 7.47 – 7.42 (m, 2H), 7.40 (d, *J* = 2.1 Hz, 2H), 7.38 – 7.33 (m, 1H), 7.33 – 7.28 (m, 4H), 7.24 **6g** – 7.18 (m, 2H), 4.44 (s, 1H), 3.80 – 3.71 (m, 1H), 3.71 – 3.66 (m, 2H), 3.24 – 3.18 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) [overlapping signals] δ ppm: 142.35 (br), 141.10, 139.44, 128.89, 128.60, 127.68, 127.54, 127.29, 127.25, 127.16, 78.42, 60.81, 34.72. **IR** (thin layer film) v (cm⁻¹) = 3658, 2980, 2889, 1462, 1383, 1252, 1152, 1073, 955, 816. **HRMS** (ESI⁺) *m/z* C₂₈H₂₆N⁺ [M+H]⁺: calculated 376.2060, found 376.2059. Spectroscopic data were in agreement with the ones previously reported in literature.⁶

2-([1,1'-biphenyl]-4-yl)-1-benzhydryl-1-benzyl-3-bromopropan-1-amine (7ga)

Prepared according to a slightly modified version of general procedure C. Under a flow of N₂, an oven-dried flask was charged with 1-benzhydryl-3-([1,1'-biphenyl]-4-yl)azetidine **6g** (2.13 mmol, 0.80 g) in dry CH₃CN (1 M, 2.5 mL). Benzyl bromide (1.2 equiv., 2.56 mmol, 0.30 mL) was added and the mixture was stirred at 60 °C for 12 h. The crude mixture was purified by flash column chromatography (Pentane

100%) to afford the desired product in 43% yield (0.92 mmol, 0.50 g) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.56 – 7.49 (m, 2H), 7.49 – 7.10 (m, 20H), 6.96 – 6.89 (m, 2H), 4.89 (s, 1H), 3.68 (dd, J =

10.0, 5.7 Hz, 1H), 3.57 (d, J = 3.1 Hz, 2H), 3.28 (dd, J = 10.1, 8.5 Hz, 1H), 3.13 – 3.02 (m, 1H), 2.83 (dd, J = 13.3, 7.3 Hz, 1H), 2.69 (dd, J = 13.3, 7.3 Hz, 1H); ¹³**C NMR** (101 MHz, CDCl₃) [overlapping signals] δ ppm: 141.05, 140.83, 140.72, 140.45, 140.04, 139.43, 129.57, 129.21, 129.13, 128.92, 128.46, 128.43, 128.33, 127.39, 127.35, 127.23, 127.20, 127.18, 69.75, 55.86, 55.82, 46.69, 36.47. **IR** (thin layer film) v (cm⁻¹) = 3059, 3027, 2922, 2837, 1600, 1487, 1451, 1247, 1122, 1075, 1029, 1008, 918, 834, 764, 743, 699, 653. **HRMS** (ESI⁺) m/z C₃₅H₃₃BrN⁺ [M+H]⁺: calculated 546.1791, found 546.1790.

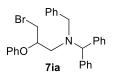

tert-butyl 3-(p-tolyl)azetidine-1-carboxylate (5h)

Boc Prepared according to general procedure A using commercially available 1-Boc-3-iodoazetidine (3.75 mmol, 1.06 g) and 4-methyphenylboronic acid (7.50 mmol, 1.02 g). The crude mixture was purified by flash column chromatography (Heptane:EtOAc = 100:0 to 90:10, gradient) to give the desired product in 75% yield (2.81 mmol, 0.66 g) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ ppm: 7.23 – 7.18 (m, 2H), 7.18 – 7.13 (m, 2H), 4.31 (t, *J* = 8.7 Hz, 2H), 3.95 (dd, *J* = 8.6, 6.1 Hz, 2H), 3.74 – 3.65 (m, 1H), 2.34 (s, 3H), 1.47 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ ppm: 156.58, 139.39, 136.73, 129.51, 126.80, 79.59, 56.73, 33.32, 28.58, 21.18. IR (thin layer film) v (cm⁻¹) = 2980, 2885, 1701, 1517, 1479, 1456, 1392, 1366, 1296, 1252, 1161, 1132, 966, 909, 860, 813, 773. HRMS (ESI⁺) *m/z* C₁₅H₂₃NNaO₂⁺ [M+Na]⁺: calculated 270.1465, found 270.1466. Spectroscopic data were in agreement with the ones previously reported in literature.⁷

1-benzhydryl-3-(4-methyphenyl)azetidine (6h)

Ph Ph Prepared according to general procedure B using 1-Boc-3-(4-methyphenyl)azetidine **5h** (5.43 mmol, 1.34 g). The crude mixture was purified by flash column chromatography (Heptane:EtOAc = 100:0 to 85:15, gradient) to give the desired product in 58% yield (3.2 mmol, 0.99 g) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ ppm: 7.49 – 7.44 (m, 4H), 7.33 – 7.27 (m, 4H), 7.25 – 7.18 (m, 4H), 7.14 (d, *J* = 8.0 Hz, 2H), 4.42 (s, 1H), 3.74 – 3.62 (m, 3H), 3.19 – 3.11 (m, 2H), 2.35 (s, 3H); 6h ¹³C NMR (126 MHz, CDCl₃) δ ppm: 142.41, 140.18, 135.97, 129.20, 128.57, 127.67, 127.20, 126.98, 78.42, 60.92, 34.66, 21.16. IR (thin layer film) v (cm⁻¹) = 3025, 2922, 2826, 1599, 1515, 1490, 1452, 1344, 1309, 1273, 1197, 1151, 1113, 1076, 1029, 924, 811, 742, 702, 6218, 611. HRMS (ESI⁺) *m*/z C₂₃H₂₄N⁺ [M+H]⁺: calculated 314.1903, found 314.1903. Spectroscopic data were in agreement with the ones previously reported in literature.⁶

1-benzhydryl-1-benzyl-3-bromo-2-(4-methyphenyl)propan-1-amine (7ha)



Prepared according to a slightly modified version of general procedure C. Under a flow of N₂, an oven-dried flask was charged with 1-benzhydryl-3-(4-methylphenyl)azetidine **6h** (1.82 mmol, 0.57 g) in dry CH₃CN (1 M, 1.8 mL). Benzyl bromide (1.2 equiv., 2.18 mmol, 0.26 mL) was added and the mixture was stirred

at 60 °C for 12 h. The crude mixture was purified by flash column chromatography (Pentane 100%) to afford

the desired product in 67% yield (1.21 mmol, 0.59 g) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.44 – 7.22 (m, 15H), 7.11 (d, *J* = 7.8 Hz, 2H), 6.90 – 6.83 (m, 2H), 4.97 (s, 1H), 3.79 (dd, *J* = 10.0, 5.5 Hz, 1H), 3.73 – 3.59 (m, 2H), 3.33 (dd, *J* = 10.0, 8.8 Hz, 1H), 3.16 – 3.04 (m, 1H), 2.88 (dd, *J* = 13.3, 7.9 Hz, 1H), 2.73 (dd, *J* = 13.3, 6.9 Hz, 1H), 2.37 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) [overlapping signals] δ ppm: 140.69, 140.64, 139.45, 138.51, 136.72, 129.46, 129.29, 129.24, 129.11, 128.44, 128.39, 128.30, 127.86, 127.31, 127.16, 69.67, 55.85, 55.79, 46.57, 36.83, 21.27. **IR** (thin layer film) v (cm⁻¹) = 3026, 2919, 2850, 1738, 1635, 1600, 1514, 1493, 1452, 1371, 1244, 1121, 1076, 1028, 918, 812, 763, 743, 700. **HRMS** (ESI⁺) *m/z* C₃₀H₃₁BrN⁺ [M+H]⁺: calculated 484.1634, found 484.1635.

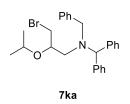
1-benzhydryl-1-benzyl-3-bromo-2-phenoxypropan-1-amine (7ia)

Prepared according to a slightly modified version of general procedure C. Under a flow of N₂, an oven-dried flask was charged with commercially available 1-benzhydryl-3-phenoxyazetidine (4.75 mmol, 1.5 g) in dry CH₃CN (5.8 mL). Benzyl bromide (1.2 equiv., 5.71 mmol, 0.68 mL) was added and the mixture was stirred at 60 °C for 12 h.

The residue was purified by flash column chromatography (Pentane:EtOAc = 98:2) to afford the desired product in quantitative yield (4.75 mmol, 1.94 g) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.50 – 7.21 (m, 17H), 7.02 – 6.93 (m, 1H), 6.77 – 6.69 (m, 2H), 5.03 (s, 1H), 4.37 – 4.27 (m, 1H), 3.84 – 3.70 (m, 2H), 3.52 (dd, *J* = 10.8, 5.0 Hz, 1H), 3.36 (dd, *J* = 10.7, 5.2 Hz, 1H), 2.98 (dd, *J* = 6.0, 1.1 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ ppm: 157.63, 141.34, 140.91, 139.50, 129.69, 129.38, 129.15, 129.11, 128.57, 128.53, 128.51, 127.43, 127.35, 127.31, 121.58, 116.19, 76.80, 71.15, 56.92, 53.55, 33.29. IR (thin layer film) v (cm⁻¹) = 3027, 2835, 1598, 1492, 1452, 1237, 1172, 1077, 1029, 921, 745, 698. HRMS (ESI⁺) *m*/*z* C₂₉H₂₉BrNO⁺ [M+H]⁺: calculated 486.1427, found 486.1426.

1-benzhydryl-1-(3-bromo-2-phenoxypropyl)prop-2-en-1-amine (7ic)

Prepared according to a slightly modified version of general procedure C. Under a flow of N₂, an oven-dried flask was charged with commercially available 1-benzhydryl-3-Br∙ phenoxyazetidine (2.53 mmol, 0.8 g) in CH₃CN (2.3 mL). Benzyl bromide (1.2 equiv., PhO Ρh 2.28 mmol, 0.20 mL) was added and the mixture was stirred at 60 °C for 12 h. The residue 7ic was purified by flash column chromatography (Pentane: $Et_2O = 98.5:1.5$) to afford the desired product in 62% yield (0.79 g, 1.57 mmol) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.32 – 7.10 (m, 12H), 6.88 (tt, *J* = 7.3, 1.1 Hz, 1H), 6.75 – 6.67 (m, 2H), 5.84 (ddt, *J* = 16.8, 10.2, 6.5 Hz, 1H), 5.11 – 4.97 (m, 2H), 4.87 (s, 1H), 4.40 – 4.30 (m, 1H), 3.59 (dd, *J* = 10.7, 4.8 Hz, 1H), 3.44 (dd, *J* = 10.7, 5.4 Hz, 1H), 3.20 – 3.10 (m, 2H), 2.84 (d, J = 6.2 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ ppm: 157.82, 141.87, 141.67, 135.38, 129.69, 129.03, 128.75, 128.54, 128.53, 127.37, 127.24, 121.63, 118.26, 116.36, 77.48, 71.50, 55.37, 52.95, 33.53. **IR** (thin layer film) v (cm⁻¹) = 3061, 3027, 2834, 1598, 1587, 1492, 1452, 1418, 1336, 1289, 1237. 1171, 1077, 1029, 995, 922, 823, 750, 704, 610. **HRMS** (ESI⁺): *m/z* C₂₅H₂₇BrNO⁺ [M+H]⁺: calculated 436.1271, found 436.1270.


1-benzhydryl-1-benzyl-3-bromo-2-(4-fluorophenoxy)propan-1-amine (7ja)

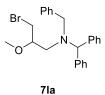
Prepared according to general procedure C using commercially available F_{ja} F_{ph} F_{ph} F

1-benzhydryl-3-isopropoxyazetidine (6k)

Ph Prepared according to a slightly modified version of general procedure B. To a solution of commercially available 3-isopropyloxyazetidine hydrochloride (10.02 mmol, 1.52 g) in dry CH₃CN (9.2 mL), DIPEA (2.7 equiv., 27.32 mmol, 4.7 mL) and bromodiphenylmethane (0.9 equiv., 9.10 mmol, 2.25 g) were subsequently added. The reaction mixture was stirred at 100 °C for 2 h after which it was concentrated *in vacuo*. The crude mixture was purified by flash column chromatography (Heptane:EtOAc = 100:0 to 85:15, gradient) to give the desired product in 98% yield (8.88 mmol, 2.6 g) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.45 – 7.37 (m, 4H), 7.32 – 7.22 (m, 4H), 7.22 – 7.13 (m, 2H), 4.37 (s, 1H), 4.25 – 4.11 (m, 1H), 3.63 – 3.49 (m, 3H), 2.97 – 2.80 (m, 2H), 1.11 (d, *J* = 6.1 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ ppm: 142.38, 128.54, 127.63, 127.21, 78.68, 71.32, 66.35, 62.25, 22.67. IR (thin layer film) v (cm⁻¹) = 3061, 3027, 2972, 2833, 1599, 1491, 1452, 1379, 1334, 1273, 1195, 1174, 1143, 1074, 1029, 1000, 970, 938, 834, 745, 703, 637, 612. HRMS (ESI⁺) *m/z* C₁₉H₂₄NO⁺ [M+H]⁺: calculated 282.1852, found 282.1852.

1-benzhydryl-1-benzyl- 3-bromo-2-isopropyloxypropan-1-amine (7ka)

Prepared according to general procedure C using 1-benzhydryl-3-isopropyloxy-azetidine **6k** (3.01 mmol, 0.85 g) and benzyl bromide (4.83 mmol, 0.57 mL). The crude mixture was purified by flash column chromatography (Pentane:EtOAc = 100:0 to 95:5, gradient) to afford the desired product in 89% yield (2.67 mmol, 1.36 g) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ ppm: 7.58 – 7.14 (m, 15H), 4.97 (s, 1H), 3.68 (d, *J* = 2.1 Hz, 2H),


3.57 – 3.43 (m, 2H), 3.42 – 3.29 (m, 1H), 3.16 (dd, J = 10.5, 6.2 Hz, 1H), 2.71 (dd, J = 13.7, 7.5 Hz, 1H), 2.62 (dd, J = 13.8, 5.4 Hz, 1H), 1.04 (dd, J = 13.9, 6.1 Hz, 6H); ¹³**C NMR** (126 MHz, CDCl₃) [overlapping signals] δ ppm: 141.04, 140.95, 139.58, 129.37, 129.28, 129.11, 128.52, 128.43, 128.40, 127.31, 127.27, 75.95, 71.27, 70.81, 56.98, 54.77, 35.63, 22.91, 22.67. **IR** (thin layer film) v (cm⁻¹) = 3027, 2970, 2927, 1600, 1493, 1452,

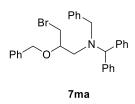
1379, 1332, 1247, 1120, 1047, 1029, 970, 922, 763, 743, 699, 667, 621. **HRMS** (ESI⁺) *m/z* C₂₆H₃₁BrNO⁺ [M+H]⁺: calculated 452.1584, found 452.1581.

1-benzhydryl-3-methoxyazetidine (6l)

Ph Prepared according to a slightly modified version of general procedure B. To a solution of commercially available 3-methoxyazetidine hydrochloride (10.02 mmol, 1.24 g) in dry acetonitrile (9.2 mL), DIPEA (2.7 equiv., 27.32 mmol, 4.7 mL) and bromodiphenylmethane (0.9 equiv., 9.10 mmol, 2.25 g) were subsequently added. The reaction mixture was stirred at 100 °C for 2 h after which it was concentrated *in vacuo*. The crude mixture was purified by flash column chromatography (Heptane:EtOAc = 100:0 to 85:15, gradient) to give the desired product in 98% yield (8.88 mmol, 2.25 g) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.53 – 7.43 (m, 4H), 7.37 – 7.29 (m, 4H), 7.28 – 7.21 (m, 2H), 4.42 (s, 1H), 4.11 (m, 1H), 3.60 – 3.52 (m, 2H), 3.29 (s, 3H), 3.02 – 2.94 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ ppm: 142.27, 128.56, 127.60, 127.26, 78.66, 69.49, 60.63, 56.01. **IR** (thin layer film) v (cm⁻¹) = 3027, 2936, 2829, 1599, 1491, 1452, 1368, 1307, 1276, 1222, 1177, 1155, 1120, 1075, 1029, 1012, 822, 745, 703, 634. **HRMS** (ESI⁺) *m/z* C₁₇H₂₀NO⁺ [M+H]⁺: calculated 254.1539, found 254.1544. Spectroscopic data were in agreement with the ones previously reported in literature.⁵

1-benzhydryl-1-benzyl-3-bromo-2-methoxypropan-1-amine (7la)

Prepared according to general procedure C using 1-benzhydryl-3-(methoxy)azetidine **6**l (3.01 mmol, 0.76 g) and benzyl bromide (5.01 mmol, 0.6 mL). The crude mixture was purified by flash column chromatography (Heptane:EtOAc = 100:0 to 95:5, gradient) to afford the desired product in 99% yield (3.00 mmol, 1.27 g) as a colorless oil. ¹H NMR


 $(400 \text{ MHz}, \text{CDCl}_3) \delta$ ppm: 7.37 – 7.26 (m, 9H), 7.26 – 7.13 (m, 6H), 4.91 (s, 1H), 3.68 – 3.55 (m, 2H), 3.43 – 3.34 (m, 1H), 3.22 – 3.10 (m, 5H), 2.69 – 2.59 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ ppm: 141.05, 140.86, 139.60, 129.33, 129.29, 129.08, 128.51, 128.44, 128.42, 127.31, 127.29, 127.25, 79.99, 70.62, 57.90, 56.65, 53.24, 34.35. **IR** (thin layer film) v (cm⁻¹) = 3060, 3027, 2929, 2826, 1600, 1493, 1452, 1094, 1029, 977, 763, 744, 699, 670. **HRMS** (ESI⁺) m/z C₂₄H₂₇BrNO⁺ [M+H]⁺: calculated 424.1271, found 424.1269.

1-benzhydryl-3-(benzyloxy)azetidine (6m)

Ph Ph In a round-bottom flask under a flow of N₂, NaH 60 wt% in mineral oil (15.0 mmol, 0.60 g) was added to a solution of commercially available 1-benzhydrylazetidin-3-ol (10.0 mmol, 2.40 g) in THF (20 mL) at 0 °C. The mixture was stirred at r.t. for 30 min before benzyl bromide (13.0 mmol, 1.52 mL) was added dropwise. The reaction mixture was stirred at 60 °C for 18 h and then allowed to cool to r.t. A saturated aqueous NH₄Cl solution (20 mL) was then added. The layers were separated, and the aqueous layer was extracted with EtOAc (2 x 50 mL). The combined organic layers were washed with brine (20 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The crude mixture

was purified by flash column chromatography (Heptane:EtOAc = 100:0 to 90:10, gradient) to give the desired compound in 90% yield (9.1 mmol, 3.0 g) as a colorless oil. ¹**H NMR** (500 MHz, CDCl₃) δ ppm: 7.41 – 7.36 (m, 4H), 7.34 – 7.22 (m, 9H), 7.21 – 7.14 (m, 2H), 4.40 (s, 2H), 4.36 (s, 1H), 4.23 (m, 1H), 3.49 (dd, *J* = 6.2, 2.0 Hz, 2H); ¹³**C NMR** (126 MHz, CDCl₃) δ ppm: 142.20, 137.74, 128.46, 128.44, 127.95, 127.84, 127.48, 127.12, 78.51, 70.96, 67.65, 60.94. **IR** (thin layer film) v (cm⁻¹) = 3027, 2942, 2833, 1599, 1492, 1452, 1354, 1308, 1274, 1207, 1172, 1112, 1074, 1027, 912, 821, 742, 696, 636, 621, 611. **HRMS** (ESI⁺) *m*/*z* C₂₃H₂₄NO⁺ [M+H]⁺: calculated 330.1858, found 330.1862. Spectroscopic data were in agreement with the ones previously reported in literature.⁹

1-benzhydryl-1-benzyl-2-(benzyloxy)-3-bromopropan-1-amine (7ma)

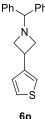
Prepared according to general procedure C using 1-benzhydryl-3-(benzyloxy)azetidine **6m** (3.01 mmol, 0.99 g) and benzyl bromide (4.82 mmol, 0.6 mL). The crude mixture was purified by flash column chromatography (Heptane:EtOAc = 100:0 to 95:5, gradient) to afford the desired product in 99% (3.00 mmol, 1.50 g) as a colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ ppm: 7.33 – 7.12 (m, 20H), 4.88 (s, 1H), 4.43 (d, *J* =

11.4 Hz, 1H), 4.34 (d, J = 11.4 Hz, 1H), 3.59 (s, 2H), 3.48 – 3.38 (m, 2H), 3.26 – 3.16 (m, 1H), 2.68 (d, J = 6.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) [overlapping signals] δ ppm: 140.98, 140.89, 139.48, 138.16, 129.33, 129.27, 129.09, 128.51, 128.42, 128.10, 127.90, 127.31, 127.27, 127.24, 77.75, 72.42, 70.58, 56.60, 53.84, 34.70. **IR** (thin layer film) v (cm⁻¹) = 3061, 3028, 2842, 1600, 1493, 1453, 1339, 1062, 1028, 921, 764, 742, 698. **HRMS** (ESI⁺) m/z C₃₀H₃₁BrNO⁺ [M+H]⁺: calculated 500.1581, found 500.1583.

1-benzhydrylazetidin-3-yl benzoate (6n)

Ph Ph Benzoic anhydride (13.8 mmol, 3.12 g) was added to a pre-stirred mixture of 1-benzhydrylazetidin-3-ol (9.19 mmol, 2.20 g) and N,N-dimethylaminopyridine (18.4 mmol, 2.25 g) in CH₂Cl₂ (48 mL), and the resulting mixture was stirred for 12 h. An aqueous NaHCO₃ solution (8 wt%, 50 mL) was added and the reaction was stirred for a further 30 min. The phases were separated, and the aqueous layer extracted with CH₂Cl₂ (50 mL). The combined organic layers were concentrated and purified by flash column chromatography (Heptane:EtOAc = 100:0 to 90:10, gradient) to afford the desired compound in 99% yield (9.19 mmol, 3.16 g) as yellow oil. ¹H NMR (500 MHz, CDCl₃) δ ppm: 8.09 – 8.04 (m, 2H), 7.61 – 7.54 (m, 1H), 7.49 – 7.42 (m, 6H), 7.34 – 7.25 (m, 4H), 7.25 – 7.18 (m, 2H), 5.33 (m, 1H), 4.45 (s, 1H), 3.78 – 3.72 (m, 2H), 3.22 – 3.16 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ ppm: 166.07, 142.01, 133.25, 129.91, 129.77, 128.62, 128.50, 127.55, 127.36, 78.46, 64.40, 60.37. IR (thin layer film) v (cm⁻¹) = 3061, 3027, 2963, 2837, 1718, 1601, 1585, 1490, 1451, 1344, 1314, 1268, 1208, 1171, 1115, 1070, 1025, 925, 847, 827, 745, 703, 666, 634, 621, 611. HRMS (ESI⁺) *m*/z C₂₃H₂₂NO₂⁺ [M+H]⁺: calculated 344.1650, found 344.1649.

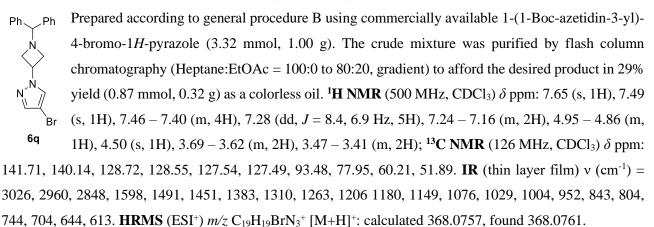
1-benzhydryl-5'-bromo-3'H-spiro[azetidine-3,1'-isobenzofuran] (60)


bromo-3'H-spiro[azetidine-3,1'-isobenzofuran] (1.393 mmol, 0.47 g) The crude mixture was purified by flash column chromatography (Heptane:EtOAc = 100:0 to 85:15, gradient) to give the desired product in 62% yield (0.86 mmol, 0.35 g) as a white solid. ¹H NMR (400 MHz, 60 CDCl₃) δ ppm: 7.75 (d, J= 8.0 Hz, 1H), 7.53 (m, 1H), 7.50 - 7.44 (m, 4H), 7.33 - 7.26 (m, 1H), 7.50 - 7.44 (m, 2H), 7.33 - 7.26 (m, 2H), 7.51 (m, 2H), 5H), 7.21 - 7.14 (m, 2H), 5.04 (d, J = 1.0 Hz, 2H), 4.43 (s, 1H), 3.51 - 3.43 (m, 2H), 3.43 - 3.35 (m, 2H); ¹³C **NMR** (101 MHz, CDCl₃) δ ppm: 142.51, 142.40, 140.91, 131.37, 128.61, 127.55, 127.31, 123.93, 122.63, 121.84, 82.64, 78.20, 72.25, 67.53. **IR** (thin layer film) v (cm⁻¹) = 3049, 3026, 2947, 2830, 1600, 1492, 1472, 1452, 1414, 1350, 1313, 1271, 1249, 1208, 1194, 1175, 1154, 1074, 1027, 1006, 857, 821, 743, 703, 672, 641, 614. HRMS (ESI⁺) *m/z* C₂₃H₂₁BrNO⁺ [M+H]⁺: calculated 406.0801, found 406.0800. MP 148 – 150 °C.

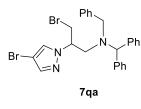
Prepared according to general procedure procedure B using commercially available 1-Boc-5'-

tert-butyl 3-(thiophen-3-yl)azetidine-1-carboxylate (5p)

To a pre-formed solution of (1-(tert-butoxycarbonyl)azetidin-3-yl)zinc(II) iodide¹⁰ in THF (0.3 M, Boc 28.6 mL), 3-bromothiophene (4.29 mmol, 0.70 g), bis(dibenzylideneacetone) palladium (5 mol%, 0.22 mmol, 123 mg) and XPhos (10 mol%, 0.43 mmol, 205 mg) were added. The mixture was stirred at 50 °C for 2 h. After cooling the mixture to r.t., the solvent was evaporated in vacuo and the crude 5p product was purified by flash column chromatography (Heptane:EtOAc = 100:0 to 90:10, gradient) to afford the desired compound in 64% yield (2.75 mmol, 0.66 g) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.33 (dd, J = 4.7, 3.2 Hz, 1H), 7.11 – 7.05 (m, 2H), 4.34 – 4.25 (m, 2H), 3.99 – 3.89 (m, 2H), 3.86 – 3.74 (m, 1H), 1.46 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ ppm: 156.56, 143.25, 126.68, 126.42, 120.73, 79.68, 56.56, 29.36, 28.56. **IR** (thin layer film) v (cm⁻¹) = 2973, 2884, 1698, 1479, 1456, 1390, 1366, 1294, 1253, 1161, 1131, 929, 849, 774, 647. **HRMS** (ESI⁺) *m/z* C₁₂H₁₈NO₂S⁺ [M+H]⁺: calculated 240.1053, found 240.1054.

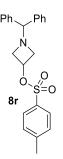

1-benzhydryl-3-(thiophen-3-yl)azetidine (6p)

butyl 3-(thiophen-3-yl)azetidine-1-carboxylate **5p** (4.18 mmol, 0.74 g) in dry CH₃CN (3.8 mL), DIPEA (3.6 equiv., 15.21 mmol, 2.6 mL) and bromodiphenylmethane (0.9 equiv., 3.80 mmol, (0.94 g) were subsequently added. The crude mixture was purified by flash column chromatography (Heptane:EtOAc = 100:0 to 85:15, gradient) to give the desired product in 80% yield (3.35 mmol, 6p 0.93 g) as a colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ ppm: 7.48 – 7.43 (m, 4H), 7.33 – 7.24 (m, 5H), 7.22 – 7.16 (m, 2H), 7.10 (dd, J = 5.0, 1.3 Hz, 1H), 7.05 – 7.01 (m, 1H), 4.40 (s, 1H), 3.72 (p, J = 7.2 Hz, 1H), 3.66 – 3.57 (m, 2H), 3.16 – 3.08 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ ppm: 144.33, 142.32, 128.58, 127.65, 127.23, 127.18, 125.85, 120.12, 78.43, 61.03, 30.79. **IR** (thin layer film) v (cm⁻¹) = 3025, 2948, 2825, 1598, 1490, 1451, 1076, 1029, 822, 778, 742, 702, 643, 610. HRMS (ESI+) *m/z* C₂₀H₂₀NS+ [M+H]+: calculated 306.1311, found 306.1310.


Prepared according to a slightly modified version of general procedure B. To a solution of tert-

1-(1-benzhydrylazetidin-3-yl)-4-bromo-1*H*-pyrazole (6q)

(44, 704, 044, 015) **IRIVIS** (ESI) m_2 C₁₉ π_{19} Bin₃ [M+ π] . calculated 508.0757, found 508.076


1-benzhydryl-1-benzyl-3-bromo-2-(4-bromo-1H-pyrazol-1-yl)propan-1-amine (7qa)

Prepared according to a slightly modified version of general procedure C. Under a flow of N₂, an oven-dried flask was charged with 1-benzhydryl-3-(4-bromo-1H-pyrazol-1-yl)azetidine **6q** (0.92 mmol, 0.34 g) in dry CH₃CN (1 M, 0.9 mL). Benzyl bromide (0.98 equiv., 0.90 mmol, 0.11 mL) was added and the mixture was stirred at 60 °C for 12 h. The crude mixture was purified by flash column chromatography

(Heptane:EtOAc = 100:0 to 98:2, gradient) to afford the desired product in 96% yield (0.88 mmol, 0.48 g) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ ppm: 7.43 (s, 1H), 7.40 – 7.22 (m, 15H), 7.09 (s, 1H), 4.83 (s, 1H), 4.03 – 3.94 (m, 1H), 3.62 (s, 2H), 3.53 (dd, *J* = 10.7, 4.4 Hz, 1H), 3.41 (dd, *J* = 10.7, 8.8 Hz, 1H), 3.11 – 2.98 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) [overlapping signals] δ ppm: 140.79, 140.51, 140.45, 138.96, 130.24, 129.32, 129.12, 128.92, 128.72, 128.66, 128.62, 127.63, 127.49, 92.54, 71.27, 63.73, 57.02, 55.06, 32.85. **IR** (thin layer film) v (cm⁻¹) = 3061, 3029, 2845, 1600, 1493, 1452, 1381, 1313, 1179, 1121, 1077, 1028, 976, 952, 913, 846, 765, 745, 700, 611. **HRMS** (ESI⁺) *m/z* C₂₆H₂₆Br₂N₃⁺ [M+H]⁺: calculated 538.0488, found 538.0486.

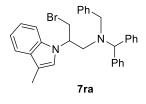
1-benzhydrylazetidin-3-yl 4-methylbenzenesulfonate (8r)



In a flame-dried round bottom flask under a flow of N_2 , NaH 60 wt% in mineral oil (62.7 mmol, 2.50 g) and 4-methylbenzenesulfonyl chloride (50.1 mmol, 9.55 g) were subsequently added to a solution of commercially available 1-benzhydrylazetidin-3-ol (41.8 mmol, 10.0 g) in dry THF (100 mL) at 0 °C. The reaction mixture was stirred for 12 h at r.t. After completion of the reaction (LC-MS monitoring), the reaction mixture was quenched with water (50 mL). The aqueous phase was extracted with EtOAc (2 x 250 mL). The organic phases were combined, washed with brine (200 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude mixture was purified

by flash column chromatography (Heptane:EtOAc = 100:0 to 90:10, gradient) to give the desired product as a white solid in 32% yield (13.7 mmol, 5.40 g). ¹**H NMR** (500 MHz, CDCl₃) δ ppm: 7.81 – 7.75 (m, 2H), 7.39 – 7.32 (m, 6H), 7.30 – 7.15 (m, 6H), 4.91 (p, *J* = 6.0 Hz, 1H), 4.35 (s, 1H), 3.52 – 3.45 (m, 2H), 3.11 – 3.04

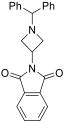
(m, 2H), 2.45 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ ppm: 145.22, 141.62, 133.36, 130.07, 128.65, 128.00, 127.46, 127.43, 78.22, 68.26, 60.20, 21.80. **IR** (thin layer film) v (cm⁻¹) = 3028, 2965, 2841, 1598, 1492, 1452, 1366, 1308, 1191, 1177, 1097, 1079, 1049, 1001, 952, 922, 864, 839, 815, 755, 705, 661. **HRMS** (ESI⁺) *m/z* C₂₃H₂₄NO₃S⁺ [M+H]⁺: calculated 394.1471, found. 394.1470. **MP** 106 – 108 °C.


1-(1-benzhydrylazetidin-3-yl)-3-methyl-1H-indole (6r)

In a flame-dried round bottom flask under a flow of N₂, NaH 60 wt% in mineral oil (15.8 mmol, 0.63 g) was added portion-wise to a solution of 1-benzhydrylazetidin-3-yl 4-methylbenzenesulfonate **8r** (7.88 mmol, 3.10 g) in dry DMF (15.5 mL). The mixture was stirred for 30 min, then 3-methylindole (9.45 mmol, 1.24 g) was added. The reaction mixture was stirred for 24 h at r.t. After completion, a saturated aqueous NH₄Cl solution (20 mL) was added.

6r The layers were separated, and the aqueous layer was extracted with EtOAc (2 x 50 mL). The combined organic layers were washed with brine (20 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The crude mixture was purified by flash column chromatography (Heptane:EtOAc = 100:0 to 95:5, gradient) to afford the desired compound in 70% yield (5.51 mmol, 1.94 g) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) *δ* ppm: 7.55 (dt, *J* = 7.8, 1.0 Hz, 1H), 7.48 – 7.42 (m, 4H), 7.32 – 7.23 (m, 5H), 7.23 – 7.12 (m, 4H), 7.09 (ddd, *J* = 7.9, 6.9, 1.0 Hz, 1H), 5.00 (p, *J* = 6.8 Hz, 1H), 4.45 (s, 1H), 3.80 – 3.73 (m, 2H), 3.38 – 3.32 (m, 2H), 2.34 (d, *J* = 1.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) *δ* ppm: 141.93, 136.47, 129.00, 128.71, 127.55, 127.46, 122.53, 121.72, 119.24, 119.13, 111.32, 109.36, 78.32, 60.55, 45.20, 9.84. IR (thin layer film) v (cm⁻¹) = 3026, 2917, 2838, 1599, 1491, 1463, 1452, 1388, 1371, 1317, 1278, 1234, 1210, 1076, 1029, 1014, 923, 739, 703, 641, 612. HRMS (ESI⁺) *m*/*z* C₂₅H₂₅N₂⁺ [M+H]⁺: calculated 353.2012, found. 353.2011.

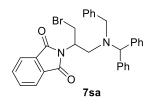
1-benzhydryl-1-benzyl-3-bromo-2-(3-methyl-1H-indol-1-yl)propan-1-amine (7ra)


Prepared according to a slightly modified version of general procedure C. Under a flow of N₂, an oven-dried flask was charged with 1-benzhydryl-3-(3-methyl-1H-indol-1-yl)azetidine **6r** (1.53 mmol, 0.54 g) in dry CH₃CN (1 M, 1.5 mL). Benzyl bromide (0.95 equiv., 1.45 mmol, 0.2 mL) was added and the mixture was stirred at 60 °C for 12 h. The crude mixture was purified by flash column chromatography

(Heptane:EtOAc = 100:0 to 98:2, gradient) to afford the desired product in 68% yield (1.04 mmol, 0.54 g) as a colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ ppm: 7.56 – 7.48 (m, 1H), 7.37 – 7.26 (m, 14H), 7.14 – 7.03 (m, 2H), 6.89 – 6.80 (m, 1H), 6.51 – 6.46 (m, 1H), 4.84 (s, 1H), 4.40 – 4.29 (m, 1H), 3.74 (dd, *J* = 10.7, 4.9 Hz, 1H), 3.65 (d, *J* = 1.9 Hz, 2H), 3.35 (dd, *J* = 10.7, 8.4 Hz, 1H), 3.18 (dd, *J* = 13.9, 7.4 Hz, 1H), 2.98 (dd, *J* = 13.9, 6.8 Hz, 1H), 2.26 (d, *J* = 1.1 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) [overlapping signals] δ ppm: 141.12, 140.90, 139.22, 129.30, 129.19, 128.96, 128.87, 128.69, 128.67, 128.58, 127.60, 127.53, 127.37, 122.05, 121.56, 119.17, 119.03, 111.41, 109.40, 71.53, 57.16, 56.19, 54.67, 34.10, 9.85. **IR** (thin layer film) v (cm⁻¹) = 3061, 1498, 1461, 1389, 1258, 1225, 1159, 1030, 742, 706, 638. **HRMS** (ESI⁺) *m*/*z* C₃₂H₃₁BrN₂⁺ [M+H]⁺: calculated 523.1743, found 523.1741.

1-benzhydrylazetidin-3-yl methanesulfonate (8s)

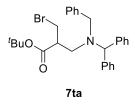
Ph Ph In a flame-dried round bottom flask under a flow of N₂, commercially available 1-benzhydrylazetidin-3-ol (8.36 mmol, 2.0 g) was dissolved in dry CH₂Cl₂ (20.0 mL) and a premixed solution of methanesulfonyl chloride (10.0 mmol, 1.15 g) and triethylamine (11.7 mmol, 1.64 mL) in dry CH₂Cl₂ (5.0 mL) was slowly added to it at 0 °C. The solution was stirred at r.t. for 12 h, then water (20 mL) was added and the mixture was extracted with CH₂Cl₂ (3 x 20 mL). The organic phases were combined, washed with brine (20 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo* to afford the desired product in quantitative yield (8.86 mmol, 2.64 g) as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.43 – 7.35 (m, 4H), 7.28 (tq, *J* = 8.2, 1.1 Hz, 4H), 7.23 – 7.16 (m, 2H), 5.10 (p, *J* = 5.8 Hz, 1H), 4.40 (s, 1H), 3.67 – 3.59 (m, 2H), 3.24 – 3.15 (m, 2H), 2.98 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ ppm: 141.55, 128.71, 127.54, 127.45, 78.32, 68.11, 60.33, 38.27. IR (thin layer film) v (cm⁻¹) = 3027, 2937, 2842, 1599, 1491, 1452, 1358, 1207, 1177, 1161, 1079, 1051, 1002, 971, 947, 924, 866, 841, 819, 749, 706, 636, 612. HRMS (ESI⁺) *m*/*z* C₁₇H₂₀NO₃S⁺ [M+H]⁺: calculated 318.1158, found 318.1158. MP 110 – 114 °C.


2-(1-benzhydrylazetidin-3-yl)isoindoline-1,3-dione (6s)

In a flame-dried round bottom flask under a flow of N₂, tributylhexadecylphosphonium bromide (0.84 mmol, 0.43 mg) and phthalimide potassium salt (10.0 mmol, 1.82 g) were added to a solution of 1-benzhydrylazetidin-3-yl methane sulfonate **8s** (8.35 mmol, 2.65 g) in toluene (45 mL). The reaction was refluxed for 24 h, cooled to r.t. and filtered. The residual solid was washed with CH_2Cl_2 and the combined filtrate was evaporated under vacuum. The crude mixture was purified by flash column chromatography (Pentane:EtOAc = 100:0 to 95:5, gradient) to

6s was purified by flash column chromatography (Pentale:EtOAC = 100.0 to 95.5, gradient) to afford the desired product in 65% yield (5.43 mmol, 1.99 g). ¹**H** NMR (400 MHz, CDCl₃) δ ppm: 7.74 (dd, J = 5.5, 3.0 Hz, 2H), 7.67 – 7.58 (m, 2H), 7.42 – 7.35 (m, 4H), 7.25 – 7.16 (m, 4H), 7.17 – 7.07 (m, 2H), 4.80 (p, J = 7.9 Hz, 1H), 4.59 (s, 1H), 3.66 – 3.52 (m, 4H); ¹³**C** NMR (101 MHz, CDCl₃) δ ppm: 168.34, 142.22, 134.25, 131.98, 128.59, 127.68, 127.28, 123.36, 77.90, 57.38, 39.85. **IR** (thin layer film) v (cm⁻¹) = 3027, 2836, 1600, 1487, 1450, 1266, 1076, 1029, 1008, 918, 834, 764, 735, 698, 652. **MP** 120 – 122 °C. **HRMS** (ESI⁺) m/z C₂₄H₂₁N₂O₂⁺ [M+H]⁺: calculated 369.1598, found 369.1599. Spectroscopic data were in agreement with the ones previously reported in literature.¹¹

2-(1-(benzhydryl(benzyl)amino)-3-bromopropan-2-yl)isoindoline-1,3-dione (7sa)



Prepared according to a slightly modified version of general procedure C. Under a flow of N_2 , an oven-dried flask was charged with 2-(1-benzhydrylazetidin-3-yl)isoindoline-1,3-dione **6s** (3.72 mmol, 1.37 g) in dry CH₃CN (0.77 M, 4.8 mL). Benzyl bromide (1.2 equiv., 4.46 mmol, 0.5 mL) was added and the mixture was stirred at 60 °C for 12 h. The crude mixture was purified by flash column

chromatography (Heptane:EtOAc = 100:0 to 95:5, gradient) to afford the desired product in 88% yield (3.27 mmol, 1.76 g) as a colorless oil.¹**H NMR** (400 MHz, CDCl₃) δ ppm: 7.82 – 7.76 (m, 2H), 7.76 – 7.71

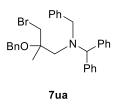
(m, 2H), 7.40 – 7.21 (m, 9H), 7.21 – 7.08 (m, 6H), 4.93 (s, 1H), 4.67 – 4.55 (m, 1H), 3.82 – 3.71 (m, 2H), 3.54 (d, J = 13.5 Hz, 1H), 3.48 (dd, J = 10.5, 5.4 Hz, 1H), 3.23 (dd, J = 14.0, 8.2 Hz, 1H), 2.95 (dd, J = 14.0, 4.4 Hz, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ ppm: 167.97, 140.90, 140.14, 138.83, 134.02, 132.03, 129.40, 129.24, 129.15, 128.59, 128.43, 128.31, 127.49, 127.24, 127.22, 123.47, 69.74, 55.95, 52.16, 51.09, 30.96. **IR** (thin layer film) v (cm⁻¹) = 3027, 1773, 1711, 1494, 1452, 1378, 1083, 1029, 874, 764, 746, 720, 700. **HRMS** (ESI⁺) $m/z C_{31}H_{28}BrN_2O_2^+$ [M+H]⁺: calculated 539.1334, found 539.1328.

Tert-butyl 3-(benzhydryl(benzyl)amino)-2-(bromomethyl)propanoate (7ta)

Prepared according to general procedure B using *tert*-butyl 1-benzhydrylazetidine-3carboxylate* (2.69 mmol, 862 mg). The crude mixture was purified by flash column chromatography (Pentane:Et₂O = 100:0 to 95:5, gradient) to afford the desired product in 85% yield (2.28 mmol, 1.13 g) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.45 – 7.25 (m, 15H), 5.01 (s, 1H), 3.72 (d, *J* = 13.9 Hz, 1H), 3.63 (d, *J* = 13.9

Hz, 1H), 3.46 (dd, J = 9.8, 4.3 Hz, 1H), 3.37 (dd, J = 9.8, 8.8 Hz, 1H), 2.99 – 2.88 (m, 1H), 2.83 (dd, J = 13.3, 6.3 Hz, 1H), 2.66 (dd, J = 13.2, 7.8 Hz, 1H), 1.48 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ ppm: 171.71, 140.65, 140.13, 138.85, 129.41, 129.22, 129.14, 128.49, 128.44, 128.40, 127.38, 127.35, 127.31, 81.56, 69.37, 55.20, 51.73, 48.28, 31.83, 28.19. **IR** (thin layer film) v (cm⁻¹) = 3028, 2977, 1728, 1600, 1494, 1452, 1392, 1368, 1250, 1216, 1147, 1076, 1029, 972, 910, 843, 763, 739, 700, 649, 601, 517. **HRMS** (ESI⁺) m/z C₂₈H₃₃BrNO₂⁺ [M+H]⁺: calculated 494.1689, found 494.1688.

* Prepared by transesterification from the corresponding commercially available methyl 1-benzhydrylazetidine-3-carboxylate, according to a known procedure (5 equiv. *t*BuONa, 50 °C, 24 h; US Patent 2013 n. 0225552)


1-benzhydryl-3-(benzyloxy)-3-methylazetidine (6u)

Ph In a flame-dried round-bottom flask under a flow of N₂, NaH 60 wt% in mineral oil (1.2 equiv.,
 N 12.0 mmol, 0.48 g) was added portionwise to a solution of commercially available 1-benzhydryl-3 methylazetidin-3-ol (1 equiv., 9.9 mmol, 2.50 g) in THF (20 mL) at 0 °C. The mixture was stirred at r.t. for 30 min then benzyl bromide (1.3 equiv., 12.8 mmol, 1.49 mL) was added dropwise. The

reaction mixture was stirred at 60 °C for 18 h and then allowed to cool to r.t. A saturated aqueous NH₄Cl solution (20 mL) was then added. The layers were separated, and the aqueous layer was extracted with EtOAc (2 x 50 mL). The combined organic layers were washed with brine (20 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The crude mixture was purified by flash column chromatography (Hexane:EtOAc = 90:10 to 80:20, gradient) to give the desired compound in 77% yield (7.6 mmol, 2.6 g) as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.45 – 7.39 (m, 4H), 7.33 (d, *J* = 4.4 Hz, 4H), 7.29 – 7.23 (m, 5H), 7.20 – 7.14 (m, 2H), 4.40 (s, 1H), 4.38 (s, 2H), 3.22 – 3.15 (m, 2H), 3.08 (d, *J* = 8.0 Hz, 2H), 1.62 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) [overlapping signals] δ ppm: 142.66, 138.87, 128.53, 127.67,

127.64, 127.61, 127.19, 78.11, 72.39, 65.54, 64.51, 22.98. **IR** (thin layer film) ν (cm⁻¹) = 3027, 2933, 2837, 1599, 1492, 1452, 1371, 1344, 1314, 1226, 1055, 1029, 964, 883, 741, 702, 637, 622, 545, 482, 422, 409. **MP** 71 – 72 °C. **HRMS** (ESI⁺) m/z C₂₄H₂₆NO⁺ [M+H]⁺: calculated 344.2009, found 344.2003.

1-benzhydryl-1-benzyl-2-(benzyloxy)-3-bromo-2-methylpropan-1-amine (7ua)

Prepared according to general procedure C using 1-benzhydryl-3-(benzyloxy)-3methylazetidine **6u** (2.91 mmol, 1.0 g) and benzyl bromide (2.85 mmol, 0.34 mL). The crude mixture was purified by flash column chromatography (Heptane:EtOAc = 100:0 to 95:5, gradient) to afford the desired product in 64% yield (1.8 mmol, 0.95 g) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.47 – 7.16 (m, 20H), 5.38 (s, 1H),

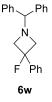
4.48 – 4.36 (m, 2H), 3.86 (d, J = 13.6 Hz, 1H), 3.62 (d, J = 13.6 Hz, 1H), 3.45 – 3.35 (m, 2H), 2.95 – 2.82 (m, 2H), 1.28 (s, 3H); ¹³**C** NMR (101 MHz, CDCl₃) [overlapping signals] δ ppm: 141.04, 140.02, 139.87, 138.87, 130.29, 129.70, 129.45, 128.40, 128.38, 128.16, 127.55, 127.44, 127.18, 127.11, 127.01, 78.17, 68.57, 64.35, 56.14, 55.88, 39.59, 20.86. **IR** (thin layer film) v (cm⁻¹) = 3220, 2835, 1493, 1452, 1064, 1028, 741, 699, 542, 465, 418. **HRMS** (ESI⁺) m/z C₃₁H₃₃BrNO⁺ [M+H]⁺: calculated 514.1740, found 514.1738.

1-benzhydryl-3-methylazetidine-3-carbonitrile (6v)

A flame-dried round-bottom flask under a flow of N₂ was charged with commercially available 1benzhydrylazetidine-3-carbonitrile (1 equiv., 20.1 mmol, 5.0 g) in dry THF (0.90 mol, 73.2 mL), and a solution of LiHMDS (1.06 M in THF, 1.1 equiv., 22.1 mmol, 22.1 mL) was added at -78 °C. While keeping the same temperature, the reaction was first stirred for 30 min, then CH₃I (1.5 equiv.,

30.2 mmol, 1.88 mL) was added dropwise. After stirring for further 45 min at -78 °C, the reaction was quenched with NH₄Cl (10 mL) and extracted with EtOAc (3 x 20 mL). The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The crude mixture was purified by flash column chromatography (Hexane:EtOAc = 100:0 to 90:10, gradient) to give the desired compound in 91% yield (18.3 mmol, 4.8 g) as white solid. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.43 – 7.36 (m, 4H), 7.32 – 7.24 (m, 4H), 7.23 – 7.17 (m, 2H), 4.38 (s, 1H), 3.49 – 3.43 (m, 2H), 3.14 – 3.07 (m, 2H), 1.66 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ ppm: 141.26, 128.75, 127.60, 127.45, 123.63, 77.40, 62.94, 26.45, 23.05. IR (thin layer film) v (cm⁻¹) = 3061, 3027, 2958, 2840, 2238, 1599, 1493, 1452, 1380, 1348, 1313, 1256, 1227, 1076, 1029, 927, 863, 745, 705, 623, 599, 549. MP 86 – 88 °C. HRMS (ESI⁺) *m*/*z* C₁₈H₁₉N₂⁺ [M+H]⁺: calculated 263.1543, found 263.1545.

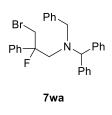
Tert-butyl 3-fluoro-3-phenylazetidine-1-carboxylate (8w)


Boc F

Ър

In a flame-dried round bottom flask, tert-butyl 3-oxoazetidine-1-carboxylate (1 equiv., 17.5 mmol, 3 g) was dissolved in anhydrous THF (55 mL) and the solution cooled to 0°C. Phenylmagnesium bromide (3 M in Et₂O, 1.3 equiv., 22.75 mmol, 8 mL) was added dropwise at the same temperature.

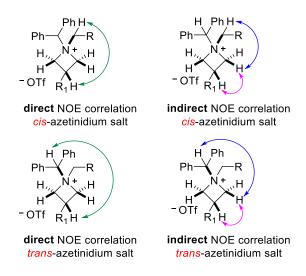
The reaction was stirred for 2 h at r.t. then quenched at 0 °C by addition of aqueous $NH_4Cl_{(sat)}$ (20 mL) 8w and extracted with Et₂O (3 x 20 mL). The combined organic layers were dried over MgSO₄ and concentrated in vacuo to afford the crude alcohol as a pale-yellow solid. This residue was re-dissolved in anhydrous CH₂Cl₂ (120 mL) and the solution cooled to -78 °C. Deoxo-fluor® (2.7 M in Toluene, 1.2 equiv., 21 mmol, 8 mL) was added dropwise at -78 °C and the reaction was stirred for 20 h at r.t. The reaction was quenched at 0 °C by addition of aqueous NaHCO_{3 (sat)} (15 mL) followed by aqueous NaOH (1 M, 10 mL) and extracted with Et₂O (3 x 20 mL). The combined organic layers were dried over MgSO₄ and concentrated under reduced pressure. The crude product was purified by flash column chromatography (Pentane: $Et_2O = 100:0$ to 94:6, gradient) to afford the desired compound as a colorless oil in 44% yield (7.7 mmol, 1.95 g). ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.50 – 7.32 (m, 5H), 4.40 (ddd, J = 22.4, 10.1, 1.3 Hz, 2H), 4.27 (ddd, J = 19.3, 10.1, 1.3 Hz, 2H), 1.48 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ ppm: 156.39 (d, J = 2.8 Hz), 139.20 (d, J = 23.2 Hz), 128.80, 128.73 (d, J = 1.7 Hz), 124.22 (d, J = 8.3 Hz), 91.49 (d, J = 206.7 Hz), 80.37, 62.69 (br), 28.48; ¹⁹F NMR (377 MHz), 80.37 (br), 28.48; ¹⁹F NMR (377 MHz), 80.37 (br), 80.37 (CDCl₃) δ ppm: -148.75 - -149.07 (m, 1F). **IR** (thin layer film) v (cm⁻¹) = 2978, 2885, 1705, 1475, 1450, 1390, 1365, 1290, 1253, 1163, 1115, 1045, 1020, 935, 863, 760, 698. HRMS (ESI⁺) *m/z* C₁₄H₁₈FNO₂Na⁺ [M+Na]⁺: calculated 274.1214, found 272.1215.


1-benzhydryl-3-fluoro-3-phenylazetidine (6w)

In a flame-dried round bottom flask, tert-butyl 3-fluoro-3-phenylazetidine-1-carboxylate 8w (1 equiv., 6.30 mmol, 2.0 g) was dissolved in 2 mL of Et₂O. The solution was cooled to 0 °C and HCl (6 M in PrOH, 4.7 equiv., 30.0 mmol, 5 mL) was added dropwise. The reaction was stirred for 18 h at r.t. then volatiles were removed in vacuo to afford the azetidinium hydrochloride salt

as a white solid. The compound was directly re-dissolved in dry CH₃CN (7 mL). The solution was cooled to 0 °C and DIPEA (5 equiv., 31.5 mmol, 5.5 mL) was added dropwise. The reaction was stirred for 10 min at 0 °C then bromodiphenylmethane (1.2 equiv., 7.56 mmol, 1.9 g) was added portionwise. The solution was refluxed for 3 h then cooled to r.t. and volatiles were evaporated in vacuo. The crude product was purified by flash column chromatography (Pentane: $Et_2O = 100:0$ to 99:1, gradient) to afford the desired product as a white solid in 99% yield (6.23 mmol, 2.0 g). ¹**H NMR** (400 MHz, CDCl₃) δ ppm: 7.64 (d, J = 7.2 Hz, 2H), 7.55 - 7.14 (m, 13H), 4.53 (s, 1H), 3.73 - 3.46 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ ppm: 142.06, 140.89 (d, J = 23.2 Hz), 128.69, 128.60, 128.22 (d, J = 1.0 Hz), 127.54, 127.44, 124.34 (d, J = 8.7 Hz), 90.93 (d, J = 206.5 Hz), 78.20, 65.79 (d, J = 22.9 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ ppm: -157.07 - -157.45 (m, 1F). IR (thin layer film) v (cm⁻¹) = 3028, 2956, 2843, 1599, 1493, 1450, 1346, 1305, 1213, 1179, 1076, 1057, 1028, 914, 858, 754, 670, 637, 622, 613, 550. MP 88 – 90 °C. HRMS (ESI+) m/z C₂₂H₂₁FN+ [M+H]+: calculated 318.1653, found 318.1653.

1-benzhydryl-1-benzyl-3-bromo-2-fluoro-2-phenylpropan-1-amine (7wa)

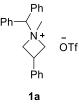


Prepared according to a slightly modified version of general procedure C. Under a flow of N₂, an oven-dried flask was charged with 1-benzhydryl-3-fluoro-3-phenylazetidine **6w** (4.70 mmol, 1.49 g) in dry CH₃CN (0.5 M, 6.5 mL). Benzyl bromide (1.6 equiv., 7.52 mmol, 0.90 mL) was added and the mixture was stirred at 60 °C for 24 h. Additional benzyl bromide (2 x 0.3 equiv.) was added after 24 h and 48 h, respectively. After 72 h,

the volatiles were evaporated *in vacuo*. The crude product was purified by flash column chromatography (Pentane:CH₂Cl₂ = 100:0 to 90:10, gradient) to afford the desired product in 68% yield (3.19 mmol, 1.56 g) as a colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ ppm: 7.43 – 7.14 (m, 18H), 7.07 – 6.98 (m, 2H), 5.23 (s, 1H), 4.15 – 4.05 (m, 1H), 3.85 (d, *J* = 13.4 Hz, 1H), 3.57 (d, *J* = 13.4 Hz, 1H), 3.30 (dd, *J* = 31.9, 11.8 Hz, 1H), 3.16 (m, 1H), 3.10 (m, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ ppm: 140.34, 140.24 (d, *J* = 21.2 Hz), 139.34, 138.84, 129.88, 129.72, 129.70, 128.49, 128.40, 128.36 (d, *J* = 1.9 Hz), 128.30, 128.00, 127.42, 127.39, 127.33, 124.88 (d, *J* = 10.0 Hz), 99.50 (d, *J* = 183.6 Hz), 68.50 (d, *J* = 3.5 Hz), 57.06 (d, *J* = 21.2 Hz), 55.46 (d, *J* = 3.3 Hz), 38.46 (d, *J* = 25.4 Hz); ¹⁹**F NMR** (377 MHz, CDCl₃) δ ppm: -157.26 (dddd, *J* = 32.9, 26.4, 21.3, 12.5 Hz). **IR** (thin layer film) v (cm⁻¹) = 3060, 3028, 2840, 1600, 1494, 1449, 1266, 1127, 1047, 1029, 979, 918, 836, 761, 744, 699, 603, 562. **MP** 118 – 120 °C.**HRMS** (ESI⁺) *m/z* C₂₉H₂₈BrFN⁺ [M+H]⁺: calculated 488.1384, found 488.1384.

Stereochemical Assignment of Substrates

The relative stereochemistry of the *cis* or *trans* diasteromer has been assigned by analysis of the ¹H-NOESY spectrum of the mixtures (see NMR copies section) according to the following scheme:

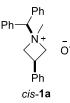


Each ¹H-NOESY spectrum indicates if direct or indirect NOE correlation was used for assignment (see NMR copies section). For substrate **1wa**, the assignment was based on ¹H-¹⁹F HOESY correlation instead.

For substrates in which the d.r. > 5:1, only the major diastereomer has been reported and characterized. For mixtures, the characterization distinguishes between H_{major} (protons of the major diastereomer), H_{minor} (protons of the minor diastereomer) and $H_{major + minor}$ (protons of major and minor diastereomer overlapped): e.g. $2H_{major + minor}$ corresponds to the signal of $2H_{major} + 2H_{minor}$.

Characterization of Substrates

1-benzhydryl-1-methyl-3-phenylazetidin-1-ium trifluoromethanesulfonate (1a)


Prepared according to general procedure E using commercially available 1-benzhydryl-3phenylazetidine (13.40 mmol, 4.0 g) and methyl triflate (1.3 equiv., 17.37 mmol, 1.9 mL) to afford the desired product in 96% yield (12.77 mmol, 5.92 g, d.r. 15:1 cis:trans) as a white powder. ¹**H NMR** (400 MHz, CDCl₃) δ ppm: 7.67 – 7.60 (m, 4H), 7.56 – 7.44 (m, 6H), 7.18 -7.13 (m, 1H), 7.13 - 7.07 (m, 2H), 6.53 - 6.46 (m, 2H), 6.06 (s, 1H), 4.87 (dd, J = 9.6, 2.2Hz, 2H), 4.57 (dd, J= 8.9, 2.3 Hz, 2H), 4.42 (m, 1H), 3.54 (s, 3H); ¹⁹F NMR (377 MHz, CDCl₃) δ ppm: -78.22

(s, 3F). **IR** (thin layer film) v (cm⁻¹) = 2361, 1498, 1454, 1256, 1224, 1153, 1029, 989, 896, 853, 782, 755, 730, 700, 636. **HRMS** (ESI⁺) m/z C₂₃H₂₄N⁺ [M-OTf]⁺: calculated 314.1909, found 314.1908.

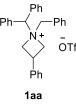
cis-1aa and trans-1aa were separated by SFC purification (Stationary phase: Chiralpak IG 5µm 250*20mm, Mobile phase: CO_2 :MeOH = 70:30 + 0.01% CF₃SO₃H). The fractions were evaporated at 25 °C and freeze dried. Alternatively, flash column chromatography (EtOAc:MeOH = 100:0 to 95:5) can also be employed. Spectroscopic data were in agreement with the ones previously reported in literature.⁸

A single recrystallization of the diasteromeric mixture (15:1 *cis:trans*) in CH₂Cl₂/Et₂O at 5 °C affords *cis*-1a as a single diastereomer (>50:1).

cis-1-benzhydryl-1-methyl-3-phenylazetidin-1-ium trifluoromethanesulfonate (cis-1a)

¹H NMR (400 MHz, CDCl₃) δ ppm: 7.68 – 7.56 (m, 4H), 7.56 – 7.43 (m, 6H), 7.21 – 7.14 (m, 1H), 7.14 – 7.02 (m, 2H), 6.58 – 6.41 (m, 2H), 6.06 (s, 1H), 4.87 (dd, J = 9.6, 2.2 Hz, 2H), 4.57 (dd, J = 8.9, 2.3 Hz, 2H), 4.42 (m, 1H), 3.54 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ ppm 135.97, 132.71, 130.50, 130.38, 130.07, 129.23, 128.47, 126.87, 120.97 (q, J = 320.1 Hz), 78.05, 67.75, 51.21, 32.51; ¹⁹F NMR (377 MHz, CDCl₃) δ ppm: -78.23 (s, 3F). HRMS (ESI⁺)

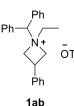
m/*z* C₂₃H₂₄N⁺ [M-OTf]⁺: calculated 314.1909, found 314.1908.


trans-1-benzhydryl-1-methyl-3-phenylazetidin-1-ium trifluoromethanesulfonate (trans-1a)

¹**H NMR** (400 MHz, CDCl₃) δ ppm: 7.75 – 7.66 (m, 4H), 7.56 – 7.41 (m, 6H), 7.41 – 7.32 (m, 2H), 7.33 – 7.27 (m, 1H), 7.19 – 7.10 (m, 2H), 6.37 (s, 1H), 5.46 (dd, *J* = 11.7, 9.8 Hz, 2H), 4.47 – 4.31 (m, 2H), 3.62 – 3.48 (m, 1H), 3.30 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ ppm: 137.35, 132.53, 130.47, 130.24, 130.00, 129.58, 128.31, 126.18, 120.95 (q, *J* = 320.1 Hz), 77.94, 68.98, 52.25, 30.77; ¹⁹**F NMR** (377 MHz, CDCl₃) δ ppm: -78.20 (s, 3F). **HRMS** (ESI⁺)

 $m/z C_{23}H_{24}N^+$ [M-OTf]⁺: calculated 314.1909, found 314.1908.

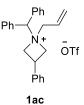
1-benzhydryl-1-benzyl-3-phenylazetidin-1-ium trifluoromethanesulfonate (1aa)



Prepared according to general procedure D using 1-benzhydryl-1-benzyl-3-bromo-2phenylpropan-1-amine **7aa** (1.06 mmol, 0.50 g) to afford the desired product in 95% yield (1.00 mmol, 1.01 g, d.r. 1.5:1 *cis:trans*) as a white powder. ¹H NMR (500 MHz, CDCl₃) δ ppm: 7.86 – 7.81 (m, 4H_{minor}), 7.79 – 7.74 (m, 2H_{major}), 7.74 – 7.68 (m, 4H_{major}), 7.64 – 7.47 (m, 11H_{minor} + 9H_{major}), 7.12 – 7.04 (m, 1H_{major + minor}), 7.02 – 6.95 (m, 2H_{major + minor}), 6.48 (s,

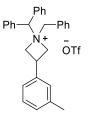
1H_{minor}), 6.30 (s, 1H_{major}), 6.17 – 6.12 (m, 2H_{minor}), 6.12 – 6.04 (m, 2H_{major}), 5.15 – 5.07 (m, 2H_{minor}), 5.02 – 4.94 (m, 2H_{major}), 4.88 – 4.79 (m, 2H_{major + minor}), 4.76 (s, 2H_{major}), 4.61 (s, 2H_{minor}), 2.72 (p, J = 9.6 Hz, 1H_{major}), 2.49 (p, J = 9.6 Hz, 1H_{minor}); ¹³C NMR (126 MHz, CDCl₃) δ ppm: 136.01, 135.98, 134.05, 133.63, 133.21, 132.85, 131.28, 131.12, 130.80, 130.38, 130.35, 130.23, 130.19, 130.12, 129.99, 129.86, 129.05, 128.99, 128.77, 128.54, 128.32, 128.12, 126.56, 126.38, 120.99 (q, J = 319.9 Hz), 77.87, 77.83, 65.52, 65.44, 63.65, 63.26, 32.86, 31.89; ¹⁹F NMR (470 MHz, CDCl₃) δ ppm: -77.11 (s, 3F). IR (thin layer film) v (cm⁻¹) = 3061, 1498, 1456, 1259, 1224, 1155, 1030, 908, 757, 725, 701, 638. HRMS (ESI⁺) m/z C₂₉H₂₈N⁺ [M-OTf]⁺: calculated 390.2221, found 390.2218.

Multi-gram scale reaction (10 mmol scale, 4.70 g) and subsequent purification by flash column chromatography (CH_2Cl_2 :MeOH = 100:0 to 95:5, gradient), afforded the title compound (7.5 mmol, 4.05 g, d.r. 1:1.1 *cis:trans*) as a white powder.


1-benzhydryl-1-ethyl-3-phenylazetidin-1-ium trifluoromethanesulfonate (1ab)

phenvlazetidine (2.67 mmol, 0.80 g) with ethyl triflate (4.01 mmol, 0.52 mL) to afford the OTf desired product in 94% yield (2.51 mmol, 1.20 g, d.r. 8:1 cis:trans) as a white powder. ¹**H NMR** major (500 MHz, CDCl₃) δ ppm: 7.67 – 7.47 (m, 10H), 7.17 – 7.11 (m, 1H), 7.09 – 1ab 7.02 (m, 2H), 6.45 – 6.26 (m, 2H), 5.71 (s, 1H), 4.94 – 4.81 (m, 2H), 4.75 – 4.63 (m, 2H), 4.36 $(p, J = 9.4 \text{ Hz}, 1\text{H}), 3.94 (q, J = 7.1 \text{ Hz}, 2\text{H}), 1.52 (t, J = 7.1 \text{ Hz}, 3\text{H}); {}^{1}\text{H} \text{ NMR} \text{ minor} (500 \text{ MHz}, \text{CDCl}_{3})$ δ ppm: 7.43 – 7.65 (m, 10 H), 6.99 – 7.18 (m, 3 H), 6.31 – 6.42 (m, 2 H), 5.97 (s, 1 H), 5.26 – 5.36 (m, 2 H), 4.59 - 4.66 (m, 2 H), 3.66 (q, J = 7.22 Hz, 2 H), 2.91 (q, J = 9.18 Hz, 1 H), 1.37 (t, J = 7.1 Hz, 3H); ¹³C NMR major (126 MHz, CDCl₃) δ ppm: 136.24, 132.38, 130.59, 130.35, 130.09, 129.12, 128.29, 126.82, 121.24 (q, J = 320.0 Hz, 74.52, 64.80, 57.64, 32.74, 8.96; ¹⁹F NMR (470 MHz, CDCl₃) δ ppm: -78.24 (s, 3F). IR (thin layer film) v (cm⁻¹) = 3061, 1498, 1456, 1260, 1224, 1154, 1030, 781, 755, 728, 701, 637. **HRMS** (ESI⁺) m/z C₂₄H₂₆N⁺ [M-OTf]⁺: calculated 328.2065, found 328.2061.

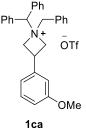
Prepared according to general procedure E using commercially available 1-benzhydryl-3-


1-allyl-1-benzhydryl-3-phenylazetidin-1-ium trifluoromethanesulfonate (1ac)

Prepared according to general procedure D using 1-benzhydryl-1-allyl-3-bromo-2phenylpropan-1-amine 7ab (5.00 mmol, 2.1 g) to afford the desired product in 94% yield (4.70 mmol, 2.30 g, d.r. 2:1 *cis:trans*) as a white powder. ¹H NMR (500 MHz, CDCl₃) δ ppm: 7.75 - 7.70 (m, $4H_{minor}$), 7.62 - 7.56 (m, $4H_{major}$), 7.55 - 7.43 (m, $6H_{major + minor}$), 7.31 (t, J = 7.5

Hz, 2H_{minor}), 7.24 (d, J = 7.4 Hz, 1H_{minor}), 7.14 (t, J = 7.4 Hz, 1H_{major}), 7.09 - 7.02 (m, $2H_{\text{maior} + \text{minor}}$, 6.39 – 6.33 (m, 2H_{\text{maior}}), 6.31 – 6.19 (m, 1H_{maior}), 6.04 – 5.93 (m, 2H_{\text{minor}}), 5.82 (s, 1H_{maior}), 5.74 $(dd, J = 10.1, 1.0 Hz, 1H_{maior}), 5.68 (dd, J = 16.9, 1.3 Hz, 1H_{maior}), 5.61 (d, J = 10.2 Hz, 1H_{minor}), 5.43 (dd, J = 10.2 Hz, 1H_{minor}), 5.44 (dd, J = 10.2 Hz, 1$ $16.8, 1.2 \text{ Hz}, 1 \text{H}_{\text{minor}}), 5.27 - 5.19 \text{ (m, 2H}_{\text{minor}}), 4.93 - 4.86 \text{ (m, 2H}_{\text{major}}), 4.80 - 4.67 \text{ (m, 2H}_{\text{major + minor}}), 4.33 \text{ (d, 2H}_{\text{major + minor}}), 4.33 \text{ (d, 2H}_{\text{major + minor}}), 4.33 \text{ (d, 3)}$ J = 7.3 Hz, $2H_{major}$), 4.20 (p, J = 9.5 Hz, $1H_{major}$), 4.11 (d, J = 7.2 Hz, $2H_{minor}$), 2.95 (p, J = 9.4 Hz, $1H_{minor}$); ¹³C NMR (126 MHz, CDCl₃) [overlapping signals] δ ppm: 136.65, 136.17, 132.80, 132.53, 130.65, 130.44, 130.39, 130.05, 130.02, 129.35, 129.16, 128.35, 128.19, 126.79, 126.34, 124.80, 121.00 (q, J = 320.3 Hz), 76.70, 76.53, 65.92, 64.80, 64.38, 64.35, 32.65, 31.08; ¹⁹F NMR (470 MHz, CDCl₃) δ ppm: -78.21 (s, 3F). IR (thin layer film) v (cm⁻¹) = 3062, 1604, 1498, 1455, 1256, 1224, 1153, 1029, 954, 913, 875, 842, 802, 781, 754, 735, 699, 636. **HRMS** (ESI⁺) m/z C₂₅H₂₆N⁺ [M-OTf]⁺: calculated 340.2065, found 340.2064.

1-benzhydryl-1-benzyl-3-(m-tolyl)azetidin-1-ium trifluoromethanesulfonate (1ba)



1ba

Prepared according to general procedure D using 1-benzhydryl-1-benzyl-3-bromo-2-(mtolyl)propan-1-amine 7ba (0.58 mmol, 0.28 g,) to afford the desired product in 80% yield (0.46 mmol, 257.6 mg, d.r. 2:1 *cis:trans*) as a white powder. ¹H NMR (500 MHz, CDCl₃) δ ppm: 7.89 – 7.42 (m, 15H_{major + minor}), 6.94 – 6.83 (m, 2H_{major + minor}), 6.47 (s, 1H_{minor}), 6.29 (s, $1H_{major}$), 6.03 - 5.95 (m, $1H_{major + minor}$), 5.86 (d, J = 2.2 Hz, $1H_{minor}$), 5.82 (d, J = 2.0 Hz, 1H_{major}), 5.18 – 5.03 (m, 2H_{minor}), 5.03 – 4.92 (m, 2H_{major}), 4.89 – 4.78 (m, 2H_{major + minor}), 4.74

(s, 2H_{major}), 4.59 (s, 2H_{minor}), 2.64 (p, J = 9.6 Hz, 1H_{major}), 2.43 (p, J = 9.7 Hz, 1H_{minor}), 2.06 (s, 3H_{major + minor}); ¹³C NMR (126 MHz, CDCl₃) [overlapping signals] δ ppm: 138.81, 138.74, 135.88, 135.82, 134.19, 133.68, 133.28, 132.83, 131.25, 131.21, 130.86, 130.42, 130.31, 130.19, 130.10, 129.92, 129.84, 129.11, 128.91, 128.80, 128.77, 128.72, 128.63, 126.77, 126.71, 124.13, 123.89, 121.01 (q, J = 320.0 Hz), 77.90, 77.84, 65.44, 63.68, 63.25, 32.97, 32.00, 21.17; ¹⁹F NMR (470 MHz, CDCl₃) δ ppm: -78.00 (s, 3F). **IR** (thin layer film) v (cm⁻¹) = 3057, 1609, 1497, 1456, 1259, 1224, 1156, 1030, 862, 757, 702, 638. **HRMS** (ESI⁺) m/z C₃₀H₃₀N⁺ [M-OTf]⁺: calculated 404.2373, found 404.2373.

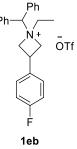
1-benzhydryl-1-benzyl-3-(3-methoxyphenyl)azetidin-1-ium trifluoromethanesulfonate (1ca)

Prepared according to general procedure D using 1-benzhydryl-1-benzyl-3-bromo-2-(3methoxyphenyl)propan-1-amine **7ca** (0.81 mmol, 0.41 g) to afford the desired product in 82% yield (0.66 mmol, 379.9 mg, d.r. 2.2:1 *cis:trans*) as a white powder. ¹H NMR (500 MHz, CDCl₃) δ ppm: 7.91 – 7.37 (m, 15H_{major + minor}), 6.87 (t, *J* = 8.0 Hz, 1H_{major + minor}), 6.63 – 6.55 e (m, 1H_{major + minor}), 6.35 (s, 1H_{minor}), 6.17 (s, 1H_{major}), 5.86 (t, *J* = 2.2 Hz, 1H_{minor}), 5.81 (t, *J* = 2.1 Hz, 1H_{major}), 5.75 (dd, *J* = 7.6, 1.7 Hz, 1H_{minor}), 5.64 (dd, *J* = 7.6, 1.7 Hz, 1H_{major}), 5.16 –

5.08 (m, 2H_{minor}), 4.99 – 4.91 (m, 2H_{major}), 4.89 – 4.76 (m, 2H_{major + minor}), 4.72 (s, 2H_{major}), 4.54 (s, 2H_{minor}), 3.60 (s, 3H_{major + minor}), 2.75 (p, J = 9.6 Hz, 1H_{major}), 2.54 (p, J = 9.6 Hz, 1H_{minor}); ¹³C NMR (126 MHz, CDCl₃) [overlapping signals] δ ppm: 159.89, 159.85, 137.55, 137.39, 133.79, 133.56, 133.13, 132.79, 131.20, 131.09, 130.69, 130.34, 130.24, 130.20, 130.14, 130.06, 130.03, 129.94, 129.80, 128.70, 128.35, 121.07 (q, J = 320.3 Hz), 118.26, 118.15, 113.44, 113.35, 112.69, 112.26, 78.07, 77.95, 65.57, 65.41, 63.42, 63.12, 55.44, 55.41, 32.75, 31.60; ¹⁹F NMR (470 MHz, CDCl₃) δ ppm: -78.12 (s, 3F). IR (thin layer film) v (cm⁻¹) = 1602, 1497, 1456, 1256, 1224, 1156, 1029, 859, 756, 704, 637. HRMS (ESI⁺) m/z C₃₀H₃₀NO⁺ [M-OTf]⁺: calculated 420.2322, found 420.2323.

1-benzhydryl-1-benzyl-3-(3-chlorophenyl)azetidin-1-ium trifluoromethanesulfonate (1da)

Prepared according to general procedure E using 1-benzhydryl-1-benzyl-3-bromo-2-(3chlorophenyl)propan-1-amine **7da** (0.33 mmol, 0.16 g) to afford the desired product in 80% yield (0.26 mmol, 0.15 g, d.r. 1.8:1 *cis:trans*) as a white powder. ¹H NMR (500 MHz, CDCl₃) δ ppm: 7.88 – 7.45 (m, 15H_{major + minor}), 7.10 – 7.02 (m, 1H_{major + minor}), 6.96 – 6.89 (m, 1H_{major + minor}), 6.47 (s, 1H_{minor}), 6.24 (s, 1H_{major}), 6.14 – 6.07 (m, 1H_{major + minor}), 6.03 (t, *J* = 1.9


1da Hz, 1H_{minor}), 5.98 (t, J = 1.9 Hz, 1H_{major}), 5.19 – 5.07 (m, 2H_{minor}), 5.02 – 4.92 (m, 2H_{major}), 4.92 – 4.83 (m, 2H_{major}), 4.83 – 4.70 (m, 2H_{major + minor}), 4.57 (s, 2H_{minor}), 2.73 (p, J = 9.6 Hz, 1H_{major}), 2.50 (p, J = 9.6 Hz, 1H_{minor}); ¹³C NMR (126 MHz, CDCl₃) [overlapping signals] δ ppm: 137.97, 137.94, 134.95, 134.83, 134.01, 133.47, 132.97, 132.84, 131.65, 131.35, 130.74, 130.71, 130.39, 130.25, 130.20, 130.15, 129.98, 129.90, 128.59, 128.58, 128.33, 128.25, 126.33, 126.25, 125.29, 124.96, 121.00 (q, J = 319.9 Hz), 78.14, 77.94, 65.46, 63.29, 62.72, 32.39, 31.33; ¹⁹F NMR (470 MHz, CDCl₃) δ ppm: -78.13 (s, 3F). **IR** (thin layer film) v (cm⁻¹) = 3656, 2980, 2888, 1600, 1457, 1383, 1258, 1225, 1155, 1088, 1030, 954, 751, 707, 638. **HRMS** (ESI⁺) $m/_{z}$ C₂₉H₂₇ClN⁺ [M-OTf]⁺: calculated 424.1827, found 424.1822.

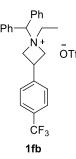
1-benzhydryl-1-benzyl-3-(4-fluorophenyl)azetidin-1-ium trifluoromethanesulfonate (1ea)

Prepared according to general procedure D using 1-benzhydryl-1-benzyl-3-bromo-2- (4fluorophenyl)propan-1-amine **7ea** (2.04 mmol, 0.97 g) to afford the desired product in 85% yield (1.73 mmol, 0.97 g, d.r. 1.8:1 *cis:trans*) as a white powder. ¹H NMR (400 MHz, CDCl₃) δ ppm: 8.08 – 7.28 (m, 15H_{major + minor}), 6.77 – 6.50 (m, 2H_{major + minor}), 6.36 (s, 1H_{minor}), 6.26 – 5.98 (m, 2H_{minor} + 3H_{major}), 5.22 – 5.06 (m, 2H_{minor}), 5.03 – 4.66 (m, 2H_{minor} + 6H_{major}), 4.55 (s, 2H_{minor}), 2.78 (p, *J* = 9.5 Hz, 1H_{major}), 2.52 (p, *J* = 9.7 Hz, 1H_{minor}); ¹³C NMR (101 MHz, CDCl₃) [overlapping signals] δ ppm: 162.28 (d, *J* = 247.9 Hz), 133.98, 133.47, 133.10,

132.82, 131.95 (d, J = 2.8 Hz, minor), 131.87 (d, J = 3.3 Hz, major), 131.26, 131.07, 130.76, 130.35, 130.31, 130.21, 130.10, 129.92, 129.83, 128.58, 128.47, 128.30 (d, J = 8.2 Hz, major), 128.12 (d, J = 8.1 Hz, minor), 121.01 (q, J = 320.1 Hz), 115.90 (d, J = 21.7 Hz, major), 115.81 (d, J = 21.6 Hz, minor), 78.14, 77.92, 65.50, 65.42, 63.78, 63.34, 32.00, 31.00; ¹⁹F NMR (470 MHz, CDCl₃) δ ppm: -78.14 (s, 3F), -113.23 (s, 1F, major), -113.54 (s, 1F, minor). **IR** (thin layer film) v (cm⁻¹) = 3065, 1606, 1514, 1456, 1258, 1225, 1161, 1030, 834, 757, 706, 638. **HRMS** (ESI⁺) m/z C₂₉H₂₇FN⁺ [M-OTf]⁺: calculated 408.2122, found 408.2116.

1-benzhydryl-1-ethyl-3-(4-fluorophenyl)azetidin-1-ium trifluoromethanesulfonate (1eb)

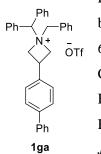
Prepared according to general procedure E using 1-benzhydryl-3-(4-fluorophenyl)azetidine **7eb** (1.26 mmol, 0.40 g) to afford the desired product in 96% yield (1.20 mmol, 0.60 g, d.r. = 16:1 *cis:trans*) as a white powder. ¹**H NMR** major (500 MHz, CDCl₃) δ ppm: 7.60 (d, J = 6.8 Hz, 4H), 7.53 – 7.46 (m, 6H), 6.73 – 6.67 (m, 2H), 6.32 (dd, J = 8.3, 5.0 Hz, 2H), 5.69 (s, 1H), 4.84 – 4.76 (m, 2H), 4.72 – 4.64 (m, 2H), 4.43 – 4.33 (m, 1H), 3.89 (q, J = 7.1 Hz, 2H), 1.44 (t, J = 7.1 Hz, 3H); ¹³C NMR major (126 MHz, CDCl₃) δ ppm: 162.32 (d, J = 247.8 Hz), 132.36, 132.22 (d, J = 3.0 Hz), 130.59, 130.32, 130.05, 128.56 (d, J = 8.2 Hz),


121.01 (q, J = 320.4 Hz), 115.93 (d, J = 21.7 Hz), 74.37, 64.93, 57.63, 31.84, 8.81; ¹⁹**F NMR** major (470 MHz, CDCl₃) δ ppm: -78.19 (s, 3F), -113.58 (m, 1F). **IR** (thin layer film) v (cm⁻¹) = 3063, 1605, 1515, 1455, 1260, 1225, 1161, 1030, 931, 833, 780, 753, 725, 705, 638. **HRMS** (ESI⁺) m/z C₂₄H₂₅FN⁺ [M-OTf]⁺: calculated 346.1966, found 346.1960.

1-benzhydryl-1-benzyl-3-(4-(trifluoromethyl)phenyl)azetidin-1-ium trifluoromethanesulfonate (1fa)

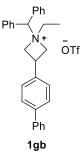
Ph Prepared according to general procedure D using 1-benzhydryl-1-benzyl-3-bromo-2-(4-(trifluoromethyl)phenyl)propan-1-amine **7fa** (1.70 mmol, 0.92 g) to afford the desired product in 88% yield (1.50 mmol, 0.91 g, d.r. 5.3:1 *cis:trans*) as a white powder. ¹H NMR (500 MHz, CDCl₃) δ ppm: 7.89 – 7.84 (m, 4H_{minor}), 7.77 (dd, J = 7.0, 1.8 Hz, 2H_{major}), 7.71 (dd, J = 7.0, 1.9 Hz, 4H_{major}), 7.61 – 7.36 (m, 11H_{minor} + 9H_{major}), 7.24 – 7.18 (m, 2H_{major + minor}), 6.36 (d, J = 4.2 Hz, 2H_{minor}), 6.34 (s, 1H_{minor}), 6.27 (d, J = 8.1 Hz, 2H_{major}), 6.16 (s, 1H_{major}), 5.28 – 5.17 (m, 2H_{minor}), 5.03 – 4.91 (m, 4H_{major}), 4.87 – 4.78 (m, 2H_{minor}), 4.74 (s, 2H_{major}), 4.55 (s,

2H_{minor}), 2.91 (p, J = 9.5 Hz, 1H_{major}), 2.67 (p, J = 9.4 Hz, 1H_{minor}); ¹³C NMR {¹⁹F at -62ppm} (126 MHz, CDCl₃) δ ppm: 140.26, 140.14, 133.86, 133.33, 132.96, 132.84, 131.32, 131.10, 130.71, 130.44, 130.39, 130.34, 130.22, 130.12, 129.87, 129.84, 128.42, 128.26, 126.98, 126.72, 125.86, 125.84, 125.81, 125.78, 125.71, 125.69, 124.84, 124.80, 121.03 (q, J = 320.1 Hz), 78.45, 78.05, 65.97, 65.53, 63.23, 62.71, 32.06, 30.87; ¹⁹F NMR (470 MHz, CDCl₃) δ ppm: -62.81 (s, 3F_{major}), -62.82 (s, 3F_{minor}), -78.11 (s, 3F). **IR** (thin layer film) v (cm⁻¹) = 3065, 1621, 1499, 1456, 1326, 1257, 1225, 1159, 1124, 1070, 1030, 1018, 930, 902, 836, 757, 705, 638, 608. **HRMS** (ESI⁺) m/z C₃₀H₂₇F₃N⁺ [M-OTf]⁺: calculated 458.2090, found 458.2087.


1-benzhydryl-1-ethyl-3-(4-(methoxl)phenyl)azetidin-1-ium trifluoromethanesulfonate (1fb)

Prepared according to general procedure E using 1-benzhydryl-3-(4-(methoxl)phenyl)azetidine **7fb** (1.09 mmol, 0.40 g) to afford the desired product in 94% yield (1.02 mmol, 0.56 g, d.r. \geq 20:1 *cis:trans*) as a white powder. ¹H NMR major (400 MHz, CDCl₃) δ ppm: 7.67 – 7.58 (m, 4H), 7.58 – 7.47 (m, 6H), 7.28 (d, *J* = 7.9 Hz, 2H), 6.52 (d, *J* = 8.0 Hz, 2H), 5.68 (s, 1H), 4.93 – 4.83 (m, 2H), 4.82 – 4.72 (m, 2H), 4.51 (p, *J* = 9.1 Hz, 1H), 3.94 (q, *J* = 7.1 Hz, 2H), 1.46 (t, *J* = 7.0 Hz, 3H); ¹³C NMR major (126 MHz, CDCl₃) [overlapping signals] δ ppm: 140.50, 132.20, 130.53, 130.35, 130.05, 127.24, 125.86, 123.80

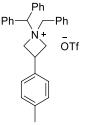
(q, J = 280.0 Hz), 121.02 (q, J = 317.2 Hz), 74.34, 64.46, 57.78, 31.90, 8.72; ¹⁹F NMR (470 MHz, CDCl₃) δ ppm: -62.82 (s, 3F), -78.25 (s, 3F). **IR** (thin layer film) v (cm⁻¹) = 3061, 1621, 1498, 1455, 1326, 1256, 1224, 1158, 1123, 1070, 1029, 964, 931, 834, 782, 737, 705, 637, 607. **HRMS** (ESI⁺) m/z C₂₅H₂₅F₃N⁺ [M-OTf]⁺: calculated 396.1933, found 396.1929.


3-([1,1'-biphenyl]-4-yl)-1-benzhydryl-1-benzylazetidin-1-ium trifluoromethanesulfonate (1ga)

Prepared according to general procedure D using 1-benzhydryl-1-benzyl-3-bromo-2-([1,1'biphenyl]-4-yl)propan-1-amine **7ga** (0.91 mmol, 0.50 g) to afford the desired product in 68% yield (0.62 mmol, 0.38 g, d.r. 1.8:1 *cis:trans*) as a white powder. ¹**H NMR** (500 MHz, CDCl₃) δ ppm: 7.85 (d, J = 7.6 Hz, 4H_{minor}), 7.78 (d, J = 6.8 Hz, 2H_{major}), 7.73 (d, J = 7.0Hz, 4H_{major}), 7.63 (d, J = 6.8 Hz, 2H_{minor}), 7.61 – 7.28 (m, 14H_{major + minor}), 7.19 (d, J = 8.0Hz, 2H_{major + minor}), 6.45 (s, 1H_{minor}), 6.26 (s, 1H_{major}), 6.22 (d, J = 8.1 Hz, 2H_{minor}), 6.16 (d, J = 8.3 Hz, 2H_{major}), 5.19 – 5.11 (m, 2H_{minor}), 5.04 – 4.96 (m, 2H_{major}), 4.92 – 4.81 (m,

 $2H_{major + minor}$, 4.76 (s, $2H_{major}$), 4.61 (s, $2H_{minor}$), 2.80 (p, J = 9.6 Hz, $1H_{major}$), 2.56 (p, J = 9.6 Hz, $1H_{minor}$); ¹³C NMR (126 MHz, CDCl₃) [overlapping signals] δ ppm: 141.24, 140.99, 140.11, 140.06, 135.00, 134.93, 134.05, 133.60, 133.20, 132.85, 131.28, 131.10, 130.81, 130.37, 130.33, 130.24, 130.21, 130.12, 129.99, 129.86, 128.93, 128.72, 128.54, 127.78, 127.75, 127.65, 127.58, 127.05, 127.02, 126.85, 121.02 (q, *J* = 320.1 Hz), 78.00, 77.88, 65.54, 65.45, 63.70, 63.30, 32.54, 31.54; ¹⁹F NMR (376 MHz, CDCl₃) δ ppm: -78.11 (s, 3F). **IR** (thin layer film) v (cm⁻¹) = 3063, 1488, 1456, 1259, 1224, 1155, 1030, 840, 765, 702, 638. **HRMS** (ESI⁺) *m*/*z* C₃₅H₃₂N⁺ [M-OTf]⁺: calculated 466.2529, found 466.2526.

3-([1,1'-biphenyl]-4-yl)-1-benzhydryl-1-ethylazetidin-1-ium trifluoromethanesulfonate (1gb)

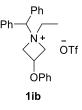


Prepared according to general procedure E using 1-benzhydryl-3-([1,1'-biphenyl]-4yl)phenyl)azetidine 7gb (0.25 mmol, 94.0 mg,) to afford the desired product in 93% yield (0.23 mmol, 138.7 mg, d.r. cis:trans = 8:1) as a white powder. ¹H NMR major (400 MHz, $CDCl_3$) δ ppm: 7.65 - 7.58 (m, 4H), 7.55 - 7.50 (m, 5H), 7.46 - 7.43 (m, 2H), 7.42 - 7.37 (m, 2H), 7.36 – 7.30 (m, 1H), 7.28 – 7.24 (m, 3H), 6.46 – 6.38 (m, 2H), 5.72 (s, 1H), 4.97 – 4.85 (m, 2H), 4.76 – 4.63 (m, 2H), 4.43 (p, J = 9.5 Hz, 1H), 3.96 (q, J = 7.0 Hz, 2H), 1.52 (t,

Prepared according to general procedure D using 1-benzhydryl-1-benzyl-3-bromo-2-(4-

J = 7.1 Hz, 3H); ¹³C NMR major (101 MHz, CDCl₃) δ ppm: 141.29, 140.18, 135.17, 132.38, 130.61, 130.44, 130.16, 128.96, 127.78, 127.76, 127.31, 127.10, 120.99 (q, *J* = 319.1 Hz), 74.70, 64.86, 57.72, 32.49, 9.04; ¹⁹**F** NMR major (470 MHz, CDCl₃) δ ppm: -78.19 (s, 3F). **IR** (thin layer film) v (cm⁻¹) = 3063, 1488, 1456, 1259, 1224, 1155, 1030, 840, 765, 702, 638. HRMS (ESI⁺) m/z C₃₀H₃₀N⁺ [M-OTf]⁺: calculated 404.2373, found 404.2378.

1-benzhydryl-1-benzyl-3-(4-methyphenyl)azetidin-1-ium trifluoromethanesulfonate (1ha)



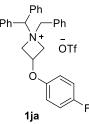
methylphenyl)propan-1-amine 7ha (1.45 mmol, 0.70 g) to afford the desired product in 78% yield (1.86 mmol, 0.65 g, d.r. 2.2:1 *cis:trans*) as a white powder. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.83 (d, J = 7.0 Hz, 4H_{minor}), 7.75 (d, J = 6.8 Hz, 2H_{maior}), 7.71 (d, J = 6.2 Hz, 4H_{major}), 7.60 (d, J = 6.8 Hz, 2H_{minor}), 7.58 - 7.43 (m, 9H_{major + minor}), 6.76 (d, J = 7.7 Hz, 2H_{major + minor}), 6.38 (s, 1H_{minor}), 6.20 (s, 1H_{major}), 6.02 (d, J = 7.9 Hz, 2H_{minor}), 5.96 (d, J = 8.0 1ha Hz, 2H_{major}), 5.13 – 5.03 (m, 2H_{minor}), 4.98 – 4.88 (m, 2H_{major}), 4.87 – 4.73 (m, 2H_{major + minor}), 4.71 (s, 2H_{major}), 4.56 (s, $2H_{minor}$), 2.69 (p, J = 9.6 Hz, $1H_{major}$), 2.45 (p, J = 9.6 Hz, $1H_{minor}$), 2.16 (s, $3H_{major + minor}$); ¹³C NMR (101 MHz, CDCl₃) [overlapping signals] δ ppm: 138.11, 137.88, 134.01, 133.62, 133.21, 133.03, 132.95, 132.80, 131.19, 131.01, 130.78, 130.29, 130.25, 130.18, 130.06, 129.93, 129.79, 129.64, 129.58, 128.73, 128.55, 126.44, 126.30, 120.95 (q, *J* = 319.7 Hz), 77.95, 77.87, 65.48, 65.38, 63.86, 63.51, 32.59, 31.66, 20.99; ¹⁹**F** NMR (376 MHz, CDCl₃) δ ppm: -78.09 (s, 3F). **IR** (thin layer film) ν (cm⁻¹) = 3063, 1488, 1456, 1259, 1224, 1155, 1030, 840, 765, 702, 638. **HRMS** (ESI⁺) *m/z* C₃₀H₃₀N⁺ [M-OTf]⁺: calculated 404.2373, found 404.2372.

1-benzhydryl-1-benzyl-3-phenoxyazetidin-1-ium trifluoromethanesulfonate (1ia)

1H_{major + minor}), 6.40 (s, 1H_{major}), 6.29 – 6.19 (m, 2H_{major + minor}), 6.16 (s, 1H_{minor}), 5.31 – 5.21 (m, 2H_{major}), 5.08 – 4.98 (m, 2H_{minor}), 4.87 – 4.78 (m, 2H_{minor}), 4.76 (s, 2H_{minor}), 4.70 – 4.61 (m, 4H_{major}), 3.90 – 3.81 (m, 1H_{major + minor}); ¹³C NMR (126 MHz, CDCl₃) [overlapping signals] δ ppm: 155.00, 154.93, 133.35, 133.04, 132.99, 132.77, 131.43, 131.22, 130.48, 130.42, 130.38, 130.17, 130.10, 129.93, 129.77, 128.36, 127.94, 122.61, 121.03 (q, *J* = 320.2 Hz), 114.65, 114.60, 78.35, 65.97, 65.83, 64.18, 64.16, 62.46, 62.27; ¹⁹F NMR (376 MHz, CDCl₃) δ ppm: -78.12 (s, 3F). **IR** (thin layer film) v (cm⁻¹) = 3064, 1600, 1496, 1457, 1373, 1256, 1225, 1153, 1079, 1029, 859, 755, 735, 704, 636. **HRMS** (ESI⁺) *m*/*z* C₂₉H₂₈NO⁺ [M-OTf]⁺: calculated 406.2165, found 406.2165.

1-benzhydryl-1-ethyl-3-phenoxyazetidin-1-ium trifluoromethanesulfonate (1ib)

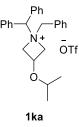
Prepared according to a slightly modified general procedure E. To a solution of commercially available 1-benzhydryl-3-phenoxyazetidine (4.76 mmol, 1.50 g), ethyl triflate (1.1 equiv., 0.68 mL, 5.23 mmol) was added dropwise and the reaction was stirred overnight at r.t. The solvent was then evaporated, the white precipitate was washed with Et_2O and filtered. The solid was further washed with cold Et_2O to afford the desired compound in 98% yield (4.65


mmol, 2.30 g, d.r. 1:50 *cis:trans*) as a white powder. ¹H NMR major (500 MHz, CDCl₃) δ ppm: 7.66 – 7.73 (m, 4H) 7.40 – 7.54 (m, 6H) 7.16 – 7.36 (m, 2H), 6.96 – 7.04 (m, 1H), 6.59 – 6.66 (m, 2H), 6.12 (s, 1H), 5.39 – 5.31 (m, 2H), 4.48 – 4.41 (m, 2H), 4.36 – 4.28 (m, 1H), 3.75 (q, *J* = 7.2 Hz, 2H) 1.47 (t, *J* = 7.17 Hz, 3H); ¹³C NMR major (126 MHz, CDCl₃) δ ppm: 155.19, 132.13, 130.47, 130.37, 130.28, 130.04, 123.02, 120.60 (q, *J* = 320.3 Hz), 114.85, 75.71, 66.14, 63.45, 59.56, 8.92; ¹⁹F NMR (470 MHz, CDCl₃) δ ppm: -78.16 (s, 3F). **IR** (thin layer film) v (cm⁻¹) = 3062, 1600, 1491, 1456, 1258, 1224, 1152, 1029, 916, 754, 704, 637. **HRMS** (ESI⁺) *m*/*z* C₂₄H₂₆NO⁺ [M-OTf]⁺: calculated 344.2014, found 344.2017.

1-allyl-1-benzhydryl-3-phenoxyazetidin-1-ium trifluoromethanesulfonate 7a (1ic)

 $J = 8.0 \text{ Hz}, 2H_{\text{major}}, 6.23 - 6.10 \text{ (m, } 1H_{\text{major}}), 6.10 - 5.99 \text{ (m, } 2H_{\text{minor}}), 5.77 - 5.58 \text{ (m, } 1H_{\text{minor}} + 3H_{\text{major}}), 5.44$

(d, J = 16.7 Hz, 1H_{minor}), 5.30 (dd, J = 13.1, 6.8 Hz, 2H_{minor}), 5.12 (p, J = 5.9 Hz, 1H_{major}), 5.03 – 4.92 (m, 2H_{major}), 4.78 (dd, J = 12.6, 5.5 Hz, 2H_{major}), 4.54 (dd, J = 13.2, 4.2 Hz, 2H_{minor}), 4.33 – 4.26 (m, 1H_{minor} + 2H_{major}), 4.22 (d, J = 7.2 Hz, 2H_{minor}); ¹³C NMR (101 MHz, CDCl₃) [overlapping signals] δ ppm: 155.21, 155.04, 132.21, 130.55, 130.52, 130.48, 130.36, 130.24, 130.08, 130.02, 129.96, 129.82, 124.74, 124.54, 122.94, 122.60, 120.96 (q, J = 320.0 Hz), 114.97, 114.86, 77.22. 77.09, 65.82, 65.71, 65.17 (br), 63.56, 62.62; ¹⁹F NMR (376 MHz, CDCl₃) δ ppm: -78.19 (s, 3F). IR (thin layer film) v (cm⁻¹) = 3063, 1589, 1492, 1455, 1425, 1376, 1257, 1225, 1153, 1079, 1029, 954, 867, 754, 704, 637. HRMS (ESI⁺) m/z C₂₅H₂₆NO⁺ [M-OTf]⁺: calculated 356.2009, found 356.2004.


1-benzhydryl-1-benzyl-3-(4-fluorophenoxy)azetidin-1-ium trifluoromethanesulfonate (1ja)

Prepared according to general procedure D using 1-benzhydryl-1-benzyl-3-bromo-2- (4-fluorophenoxy)-1-amine **7ja** (0.19 g, 0.38 mmol) to afford the desired product in 93% yield (0.20 g, 0.35 mmol, d.r. 1:1.2 *cis:trans*) as a white powder. ¹H NMR (500 MHz, CDCl₃) δ ppm: 7.80 - 7.74 (m, 4H_{major}), 7.73 - 7.65 (m, 2H_{minor}), 7.65 - 7.59 (m, 4H_{minor}),
F 7.58 - 7.43 (m, 9H_{minor} + 11H_{major}), 6.88 - 6.78 (m, 2H_{major + minor}), 6.40 (s, 1H_{major}), 6.27 - 6.16 (m, 2H_{major + minor}), 6.10 (s, 1H_{minor}), 5.30 - 5.22 (m, 2H_{major}), 5.09 - 5.01 (m, 2H_{minor}),

4.85 – 4.78 (m, 4H_{minor}), 4.68 – 4.61 (m, 4H_{major}), 3.96 – 3.85 (m, 1H_{major + minor}); ¹³C NMR (126 MHz, CDCl₃) δ ppm: 158.25 (d, *J* = 241.3 Hz), 151.06 (d, *J* = 2.3 Hz), 151.02 (d, *J* = 2.4 Hz), 133.37, 132.99, 132.89, 132.73, 131.50, 131.31, 130.56, 130.51, 130.41, 130.39, 130.21, 130.14, 129.97, 129.83, 128.25, 127.93, 120.99 (q, *J* = 320.6 Hz), 116.47 (d, *J* = 23.4 Hz), 116.02 (d, *J* = 8.0 Hz), 115.96 (d, *J* = 7.9 Hz), 78.36, 78.10, 65.87, 65.84, 64.25, 64.23, 63.03, 62.90; ¹⁹F NMR {¹H} (470 MHz, CDCl₃) δ ppm: -78.15 (s, 3F), -120.98 (s, 1F_{major}), -121.02 (s, 1F_{minor}). **IR** (thin layer film) v (cm⁻¹) = 3657, 2981, 2888, 1505, 1458, 1382, 1258, 1224, 1154, 1090, 1030, 953, 831, 757, 734, 706, 638. **HRMS** (ESI⁺) *m*/*z* C₂₉H₂₇FNO⁺ [M-OTf]⁺: calculated 424.2071, found 424.2069.

1-benzhydryl-1-benzyl-3-(isopropyloxy)azetidin-1-ium trifluoromethanesulfonate (1ka)

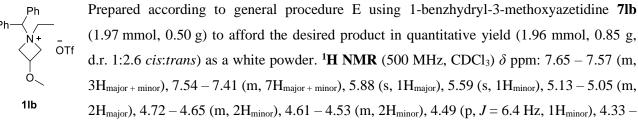
Prepared according to general procedure D, 1-benzhydryl-1-benzyl-3-bromo-2isopropyloxyamine **7ka** (1.10 mmol, 0.50 g) to afford the desired product in 90% yield (0.99 mmol, 0.52 g, d.r. 1:1.2 *cis:trans*) as a white powder. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.73 - 7.62 (m, 5H_{major + minor}), 7.55 - 7.40 (m, 10H_{major + minor}), 6.14 - 6.08 (m, 1H_{major + minor}), 5.06 - 4.97 (m, 2H_{major}), 4.82 - 4.72 (m, 2H_{minor}), 4.67 - 4.57 (m, 4H_{minor} + 2H_{major}), 4.54 - 4.45 (m, 2H_{major}), 3.25 - 3.04 (m, 2H_{major + minor}), 0.78 (d, *J* = 6.1 Hz,

6H_{major}), 0.71 (d, J = 6.1 Hz, 6H_{minor}); ¹³C NMR (101 MHz, CDCl₃) [overlapping signals] δ ppm: 133.30, 133.20, 133.04, 131.16, 131.10, 130.49, 130.31, 130.29, 130.06, 129.98, 129.76, 129.63, 128.61, 128.18, 121.06 (q, J = 320.1 Hz), 78.28, 77.45, 71.71, 71.67, 66.19, 65.87, 65.52, 65.50, 62.48, 62.45, 21.99; ¹⁹F NMR (470 MHz, CDCl₃) δ ppm: -78.14 (s, 3F). **IR** (thin layer film) v (cm⁻¹) = 2975, 1499, 1457, 1384, 1338, 1257,

1224, 1154, 1030, 860, 757, 706, 637. **HRMS** (ESI⁺) *m/z* C₂₆H₃₀FNO⁺ [M-OTf]⁺: calculated 372.2322, found 372.2325.

1-benzhydryl-1-ethyl-3-isopropoxyazetidin-1-ium trifluoromethanesulfonate (1kb)

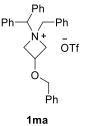
Ph Prepared according to general procedure E, 1-benzhydryl-3-isopropyloxyazetidine **7kb** (1.78 mmol, 0.50 g) to afford the desired product in 99% yield (1.75 mmol, 0.81 g, d.r. 1:1.2 *cis:trans*) as a white powder. ¹**H NMR** (500 MHz, CDCl₃) δ 7.67 – 7.61 (m, 2H_{major + minor}), 7.55 – 7.40 (m, 8H_{major + minor}), 5.94 (s, 1H_{major}), 5.57 (s, 1H_{minor}), 5.15 – 5.08 (m, 2H_{major}), 4.72 **1kb** – 4.65 (m, 2H_{minor}), 4.65 – 4.59 (m, 1H_{minor}), 4.59 – 4.54 (m, 2H_{minor}), 4.29 – 4.22 (m, 2H_{major}), 3.78 – 3.70 (m, 2H_{major + minor}), 3.62 – 3.55 (m, 1H_{major}), 3.51 (sept, *J* = 6.1 Hz, 1H_{major}), 3.42


(sept, J = 6.1 Hz, 1H_{minor}), 1.45 (t, J = 7.2 Hz, 3H_{major}), 1.41 (t, J = 7.1 Hz, 3H_{minor}), 1.05 (d, J = 6.1 Hz, 6H_{major}), 0.89 (d, J = 6.1 Hz, 6H_{minor}); ¹³C NMR (126 MHz, CDCl₃) overlapping signals: δ 132.25, 130.39, 130.30, 130.24, 129.94, 129.91, 121.01 (q, J = 320.4 Hz), 75.60, 74.73, 72.61, 72.01, 67.79, 66.76, 63.39, 63.04, 59.85, 58.43, 22.27, 22.19, 9.06, 8.76; ¹⁹F NMR (470 MHz, CDCl₃) δ -78.25 (s, 3F). IR (thin layer film) v (cm⁻¹) = 2977, 1499, 1456, 1384, 1336, 1258, 1224, 1154, 1030, 932, 780, 754, 708, 637. HRMS (ESI⁺) m/z C₂₁H₂₈NO⁺ [M-OTf]⁺: calculated 310.2165, found 310.2173.

1-benzhydryl-1-benzyl-3-(methoxy)azetidin-1-ium trifluoromethanesulfonate (11a)

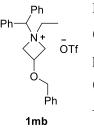
Ph Prepared according to general procedure D using 1-benzhydryl-1-benzyl-3-bromo-2-methoxy-1-amine **7la** (1.62 mmol, 0.69 g) to afford the desired product in 88% yield (1.43 mmol, 0.70 g, d.r. 1:1.3 *cis:trans*) as a white powder. ¹**H NMR** (500 MHz, CDCl₃) δ ppm: 7.69 – 7.62 (m, 5H_{major + minor}), 7.55 – 7.41 (m, 10H_{major + minor}), 6.13 (s, 1H_{minor}), 6.02 (s, 1H_{major}), 5.05 – 4.96

(m, 2H_{major}), 4.83 – 4.75 (m, 2H_{minor}), 4.69 (s, 2H_{major}), 4.64 (d, J = 5.8 Hz, 4H_{minor}), 4.59 – 4.52 (m, 2H_{major}), 3.17 – 3.08 (m, 1H_{major}), 3.01 (p, J = 6.6 Hz, 1H_{minor}), 2.94 (s, 3H_{major}), 2.81 (s, 3H_{minor}); ¹³C NMR (126 MHz, CDCl₃) [overlapping signals] δ ppm: 133.14, 133.09, 133.00, 132.93, 131.23, 130.46, 130.39, 130.35, 130.30, 130.12, 130.03, 129.82, 129.67, 128.44, 127.99, 121.05 (q, J = 320.3 Hz), 78.41, 66.30, 66.16, 65.84, 65.67, 64.97, 64.61, 56.73, 56.68; ¹⁹F NMR (470 MHz, CDCl₃) δ ppm: -78.15 (s, 3F). IR (thin layer film) v (cm⁻¹) = 2981, 1498, 1456, 1360, 1255, 1224, 1153, 1029, 1002, 858, 736, 701, 636. HRMS (ESI⁺) m/z C₂₄H₂₆NO₊ [M-OTf]⁺: calculated 344.2009, found 344.2010.


1-benzhydryl-1-ethyl-3-methoxyazetidin-1-ium trifluoromethanesulfonate (11b)

 $4.26 \ (m, 2H_{major}), \ 3.80 - 3.70 \ (m, 2H_{major + minor}), \ 3.58 - 3.50 \ (m, 1H_{major}), \ 3.25 \ (s, 3H_{major}), \ 3.07 \ (s, 3H_{minor}), \ 1.50 \ (s, 3H_{major}), \ 3.07 \ (s, 3H_{minor}), \ 3.07 \ (s, 3H_{minor$

-1.39 (m, 3H_{major + minor}); ¹³C NMR (126 MHz, CDCl₃) [overlapping signals] δ ppm: 132.22, 132.16, 130.31, 130.25, 129.91, 129.85, 124.84, 122.30,121.02 (q, *J* = 320.3 Hz), 119.75, 117.20, 75.52, 74.46, 67.00, 66.45, 66.41, 65.77, 59.87, 58.57, 57.06, 56.88, 8.94, 8.50; ¹⁹F NMR (470 MHz, CDCl₃) δ ppm: -78.26 (s, 3F). IR (thin layer film) v (cm⁻¹) = 2982, 1499, 1456, 1382, 1258, 1224, 1154, 1082, 1030, 935, 781, 754, 709, 637. HRMS (ESI⁺) *m*/_z C₁₉H₂₄NO⁺ [M-OTf]⁺: calculated 282.1852, found 282.1860.


1-benzhydryl-1-benzyl-3-(benzyloxy)azetidin-1-ium trifluoromethanesulfonate (1ma)

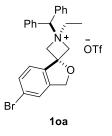
Prepared according to general procedure D using 1-benzhydryl-1-benzyl-3-bromo-2benzyloxy-1-amine **7ma** (1.64 mmol, 0.82 g) to afford the desired product in 88% yield (1.44 mmol, 0.83 g, d.r. 1:1.3 *cis:trans*) as a white powder. ¹H NMR (500 MHz, CDCl₃) δ ppm: 7.67 – 7.56 (m, 5H_{major + minor}), 7.54 – 7.39 (m, 10H_{major + minor}), 7.32 – 7.22 (m, 3H_{major + minor}), 6.96 – 6.90 (m, 2H_{major}), 6.87 – 6.81 (m, 2H_{minor}), 6.12 (s, 1H_{minor}), 6.09 (s, 1H_{major}), 4.94 – 4.87 (m, 2H_{major}), 4.66 – 4.54 (m, 6H_{minor} + 2H_{major}), 4.53 – 4.46 (m, 2H_{major}),

4.10 (s, $2H_{major}$), 4.00 (s, $2H_{minor}$), 3.22 – 3.14 (m, $1H_{major}$), 3.12 (p, J = 6.7 Hz, $1H_{minor}$); ¹³C NMR (126 MHz, CDCl₃) δ ppm: 136.01, 135.99, 133.27, 133.06, 132.98, 132.94, 131.16, 130.46, 130.35, 130.31, 130.24, 130.06, 130.04, 129.74, 129.72, 128.68, 128.61, 128.54, 128.43, 128.14, 128.09, 128.07, 121.04 (q, J = 320.3 Hz), 78.22, 71.72, 71.68, 66.08, 65.50, 64.97, 64.64, 64.11, 64.07; ¹⁹F NMR (470 MHz, CDCl₃) δ ppm: -78.12 (s, 3F). **IR** (thin layer film) v (cm⁻¹) = 3064, 1499, 1456, 1377, 1256, 1224, 1153, 1029, 991, 858, 757, 704, 637. **HRMS** (ESI⁺) m/z C₃₀H₃₀NO⁺ [M-OTf]⁺: calculated 420.2322, found 420.2323.

1-benzhydryl-3-(benzyloxy)-1-ethylazetidin-1-ium trifluoromethanesulfonate (1mb)

Prepared according to general procedure E using 1-benzhydryl-3-benzyloxyazetidine **7mb** (3.95 mmol, 1.30 g,) was reacted with ethyl triflate (0.77 mL, 5.92 mmol) to afford the desired product in 99% yield (3.94 mmol, 2.00 g, d.r. 1:5 *cis:trans*) as a white powder. ¹H NMR major (400 MHz, CDCl₃) δ ppm: 7.65 – 7.56 (m, 3H), 7.50 – 7.38 (m, 7H), 7.35 – 7.27 (m, 3H), 7.25 – 7.20 (m, 2H), 5.84 (s, 1H), 5.09 – 4.97 (m, 2H), 4.41 (s, 2H), 4.35 – 4.25 (m, 2H), 3.73 (q, J = 7.2 Hz, 2H), 3.69 – 3.57 (m, 1H), 1.40 (t, J = 7.2 Hz, 3H); ¹³C NMR major (101 MHz,

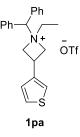
CDCl₃) δ ppm: 136.06, 132.16, 130.32, 130.26, 129.95, 128.87, 128.67, 128.36, 121.06 (q, J = 320.3 Hz), 74.72, 72.07, 66.77, 65.03, 59.80, 8.65; ¹⁹F NMR (470 MHz, CDCl₃) δ ppm: -78.17 (s, 3F). **IR** (thin layer film) v (cm⁻¹) = 1498, 1455, 1359, 1257, 1224, 1153, 1029, 932, 782, 75, 702, 637. **HRMS** (ESI⁺) m/zC₂₅H₂₈NO⁺ [M-OTf]⁺: calculated 358.2171, found 358.2178.


1-benzhydryl-3-(benzoyloxy)-1-ethylazetidin-1-ium trifluoromethanesulfonate (1na)

Ph Prepared according to general procedure E using 1-benzhydrylazetidin-3-yl benzoate (2.43 mmol, 0.83 g) to afford the desired product in 95% yield (2.30 mmol, 1.27 g, d.r. 1:1.1 *cis:trans*) as a white powder. ¹H NMR (400 MHz, CDCl₃) δ ppm: 8.02 – 7.95 (m, 1H_{major + minor}), 7.70 – 7.31 (m, 14H_{major + minor}), 6.03 (s, 1H_{major}), 5.87 (s, 1H_{minor}), 5.44 (p, J = 6.5 Hz, 1H_{minor}), 5.40 – 5.31 (m, 2H_{major}), 5.03 – 4.97 (m, 4H_{minor}), 4.76 – 4.67 (m, 2H_{major}), 4.48 – 4.38 (m, 1H_{major}), 3.87 – 3.76 (m, 2H_{major + minor}), 1.56 – 1.47 (m, 3H_{major + minor}); ¹³C NMR

(126 MHz, CDCl₃) [overlapping signals] δ ppm: 165.61, 165.18, 134.42, 134.11, 132.29, 132.11, 130.56, 130.46, 130.33, 130.19, 130.13, 130.08, 129.92, 129.87, 128.91, 128.48, 127.81, 120.87 (q, J = 319.8 Hz), 75.82, 75.17, 65.72, 64.75, 61.01, 60.80, 60.49, 59.04, 9.06, 8.92; ¹⁹F NMR (470 MHz, CDCl₃) δ ppm: -78.27 (s, 3F). **IR** (thin layer film) v (cm⁻¹) = 3062, 1722, 1602, 1498, 1454, 1426, 1260, 1225, 1154, 1114, 1072, 1030, 934, 754, 711, 637. **HRMS** (ESI⁺) m/z C₂₅H₂₆NO₂⁺ [M-OTf]⁺: calculated 372.1964, found 372.1964.

1-benzhydryl-5'-bromo-1-ethyl-3'H-spiro[azetidine-3,1'-isobenzofuran]-1-ium


trifluoromethanesulfonate (10a)

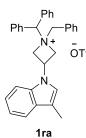
Prepared according to general procedure E using 1-benzhydryl-5'-bromo-3'H-spiro[azetidine-3,1'-isobenzofuran] (0.74 mmol, 0.30 g) to afford the desired product in 97% yield (0.72 mmol, 0.42 g, single diastereomer) as a white powder. ¹H NMR (400 MHz, DMSO- d_6) δ ppm: 7.75 (dd, J = 6.7, 3.0 Hz, 4H), 7.62 – 7.54 (m, 7H), 7.26 (d, J = 8.1 Hz, 1H), 5.96 (s, 1H), 5.15 – 5.03 (m, 5H), 4.86 (d, J = 13.4 Hz, 2H), 3.82 (q, J = 7.0 Hz, 2H), 1.32 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, DMSO- d_6) δ ppm: 141.80,

136.33, 132.44, 130.76, 130.69, 130.03, 129.51, 124.74, 122.46, 121.92, 120.68 (q, J = 322.4 Hz), 81.53, 72.08, 71.40, 71.01, 58.42, 8.06; ¹⁹F NMR (470 MHz, CDCl₃) δ ppm: -78.32 (s, 3F). IR (thin layer film) ν (cm⁻¹) = 3657, 2981, 2888, 1462, 1383, 1254, 1152, 1071, 1030, 955, 817, 705, 638. HRMS (ESI⁺) m/z C₂₅H₂₅BrNO⁺ [M-OTf]⁺: calculated 434.1119, found 434.1119.

1-benzhydryl-1-ethyl-3-(thiophen-3-yl)azetidin-1-ium trifluoromethanesulfonate (1pa)

Prepared according to a slightly modified general procedure E. To a solution of , 1-benzhydryl-3-(thiophen-3-yl)azetidine **7pa** (0.66 mmol, 0.20 g), ethyl triflate (1 equiv., 0.65 mmol, 0.08 mL) was added dropwise and the reaction was stirred overnight at r.t. The solvent was then evaporated, the white precipitate was washed with Et₂O and filtered. The solid was further washed with cold Et₂O to afford the desired compound in 95% yield (0.30 g, 0.62 mmol, d.r. 8.2:1 *cis:trans*) as a white powder. ¹H NMR major (500 MHz, CDCl₃) δ ppm: 7.63 – 7.55

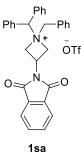
(m, 4H), 7.55 - 7.45 (m, 6H), 7.04 (dd, J = 5.0, 3.0 Hz, 1H), 6.48 (dd, J = 3.0, 1.4 Hz, 1H), 5.92 (dd, J = 5.1, 1.4 Hz, 1H), 5.68 (s, 1H), 4.88 - 4.72 (m, 2H), 4.72 - 4.57 (m, 2H), 4.46 (p, J = 9.3 Hz, 1H), 3.87 (q, J = 7.1 Hz, 2H), 1.45 (t, J = 7.1 Hz, 3H); ¹³**C NMR** major (126 MHz, CDCl₃) δ ppm: 136.82, 132.24, 130.43, 130.33, 129.99, 127.07, 125.13, 122.78, 120.83 (q, J = 320.4 Hz), 74.44, 64.86, 57.43, 28.17, 8.82; ¹⁹**F NMR** (470)


MHz, CDCl₃) δ ppm: -78.21 (s, 3F). **IR** (thin layer film) v (cm⁻¹) = 1498, 1455, 1259, 1224, 1155, 1030, 934, 784, 753, 721, 705, 637. **HRMS** (ESI⁺) m/z C₂₂H₂₄NS⁺ [M-OTf]⁺: calculated 334.1624, found 334.1628.

2-((1-benzhydryl-3-(4-bromo-1H-pyrazol-1-yl)azetidin-1-ium-1-yl)methyl)benzen-1-ide trifluoromethanesulfonate salt (1qa)

Prepared according to general procedure D using 1-benzhydryl-1-benzyl-3-bromo-2-(4bromo-1H-pyrazol-1-yl)propan-1-amine **7qa** (0.88 mmol, 0.48 g,) to afford the desired ^{Tf} product in 90% yield (0.79 mmol, 0.48 g, d.r. 1:2.1 *cis:trans*) as a white powder. ¹H NMR (500 MHz, CDCl₃) δ ppm: 7.71 – 7.64 (m, 3H_{major + minor}), 7.64 – 7.42 (m, 12H_{major + minor}), 7.27 (s, 1H_{minor}), 7.08 (s, 1H_{major}), 7.04 (s, 1H_{minor}), 6.87 (s, 1H_{major}), 6.09 (s, 1H_{major}), 6.06 (s, 1H_{minor}), 5.36 – 5.23 (m, 2H_{major + minor}), 5.13 – 5.06 (m, 2H_{minor}), 5.02 – 4.95 (m, 2H_{major}), 4.90

(s, $2H_{minor}$), 4.85 (s, $2H_{major}$), 4.49 (p, J = 8.2 Hz, $1H_{major}$), 4.30 (p, J = 8.0 Hz, $1H_{minor}$); ¹³C NMR (126 MHz, CDCl₃) δ ppm: 141.51, 141.30, 133.10, 132.92, 132.47, 132.39, 131.64, 131.48, 130.71, 130.61, 130.57, 130.40, 130.26, 130.23, 130.21, 130.14, 129.98, 129.57, 127.84, 127.55, 120.92 (q, J = 320.1 Hz), 94.69, 94.60, 78.16, 77.32, 65.67, 65.29, 64.34, 63.51, 48.13, 47.77; ¹⁹F NMR (470 MHz, CDCl₃) δ ppm: -78.19 (s, 3F). **IR** (thin layer film) v (cm⁻¹) = 3063, 1498, 1456, 1384, 1324, 1256, 1224, 1156, 1030, 989, 950, 868, 757, 703, 637, 608. **HRMS** (ESI⁺) m/z C₂₆H₂₅BrN₃⁺ [M-OTf]⁺: calculated 458.1226, found 458.1228.


1-benzhydryl-1-benzyl-3-(3-methyl-1H-indol-1-yl)azetidin-1-ium trifluoromethanesulfonate (1ra)

Prepared according to general procedure D using 1-benzhydryl-1-benzyl-3-bromo-2-(3-methyl-1H-indol-1-yl)propan-1-amine **7ra** (0.90 mmol, 0.46 g) to afford the desired product f in 90% yield (0.81 mmol, 0.48 g, d.r. 1:1.9 *cis:trans*) as a white powder. ¹H NMR (500 MHz, CDCl₃) δ ppm: 7.93 – 7.88 (m, 2H_{major}), 7.88 – 7.82 (m, 4H_{minor}), 7.81 – 7.75 (m, 4H_{major}), 7.75 – 7.70 (m, 2H_{minor}), 7.69 – 7.53 (m, 9H_{major + minor}), 7.36 – 7.30 (m, 1H_{major + minor}), 7.04 – 6.94 (m, 2H_{major + minor}), 6.60 (s, 1H_{minor}), 6.46 (s, 1H_{major}), 6.38 – 6.30 (m, 1H_{major + minor}),

5.27 – 5.19 (m, 2H_{minor}), 5.14 – 5.07 (m, 2H_{major}), 5.05 (s, 1H_{minor}), 5.03 – 4.96 (m, 3H_{major}), 4.96 – 4.90 (m, 2H_{minor}), 4.76 (s, 2H_{major}), 4.66 (s, 2H_{minor}), 3.90 (p, J = 8.7 Hz, 1H_{major}), 3.71 (p, J = 8.8 Hz, 1H_{minor}), 1.98 (d, J = 1.0 Hz, 3H_{major}), 1.97 (d, J = 1.1 Hz, 3H_{minor}); ¹³**C** NMR (126 MHz, CDCl₃) [overlapping signals] δ ppm: 136.43, 136.36, 134.39, 133.17, 133.06, 132.82, 131.66, 131.39, 130.66, 130.62, 130.46, 130.37, 130.30, 130.10, 128.66, 128.64, 128.44, 128.40, 122.64, 122.55, 120.98 (q, J = 320.1 Hz), 120.16, 120.11, 119.39, 118.99, 118.75, 114.66, 114.47, 107.85, 107.75, 78.45, 78.41, 65.71, 65.49, 64.09, 63.73, 41.60, 40.98, 9.42, 9.40; ¹⁹**F** NMR (470 MHz, CDCl₃) δ ppm: -78.11 (s, 3F). **IR** (thin layer film) v (cm⁻¹) = 3062, 1498, 1461, 1390, 1258, 1225, 1159, 1030, 742, 706, 638. **HRMS** (ESI⁺) m/z C₃₂H₃₁N₂⁺ [M-OTf]⁺: calculated 443.2482, found 443.2482.

1-benzhydryl-1-benzyl-3-(1,3-dioxoisoindolin-2-yl)azetidin-1-ium trifluoromethanesulfonate (1sa)

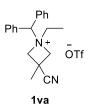
Prepared according to general procedure D using 2-(1-(benzhydryl(benzyl)amino)-3bromopropan-2-yl)isoindoline-1,3-dione **7sa** (1.0 g, 1.85 mmol) to afford the desired product in 69% yield (0.77 g, 1.28 mmol, d.r. 1: 2.2 *cis:trans*) as a white powder. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.74 – 7.41 (m, 16H_{major + minor}), 7.38 – 7.20 (m, 3H_{major + minor}), 6.30 (s, 1H_{major}), 5.88 (s, 1H_{minor}), 5.56 – 5.42 (m, 2H_{major + minor}), 5.28 – 5.18 (m, 2H_{minor}), 4.99 – 4.89 (m, 2H_{major + minor}), 4.71 (s, 2H_{major}), 3.78 (p, *J* = 8.3 Hz, 1H_{major}), 3.67 (p, *J* = 8.4 Hz, 1H_{minor}); ¹³C

NMR (101 MHz, CDCl₃) δ ppm: 167.15, 166.91, 134.75, 134.73, 132.76, 132.60, 132.54, 132.50, 131.50, 131.21, 131.11, 131.02, 130.50, 130.34, 130.23, 130.07, 130.04, 129.63, 128.02, 127.74, 123.71, 123.62, 120.92 (q, J = 320.2 Hz), 79.51, 76.68, 67.01, 64.88, 62.55, 61.13, 38.20, 37.20; ¹⁹F NMR (377 MHz, CDCl₃) δ ppm: -78.17 (s, 3F). **IR** (thin layer film) v (cm⁻¹) = 3065, 1779, 1716, 1498, 1456, 1388, 1258, 1224, 1156, 1089, 1030, 876, 755, 717, 637. **HRMS** (ESI⁺) m/z C₃₁H₂₇N₂O₂⁺ [M-OTf]⁺: calculated 459.2067, found 459.2066.

1-benzhydryl-1-benzyl-3-(tert-butoxycarbonyl)azetidin-1-ium trifluoromethanesulfonate (1ta)

Ph Prepared according to general procedure D using *t*ert-butyl 3-(benzhydryl(benzyl)amino)-2-(bromomethyl)propanoate **7ta** (1.13 g, 2.28 mmol) to afford the desired product in 61% yield (785 mg, 1.39 mmol, d.r. 1.3:1 *cis:trans*) as a white powder. ¹**H NMR** (400 MHz, CDCl₃) δ ppm: (400 MHz, CDCl₃) δ ppm: 7.81 – 7.66 (m, 5H_{minor+major}), 7.60 – 7.41 (m, 10H_{minor+major}), **1ta** 6.31 (s, 1H_{minor}), 6.17 (s, 1H_{major}), 5.04 – 4.91 (m, 2H_{minor+major}), 4.86 – 4.76 (m, 2H_{minor}), 4.73 – 4.62 (m, 4H_{major}), 4.54 (s, 2H_{minor}), 2.37 – 2.08 (m, 1H_{minor+major}), 1.16 (s, 9H_{minor}), 1.13 (s, 9H_{major}); ¹³**C NMR** (101 MHz, CDCl₃) δ ppm: 167.24, 167.17, 133.49, 133.08, 132.88, 132.83, 131.28, 131.17, 130.47, 130.36, 130.20, 130.12, 130.08, 129.89, 129.82, 128.24, 127.92, 121.02 (q, *J* = 320.1 Hz), 83.37, 83.29, 77.99, 77.92, 65.57, 65.46, 58.85, 58.73, 31.19, 30.64, 27.70, 27.65; ¹⁹**F NMR** (377 MHz, CDCl₃) δ ppm: (377 MHz, CDCl₃) δ ppm: -78.14 (s, 3F). **IR** (thin layer film) v (cm⁻¹) = 2980, 1733, 1498, 1457, 1370, 1256, 1224, 1153, 1068, 1029, 843, 800, 760, 734, 705, 637, 573, 413. **HRMS** (ESI⁺) *m/z* C₂₈H₃₂NO₂⁺ [M-OTf]⁺: calculated 414.2428, found 414.2426.

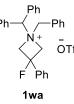
1-benzhydryl-1-benzyl-3-(benzyloxy)-3-methylazetidin-1-ium trifluoromethanesulfonate (1ua)



Prepared according to general procedure D using 1-benzhydryl-1-benzyl-2-(benzyloxy)-3bromo-2-methylpropan-1-amine **7ua** (0.97 mmol, 0.50 g) to afford the desired product in 76% yield (0.74 mmol, 0.43 g, d.r. 1.5:1 *cis:trans*) as a white powder. ¹**H NMR** (400 MHz, CDCl₃) δ ppm: 7.71 – 7.16 (m, 18H _{minor+ major}), 7.13 (dd, J = 7.5, 2.1 Hz, 2H_{major}), 6.82 (dd, J = 6.5, 3.0 Hz, 2H_{minor}), 6.14 (s, 1H_{minor}), 5.69 (s, 1H_{major}), 5.02 (d, J = 12.6 Hz, 2H_{minor}), 4.94

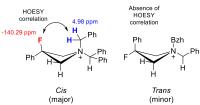
 $-4.77 \text{ (m, 6H}_{\text{major}}\text{)}, 4.70 \text{ (d, } J = 12.7 \text{ Hz}, 2\text{H}_{\text{minor}}\text{)}, 4.63 \text{ (s, 2H}_{\text{minor}}\text{)}, 4.23 \text{ (s, 2H}_{\text{major}}\text{)}, 3.86 \text{ (s, 2H}_{\text{minor}}\text{)}, 0.64 \text{ (s, 3H}_{\text{major}}\text{)}, 0.52 \text{ (s, 3H}_{\text{minor}}\text{)}; {}^{13}\mathbf{C} \mathbf{NMR} \text{ (101 MHz, CDCl}_{3}\text{)} \text{ [overlapping signals] } \delta \text{ ppm: 137.09, 136.85, 133.84, 133.46, 132.81, 132.76, 131.31, 131.04, 130.55, 130.42, 130.37, 130.12, 130.07, 129.82, 129.48, 128.56, 133.46, 132.81, 132.76, 131.31, 131.04, 130.55, 130.42, 130.37, 130.12, 130.07, 129.82, 129.48, 128.56, 130.42, 130$

128.49, 128.18, 127.98, 127.91, 127.73, 127.69, 127.39, 121.14 (q, J = 319.5 Hz), 79.36, 76.62, 70.99, 69.42, 68.60, 67.74, 67.02, 65.99, 65.84, 65.34, 19.51, 18.67; ¹⁹F NMR (377 MHz, CDCl₃) δ ppm: -78.00 (s, 3F). **IR** (thin layer film) v (cm⁻¹) = 2919, 1498, 1456, 1260, 1224, 1154, 1030, 907, 758, 731, 702, 638, 577, 569, 558, 539, 473, 415. **HRMS** (ESI⁺) m/z C₃₁H₃₂NO⁺ [M-OTf]⁺: calculated 434.2478, found 434.2477.


1-benzhydryl-3-cyano-1-ethyl-3-methylazetidin-1-ium trifluoromethanesulfonate (1va)

Prepared according to a slightly modified procedure E. Under a N₂ atmosphere, to an ovendried flask charged with AgOTf (1 equiv., 0.57 mmol, 72.3 mg), a solution of 1-benzhydryl-3-methylazetidine-3-carbonitrile **7va** (1 equiv., 0.57 mmol, 0.30 g) in dry CH₂Cl₂ (5.7 mL) was added. The reaction mixture was stirred at 40 °C for 12 h in the dark. The mixture was then filtered through celite and the filtrate was evaporated under reduced pressure. The

resulting powder was washed with cold Et₂O to afford the desired product in 50% yield (1.02 mmol, 0.16 g, d.r. > 1:50) as a white powder. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.65 – 7.58 (m, 4H), 7.57 – 7.43 (m, 6H), 5.80 (s, 1H), 4.91 (s, 4H), 3.84 (q, *J* = 7.1 Hz, 2H), 1.52 (t, *J* = 7.1 Hz, 3H), 0.79 (s, 3H).; ¹³C NMR (101 MHz, CDCl₃) δ ppm: 131.67, 130.80, 130.53, 130.20, 120.11, 120.95 (q, *J* = 319.9 Hz), 75.65, 66.36, 60.36, 25.83, 21.23, 8.86; ¹⁹F NMR (377 MHz, CDCl₃) δ ppm: -78.00 (s, 3F). **IR** (thin layer film) v (cm⁻¹) = 3060, 1499, 1455, 1423, 1259, 1225, 1157, 1030, 779, 754, 729, 706, 638. 574, 543. **HRMS** (ESI⁺) *m/z* C₂₀H₂₃N₂⁺ [M-OTf]⁺: calculated 291.1856, found 291.1857.


1-benzhydryl-1-benzyl-3-fluoro-3-phenylazetidin-1-ium trifluoromethanesulfonate (1wa)

Prepared according to general procedure D using 1-benzhydryl-1-benzyl-3-bromo-2-fluoro-2-phenylpropan-1-amine **7wa** (3.20 mmol, 1.56 g) to afford, following a silica plug
^f purification (CH₂Cl₂:Et₂O = 80:20), the desired product in 80% yield (2.56 mmol, 1.43 g, d.r. 1:2 *cis:trans*)* as a white powder. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.84 – 7.73 (m,

 $4H_{\text{minor}}, 7.68 - 7.58 \text{ (m, } 4H_{\text{major}}), 7.58 - 7.36 \text{ (m, } 10H_{\text{minor}+\text{major}}), 7.23 - 7.03 \text{ (m, } 4H_{\text{minor}+\text{major}}), 6.69 - 6.63 \text{ (m, } 2H_{\text{minor}}), 6.51 - 6.47 \text{ (m, } 2H_{\text{major}}), 6.46 \text{ (s, } 1H_{\text{minor}}), 6.20 \text{ (s, } 1H_{\text{major}}), 5.55 - 5.23 \text{ (m, } 4H_{\text{minor}+\text{major}}), 4.99 \text{ (s, } 2H_{\text{major}}), 4.68 \text{ (s, } 2H_{\text{minor}}); {}^{13}C NMR (101 MHz, CDCl_3) [overlapping signals] <math>\delta$ ppm: 133.54, 133.51, 133.30, 133.26, 133.07, 132.46, 131.36, 131.02, 130.57, 130.54, 130.41, 130.39, 130.17, 130.03, 129.80, 129.65, 129.44, 128.82, 128.75, \text{ (d, } J = 1.9 \text{ Hz}), 127.88, 127.29, 125.31 \text{ (d, } J = 4.0 \text{ Hz}), 124.55 \text{ (d, } J = 6.1 \text{ Hz}), 121.10 \text{ (d, } J = 320.3 \text{ Hz}), 89.26 \text{ (d, } J = 202.3 \text{ Hz}), 79.58, 77.83 \text{ (d, } J = 1.9 \text{ Hz}), 68.19 \text{ (d, } J = 30.2 \text{ Hz}), 67.17, 67.14 \text{ (d, } J = 32.3 \text{ Hz}), 66.23 \text{ (d, } J = 1.8 \text{ Hz}). {}^{19}F NMR (377 \text{ MHz, CDCl}_3) \delta \text{ ppm: }-78.16 \text{ (s, }3F), -128.22 \text{ (p, } J = 18.6 \text{ Hz}, 1F_{\text{minor}}), -140.29 \text{ (p, } J = 20.0, \text{ Hz}, 1F_{\text{major}}). IR (thin layer film) v (cm^{-1}) = 3064, 1499, 1454, 1413, 1351, 1256, 1224, 1155, 1065, 1030, 1003, 887, 757, 699, 637, 574. HRMS (ESI^+) *m/z* C_{29}H_{27}FN^+ [M-OTf]^+: calculated 408.2122, found 408.2122.

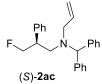
* Assignment of the major diastereoisomer by ¹H-¹⁹F 1D-HOESY. A correlation between the F atom and the benzylic protons was detected in the major *cis* diastereomer but not in the minor *trans* diastereomer.

Product Characterization

(S)-N-benzhydryl-3-fluoro-N-methyl-2-phenylpropan-1-amine (2a)

(*S*)-**2a** was prepared from **1a** (1 equiv., 0.1 mmol, 46.4 mg), according to the general procedure using 10 mol% of catalyst (*S*)-**D** (0.01 mmol, 8.4 mg) and stirring for 72 h. *Purification*: FCC eluent = Pentane:Et₂O (90:0 to 70:30, gradient). Colorless oil, 27.5 mg, 82% yield, e.r. = 80.5:19.5. **¹H NMR** (400 MHz, CDCl₃) δ ppm: 7.33 – 7.10 (m, 15H) 4.80 – 4.57 (m, 2H), 4.38 (s, 1H), 3.30 – 3.15 (m, 1H), 2.75 (dd, *J* = 12.6, 8.2 Hz, 1H), 2.53 (dddd, *J* = 12.6, 7.1, 2.3 Hz, 1H), 2.22 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ ppm: 142.87, 142.79 140.66 (d, *J* = 3.1 Hz), 128.51, 128.50, 128.46, 128.34, 128.31, 128.22, 127.05, 127.03, 127.01, 85.5 (d, *J* = 171.1 Hz), 76.15, 57.48 (d, *J* = 6.1 Hz), 45.00 (d, *J* = 18.3 Hz), 40.62; ¹⁹F NMR (376 MHz, CDCl₃) δ ppm: -222.24 (tdd, *J* = 47.5, 21.3, 1.5 Hz, 1F). **HRMS** (ESI⁺) *m*/z C₂₃H₂₅FN⁺ [M+H]⁺: calculated 334.1966, found 334.1956. **IR** (thin layer film) v (cm⁻¹) = 3061, 3027, 2958, 2781, 1599, 1492, 1452, 1263, 1201, 1080, 1016, 926, 760, 746, 700. [**a**]**b**^{25 °C} = + 14.6 ° (c = 0.5, CHCl₃, e.r. = 80.5:19.5). **HPLC separation** DAICEL CHIRALPAK[®] IB-3, Heptane:^{*i*}PrOH = 99.75:0.25, 1 mL/min; t₁ = 4.57 min (minor), t₂ = 4.96 min (major).

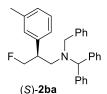
(S)-N-benzhydryl-N-benzyl-3-fluoro-2-phenylpropan-1-amine (2aa)


(S)-2aa was prepared from 1aa (1 equiv., 0.1 mmol, 53.9 mg), according to the general procedure using 5 mol% of catalyst (S)-D (0.005 mmol, 4.2 mg) and stirring for 48 h. *Purification*: FCC eluent = Pentane:Et₂O (100:0 to 90:10, gradient). Colorless oil, 40.1 mg, 98% yield, e.r. = 96:4. Gram scale reaction using opposite enantiomer of the catalyst

(*R*)-**D**: In a round-bottom flask, **1aa** (1 equiv., 1.85 mmol 1.0 g), CsF (2 equiv., 3.70 mmol, 562 mg) and 3 mol% of catalyst (*R*)-**D** (0.056 mmol, 46.4 mg) were stirred at r.t. in dry 1,2-DCE (0.25 M, 7.4 mL) at 900 rpm. After 72 h, the reaction mixture was directly purified by flash column chromatography. *Purification*: FCC eluent = Pentane:Et₂O (100:0 to 90:10, gradient) to elute the pure product as the (*R*)-enantiomer (colorless oil, 696.1 mg, 92% yield, e.r. = 96:4 e.r.); then Pentane:Et₂O (90:10 to 50:50, gradient) to recover the catalyst (46.0 mg, 99% catalyst recovery). ¹**H NMR** (400 MHz, CDCl₃) δ ppm: 7.40 – 7.36 (m, 4H), 7.22 – 7.22 (m, 14H), 7.07 – 7.02 (m, 2H), 5.00 (s, 1H), 4.62 (ddd, *J* = 47.6, 9.0, 5.5 Hz, 1H), 4.52 (ddd, *J* = 47.5, 9.0, 6.4 Hz, 1H), 3.69 (d, *J* = 1.0 Hz, 2H), 3.23–3.12 (m, 1H), 2.91 (dd, *J* = 13.3, 7.3 Hz, 1H), 2.75 (ddd, *J* = 13.3, 7.5, 2.1 Hz, 1H); ¹³**C NMR** (101 MHz, CDCl₃) [overlapping signals] δ ppm: 140.80, 140.62 (d, *J* = 3.7 Hz), 140.47, 139.56, 129.51, 129.26, 129.03, 128.54, 128.44, 128.40, 128.35, 128.25, 127.27, 127.10, 127.03, 85.70 (d, *J* = 171.4 Hz), 69.40, 55.57, 52.85 (d, *J* = 6.1 Hz), 45.14 (d, *J* = 18.4 Hz); ¹⁹**F NMR** (377 MHz, CDCl₃) δ ppm: - 221.09 (tdd, *J* = 47.5, 21.1, 1.7 Hz). **HRMS** (ESI⁺) *m*/z C₂₉H₂₉FN⁺ [M+H]⁺ [M+H]⁺: calculated 410.2279, found 410.2278. **IR** (thin layer film) v (cm⁻¹) = 3028, 2926, 2834, 1601, 1493, 1452, 1261, 1027, 762, 743, 698. **[a]_{p^{25 °C}** = + 10.1 ° (c = 0.3, CHCl₃, e.r. = 96:4). **HPLC separation** DAICEL CHIRALCEL[@] OJ-H, Heptane:EtOH = 95:5, 1 mL/min; t₁ = 8.83 min (minor), t₂ = 13.52 min (major).}

(S)-N-benzhydryl-N-ethyl-3-fluoro-2-phenylpropan-1-amine (2ab)

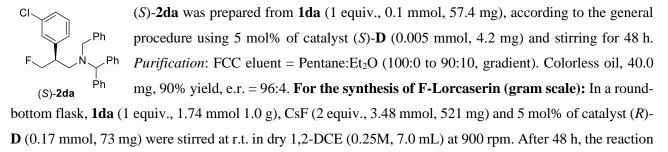
(S)-2ab was prepared from 1ab (1 equiv., 0.1 mmol, 47.8 mg), according to the general procedure using 10 mol% of catalyst (S)-D (0.01 mmol, 8.4 mg) and stirring for 72 h. Purification: FCC eluent = Pentane:Et₂O (100:0 to 90:10, gradient). Colorless oil, 32.3 (S)-2ab mg, 93% yield, e.r. = 96:4. Gram scale reaction: In a round-bottom flask, **1ab** (1 equiv., 2.11 mmol 1.01 g), CsF (2 equiv., 4.22 mmol, 641 mg) and 10 mol% of catalyst (S)-D (0.21 mmol, 176 mg) were stirred at r.t. in dry 1,2-DCE (0.25M, 8.4 mL) at 900 rpm. After 72 h, the reaction mixture was directly purified by flash column chromatography. *Purification*: FCC eluent = Pentane: Et_2O (100:0 to 98.5:1.5, gradient) to elute the pure product (colorless oil, 601 mg, 82% yield, e.r. = 96:4 e.r.); then Pentane:Et₂O (90:10 to 50:50, gradient) to recover the catalyst (174 mg, 99% catalyst recovery). ¹H NMR (500 MHz, CDCl₃) δ ppm: 7.34 – 7.15 (m, 13H), 7.13 - 7.08 (m, 2H), 4.82 (s, 1H), 4.70 (dd, J = 47.5, 5.5 Hz, 2H), 3.14 - 2.99 (m, 1H), 2.86 (dd, J = 100 m), J = 100 m), J = 100 m 13.5, 8.6 Hz, 1H), 2.73 - 2.52 (m, 3H), 0.96 (t, J = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) [overlapping] signals] δ ppm: 142.38, 142.15, 140.94 (d, J = 2.8 Hz), 128.85, 128.79, 128.51, 128.33, 128.31, 127.04, 127.01, 126.94, 86.23, 85.57 (d, J = 171.2 Hz), 70.90, 52.24 (d, J = 6.4 Hz), 45.41 (d, J = 18.2 Hz), 44.40, 10.87; ¹⁹**F NMR** (470 MHz, CDCl₃) δ ppm: -222.84 (tdd, J = 47.4, 23.0, 1.9 Hz). **HRMS** (ESI⁺) m/z C₂₄H₂₇FN⁺ $[M+H]^+$: calculated 348.2122, found 348.2120. **IR** (thin layer film) v (cm⁻¹) = 3026, 2966, 1493, 1452, 1028, 759, 699, 623. $[\alpha]_{D}^{25 \circ C} = +8.8 \circ (c = 0.5, CHCl_{3}, e.r. = 96:4)$. HPLC separation DAICEL CHIRALCEL[®] OJ-H, Heptane: EtOH = 96:4, 1 mL/min; $t_1 = 10.43$ min (minor), $t_2 = 12.59$ min (major).


(S)-N-benzhydryl-N-(3-fluoro-2-phenylpropyl)prop-2-en-1-amine (2ac)

(*S*)-**2ac** was prepared from **1ac** (1 equiv., 0.1 mmol, 48.9 mg), according to the general procedure using 10 mol% of catalyst (*S*)-**D** (0.01 mmol, 8.4 mg) and stirring for 36 h. *Purification*: FCC eluent = Pentane:Et₂O (100:0 to 90:10, gradient). Colorless oil, 34.5 mg, 96% yield, e.r. = 94:6. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.34 – 7.18 (m, 13H),

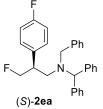
7.14 – 7.10 (m, 2H), 5.92 – 5.81 (m, 1H), 5.16 – 5.04 (m, 2H), 4.90 (s, 1H), 4.78 – 4.59 (m, 2H), 3.26 – 3.08 (m, 3H), 2.88 (dd, J = 13.3, 8.4 Hz, 1H), 2.72 (dddd, J = 13.3, 7.0, 2.3 Hz, 1H); ¹³**C** NMR (101 MHz, CDCl₃) [overlapping signals] δ ppm: 141.75, 141.61, 140.75 (d, J = 3.0 Hz), 135.45, 128.90, 128.84, 128.49, 128.37, 128.33, 127.12, 127.07, 126.96, 117.76, 85.57 (d, J = 171.0 Hz), 70.52, 53.89, 52.55 (d, J = 6.4 Hz), 45.09 (d, J = 18.1 Hz); ¹⁹**F** NMR (376 MHz, CDCl₃) δ ppm: -222.34 (tdd, J = 47.1, 21.2, 1.7 Hz, 1F). HRMS (ESI⁺) m/z C₂₅H₂₇FN⁺ [M+H]⁺: calculated 360.2122, found 360.2123. IR (thin layer film) v (cm⁻¹) = 3061, 3027, 2956, 2831, 1600, 1493, 1452, 1079, 1005, 922, 760, 735, 699. [α] $_{D}^{25 \circ C} = + 6.5 \circ$ (c = 0.5, CHCl₃, e.r. = 94:6). HPLC separation DAICEL CHIRALCEL[®] OJ-H, Heptane:EtOH = 99.5:0.5, 1 mL/min; t₁ = 16.91 min (minor), t₂ = 22.62 min (major).

(S)-N-benzhydryl-N-benzyl-3-fluoro-2-(m-tolyl)propan-1-amine (2ba)


(*S*)-**2ba** was prepared from **1ba** (1 equiv., 0.1 mmol, 55.4 mg), according to the general procedure using 5 mol% of catalyst (*S*)-**D** (0.005 mmol, 4.2 mg) and stirring for 48 h. *Purification*: FCC eluent = Pentane:Et₂O (100:0 to 90:10, gradient). Colorless oil, 37.2 mg, 88% yield, e.r. = 97.5:2.5. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.36 – 7.13 (m, 16H),

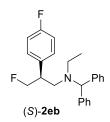
7.09 – 7.05 (m, 1H), 6.84 – 6.77 (m, 2H), 4.96 (s, 1H), 4.64 – 4.39 (m, 2H), 3.68 – 3.58 (m, 2H), 3.18 – 3.05 (m, 1H), 2.85 (dd, J = 13.3, 7.0 Hz, 1H), 2.72 (dddd, J = 13.2, 7.7, 1.9 Hz, 1H), 2.30 (s, 3H); ¹³**C** NMR (101 MHz, CDCl₃) [overlapping signals] δ ppm: 140.87, 140.46 (d, J = 3.8 Hz), 140.38, 139.6, 138.0, 129.56, 129.25, 129.16, 129.00, 128.41, 128.37, 128.31, 128.21, 127.80, 127.25, 127.05, 125.53, 85.78 (d, J = 171.4 Hz), 69.27, 55.47, 52.82 (d, J = 5.8 Hz), 45.03 (d, J = 18.1 Hz), 21.59; ¹⁹F NMR (376 MHz, CDCl₃) δ ppm: - 220.64 (tdd, J = 47.3, 21.1, 1.4 Hz, 1F). HRMS (ESI⁺) m/z C₃₀H₃₁FN⁺ [M+H]⁺: calculated 424.2435, found 424.2434. IR (thin layer film) v (cm⁻¹) = 2980, 1492, 1452, 1381, 1252, 1154, 1073, 954, 764, 743, 700; $[\alpha]_D^{25 \circ C} = + 7.7^{\circ}$ (c = 0.3, CHCl₃, e.r. = 97.5:2.5). HPLC separation DAICEL CHIRALCEL[®] OJ-H, Heptane:^{*i*}PrOH = 96:4, 1 mL/min; t₁ = 6.89 min (minor), t₂ = 9.69 min (major).

(S)-N-benzhydryl-N-benzyl-3-fluoro-2-(3-methoxyphenyl)propan-1-amine (2ca)


(S)-2ca was prepared from 1ca (1 equiv., 0.1 mmol, 57.0 mg), according to the general MeO procedure using 5 mol% of catalyst (S)-D (0.005 mmol, 4.2 mg) and stirring for 48 h. Ph Purification: FCC eluent = Pentane:Et₂O (100:0 to 90:10, gradient). Colorless oil, 42.2 Ρh mg, 96% yield, e.r. = 97:3. ¹**H** NMR (400 MHz, CDCl₃) δ ppm: 7.36 – 7.15 (m, 16 H), (S)-**2ca** 6.81 - 6.76 (m, 1H), 6.61 (d, J = 7.6 Hz, 1H), 6.52 (t, J = 2.1 Hz, 1H), 4.95 (s, 1H), 4.65 - 4.38 (m, 2H), 3.72(s, 3H), 3.64 (s, 2H), 3.15 – 3.00 (m, 1H), 2.86 (dd, J = 13.3, 7.2 Hz, 1H), 2.75 (dddd, J = 13.2, 7.4, 2.1 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) [overlapping signals] δ ppm: 159.74, 142.28 (d, J = 3.7 Hz), 140.84, 140.51, 139.57, 129.49, 129.24, 129.01, 128.40, 128.34, 128.25, 127.27, 127.10, 120.80, 114.08, 112.46, 85.64 (d, *J* = 171.7 Hz), 69.49, 55.62, 55.25, 52.94 (d, J = 6.1 Hz), 45.23 (d, J = 18.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ ppm: -220.94 (tdd, J = 47.3, 21.0 1.5 Hz, 1F). **HRMS** (ESI⁺) $m/z C_{30}H_{31}FNO^+$ [M+H]⁺: calculated 440.2384, found 440.2382. **IR** (thin layer film) v (cm⁻¹) = 3027, 2956, 2836, 1600, 1492, 1452, 1262, 1159, 1021, 764, 743, 699. $[\alpha]_D^{25 \circ C} = +3.8 \circ (c = 0.3, CHCl_3, e.r. = 97:3)$. HPLC separation DAICEL CHIRALCEL[®] OJ-H, Heptane:EtOH = 90:10, 1 mL/min; $t_1 = 9.30 \text{ min (minor)}, t_2 = 15.39 \text{ min (major)}.$

(S)-N-benzhydryl-N-benzyl-2-(3-chlorophenyl)-3-fluoropropan-1-amine (2da)

mixture was directly purified by flash column chromatography. *Purification*: FCC eluent = Pentane:Et₂O (100:0 to 90:10, gradient). Colorless oil, 749 mg, 97% yield, e.r. = 96:4 ¹**H NMR** (400 MHz, CDCl₃) δ ppm: 7.38 – 7.16 (m, 17H), 6.97 – 6.93 (m, 1H), 6.87 (d, *J* = 6.5 Hz, 1H), 4.93 (s, 1H), 4.61 – 4.34 (m, 2H), 3.68 (d, *J* = 14.0 Hz, 1H), 3.59 (d, *J* = 14.0 Hz, 1H), 3.14 – 2.99 (m, 1H), 2.84 (dd, *J* = 13.3, 6.8 Hz, 1H), 2.75 (dddd, *J* = 13.3, 8.0, 1.6 Hz, 1H); ¹³**C NMR** (101 MHz, CDCl₃) [overlapping signals] δ ppm: 142.63 (d, *J* = 3.3 Hz), 140.87, 140.13, 139.31, 134.29, 129.71, 129.52, 129.08, 128.99, 128.54, 128.46, 128.41, 128.33, 127.36, 127.22, 127.18, 126.81, 85.32 (d, *J* = 172.1 Hz), 69.68, 55.72, 52.67 (d, *J* = 6.4 Hz), 45.95 (d, *J* = 18.4 Hz); ¹⁹**F NMR** (376 MHz, CDCl₃) δ ppm: -221.53 (td, *J* = 47.2, 21.0 Hz, 1F). **HRMS** (ESI⁺) *m/z* C₂₉H₂₈CIFN⁺ [M+H]⁺: calculated 444.1889, found 444.1883. **IR** (thin layer film) v (cm⁻¹) = 3060, 3026, 2923, 2838, 1597, 1573, 1493, 1451, 1080, 1028, 785, 763, 744, 698; **[a]**_D^{25 °C} = + 1.6 ° (c = 0.3, CHCl₃, e.r. = 96:4). **HPLC separation** DAICEL CHIRALCEL[®] OJ-H, Heptane:EtOH = 90:10, 1 mL/min; t₁ = 6.69 min (minor), t₂ = 12.75 min (major).


(S)-N-benzhydryl-N-benzyl-3-fluoro-2-(4-fluorophenyl)propan-1-amine (2ea)

(*S*)-**2ea** was prepared from **1ea** (1 equiv., 0.1 mmol, 55.8 mg), according to the general procedure using 5 mol% of catalyst (*S*)-**D** (0.005 mmol, 4.2 mg) and stirring for 48 h. *Purification*: FCC eluent = Pentane:Et₂O (100:0 to 90:10, gradient). Colorless oil, 42.0 mg, 98% yield, e.r. = 94.5:5.5. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.38 – 7.19 (m, 15 H),

^{(S)-2ea} 6.99 – 6.88 (m, 4H), 4.95 (s, 1H), 4.61 – 4.35 (m, 2H), 3.67 (d, J = 13.8 Hz, 1H), 3.60 (d, J = 13.8 Hz, 1H), 3.14 – 3.00 (m, 1H), 2.84 (dd, J = 13.3, 7.1 Hz, 1H), 2.75 (dddd, J = 13.2, 7.8, 1.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) [overlapping signals] δ ppm: 161.99 (d, J = 245.0 Hz), 140.86, 140.27, 139.45, 136.28 (m), 129.86 (d, J = 7.8 Hz), 129.51, 129.17, 129.02, 128.42, 128.38, 128.29, 127.34, 127.17, 115.28 (d, J = 21.0 Hz), 85.63 (d, J = 172.0 Hz), 69.58, 55.70, 52.90 (d, J = 6.0 Hz), 44.43 (d, J = 18.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ ppm: -116.12 – -116.26 (m, 1F), -221.61 (td, J = 47.7, 21.8 Hz, 1F). HRMS (ESI⁺) m/z C₂₉H₂₈F₂N⁺ [M+H]⁺: calculated 428.2184, found 428.2186. IR (thin layer film) v (cm⁻¹) = 3027, 2891, 1603, 1510, 1493, 1452, 1381, 1224, 1160, 1136, 1077, 1028, 967, 832, 764, 744. [α] $_{0}^{25 \circ C} = + 8.2 \circ$ (c = 0.5, CHCl₃, e.r. = 94.5:5.5). HPLC separation DAICEL CHIRALPAK[®] IB-3, Heptane:^{*i*}PrOH = 99.75:0.25, 1 mL/min; t₁ = 5.32 min (minor), t₂ = 5.77 min (major).

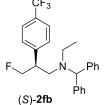
(S)-N-benzhydryl-N-ethyl-3-fluoro-2-(4-fluorophenyl)propan-1-amine (2eb)

(*S*)-**2eb** was prepared from **1eb** (1 equiv., 0.1 mmol, 55.8 mg), according to the general procedure using 5 mol% of catalyst (*S*)-**D** (0.01 mmol, 8.4 mg) and stirring for 48 h. *Purification*: FCC eluent = Pentane:Et₂O (100:0 to 90:10, gradient). Colorless oil, 35.3 mg, 97% yield, e.r. = 95:5. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.33 – 7.16 (m, 10 H), 7.09 – 7.02 (m, 2H), 7.01 – 6.94 (m, 2H), 4.81 (s, 1H), 4.74 – 4.56 (m, 2H), 3.09 – 2.95

(m, 1H), 2.83 (dd, J = 13.4, 8.4 Hz, 1H), 2.71 – 2.51 (m, 3H); 0.96 (t, J = 7.0 Hz, 3H); ¹³**C** NMR (101 MHz, CDCl₃) [overlapping signals] δ ppm: 161.94 (d, J = 247.2 Hz), 142.26, 142.14, 136.62 (m), 129.74 (d, J = 7.9

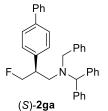
Hz), 128.87, 128.73, 128.37, 127.12, 127.07, 115.28 (d, *J* = 21.6 Hz), 85.47 (d, *J* = 170.6 Hz), 70.96, 52.27 (d, J = 6.0 Hz), 44.73 (d, J = 18.2 Hz), 44.51, 10.86; ¹⁹F NMR (376 MHz, CDCl₃) δ ppm: -116.25 - -116.36 (m, 1F), -223.39 (tdd, J = 48.1, 23.8, 1.6 Hz, 1F). **HRMS** (ESI⁺) m/z C₂₄H₂₆F₂N⁺ [M+H]⁺: calculated 366.2028, found 366.2025. **IR** (thin layer film) v (cm⁻¹) = 3026, 2970, 1603, 1510, 1492, 1452, 1375, 1225, 1160, 1080, 1015, 832, 761, 745, 706. $[\alpha]_{D}^{25 \circ C} = +3.6 \circ (c = 0.4, CHCl_3, e.r. = 95:5)$. HPLC separation DAICEL CHIRALPAK[®] IB-3, Heptane: PrOH = 99.9:0.1, 1 mL/min; $t_1 = 5.85 \text{ min (minor)}, t_2 = 6.51 \text{ min (major)}.$

(S)-N-benzhydryl-N-benzyl-3-fluoro-2-(4-(trifluoromethyl)phenyl)propan-1-amine (2fa)



(S)-2fa was prepared from 1fa (1 equiv., 0.1 mmol, 60.8 mg), according to the general procedure using 5 mol% of catalyst (S)-D (0.005 mmol, 4.2 mg) and stirring for 48 h. *Purification*: FCC eluent = Pentane:Et₂O (100:0 to 90:10, gradient). Colorless oil, 47.2 mg, 99% yield, e.r. = 95:5. ¹**H NMR** (400 MHz, CDCl₃) δ ppm: 6.50 (d, J = 7.9 Hz, 2H), 7.38 - 7.20 (m, 15H), 7.07 (d, J = 8.1 Hz, 2H), 4.95 (s, 1H), 4.64 - 4.38 (m, 2H), 3.69 (d,

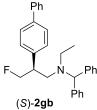
(S)-2fb was prepared from 1fb (1 equiv., 0.1 mmol, 47.8 mg), according to the general


J = 13.9 Hz, 1H), 3.60 (d, J = 13.9 Hz, 1H), 3.19 – 3.05 (m, 1H), 2.90 (dd, J = 13.4, 7.1 Hz, 1H), 2.79 (dddd, J = 13.4), 7.1 Hz, 1H), 2.79 (dddd, J = 13.4), 7.1 Hz, 1H), 7.79 (dddd, J = 13.4), 7.1 Hz, 1H), 7.1 Hz, 1H J = 13.3, 7.8, 1.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) [overlapping signals] δ ppm: 144.83, 140.88, 140.18, 139.29, 129.51, 129.29 (q, J = 32.3 Hz), 129.14, 129.08, 129.04, 128.81, 128.46, 128.35, 127.44, 127.27, 127.24, 125.36 (q, J = 3.6 Hz), 124.41 (q, J = 271.5 Hz), 85.17 (d, J = 171.9 Hz), 69.90, 55.96, 52.86 (d, J = 6.1 Hz), 45.15 (d, J = 18.4 Hz); ¹⁹**F NMR** (376 MHz, CDCl₃) δ ppm: -62.36 (s, 3F), -221.93 (td, J = 48.0, 28.1Hz, 1F). HRMS (ESI⁺) *m/z* C₃₀H₂₈F₄N⁺ [M+H]⁺: calculated 478.2152, found 478.2150. IR (thin layer film) v $(cm^{-1}) = 3062, 3028, 2952, 2834, 1619, 1600, 1493, 1452, 1422, 1326, 1165, 1123, 1069, 1017, 837, 764, 745, 1000, 1$ 700. $[\alpha]_D^{25 \circ C} = +4.0 \circ (c = 0.4, CHCl_3, e.r. = 95:5)$. HPLC separation DAICEL CHIRALPAK[®] IB-3, Heptane: $PrOH = 99:1, 1 \text{ mL/min}; t_1 = 3.54 \text{ min (minor)}, t_2 = 4.35 \text{ min (major)}.$

(S)-N-benzhydryl-N-ethyl-3-fluoro-2-(4-(trifluoromethyl)phenyl)propan-1-amine (2fb)

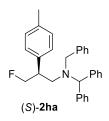
procedure using 10 mol% of catalyst (S)-D (0.01 mmol, 8.4 mg) and stirring for 72 h. Purification: FCC eluent = Pentane:Et₂O (100:0 to 90:10, gradient). White solid, 39.5 mg, 95% yield, e.r. = 95:5. ¹**H NMR** (400 MHz, CDCl₃) δ ppm: 7.54 (d, J = 8.1 Hz, 2H), 7.30 -7.17 (m, 12H), 4.81 (s, 1H), 4.79 -4.59 (m, 2H), 3.16 -3.00 (m, 1H), 2.87 (dd, J = 13.4, 8.3 Hz, 1H), 2.74 - 2.54 (m, 3H), 0.97 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ ppm: 144.95, 141.97, 141.90, 128.81 (q, J = 32.3 Hz), 128.73, 128.57, 128.53, 128.28, 128.27, 127.06, 127.00, 125.26 (q, J = 3.8 Hz), 124.25 (q, J = 271.4 Hz), 84.90 (d, J = 172.0 Hz), 70.89, 51.97 (d, J = 6.5 Hz), 45.32 (d, J = 18.1 Hz), 44.53, 10.70; ¹⁹**F** NMR (376 MHz, CDCl₃) δ ppm: -62.42 (s, 3F), -223.56 (td, J = 47.3, 24.1, 1.4 Hz, 1F). **HRMS** (ESI⁺) m/z C₂₅H₂₆F₄N⁺ [M+H]⁺: calculated 416.1996, found 416.1993. **IR** (thin layer film) v (cm⁻¹) = 3027, 2966, 2833, 1619, 1492, 1452, 1421, 1326, 1165, 1124, 1070, 1018, 839, 706. **MP** 85 – 87 °C. **[α]**_D^{25 °C} = - 2.6 ° (c = 0.4, CHCl₃, e.r. = 95:5). HPLC separation DAICEL CHIRALPAK[®] IB-3, Heptane:ⁱPrOH = 99.75:0.25, 1 mL/min; $t_1 = 4.29$ min (minor), $t_2 = 4.85$ min (major).

(S)-2-([1,1'-biphenyl]-4-yl)-N-benzhydryl-N-benzyl-3-fluoropropan-1-amine (2ga)



(S)-2ga was prepared from 1ga (1 equiv., 0.1 mmol, 61.6 mg), according to the general procedure using 5 mol% of catalyst (S)-D (0.005 mmol, 4.2 mg) and stirring for 48 h. *Purification*: FCC eluent = Pentane:Et₂O (100:0 to 90:10, gradient). Colorless oil, 39.7 mg, 82% yield, e.r. = 97:3. ¹**H NMR** (400 MHz, CDCl₃) δ ppm: 7.65 – 7.60 (m, 2H), 7.55 -7.44 (m, 4H), 7.41 - 7.35 (m, 4H), 7.35 - 7.20 (m, 12H), 7.12 - 7.07 (m, 2H), 5.01 (s,

(S)-2gb was prepared from 1gb (1 equiv., 0.1 mmol, 55.4 mg), according to the general


1H), 4.72 – 4.45 (m, 2H), 3.72 (d, J = 13.9 Hz, 1H), 3.67 (d, J = 13.9 Hz, 1H), 3.25 – 3.12 (m, 1H), 2.93 (dd, J = 13.2, 7.2 Hz, 1H), 2.82 (dddd, J = 13.2, 7.5, 1.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) [overlapping] signals] δ ppm: 141.15, 140.87, 140.40, 139.96, 139.72 (d, J = 3.8 Hz), 139.56, 129.54, 129.24, 129.04, 128.92, 128.86, 128.42, 128.37, 128.27, 127.33, 127.31, 127.25, 127.19, 127.13, 85.68 (d, *J* = 171.7 Hz), 69.47, 55.65, 52.93 (d, J = 5.9 Hz), 44.83 (d, J = 17.9 Hz); ¹⁹**F NMR** (376 MHz, CDCl₃) δ ppm: -221.04 (td, J = 47.7, 20.9Hz, 1F). HRMS (ESI⁺) m/z C₃₅H₃₃FN⁺ [M+H]⁺: calculated 486.2592, found 486.2587. IR (thin layer film) v $(cm^{-1}) = 3059, 3027, 2928, 2834, 1600, 1488, 1450, 1076, 1008, 835, 764, 743, 699.$ $[\alpha]_{D}^{25 \circ C} = +25.5 \circ (c = -25.5)^{\circ}$ 0.4, CHCl₃, e.r. = 97:3). **HPLC separation** DAICEL CHIRALPAK[®] IB-3, Heptane:^{*i*}PrOH = 99:1, 1 mL/min; $t_1 = 5.61 \text{ min (major)}, t_2 = 8.22 \text{ min (minor)}.$

(S)-2-([1,1'-biphenyl]-4-yl)-N-benzhydryl-N-ethyl-3-fluoropropan-1-amine (2gb)

procedure using 10 mol% of catalyst (S)-D (0.01 mmol, 8.4 mg) and stirring for 72 h. Purification: FCC eluent = Pentane:Et₂O (100:0 to 90:10, gradient). Colorless oil, 36.4 mg, 86% yield, = 97:3. ¹**H NMR** (400 MHz, CDCl₃) δ ppm: 7.61 – 7.55 (m, 2H), 7.55 -7.49 (m, 2H), 7.46 - 7.40 (m, 2H), 7.36 - 7.15 (m, 13H), 4.84 (s, 1H), 4.74 (dd, J = 47.6, 5.6 Hz, 2H), 3.18 – 3.03 (m, 1H), 2.89 (dd, *J* = 13.3, 8.5 Hz, 1H), 2.76 – 2.54 (m, 3H), 0.99 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) [overlapping signals] δ ppm: 142.38, 142.16, 141.12, 140.02 (d, J = 2.5 Hz), 139.89, 128.89, 128.87, 128.80, 128.72, 128.35, 127.30, 127.24, 127.19, 127.07, 127.04, 85.54 (d, *J* = 170.1 Hz), 70.96, 52.28 (d, J = 6.2 Hz), 45.10 (d, J = 18.4 Hz), 44.49, 10.92; ¹⁹F NMR (376 MHz, CDCl₃) δ ppm: -222.83 (td, J = 47.5, 23.2, 1.6 Hz, 1F). HRMS (ESI⁺) m/z C₃₀H₃₁FN⁺ [M+H]⁺: calculated 424.2435, found 424.2433. **IR** (thin layer film) v (cm⁻¹) = 2980, 1487, 1451, 1382, 1252, 1147, 2079, 935, 833, 764, 732, 698. $[\alpha]_{D}^{25 \circ C} = + 9.7 \circ (c = 0.3, CHCl_{3}, e.r. = 97:3)$. HPLC separation DAICEL CHIRALCEL[®] OJ-H, Heptane:EtOH = 60:40, 1 mL/min; $t_1 = 22.06$ min (major), $t_2 = 34.84$ min (minor).

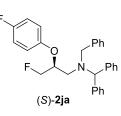
(S)-N-benzhydryl-N-benzyl-3-fluoro-2-(p-tolyl)propan-1-amine (2ha)

(S)-2ha was prepared from 1ha (1 equiv., 0.1 mmol, 57.0 mg), according to the general procedure using 5 mol% of catalyst (S)-D (0.005 mmol, 4.2 mg) and stirring for 48 h. Purification: FCC eluent = Pentane:Et₂O (100:0 to 90:10, gradient). Colorless oil, 35.6 mg, 84% yield, e.r. = 96.5:3.5. ¹**H NMR** (400 MHz, CDCl₃) δ ppm: 7.37 – 7.19 (m, 15H), 7.08 (d, J = 7.9 Hz, 2H), 7.90 (d, J = 7.9 Hz, 2H), 4.97 (s, 1H), 4.66 – 4.39 (m, 2H), 3.64 (s, 2H), 3.16 - 3.01 (m, 1H), 2.86 (dd, J = 13.3, 7.5 Hz, 1H), 2.73 (dddd, J = 13.2, 7.3, 2.2 Hz, 1H), 2.34 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) [overlapping signals] δ ppm: 140.75, 140.62, 139.62, 137.54 (d, J = 3.8 Hz), 136.55, 129.48, 129.31, 129.23, 128.39, 128.33, 128.27, 128.24, 127.24, 127.08, 85.79 (d, J = 171.1 Hz), 69.38, 55.58, 52.96 (d, J = 6.0 Hz), 44.70 (d, J = 18.1 Hz), 21.21; ¹⁹**F NMR** (376 MHz, CDCl₃) δ ppm: -220.99 (tdd, J = 48.0, 21.0, 1.5 Hz, 1F). **HRMS** (ESI⁺) m/z C₃₀H₃₁FNO⁺ [M+H]⁺: calculated 424.2435, found 424.2435. **IR** (thin layer film) v (cm⁻¹) = 3059, 3026, 2951, 2838, 1600, 1515, 1493, 1451, 01133, 1077, 1028, 813, 763, 743, 700. [α]_D^{25 °C} = + 14.8 ° (c = 0.5, CHCl₃, e.r. = 96.5:3.5). **HPLC separation** DAICEL CHIRALCEL[®] OJ-H, Heptane:^{*i*}PrOH = 96:4, 1 mL/min; t₁ = 7.77 min (minor), t₂ = 10.38 min (major).

(S)-N-benzhydryl-N-benzyl-3-fluoro-2-phenoxypropan-1-amine (2ia)

(*S*)-2ia was prepared from 1ia (1 equiv., 0.1 mmol, 55.6 mg), according to the general procedure using 5 mol% of catalyst (*S*)-**D** (0.005 mmol, 4.2 mg) and stirring for 48 h. *Purification*: FCC eluent = Pentane:Et₂O (100:0 to 90:10, gradient). Colorless oil, 42.0 mg, 99% yield, e.r. = 88:12. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.44 – 7.17 (m, 17H), 6.96 – 6.90 (m, 1H), 6.70 – 6.63 (m, 2H), 4.99 (s, 1H), 4.64 – 4.22 (m, 3H), 3.76 (d, *J* = 13.8 Hz, 1H), 3.70 (d, *J* = 13.8 Hz, 1H), 2.96 – 2.75 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) [overlapping signals] δ ppm: 157.95, 141.23, 140.84, 139.41, 129.61, 129.36, 129.14, 129.10, 128.57, 128.52, 127.44, 127.38, 127.33, 121.37, 116.02, 83.57 (d, *J* = 173.7 Hz), 75.86 (d, *J* = 18.4 Hz), 70.98, 56.86, 50.87 (d, *J* = 6.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ ppm: -229.37 (td, *J* = 47.6, 20.5 Hz, 1F). HRMS (ESI⁺) *m/z* C₂₉H₂₉FNO⁺ [M+H]⁺: calculated 426.2228, found 426.2225. IR (thin layer film) v (cm⁻¹) = 3061, 3028, 2920, 2849, 1598, 1493, 1452, 1299, 1239, 1174, 1082, 1026, 925, 747, 700. [α] $_{D}^{25 \circ C} = + 21.2 \circ$ (c = 0.6, CHCl₃, e.r. = 88:12). HPLC separation DAICEL CHIRALCEL[®] OJ-3, Heptane:^{*i*}PrOH = 95:5, 1 mL/min; t₁ = 12.51 min (minor), t₂ = 20.42 min (major).

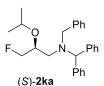
(S)-N-benzhydryl-N-ethyl-3-fluoro-2-phenoxypropan-1-amine (2ib)


7.32 – 7.26 (m, 4H), 7.26 – 7.17 (m, 4H), 6.94 (tt, J = 7.3, 0.9 Hz, 1H), 6.74 – 6.68 (m, 2H), 4.86 (s, 1H), 4.80 – 4.53 (m, 2H), 4.41 – 4.30 (m, 1H), 2.92 – 2.77 (m, 2H), 2.75 – 2.59 (m, 2H), 1.01 (t, J = 7.0 Hz, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ ppm: 158.10, 142.33, 142.30, 129.62, 128.94, 128.62, 128.55, 128.51, 127.32, 127.19, 121.40, 116.15, 82.57 (d, J = 172.1 Hz), 76.45 (d, J = 18.2 Hz), 71.71, 49.99 (d, J = 6.7 Hz), 46.03 11.12; ¹⁹F NMR (376 MHz, CDCl₃) δ ppm: -230.23 (td, J = 47.5, 21.1, 2.0 Hz, 1F). **HRMS** (ESI⁺) m/z C₂₄H₂₇FNO⁺ [M+H]⁺: calculated 364.2071, found 364.2071. **IR** (thin layer film) v (cm⁻¹) = 2969, 1598, 1493, 1453, 1240, 1174, 1082, 1025, 937, 793, 753, 707, 620. [α] $p^{25 \circ C} = + 21.0 \circ$ (c = 0.5, CHCl₃, e.r. = 93.5:6.5).

HPLC separation DAICEL CHIRALCEL[®] OJ-H, Heptane:EtOH = 96:4, 1 mL/min; $t_1 = 13.57$ min (minor), $t_2 = 16.82$ min (major).

(S)-N-benzhydryl-N-(3-fluoro-2-phenoxypropyl)prop-2-en-1-amine (2ic)

(*S*)-2ic was prepared from 1ic (1 equiv., 0.1 mmol, 50.6 mg), according to the general procedure using 10 mol% of catalyst (*S*)-**D** (0.01 mmol, 8.4 mg) and stirring for 36 h. *Purification*: FCC eluent = Pentane:Et₂O (100:0 to 90:10, gradient). Colorless oil, 34.2 mg, 91% yield, e.r. = 85:15. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.38 – 7.19 (m, 12H), 6.94 (tt, *J* = 8.3, 1.0 Hz, 1H), 6.78 – 6.73 (m, 2H), 5.97 – 5.85 (m, 1H), 5.18 – 5.13 (m, 1H), 5.12 – 5.05 (m, 1H), 4.93 (s, 1H), 4.79 – 4.50 (m, 2H), 4.51 – 4.38 (m, 1H), 3.22 (d, *J* = 6.3 Hz, 2H), 2.93 – 2.81 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) [overlapping signals] δ ppm: 158.11, 141.86, 141.75, 135.28, 129.62, 129.00, 128.73, 128.57, 128.54, 127.39, 127.28, 121.43, 118.25, 116.19, 83.66 (d, *J* = 172.2 Hz), 76.32 (d, *J* = 18.5 Hz), 71.55, 55.41, 50.17 (d, *J* = 6.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ ppm: -229.74 (tdd, *J* = 47.4, 27.2, 1.5 Hz, 1F). HRMS (ESI⁺) *m*/*z* C₂₅H₂₇FNO⁺ [M+H]⁺: calculated 376.2071, found 376.2067. IR (thin layer film) v (cm⁻¹) = 3061, 3027, 2922, 2848, 1597, 1493, 1453, 1289, 1240, 1173, 1083, 1026, 928, 795, 753, 706. [*a*]_D^{25 °C} = + 18.9 ° (c = 0.4, CHCl₃, e.r. = 85:15). HPLC separation DAICEL CHIRALPAK[®] IB-3, Heptane:^{*i*}PrOH = 99.75:0.25, 1 mL/min; t₁ = 5.26 min (minor), t₂ = 5.70 min (major).


(S)-N-benzhydryl-N-benzyl-3-fluoro-2-(4-fluorophenoxy)propan-1-amine (2ja)

(*S*)-**2ja** was prepared from **1ja** (1 equiv., 0.1 mmol, 57.4 mg), according to the general procedure using 10 mol% of catalyst (*S*)-**D** (0.01 mmol, 8.4 mg) and stirring for 48 h. *Purification*: FCC eluent = Pentane:Et₂O (100:0 to 90:10, gradient). Colorless oil, 27.5 mg, 62% yield, e.r. = 88:12. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.42–7.24 (m, 15H), 6.90 – 6.83 (m, 2H), 6.60 – 6.54 (m, 2H), 4.96 (s, 1H), 4.75 (ddd, *J* = 47.5, 10.1, 2.9

Hz, 1H), 4.36 (ddd, J = 47.6, 10.1, 5.5 Hz, 1H), 4.22 – 4.10 (m, 2H), 3.73 (d, J = 13.7 Hz, 1H), 3.68 (d, J = 13.7 Hz, 1H), 2.92 – 2.81 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) [overlapping signals] δ ppm: 157.42 (d, J = 239.2 Hz), 154.09 (d, J = 2.3 Hz), 141.20, 140.79, 139.31, 129.34, 129.15, 129.05, 128.60, 128.55, 127.49, 127.45, 127.38, 117.40 (d, J = 8.0 Hz), 115.90 (d, J = 23.0 Hz), 83.64 (d, J = 172.6 Hz), 77.16 (d, J = 18.4 Hz), 71.19, 57.02 50.87 (d, J = 7.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ ppm: -123.00 – -123.09 (m, 1F), -223.31 (td, J = 47.5, 19.9 Hz, 1F). HRMS (ESI⁺) m/z C₂₉H₂₈F₂NO⁺ [M+H]⁺: calculated 444.2133, found 444.2126. IR (thin layer film) v (cm⁻¹) = 2980, 1503, 1453, 1381, 1247, 1206, 1154, 1072, 1026, 953, 827, 744, 701. [α] $_{D}^{25 \circ C} = +15.7 \circ$ (c = 0.9, CHCl₃, e.r. = 88:12). HPLC separation DAICEL CHIRALCEL[®] OJ-3, Heptane:ⁱPrOH = 80:20, 1 mL/min; t₁ = 6.80 min (minor), t₂ = 13.43 min (major).

(S)-N-benzhydryl-N-benzyl-3-fluoro-2-isopropoxypropan-1-amine (2ka)

(*S*)-**2ka** was prepared from **1ka** (1 equiv., 0.1 mmol, 52.1 mg), according to the general procedure using 5 mol% of catalyst (*S*)-**D** (0.005 mmol, 4.2 mg) and stirring for 48 h. *Purification*: FCC eluent = Pentane:Et₂O (100:0 to 90:10, gradient). Colorless oil, 34.0 mg, 87% yield, e.r. = 93:7. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.43 – 7.21 (m, 15H), 4.97 (s,

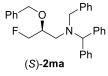
1H), 4.48 (ddd, J = 47.5, 9.7, 3.1 Hz, 1H), 4.36 (ddd, J = 48.1, 9.7, 6.3 Hz, 1H), 3.70 (d, J = 13.7 Hz, 1H), 3.65 (d, J = 13.7 Hz, 1H), 3.54 (sept, J = 6.1 Hz, 1H), 3.52 – 3.42 (m, 1H), 2.69 – 2.56 (m, 2H), 2.75 (dd, J = 6.1, 2.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) [overlapping signals] δ ppm: 140.99, 140.80, 139.54, 129.35, 129.30, 129.06, 128.50, 128.40, 128.35, 127.27, 85.28 (d, J = 170.6 Hz), 74.75 (d, J = 17.4 Hz), 71.32, 70.42, 56.73, 51.87 (d, J = 8.0 Hz), 22.82, 22.69; ¹⁹F NMR (376 MHz, CDCl₃) δ ppm: -227.86 (tdd, J = 48.3, 19.3, 2.3 Hz, 1F). HRMS (ESI⁺) m/z C₂₆H₃₁FNO⁺ [M+H]⁺: calculated 392.2384, found 392.2385. IR (thin layer film) v (cm⁻¹) = 3061, 3028, 2967, 2926, 2848, 1600, 1494, 1452, 1368, 1330, 1180, 1123, 985, 763, 744, 700. [α] $_{D}^{25 \circ C} = +10.5^{\circ}$ (c = 0.5, CHCl₃, e.r. = 93:7). HPLC separation DAICEL CHIRALPAK[®] IC-3, Heptane:^{*i*}PrOH = 99:1, 1 mL/min; t₁ = 2.78 min (minor), t₂ = 3.09 min (major).

(S)-N-benzhydryl-N-ethyl-3-fluoro-2-isopropoxypropan-1-amine (2kb)

(*S*)-2kb was prepared from 1kb (1 equiv., 0.1 mmol, 46.0 mg), according to the general procedure 10 mol% of catalyst (*S*)-D (0.01 mmol, 8.4 mg) and stirring for 72 h. *Purification*: FCC eluent = Pentane:Et₂O (100:0 to 90:10, gradient). Colorless oil, 31.3 mg, 95% yield, e.r. = 95:5. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.39 – 7.33 (m, 4H), 7.33 – 7.24 (m, 4H), 7.25 – 7.17 (m, 2H), 4.83 (s, 1H), 4.60 (ddd, *J* = 47.8, 9.7, 3.0 Hz, 1H), 4.38 (ddd, *J* = 48.0, 9.6, 6.1 Hz, 1H), 3.57 (sept, *J* = 6.1 Hz, 1H), 3.54 – 3.42 (m, 1H), 2.69 – 2.52 (m, 4H), 1.08 (dd, *J* = 6.1, 3.7 Hz, 6H), 1.00 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ ppm: 142.34, 142.27, 128.96, 128.71, 128.42, 128.36, 127.15, 127.10, 85.23 (d, *J* = 170.3 Hz), 75.17 (d, *J* = 17.2 Hz), 71.55, 71.40, 51.20 (d, *J* = 7.9 Hz), 45.75, 22.82, 22.77, 11.24; ¹⁹F NMR (376 MHz, CDCl₃) δ ppm: -229.02 (td, *J* = 47.8, 20.3 Hz, 1F). HRMS (ESI⁺) *m*/z C₂₁H₂₉FNO⁺ [M+H]⁺: calculated 330.2228, found 330.2228. IR (thin layer film) v (cm⁻¹) = 3027, 2970; 1492, 1453, 1379, 1333, 1122, 1021, 760, 746, 731, 706. [a]p^{25 °C} = + 12.5 ° (c = 0.5, CHCl₃, e.r. = 95:5). HPLC separation DAICEL CHIRALCEL[®] OJ-3, Heptane:¹PrOH = 99:1, 1 mL/min; t₁ = 4.93 min (major), t₂ = 6.63 min (minor).

(S)-N-benzhydryl-N-benzyl-3-fluoro-2-methoxypropan-1-amine (2la)

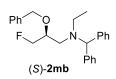
(S)-2la was prepared from 1la (1 equiv., 0.1 mmol, 49.3 mg), according to the general procedure using 10 mol% of catalyst (S)-D (0.01 mmol, 8.4 mg) and stirring for 48 h. *Purification*: FCC eluent = Pentane:Et₂O (100:0 to 90:10, gradient). Colorless oil, 30.9 mg, 85% yield, e.r. = 88:12. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.41 – 7.22 (m, 15H), 4.98 (s,


1H), 4.48 (ddd, J = 47.4, 10.0, 2.8 Hz, 1H), 4.23 (ddd, J = 48.1, 10.0, 6.2 Hz, 1H), 3.72 (d, J = 13.8 Hz, 1H), 3.64 (d, J = 13.8 Hz, 1H), 3.40 – 3.31 (m, 1H), 3.31 (s, 3H), 2.71 – 2.59 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃)

[overlapping signals] δ ppm: 141.05, 140.75, 139.55, 129.29, 129.03, 128.50, 128.42, 128.38, 127.30, 127.25, 84.71 (d, J = 170.9 Hz), 79.20 (d, J = 17.3 Hz), 71.35, 58.20, 56.46, 50.50 (d, J = 8.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ ppm: -227.91 (tdd, J = 48.2, 19.8, 2.0 Hz, 1F). HRMS (ESI⁺) m/z C₂₄H₂₇FNO⁺ [M+H]⁺: calculated 364.2071, found 364.2070. IR (thin layer film) v (cm⁻¹) = 3027, 2931, 2832, 1493, 1453, 1099, 1028, 764, 744, 700. [α]_D^{25 °C} = +11.6 ° (c = 0.5, CHCl₃, e.r. = 88:12). HPLC separation DAICEL CHIRALPAK[®] IB-3, Heptane:^{*i*}PrOH = 99:1, 1 mL/min; t₁ = 3.41 min (minor), t₂ = 4.24 min (major).

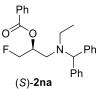
(S)-N-benzhydryl-N-ethyl-3-fluoro-2-methoxypropan-1-amine (2lb)

10H), 4.85 (s, 1H), 4.63 (ddd, J = 47.7, 9.9, 2.6 Hz, 1H), 4.41 (ddd, J = 48.9, 9.9, 5.9 Hz, 1H), 3.42 – 3.29 (s + m overlapped, 4H), 2.71 – 2.52 (m, 4H), 1.00 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ ppm: 142.22, 142.11, 128.90, 128.73, 128.43, 128.38, 127.16, 127.14, 84.57 (d, J = 170.8 Hz), 79.36 (d, J = 17.2 Hz), 71.43, 58.18, 49.81 (d, J = 8.1 Hz), 45.54, 11.31; ¹⁹F NMR (376 MHz, CDCl₃) δ ppm: -229.07 (tdd, J = 48.0, 21.0, 2.5 Hz, 1F). HRMS (ESI⁺) m/z C₁₉H₂₅FNO⁺ [M+H]⁺: calculated 302.1915, found 302.1916. IR (thin layer film) v (cm⁻¹) = 2970, 1493, 1453, 1375, 1263, 1120, 1013, 760, 746, 731, 706, 620. [α]_D^{25 °C} = + 15.3 ° (c = 0.6, CHCl₃, e.r. = 91:9). HPLC separation DAICEL CHIRALCEL[®] OJ-3, Heptane:^{*i*}PrOH = 98:2, 1 mL/min; t₁ = 10.04 min (major), t₂ = 11.85 min (minor).


(S)-N-benzhydryl-N-benzyl-2-(benzyloxy)-3-fluoropropan-1-amine (2ma)

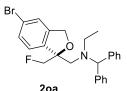
(*S*)-**2ma** was prepared from **1ma** (1 equiv., 0.1 mmol, 57.0 mg), according to the general procedure using 5 mol% of catalyst (*S*)-**D** (0.005 mmol, 4.2 mg) and stirring for 48 h. *Purification*: FCC eluent = Pentane:Et₂O (100:0 to 90:10, gradient). Colorless oil, 42.1 mg, 96% yield, e.r. = 95:5. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.39 – 7.21 (m, 20H),

4.97 (s, 1H), 4.60 – 4.43 (m, 3H), 4.30 (ddd, J = 48.2, 10.0, 6.3 Hz, 1H), 3.72 – 3.56 (m, 3H), 2.76 – 2.61 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) [overlapping signals] δ ppm: 140.97, 140.76, 139.43, 138.48, 129.28, 129.03, 128.49, 128.41, 128.38, 127.98, 127.78, 127.29, 127.27, 127.23, 85.22 (d, J = 171.2 Hz), 76.80 (d, J = 17.3 Hz), 72.57, 70.24, 56.34, 51.03 (d, J = 8.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ ppm: -227.18 (tdd, J = 47.2, 19.5, 2.3 Hz, 1F). HRMS (ESI⁺) m/z C₃₀H₃₁FNO⁺ [M+H]⁺: calculated 440.2384, found 440.2383; IR (thin layer film) v (cm⁻¹) = 3030, 2921, 1494, 1453, 1262, 1094, 1027, 765, 742, 699, 613. [α] $p^{25 \circ C} = + 4.7 \circ$ (c = 0.2, CHCl₃, e.r. = 95:5). HPLC separation DAICEL CHIRALCEL[®] OJ-H, Heptane:EtOH = 96:4, 1 mL/min; t₁ = 17.70 min (major), t₂ = 23.32 min (minor).


(S)-N-benzhydryl-2-(benzyloxy)-N-ethyl-3-fluoropropan-1-amine (2mb)

(*S*)-**2mb** was prepared from **1mb** (1 equiv., 0.1 mmol, 50.8 mg), according to the general procedure using 10 mol% of catalyst (*S*)-**D** (0.01 mmol, 8.4 mg) and stirring for 72 h. *Purification*: FCC eluent = Pentane:Et₂O (100:0 to 90:10, gradient). Colorless oil, 37.4 mg, 99% yield, e.r. = 97:3. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.38 – 7.17 (m, 15H),

4.83 (s, 1H), 4.75 – 4.38 (m, 4H), 3.69 – 3.56 (m, 1H), 2.74 – 2.51 (m, 4H), 0.98 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ ppm: 142.20, 142.03, 138.60, 128.86, 128.76, 128.49, 128.41, 128.37, 127.91, 127.76, 127.14, 127.12, 85.07 (d, J = 170.3 Hz), 77.03 (d, J = 17.6 Hz), 72.51, 71.30, 50.36 (d, J = 8.0 Hz), 45.43, 11.24; ¹⁹F NMR (376 MHz, CDCl₃) δ ppm: -228.42 (td, J = 48.0, 20.1, 2.7 Hz, 1F). HRMS (ESI⁺) m/z C₂₅H₂₉FNO⁺ [M+H]⁺: calculated 378.2228, found 378.2227. IR (thin layer film) v (cm⁻¹) = 3028, 2967, 1493, 1453, 1375, 1105, 1028, 734, 699. [α]_D^{25 °C} = + 11.2 ° (c = 0.5, CHCl₃, e.r. = 97:3). HPLC separation DAICEL CHIRALCEL[®] OJ-3, Heptane:^{*i*}PrOH = 95:5, 1 mL/min; t₁ = 9.11 min (major), t₂ = 13.37 min (minor).


(S)-1-(benzhydryl(ethyl)amino)-3-fluoropropan-2-yl benzoate (2na)

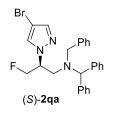
(*S*)-**2na** was prepared from **1na** (1 equiv., 0.1 mmol, 58.4 mg), according to the general procedure using 5 mol% of catalyst (*S*)-**D** (0.005 mmol, 4.2 mg) and stirring for 48 h. *Purification*: FCC eluent = Pentane:Et₂O (100:0 to 90:10, gradient). Colorless oil, 34.0

(s)-2na mg, 87% yield, e.r. = 86.5:13.5. ¹H NMR (400 MHz, CDCl₃) δ ppm: 8.01 – 7.97 (m, 2H), 7.50 (t, *J* = 7.4 Hz, 1H), 7.37 (t, *J* = 7.6 Hz, 2H), 7.29 – 7.10 (m, 10H), 5.37 – 5.24 (m, 1H), 4.85 (s, 1H), 4.59 (ddd, *J* = 47.7, 10.2, 2.6 Hz, 1H), 4.79 (ddd, *J* = 47.2, 10.2, 4.6 Hz, 1H), 2.85 – 2.48 (m, 4H), 0.96 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) [overlapping signals] δ ppm: 166.07, 141.91, 141.66, 133.27, 129.96, 128.91, 128.75, 128.51, 128.44, 128.41, 127.19, 82.97 (d, *J* = 171.7 Hz), 71.71 (d, *J* = 18.4 Hz), 70.84, 49.18 (d, *J* = 6.9 Hz), 44.85, 11.41; ¹⁹F NMR (376 MHz, CDCl₃) δ ppm: -232.00 (td, *J* = 47.1, 23.3 Hz, 1F). HRMS (ESI⁺) *m*/z C₂₅H₂₇FNO₂⁺ [M+H]⁺: calculated 392.2020, found 392.2019. IR (thin layer film) v (cm⁻¹) = 2980, 1720, 1492, 1452, 1270, 1113, 1070, 1026, 953, 762, 708. [α]p^{25 °C} = + 11.4 ° (c = 0.4, CHCl₃, e.r. = 86.5:13.5). HPLC separation DAICEL CHIRALPAK[®] IC-3, Heptane:^{*i*}PrOH = 99.55:0.45, 1 mL/min; t₁ = 5.22 min (minor), t₂ = 5.94 min (major).

N-benzyl-*N*-((5-bromo-1-(fluoromethyl)-1,3-dihydroisobenzofuran-1-yl)methyl)-1,1diphenylmethanamine (20a)

Absolute configuration not assigned

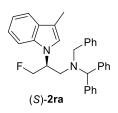
20a was prepared from **10a** (1 equiv., 0.1 mmol, 58.4 mg), according to the general procedure using 10 mol% of catalyst (*S*)-**D** (0.01 mmol, 8.4 mg) and stirring for 72 h. *Purification*: FCC eluent = Pentane:Et₂O (100:0 to 90:10, gradient). White solid, 23.1 mg, 51% yield, e.r. = 83:17. ¹**H NMR** (400 MHz, CDCl₃) δ ppm: 7.43 – 7.13 (m, 12H), 6.91 (d, *J* = 8.1 Hz, 1H), 5.25 (s, 1H), 5.09 (s, 2H), 4.67 (dd, *J* = 47.1, 9.5 Hz, 1H), 4.60 (dd, *J* = 48.4, 9.5 Hz, 1H), 2.96 – 2.83 (m, 2H), 2.71 – 2.59 (m, 1H), 2.56 –


2.44 (m, 1H), 0.95 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) [overlapping signals] δ ppm: 142.60,

141.73, 140.89, 139.72 (d, J = 2.4 Hz), 130.58, 129.47, 129.01, 128.21, 128.19, 127.08, 126.94, 124.43, 123.91, 122.30, 90.65 (d, J = 17.6 Hz), 85.72 (d, J = 175.1 Hz), 72.45, 69.80, 54.19, 44.73, 12.03; ¹⁹F NMR (376 MHz, CDCl₃) δ ppm: -229.02 (t, J = 48.0 Hz, 1F). **HRMS** (ESI⁺) m/z C₂₅H₂₆BrFNO⁺ [M+H]⁺: calculated 454.1176, found 454.1175. **IR** (thin layer film) v (cm⁻¹) = 2924, 2852, 1600, 1492, 1453, 1413, 1375, 1262, 1191, 1070, 1030, 818, 761, 731, 703. **MP** 95 – 97 °C. $[\alpha]_D^{25 \circ C} = +11.7 \circ (c = 0.3, CHCl_3, e.r. = 83:17)$. **HPLC separation** DAICEL CHIRALPAK[®] IC-3, Heptane:^{*i*}PrOH = 99.5:0.5, 1 mL/min; t₁ = 3.35 min (major), t₂ = 3.92 min (minor).

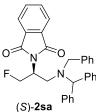
(S)-N-benzhydryl-N-ethyl-3-fluoro-2-(thiophen-3-yl)propan-1-amine (2pa)

(*S*)-**2pa** was prepared from **1pa** (1 equiv., 0.1 mmol, 48.3 mg), according to the general procedure using 10 mol% of catalyst (*S*)-**D** (0.01 mmol, 8.4 mg) and stirring for 72 h. *Purification*: FCC eluent = Pentane:Et₂O (100:0 to 90:10, gradient). Colorless oil, 21.6 mg, 61% yield, e.r. = 93.5:6.5. **¹H NMR** (400 MHz, CDCl₃) δ ppm: 7.34 – 7.17 (m, 11H), 6.97 (d br, *J* = 2.2 Hz, 1H), 6.87 (d br, *J* = 4.9 Hz, 1H), 4.83 (s, 1H), 4.73 (ddd, *J* = 47.4, 8.8, 5.4 Hz, 1H), 4.67 (ddd, *J* = 47.8, 8.8, 4.5 Hz, 1H), 3.22 – 3.06 (m, 1H), 2.84 (dd, *J* = 13.5, 9.0 Hz, 1H), 2.73 – 2.50 (m, 3H), 0.98 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) [overlapping signals] δ ppm: 142.40, 142.16, 140.37 (d, *J* = 6.2 Hz), 128.87, 128.79, 128.36, 127.72, 127.05, 125.27, 121.43, 85.15 (d, *J* = 173.0 Hz), 71.01, 52.12 (d, *J* = 6.2 Hz), 44.66, 40.91 (d, *J* = 18.6 Hz), 11.01; ¹⁹F NMR (376 MHz, CDCl₃) δ ppm: -223.77 (tdd, *J* = 48.5, 25.9, 1.3 Hz, 1F). HRMS (ESI⁺) *m*/z C₂₂H₂₅FNS⁺ [M+H]⁺: calculated 354.1686, found 354.1687. IR (thin layer film) v (cm⁻¹) = 3024, 2965, 1492, 1452, 1373, 1179, 1138, 1028, 914, 778, 760, 745, 732, 705. [*a*]p^{25 °C} = + 3.7 ° (c = 0.4, CHCl₃, e.r. = 93.5:6.5). SFC separation DAICEL CHIRALCEL[®] OJ-3, CO₂:MeOH (95:5 to 40:60, gradient) + 0.3% isopropylamine, 3 mL/min; t₁ = 2.13 min (minor), t₂ = 2.41 min (major).


(S)-N-benzhydryl-N-benzyl-2-(4-bromo-1H-pyrazol-1-yl)-3-fluoropropan-1-amine (2qa)

(*S*)-**2qa** was prepared from **1qa** (1 equiv., 0.1 mmol, 60.8 mg), according to the general procedure using 5 mol% of catalyst (*S*)-**D** (0.005 mmol, 4.2 mg) and stirring for 48 h. *Purification*: FCC eluent = Pentane:Et₂O (100:0 to 90:10, gradient). Colorless oil, 46.9 mg, 98% yield, e.r. = 87:13. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.44 (s, 1H), 7.37 – 7.20 (m, 15H), 7.11 (s, 1H), 4.89 (s, 1H), 4.47 (dd, *J* = 47.0, 5.1 Hz, 2H), 4.29 – 4.16 (m, 1H), 3.69

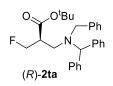
- 3.59 (m, 2H), 3.07 (ddd, J = 14.0, 7.6, 2.0 Hz, 1H), 2.95 (ddd, J = 14.0, 5.9 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) [overlapping signals] δ ppm: 140.74, 140.34, 140.06, 138.93, 129.85, 129.30, 129.06, 128.94, 128.65, 128.61, 128.55, 127.57, 127.55, 127.43, 93.00, 83.10 (d, J = 173.2 Hz), 70.69, 61.80 (d, J = 18.2 Hz), 56.49, 51.69 (d, J = 6.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ ppm: -226.12 (td, J = 47.7, 20.1 Hz, 1F). HRMS (ESI⁺) m/z C₂₆H₂₆BrFN₃⁺ [M+H]⁺: calculated 478.1289, found 478.1286. IR (thin layer film) v (cm⁻¹) = 3063, 3028, 2963, 2191, 2174, 2020, 1980, 1600, 1493, 1452, 1381, 1381, 1310, 1261, 1173, 1078, 1026, 953, 799, 765, 745, 701. [α]_D^{25 °C} = -7.7 ° (c = 0.4, CHCl₃, e.r. = 87:13). HPLC separation DAICEL CHIRALPAK[®] IA-3, Heptane:^{*i*}PrOH = 99:1, 1 mL/min; t₁ = 7.96 min (minor), t₂ = 9.68 min (major).


(S)-N-benzhydryl-N-benzyl-3-fluoro-2-(3-methyl-1H-indol-1-yl)propan-1-amine (2ra)

(*S*)-**2ra** was prepared from **1ra** (1 equiv., 0.1 mmol 59.2 mg), according to the general procedure using 5 mol% of catalyst (*S*)-**D** (0.005 mmol, 4.2 mg) and stirring for 48 h. *Purification*: FCC eluent = Pentane:Et₂O (100:0 to 90:10, gradient). White solid, 46.0 mg, 99% yield, e.r. = 94:6. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.57 – 7.51 (m, 1H), 7.37 – 7.20 (m, 15H), 7.13 – 7.05 (m, 2H), 6.86 – 6.80 (m, 1H), 6.67 (s br, 1H), 4.92 (s, 1H),

4.64 (ddd, J = 47.1, 9.6, 5.3 Hz, 1H), 4.58 (ddd, J = 47.4, 9.6, 3.6 Hz, 1H), 4.44 – 4.30 (m, 1H), 3.75 (d, J = 13.8 Hz, 1H), 3.66 (d, J = 13.8 Hz, 1H), 3.18 (dd, J = 13.9, 7.5 Hz, 1H), 3.18 (ddd, J = 13.9, 6.8, 1.8 Hz, 1H), 2.27 (d, J = 0.9 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ ppm: 141.09, 140.62, 139.27, 136.54, 129.33, 129.11, 129.02, 128.69, 128.62, 128.59, 128.49, 127.49, 127.44, 127.30, 123.02 (d, J = 2.5 Hz), 121.49, 119.08, 118.94, 111.31, 109.18, 83.90 (d, J = 173.8 Hz), 70.85, 56.73, 54.38 (d, J = 18.8 Hz), 51.98 (d, J = 5.3 Hz), 9.80; ¹⁹**F NMR** (376 MHz, CDCl₃) δ ppm: -225.77 (td, J = 46.7, 23.8 Hz, 1F). **HRMS** (ESI⁺) m/z C₃₂H₃₂FN₂⁺ [M+H]⁺: calculated 463.2544, found 463.2547. **IR** (thin layer film) v (cm⁻¹) = 3061, 3027, 2919, 2844, 1599, 1493, 1460, 1385, 1357, 1262, 1199, 1128, 1073, 0127, 797, 739, 700. **MP** 47 – 49 °C. **[a]p^{25 °C}** = + 26.4 ° (c = 0.5, CHCl₃, e.r. = 94:6). **HPLC separation** DAICEL CHIRALPAK[®] IB-3, Heptane:^{*i*}PrOH = 99:1, 1 mL/min; t₁ = 6.63 min (minor), t₂ = 8.47 min (major).

(S)-2-(1-(benzhydryl(benzyl)amino)-3-fluoropropan-2-yl)isoindoline-1,3-dione (2sa)



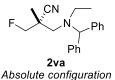
(*S*)-**2sa** was prepared from **1sa** (1 equiv., 1 mmol, 608.6 mg), according to the general procedure using 5 mol% of catalyst (*S*)-**D** (0.05 mmol, 41.8 mg) and stirring for 36 h. *Purification*: FCC eluent = Pentane:Et₂O (90:0 to 70:30, gradient). White solid, 440 mg, 92% yield, e.r. = 82.5:17.5. A single recrystallization in hexane/THF (reflux to r.t.)

(S)-2sa afforded (S)-2sa as a single enantiomer, e.r. > 99.5:0.5 (320 mg, 0.67 mmol, 73% recrystallization yield).* ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.82 – 6.67 (m, 4H), 7.39 – 7.07 (m, 15H), 4.94 (s, 1H), 4.80 – 4.55 (m, 2H), 4.55 – 4.37 (m, 1H), 3.79 (d, *J* = 13.5 Hz, 1H), 3.55 (d, *J* = 13.5 Hz, 1H), 3.22 – 3.13 (m, 1H), 2.85 (dd, *J* = 14.0, 3.9 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ ppm: 168.13, 140.93, 140.06, 138.86, 134.00, 132.13, 129.39, 129.21, 129.08, 128.55, 128.40, 128.28, 127.46, 127.21, 127.16, 123.38, 81.01 (d, *J* = 174.1 Hz), 69.51, 55.74, 50.02 (d, *J* = 19.1 Hz), 48.27 (d, *J* = 5.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ ppm: -223.10 (td, *J* = 46.5, 13.6 Hz, 1F). HRMS (ESI⁺) *m*/*z* C₃₁H₂₈FN₂O₂⁺ [M+H]⁺: calculated 479.2129, found 479.2128. IR (thin layer film) v (cm⁻¹) = 3028, 2843, 1775, 1711, 1494, 1467, 1453, 1387, 1193, 1056, 1016, 875, 746, 721, 700. MP 48 – 50 °C. [*a*]_D^{25 °C} = + 19.6 ° (c = 0.5, CHCl₃, e.r. > 99.5:0.5). HPLC separation DAICEL CHIRALPAK[®] IC-3, Heptane:^{*i*}PrOH = 95:5, 1 mL/min; t₁ = 4.67 min (major), t₂ = 5.56 min (minor).

* N.B. The recrystallization affords the enantiopure product in the mother liquor.

tert-butyl (*R*)-3-(benzhydryl(benzyl)amino)-2-(fluoromethyl)propanoate (2ta)

(*R*)-**2ta** was prepared from **1ta** (1 equiv., 0.5 mmol, 281.8 mg), according to the general procedure using 10 mol% of catalyst (*S*)-**D** (0.05 mmol, 41.8 mg) and stirring for 24 h. *Purification*: FCC eluent = Pentane:Et₂O (100:0 to 80:20, gradient). Colorless oil, 212 mg, 98% yield, e.r. = 92:8. After treatment with 2M HCl in Et₂O and removal of the volatiles


in vacuo, **2ta**·HCl was recrystallized in hexane/THF/EtOH (reflux to r.t.). After basification (NaHCO_{3 sat}), (*R*)-**2ta** was obtained as a single enantiomer, e.r. = 99.5:0.5 (180 mg, 0.42 mmol, 85% recrystallization yield).* ¹**H NMR** (400 MHz, CDCl₃) δ ppm: 7.42 – 7.24 (m, 15H), 5.00 (s, 1H), 4.52 (d, *J* = 6.1 Hz, 1H), 4.40 (d, *J* = 6.1 Hz, 1H), 3.71 (d, *J* = 14.0 Hz, 1H), 3.60 (d, *J* = 14.0 Hz, 1H), 3.00 – 2.84 (m, 1H), 2.81 (ddd, *J* = 13.2, 6.4, 2.5 Hz, 1H), 2.61 (dd, *J* = 13.3, 7.7 Hz, 1H), 1.45 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃) δ ppm: 171.72 (d, *J* = 3.6 Hz), 140.72, 140.10, 138.97, 129.42, 129.18, 129.06, 128.47, 128.40, 128.37, 127.36, 127.31, 127.26, 83.11 (d, *J* = 171.0 Hz), 81.31, 69.23, 55.09, 48.35 (d, *J* = 8.4 Hz), 46.39 (d, *J* = 19.1 Hz), 28.18; ¹⁹**F NMR** (376 MHz, CDCl₃) δ ppm: -222.42 (tdd, *J* = 46.8, 18.1, 2.5 Hz). **HRMS** (ESI⁺) *m*/z C₂₈H₃₃FNO₂⁺ [M+H]⁺: calculated 434.2490, found 434.2487. **IR** (thin layer film) v (cm⁻¹) = 3027, 2977, 1728, 1600, 1493, 1452, 1392, 1367, 1250, 1209, 1154, 1077, 1028, 1009, 916, 846, 763, 743, 699, 621, 602. [**a**]**b**^{25°C} = - 2.9 ° (c = 1.1, CHCl₃, e.r. = 99.5:0.5). **HPLC separation** DAICEL CHIRALPAK[®] IB-3, Heptane:[/]PrOH = 99.6:0.4, 1 mL/min; t₁ = 4.63 min (minor), t₂ = 4.97 min (major).

* N.B. The recrystallization affords the enantiopure product in the mother liquor.

N-benzhydryl-*N*-benzyl-2-(benzyloxy)-3-fluoro-2-methylpropan-1-amine (2ua)

(R)-2ua was prepared from 1ua (1 equiv., 0.1 mmol, 58.3 mg), according to the general OBn procedure using 20 mol% of catalyst (S)-D (0.02 mmol, 16.8 mg) and stirring for 72 h. Ph 2ua *Purification*: FCC eluent = Heptane: Et_2O (100:0 to 95:5, gradient). Colorless oil, Absolute configuration 40.0 mg, 88% yield, e.r. = 87:13. ¹**H NMR** (400 MHz, CDCl₃) δ ppm: 7.39 – 7.24 (m, not assigned 20H), 5.40 (s, 1H), 4.51 (s, 2H), 4.48 (dd, J = 48.4, 10.0 Hz, 1H), 4.25 (dd, J = 47.9, 10.0 Hz, 1H), 3.81 (d, J = 13.6 Hz, 1H), 3.65 (d, J = 13.6 Hz, 1H), 2.86 (dd, J = 14.3, 2.5 Hz, 1H), 2.75 (d, J = 14.2 Hz, 1H), 1.17 (d, J = 2.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) [overlapping signals] δ ppm: 140.72, 140.03, 140.00, 139.38, 130.13, 129.82, 129.36, 128.43, 128.38, 128.15, 128.14, 127.41, 127.34, 127.12, 127.06, 87.69 (d, J =175.1 Hz), 78.80 (d, J = 16.1 Hz), 68.39, 65.26 (d, J = 2.4 Hz), 56.06, 54.96 (d, J = 5.2 Hz), 18.19 (d, J = 5.3Hz); ¹⁹**F NMR** (376 MHz, CDCl₃) δ ppm: -226.99 (t, *J* = 48.1 Hz, 1F). **HRMS** (ESI⁺) *m*/*z* C₃₁H₃₃FNO⁺ [M+H]⁺: calculated 454.2541, found 454.2540. **IR** (thin layer film) v (cm⁻¹) = 3028, 1494, 1453, 1371, 1093, 1067, 1028. 763, 740, 699, 535. $[\alpha]_{D}^{25 \circ C} = +3.3 \circ (c = 0.6, CHCl_3, e.r. = 87:13)$. SFC separation DAICEL CHIRALCEL[®] OJ-3, CO₂:MeOH (85:15 to 50:50, gradient) + 0.2% isopropylamine, 2.5 mL/min; $t_1 = 4.51$ min (minor), $t_2 = 4.88 \text{ min (major)}$.

3-(benzhydryl(ethyl)amino)-2-(fluoromethyl)-2-methylpropanenitrile (2va)

2va was prepared from 1va (1 equiv., 0.1 mmol, 44.0 mg), according to the general procedure using 10 mol% of catalyst (S)-D (0.01 mmol, 8.4 mg) and stirring for 24 h. *Purification*: FCC eluent = Heptane: Et_2O (100:0 to 95:5, gradient). Colorless oil, 28.0 mg, 90% yield, e.r. = 86:14. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.36 – 7.22 (m, not assigned 10H), 5.15 (s, 1H), 4.56 - 4.37 (m, 1H), 4.44 - 4.26 (m, 1H), 2.86 (s, 2H), 2.72 (q, J = 7.1 Hz, 2H), 1.34 (d, J = 7.1 Hz, 2H), = 1.6 Hz, 3H), 1.05 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) [overlapping signals] δ ppm: 140.87, 140.67, 129.31, 129.24, 128.45, 127.41, 127.38, 122.26 (d, *J* = 6.5 Hz), 85.03 (d, *J* = 181.3 Hz), 70.48, 53.98 (d, J = 3.6 Hz), 45.35, 39.09 (d, J = 19.6 Hz), 19.94 (d, J = 4.0 Hz), 12.34; ¹⁹F NMR (376 MHz, CDCl₃) δ ppm: -223.20 (t, J = 47.1 Hz).). **HRMS** (ESI⁺) m/z C₂₅H₂₃FN₂Na⁺ [M+Na]⁺: calculated 333.1737, found 333.1738. **IR** (thin layer film) v (cm⁻¹) = 3328, 2973, 2883, 1485, 1452, 1420, 1380, 1088, 1046, 880, 605. $[\alpha]_{D}^{25 \circ C} = -242.6 \circ (c = 0.3, CHCl_{3}, e.r. = 99.5:0.5)$. HPLC separation DAICEL CHIRALCEL[®] OJ-3, Heptane:EtOH = 95:5, 1 mL/min; $t_1 = 6.88 \text{ min (major)}, t_2 = 7.79 \text{ min (minor)}.$

N-benzhydryl-*N*-benzyl-2,3-difluoro-2-phenylpropan-1-amine (2wa)

Absolute configuration

2wa was prepared from 1wa (1 equiv., 0.75 mmol, 418.2 mg), according to the general procedure using 5 mol% of catalyst (S)-D (0.05 mmol, 31.4 mg) and stirring for 24 h. Purification: FCC eluent = Pentane:Et₂O (100:0 to 90:10, gradient). Dense oil, 280 mg, 87% yield, e.r. = 84:16. For the recrystallization, the compound (0.43 mmol, 184 mg)

not assigned was treated with 2M HCl in Et₂O and volatiles were removed in vacuo. 2wa HCl was recrystallized in EtOH/H₂O (reflux to r.t.). After basification (NaHCO_{3 sat.}), **2wa** was obtained with an e.r. = 95:5 (92 mg, 0.21 mmol, 50% recrystallization yield). ¹**H NMR** (400 MHz, CDCl₃) δ ppm: 7.32 – 6.94 (m, 20H), 5.10 (s, 1H), 4.70 (ddd, J = 48.9, 17.6, 10.6 Hz, 1H), 4.29 (ddd, J = 46.9, 26.8, 10.6 Hz, 1H), 3.67 (d, J = 13.5 Hz, 1H), 3.47 (d, J = 13.5 Hz, 1H), 3.08 - 2.91 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) [overlapping signals] δ ppm: 140.03, 139.48, 138.95, 138.46 (dd, J = 25.6, 3.8 Hz), 129.86, 129.77, 129.62, 128.44, 128.39 (d, J = 1.3 Hz), 128.36, 128.24, 128.04, 127.35, 127.27, 125.11 (d, *J* = 9.9 Hz); 100.09 (dd, *J* = 178.2, 15.9 Hz), 85.98 (dd, *J* = 178.3, 27.8 Hz), 68.42 (d, J = 3.6 Hz); 55.45 (d, J = 3.3 Hz); 54.91 (dd, J = 21.0, 4.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ ppm: -164.20 (qt, J = 24.8, 15.6 Hz, 1F), -230.90 (td, J = 47.9, 14.0 Hz, 1F). **HRMS** (ESI⁺) m/z $C_{29}H_{28}F_2N^+$ [M+H]⁺: calculated 428.2184, found 428.2185. **IR** (thin layer film) v (cm⁻¹) = 3028, 1794, 1453, 1371, 1093, 1067, 1028, $[\alpha]_D^{25 \circ C} = +30.9 \circ (c = 0.7, CHCl_3, e.r. = 95:5)$. HPLC separation DAICEL CHIRALPAK[®] AS-3, Heptane: PrOH = 98:2 + 0.2% BuNH₂, 1 mL/min; t₁ = 2.95 min (minor), t₂ = 3.35 min (major).

(S)-3-fluoro-2-phenylpropan-1-aminium chloride (3aa·HCl)

 NH_3 (S)-3aa-HCI

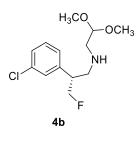
In a Schlenk flask, (S)-2aa (1 equiv., 1.70 mmol, 696 mg, e.r = 96:4) was dissolved in a 4:1 mixture of MeOH:CH₂Cl₂ (0.08 M, 21 mL) and Pd(OH)₂ 20 wt% loading (0.1 equiv., 0.17 mmol, 134 mg) was added. The flask was then purged with H_2 three times and the reaction was stirred overnight at r.t. under an atmosphere of H₂ (balloon). The mixture was filtered on celite, the solvents were evaporated *in vacuo* and the free amine was stirred in a 1M HCl solution in methanol for 5 min. After evaporation of the volatiles, the corresponding chloride salt was obtained as a pale yellow solid in 79% yield (1.34 mmol, 254 mg) and e.r. = 96:4. A successive recrystallization on 1.05 mmol scale (200 mg) in hexane/EtOH (reflux to $-20 \,^{\circ}$ C) afforded (*S*)-**3aa** as a white solid with an e.r.= 99:1 (140 mg, 0.73 mmol, 70% recrystallization yield). ¹H NMR (400 MHz, CD₃OD) δ ppm: 7.34 – 7.21 (m, 5H), 4.76 (s br, 3H), 4.54 (dd, *J* = 47.1, 5.9 Hz, 2H), 3.40 – 3.18 (m, 3H); ¹³C NMR (101 MHz, CD₃OD) δ ppm: 137.27 (d, *J* = 6.5 Hz), 130.35, 129.42, 129.36, 86.02 (d, *J* = 172.8 Hz), 45.91 (d, *J* = 19.0 Hz), 42.33 (d, *J* = 4.6 Hz); ¹⁹F NMR (376 MHz, CD₃OD) δ ppm: -221.28 (td, *J* = 47.1, 17.9 Hz, 1F). HRMS (ESI⁺) *m/z*: calculated for C₉H₁₃FN⁺ [M–CI]⁺ 154.1027, found 154.1029. IR (thin layer film) v (cm⁻¹) = 3032, 2917, 1626, 1518, 1496, 1455, 1397, 1157, 1082, 934, 761, 702. MP 152 – 151 °C. $[\alpha]_D^{25 \, ^{\circ}C} = -41.0 \,^{\circ}$ (c = 0.6, MeOH, e.r. = 99:1). HPLC separation (free amine) DAICEL CHIRALPAK[®] IF-3, Heptane: ¹PrOH = 90:10 + 0.2% diethylamine, 1 mL/min; t₁ = 7.58 min (major), t₂ = 12.33 min (minor).

(R)-N-ethyl-3-fluoro-2-phenylpropan-1-aminium chloride (3ab·HCl)

In a Schlenk flask, (*R*)-**2ab** (1 equiv., 1.73 mmol, 601 mg, e.r. = 96:4) was dissolved in a 2:1 mixture of MeOH:CH₂Cl₂ (0.15 M, 12 mL) and Pd/C 10 wt% loading (0.1 equiv., 0.173 mmol, 184 mg) was added. The flask was then purged with H₂ three times and the reaction was stirred overnight at r.t. under an atmosphere of H₂ (balloon). After filtration on celite

and solvent evaporation *in vacuo*, the crude mixture was purified by FCC (eluent = Pentane:Et₂O:MeOH, 93:5:2 to 90:5:5 gradient). The purified amine was then stirred for 5 min in 1M HCl solution in methanol to afford the corresponding chloride salt as a colorless solid in 74% yield (1.28 mmol, 279 mg) and e.r. = 96:4. A successive recrystallization on 0.23 mmol scale (50 mg) in CH₂Cl₂/Et₂O (reflux to r.t.) afforded (*R*)-**3ab** with an e.r. = 98.5:1.5 (43.5 mg, 0.20 mmol, 87% recrystallization yield). ¹H NMR (500 MHz, CDCl₃) δ ppm: 9.61 (s br, 2H), 7.40 – 7.28 (m, 5H), 4.91 – 4.65 (m, 2H), 3.86 – 3.85 (m, 1H), 3.53 (dd, *J* = 13.0, 6.7 Hz, 1H), 3.00 – 2.91 (m, 2H), 1.14 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ ppm: 137.07 (d, *J* = 4.5 Hz), 129.39, 128.40, 128.18, 84.71 (d, *J* = 175.0 Hz), 48.58 (d, *J* = 5.1 Hz), 43.79, 43.22 (d, *J* = 18.7 Hz), 11.21; ¹⁹F NMR (470 MHz, CDCl₃) δ ppm: -220.84 (td, *J* = 47.2, 22.0 Hz, 1F). HRMS (ESI⁺) *m*/*z*: calculated for C₁₁H₁₇FN⁺ [M–Cl]⁺ 182.1340, found 182.1340. IR (thin layer film) v (cm⁻¹) = 2962, 2774, 2737, 2515, 2433, 2396, 2360, 2342, 1597, 1496, 1457, 1405, 1386, 1133, 1066, 1017, 986, 965, 889, 805, 762, 704, 668. MP 178 – 181 °C. [*a*]_D^{25 °C} = + 49.2 ° (c = 0.5, MeOH, e.r. = 98.5:1.5). HPLC separation (free amine) DAICEL CHIRALPAK[®] IF-3, Heptane:^{*i*}PrOH = 97:3 + 0.1% diethylamine, 1 mL/min; t₁ = 3.98 min (minor), t₂ = 4.69 min (minor).

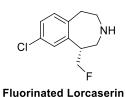
(R)-2-(3-chlorophenyl)-3-fluoropropan-1-amine


F_____NH2

4a

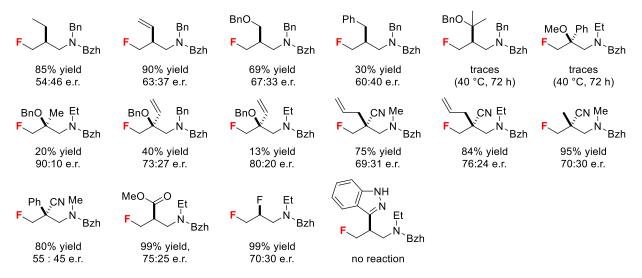
Adapted from a literature procedure.^{11b} In a round bottom flask, a solution of sodium bromate (3 equiv., 4.257 mmol, 642 mg) in water (14.2 mL) was added to a pre-stirred solution of (*R*)-**2da** (1 equiv., 1.419 mmol, 630 mg) in EtOAc (19.0 mL) and stirred at room temperature for 10 min. A solution of sodium dithionite (2.5 equiv., 3.55 mmol, 618 mg) in water (25.8 mL)

was then added. The reaction was stirred at r.t. for 2 h. The organic solvent was evaporated *in vacuo* (bath temperature below 30 °C) and the water solution was freeze-dried overnight. The crude mixture was basified using ammonia in MeOH 7M, diluted in CH₂Cl₂, filtered and purified by flash column chromatography (eluent CH₂Cl₂:[CH₂Cl₂/NH_{3 in MeOH} 9/1] = 100:0 to 70:30, gradient) to afford **4a** as a colorless oil in 72% yield (1.02 mmol, 191.0 mg) and with an e.r. = 96:4 e.r. as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.32 – 7.21 (m, 3H), 7.13 (dt, *J* = 6.7, 1.9 Hz, 1H), 4.67 (qd, *J* = 9.4, 5.3 Hz, 1H), 4.56 (qd, *J* = 9.2, 5.7 Hz, 1H), 3.19 – 3.09 (m, 1H), 3.08 – 2.91 (m, 2H), 1.25 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ ppm: 141.56 (d, *J* = 5.4 Hz); 134.76, 130.16, 128.45, 127.63, 126.55, 85.01 (d, *J* = 47.2, 21.1 Hz, 1F). HRMS (ESI⁺) *m/z* calculated for C₉H₁₂ClFNO⁺ [M+H]⁺: 188.0637, found 188.0638. [**a**]₂²⁰C = + 12.7 (c = 0.05, DMF, e.r. = 96:4). SFC separation: DAICEL CHIRALPAK[®] ID-3, 40 °C, CO₂:EtOH (85:15 to 50:50, gradient) + 0.2% isopropylamine, t₁ = 1.48 min (minor), t₂ = 1.95 min (major).


(R)-2-(3-chlorophenyl)-N-(2,2-dimethoxyethyl)-3-fluoropropan-1-amine

A round bottom flask was charged with **4a** (0.74 mmol, 139.0 mg) and a solution of dimethoxyacetaldehyde (60 wt% in water, 1.2 equiv., 0.89 mmol, 154.2 mg) in 0.45 mL of MeOH was added. The reaction mixture was stirred at r.t. for 12 h. After that time, the mixture was diluted with additional 4.0 mL of MeOH and NaBH₃CN (2 equiv., 1.48 mmol, 93.1 mg) was added portionwise. The reaction mixture was stirred at r.t. for additional 12 h. The solvent was then evaporated (bath temperature

below 30 °C) and the pH adjusted to 8–9. The crude mixture was then purified by flash column chromatography (eluent CH₂Cl₂:[CH₂Cl₂/NH_{3 in MeOH} 9/1] = 100:0 to 70:30, gradient) to afford **4b** as a yellow oil in 81% yield (0.60 mmol, 165.9 mg) and with an e.r. = 96:4. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.29 – 7.22 (m, 3H), 7.13 (dt, *J* = 6.5, 2.1 Hz, 1H), 4.66 (qd, *J* = 9.1, 5.7 Hz, 1H), 4.54 (qd, *J* = 9.1, 5.6 Hz, 1H), 4.41 (t, *J* = 5.4 Hz, 1H), 3.34 (s, 6H), 3.21 – 2.88 (m, 3H), 2.79 – 2.66 (m, 2H), 1.47 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ ppm: 141.75 (d, *J* = 5.0 Hz), 134.73, 130.14, 128.35, 127.62, 126.47, 103.83, 85.30 (d, *J* = 172.6 Hz), 54.11 (d, *J* = 3.6 Hz), 51.31, 51.11 (d, *J* = 5.4 Hz), 46.68 (d, *J* = 18.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ ppm: -222.02 (td, *J* = 47.4, 20.6 Hz, 1F). HRMS (ESI⁺) *m/z* calculated for C₁₃H₂₀ClFNO₂⁺ [M+H]⁺: 276.1161, found 276.1161. [*α*]_D^{20 °C} = + 11.78 (c = 0.14, DMF, e.r. = 96:4). SFC separation DAICEL CHIRALPAK[®] IG, 40 °C, CO₂:MeOH (85:15 to 50:50, gradient) + 0.2% isopropylamine, t₁ = 1.32 min (minor), t₂ = 1.42 min (major).


(*R*)-8-chloro-1-(fluoromethyl)-2,3,4,5-tetrahydro-1H-benzo[d]azepine (Fluorinated Lorcaserin)

In a round bottom flask, **4b** (1 equiv., 0.44 mmol, 120.3 mg) was dissolved in 1.85 mL of CH₂Cl₂ and trifluoromethanesulfonic acid (5 equiv., 2.18 mmol, 0.19 mL) was added dropwise at 0 °C. The reaction was stirred at r.t. for 30 min. The reaction mixture was then basified with NaHCO_{3 sat.} (30 mL) and extracted in CH₂Cl₂ (3 x 15 mL). The organic phase was evaporated, and the crude mixture was dissolved in THF

(21.5 mL). Sodium phosphate monobasic (0.5 M water solution, 2.15 mL) was added, followed by portionwise addition of sodium cyanoborohydride (9.9 equiv., 4.35 mmol, 273.2 mg). The mixture was stirred for 4 hours at r.t. after which the volatiles were evaporated *in vacuo* (bath temperature below 30 °C). After addition of NaHCO_{3 sat.} (30 mL) the crude product was extracted with CH₂Cl₂ (3 x 15 mL) and the solvent was evaporated *in vacuo*. The crude mixture was then purified by flash column chromatography (eluent CH₂Cl₂:[CH₂Cl₂/NH_{3 in MeOH} 9/1] = 100:0 to 70:30, gradient) to afford fluorinated Lorcaserin in 86% yield (0.37 mmol, 80.2 mg) and an e.r. = 96:4. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.15 – 6.99 (m, 3H), 4.88 (ddd, *J* = 46.9, 9.1, 7.5 Hz, 1H), 4.69 (ddd, *J* = 46.9, 9.1, 6.0 Hz, 1H), 3.27 – 3.10 (m, 2H), 3.10 – 2.90 (m, 3H), 2.90 – 2.78 (m, 2H), 1.81 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ ppm: 142.08 (d, *J* = 6.2 Hz), 140.10, 132.08, 131.84, 129.19, 126.90, 83.39 (d, *J* = 170.8 Hz), 49.53 (d, *J* = 5.2 Hz), 48.99 (d, *J* = 18.9 Hz), 48.67, 39.21; ¹⁹F NMR (376 MHz, CDCl₃) δ ppm: -220.86 (td, *J* = 46.6, 17.0 Hz). HRMS (ESI⁺) *m/z* calculated for C₁₁H₁₄CIFN⁺ [M+H]⁺: 214.0793, found 214.0795. [*a*]₀^{20°C} = +1.4 (c = 0.14, DMF, e.r. = 96:4). SFC separation DAICEL CHIRALPAK[®] IG, 40 °C, CO₂:MeOH (85:15 to 50:50, gradient) + 0.2% isopropylamine, t₁ = 2.46 min (major), t₂ = 3.78 min (minor).

Additional Unsuccessful Substrates

Scheme S7: Additional substrates tested under optimized conditions: 10 mol% (*S*)-**D**, 2 equiv. CsF, 1,2-DCE (0.25 M), r.t., 24–72 h. Absolute configuration not assigned.

Determination of the Absolute Configuration (Single Crystal X-ray Diffraction Studies)

Low temperature¹² single crystal X-ray diffraction data were collected using a Rigaku Oxford Diffraction SuperNova diffractometer. Raw frame data were reduced using CrysAlisPro and the structures were solved using 'Superflip'¹³ before refinement with CRYSTALS¹⁴ as per the CIF. Full refinement details are given in the Supporting Information (CIF); Crystallographic data have been deposited with the Cambridge (CCDC 1973306-07) Crystallographic Data Centre and can be obtained via www. ccdc.cam.ac.uk/data_request/cif.

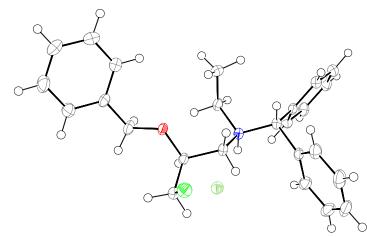
Data for (*S*)-**2ma**·HCl were collected at 150 K, whereas data for (*R*)-**3ab**·HCl were collected at 300 K. A variable temperature experiment using both Mo- and Cu radiation was performed for crystals of (*R*)-**3ab**·HCl, but all crystals split upon cooling to 150 K. Therefore only the 300 K data collected with Cu-radiation were used for refinement.

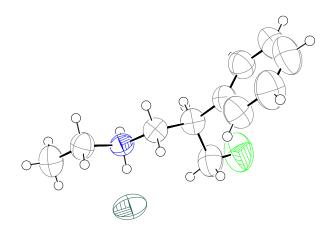
(S)-2ma·HCl

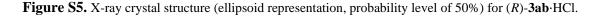
Empirical formula Formula weight Temperature Wavelength Crystal system and Space group Unit cell dimensions

Volume Ζ Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 74.707° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Largest diff. peak and hole

C25 H29 Cl F N O 413.96 150 K 1.54184 Å Monoclinic $P 2_1$ a = 9.98040(10) Å $\alpha = 90^{\circ}$. b = 8.61600(10) Å $\beta = 102.1108(12)^{\circ}$. c = 12.82200(10) Å $\gamma = 90^{\circ}$. 1078.039(19) Å³ 2 1.275 Mg/m³ 1.759 mm⁻¹ 439.997 0.25 x 0.22 x 0.09 mm³ 3.526 to 76.232°. -12<=h<=12, -10<=k<=10, -16<=l<=10 10448 4454 [R(int) = 0.027] 99.6% Semi-empirical from equivalents 0.85 and 0.74 Full-matrix least-squares on F² 4454 / 1 / 263 0.9949 R1 = 0.0265, wR2 = 0.0700R1 = 0.0268, wR2 = 0.0706-0.010(5)0.05 and -0.06 e.Å-3




Figure S4. X-ray crystal structure (ellipsoid representation, probability level of 50%) for (S)-2ma·HCl.


(R)-3ab·HCl

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system and Space group
Unit cell dimensions

Volume Ζ Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 77.272° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Largest diff. peak and hole

C11 H17 Cl F1 N 217.71 300 K 1.54184 Å Orthorhombic $P 2_1 2_1 2_1$ a = 9.95040(10) Å $\alpha = 90^{\circ}$. b = 10.52650(10) Å $\beta = 90^{\circ}$. c = 23.7547(4) Å $\gamma = 90^{\circ}$. 2488.14(5) Å³ 8 1.162 Mg/m^3 2.544 mm⁻¹ 928.000 0.40 x 0.25 x 0.10 mm³ 3.721 to 77.272°. -11<=h<=12, -13<=k<=13, -30<=l<=29 49083 5262 [R(int) = 0.060]99.8% Semi-empirical from equivalents 0.78 and 0.41 Full-matrix least-squares on F² 5262 / 48 / 307 1.0011 R1 = 0.0343, wR2 = 0.0944R1 = 0.0382, wR2 = 0.09970.001(6) 0.12 and -0.16 e.Å-3

Computational Studies

Level of Theory

Density Functional Theory (DFT)

Geometry optimization and frequency calculations were performed in Gaussian 16 Rev. A.03.¹⁵ The Minnesota M06-2X functional¹⁶ was used in combination with the def2-SVP(D) basis set, corresponding to def2-SVPD on electronegative atoms, and def2-SVP otherwise.^{17,18} Cs makes use of an effective core potential (ECP).¹⁹ The ultrafine integration grid was used. ²⁰ Solvation in 1,2-dichloroethane (DCE) was modelled using the conductor-like polarizable continuum model (CPCM).²¹⁻²³

Single point energy corrections were implemented using the ORCA 4.2.0 software package^{24,25} with the ω B97X-D3 functional^{26,27}, incorporating the D3 dispersion correction by Grimme²⁸, in combination with the (ma)-def2-TZVPP basis set, consisting of ma-def2-TZVPP²⁹ on heteroatoms and def2-TZVPP otherwise. Integration utilized the Lebedev302 grid for SCF cycles and Levedev590 grid for final energy evaluation. Solvation in DCE was accounted for using the CPCM solvation model, using relative permittivity of 10.5 and refractive index of 1.4448, with gaussian charge scheme and scaled van der Waal cavity. Thermochemistry was evaluated at 298.15 K, and a standard concentration of 1 M using *GoodVibes* python script.³⁰ The entropic contribution of low vibrational modes was corrected using a free-rotor description below a 100 cm⁻¹ cutoff.³¹

Conformational sampling of azetidinium ions and ion pairs was performed using the Conformer-Rotamer Ensemble Sampling Tool (CREST) version 2.7, based on the GFN-XTB method of Grimme and Pracht.³² Conformational sampling was run in CH_2Cl_2 with default parameters, however a larger energy window of 12.0 kcal/mol was used in combination with more stringent duplicate detection criteria (-rthr 0.0625, -ethr 0.05, - bthr 0.01) to preserve conformations of the 4-membered ring. Ion pairs were sampled using the built in nci mode, which applies an ellipsoid potential. Only the lowest energy conformers of highly flexible structures were optimized, guided by thorough sampling of the less flexible analogs.

Molecular Dynamics (MD)

Molecular dynamics simulations (MD) were performed in GROMACS 5.1.4. software package. The optimized potential for liquid simulations (OPLS-AA 2005) forcefield^{33,34} with restrained electrostatic potential charges^{35,36} was used, with compatible parameters generated in Schrödinger Maestro software (ffld_server utility, version 14),³⁷ and RESP charges generated by fitting the HF/6-31G(d) potential in Ambertools.³⁸ All simulations were performed in the reaction solvent of 1,2-dichloroethane, with topology from virtualchemistry.org.^{39,40}

The system of interest was centered in a cubic box, with 3-dimensional periodic boundary conditions (PBC), and minimum molecule-boundary distance of 15 Å. System temperature and pressure were maintained with the velocity rescaling method (time constant = 100 fs),⁴¹ and the Parrinello-Rahman barostat (time constant = 2 ps, references pressure = 1 bar, compressibility = $4.5 \times 10^{-5} \text{ bar}^{-1}$)^{42,43} respectively. The particle mesh Ewald method and van der Waals interactions were implemented with 1 nm cutoff. The linear constraint solver algorithm (LINCS) was used.⁴⁴

Simulations were first minimized by steepest-descents method of 5000 steps. Equilibration was then performed, firstly by constant volume NVT simulation (200 ps, timestep = 1 fs, heavy atom position restraints, initial velocities derived from a 173 K Maxwell-Boltzmann distribution). Temperature was raised during the simulation to the required production temperature. Secondly, a constant pressure, NPT, equilibration was run (400 ps, timestep = 2 fs, production temperature) and the stability of the system volume verified. The production run results from a continuation of NPT simulation with data derived from 10 ps snapshots.

Transition states were sampled, using the same parameters as the ion pair, by constraining the length of the forming C–F bond and the breaking C–N bond, and restraining the F---C---N angle with a harmonic potential. Simulations were performed at elevated temperature of 423.15 K to enhance sampling. For the cis substrate, bonds were constrained to 2.2 Å and 1.98 Å respectively, and angle restrained to 180° with k_{θ} = 1.5 kJ/mol/deg².

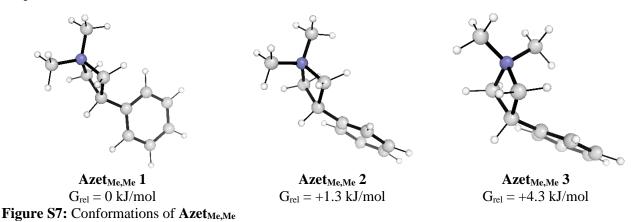
For the trans substrate, bonds were constrained to 2.0 Å and 1.98 Å respectively, with angle restraint of with $k_{\theta} = 3.0 \text{ kJ/mol/deg}^2$. Constraint distances were based off distances from trial DFT computed TSs, with C–F bond elongated to enhance sampling and system stability. A stronger angle restraint was employed for the trans substrate due to persistence of unproductive conformations with large F---C---N angle.

Trajectories were clustered using the GROMOS algorithm,⁴⁵ with RMSD matrix accounting for molecular symmetry. Extraneous groups (e.g. CF_3) were excluded from RMSD calculation to ensure chemically relevant clustering.

Kinetics

The kinetics of the catalytic fluorination of azetidinium ions is interpreted within the framework of the energetic span model. For an overview of the model, its derivation and applicability, the reader is referred to the literature.⁴⁶⁻⁵⁰ The primary result is that the turnover frequency of a catalytic cycle can be described by the *energetic span* of the reaction – defined as the difference in energy between the *turnover determining intermediate* (TDI) and the *turnover determining transition state* (TDTS). The TDI and TDTS are the two states of the energetic profile identified such that the energetic span is maximized.

Azetidinium Substrate Reactivity


To investigate the difference in reactivity of the different azetidinium substrates under both HB PTC and homogeneous (TBAF) conditions, the barrier heights to fluorination with seven cis-substrates were computed. The seven substrates are given in Figure S6 and correspond to the ions in Scheme S4. Cis-azetidinium ions were computed for consistency and as this is the major diastereomer in most cases.

		R_{cis}	R _{trans}		R_{cis}	R_{trans}
R _{cis} ⊢⁺N → R _{trans}	$Azet_{Bzh,Me}$	Bzh	Me	Azet _{Me.Me}	Ме	Ме
	Azet _{Bzh,Et}		Et			
Ph ¹¹	Azet _{Bzh,All}		Allyl	Azet _{Bn,Me}	Bn	Ме
	Azet _{Bzh,Bn}		Bn	Azet _{Bn,Bn}	Bn	Bn
	M201Bzh,Bh		ы			

Figure S6: Structures of azetidinium ions used for computational reactivity study.

Structure of azetidinium ions

The smallest ion, $Azet_{Me,Me}$, forms three conformers, The four membered ring puckers to two different conformations, and the phenyl group can adopt two different conformations relative to the azetidinium ring (Figure S7). In ions with different N substitution, the azetidinium ring may take a planar conformation, rather than puckered.

All other ions studied have a cis aromatic group, enabling π -interactions. This is exemplified by the lowest energy conformers of Azet_{Bzh,Me} in Figure S8 (mirror image conformers are not shown). The T-shape CH- π interaction is favored, facilitated in part by the pre-organization of the phenyl ring eclipsing the azetidinium ring.

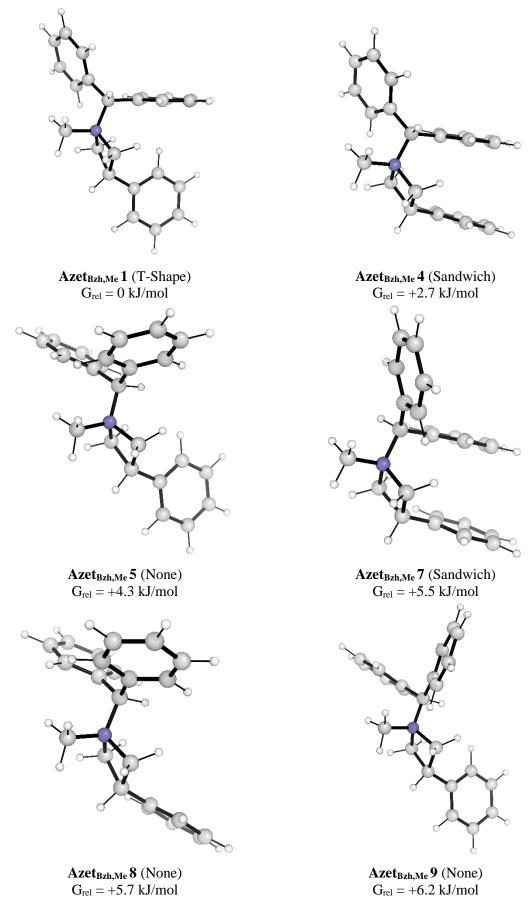
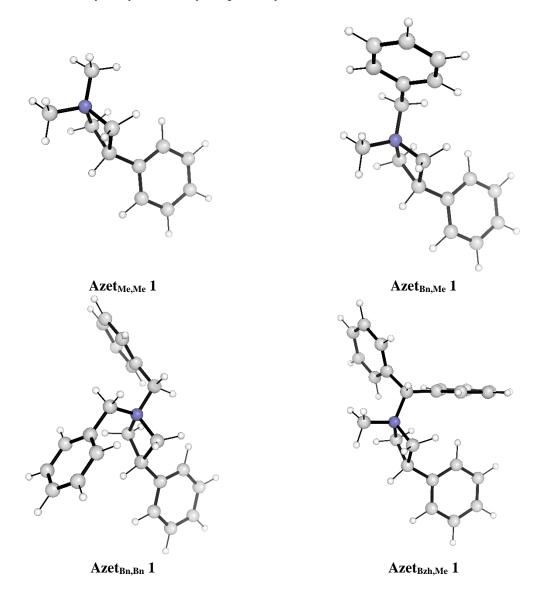
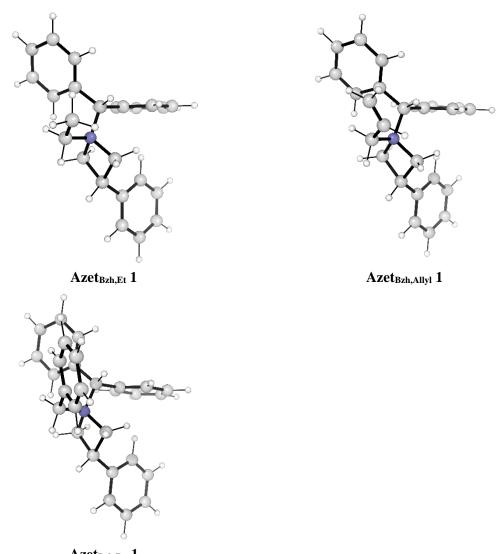
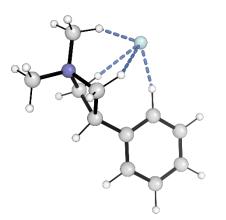
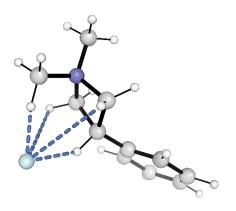




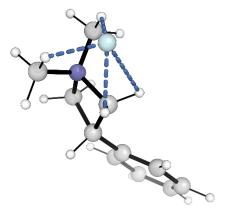
Figure S8: Conformations of Azet_{Bzh,Me} illustrating π -interactions

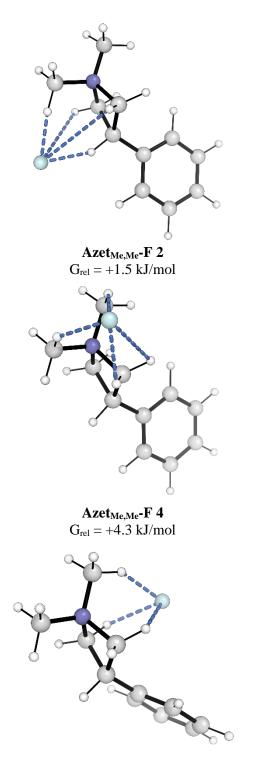
The lowest energy conformations of all of the ions studied are given in Figure S9. It should be noted that, with the exception of $Azet_{Bzh,Et}$, all ions have multiple low lying conformations, within computational error. With a benzhydryl substituent, formation of the CH- π interaction leads to additional conformational rigidity – the benzhydryl group in turn restricts the conformations available to the other nitrogen substituent, which chooses to eclipse the Bzh hydrogen rather than the bulkier Bzh phenyl ring (see $Azet_{Bzh,Et}$, $Azet_{Bzh,Allyl}$, and $Azet_{Bzh,Bn}$ for orientation of ethyl, allyl and benzyl respectively).

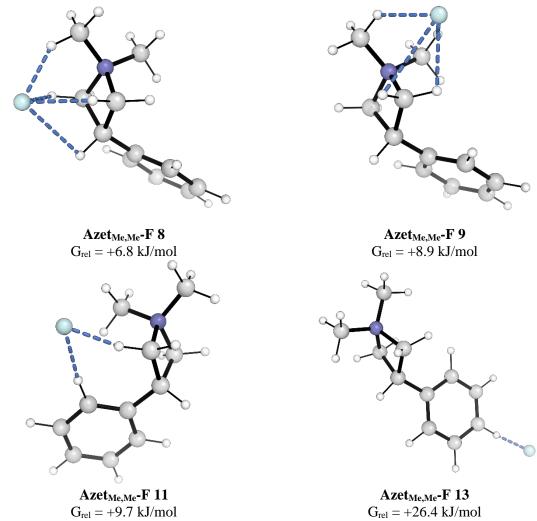



Azet_{Bzh,Bn} 1 Figure S9: Lowest energy conformations of the studied azetidinium ions

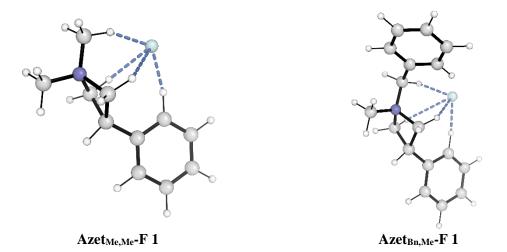
Azetidinium-Fluoride Ion Pairs

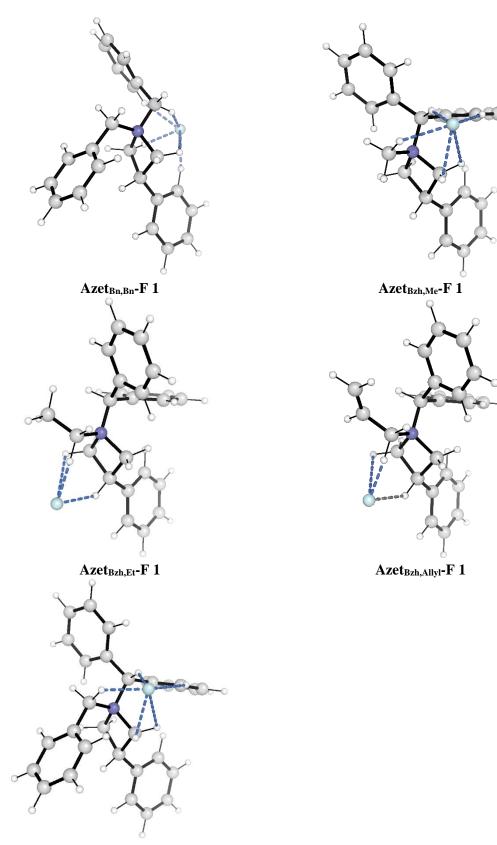

Ion pairs with fluoride favor proximity of the fluoride to the tetracoordinate nitrogen. Sampling with $Azet_{Me,Me}$ shows the ion pair favors geometries with the fluoride either to the side, or against the face of, the four membered ring (Figure S10), with the azetidinium ion in its intrinsically favored conformations. Many geometries are located within computational error of the minimum energy geometry (illustrated). Selected higher energy geometries are also shown.


 $\begin{array}{l} Azet_{Me,Me}\text{-}F \ 1 \\ G_{rel} = 0.0 \ kJ/mol \end{array}$

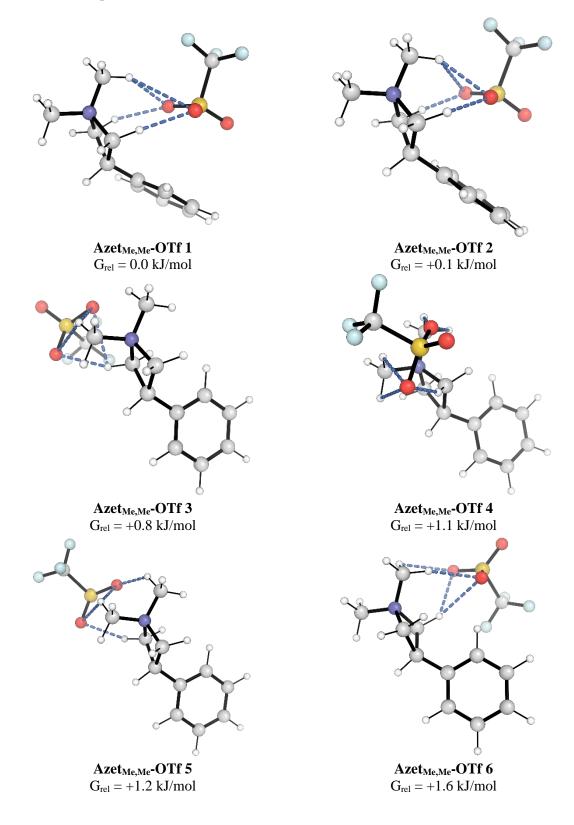

 $\begin{array}{l} \textbf{Azet}_{\textbf{Me},\textbf{Me}}\textbf{-}\textbf{F} \ \textbf{3} \\ G_{rel} = +3.4 \ kJ/mol \end{array}$

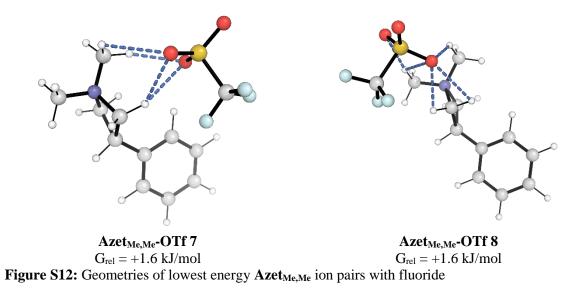
 $\begin{array}{l} \textbf{Azet}_{\textbf{Me},\textbf{Me}}\textbf{-}\textbf{F} \ \textbf{6} \\ \textbf{G}_{rel} = +5.7 \ kJ/mol \end{array}$



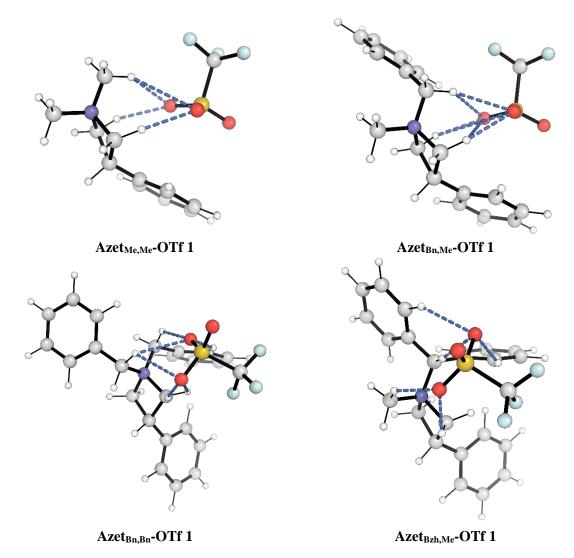

 $\begin{array}{l} \textbf{Azet}_{\textbf{Me},\textbf{Me}}\textbf{-}\textbf{F} ~\textbf{7} \\ \textbf{G}_{rel} = +6.8 ~kJ/mol \end{array}$

In all fluoride ion pairs, except $Azet_{Bzh,Bn}$ -F, the azetidinium adopts its favored conformer in the ion pair (Figure S11). The azetidinium ion that binds fluoride most weakly is $Azet_{Bzh,Et}$ as the ethyl group prevents close approach of fluoride. For azetidinium ions without the benzhydryl group, fluoride interacts with azetidinium phenyl group in addition to being proximal to nitrogen. In ions with benzhydryl group, the intramolecular CH- π interaction is retained and fluoride positioned elsewhere.





Azet_{Bzh,Bn}-F 1 Figure S11: Geometries of lowest energy ion pairs with fluoride


Azetidinium-Triflate Ion Pairs

Ion pairs with triflate counterion have larger conformational space due to the rotation of the triflate ion. However, the ion pairs favor the negatively charged oxygen atoms in similar positions to the fluoride ion in the **Azet-F** ion pairs. The lowest energy ion pairs of $Azet_{Me,Me}$ -OTf are given in Figure S12 – over 30 geometries were optimized within 5 kJ/mol.

Ion pairs of the azetidinium ions with triflate counterion are given in Figure S13. In all cases, the triflate ion associates closely with the formally positive nitrogen, and surrounding C-H bonds, with many geometries within computational error. Sampling of larger, more flexible, azetidinium ions was guided by the lower energy structures of the less complex ions, as more exhaustive sampling was prohibitive.

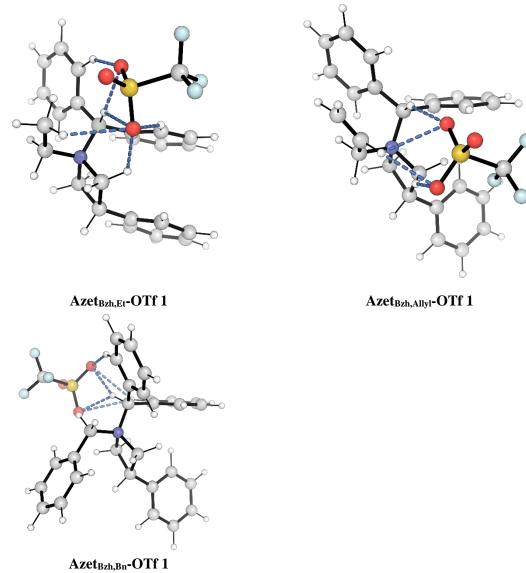
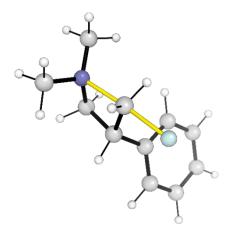
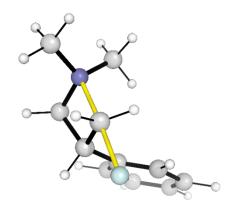
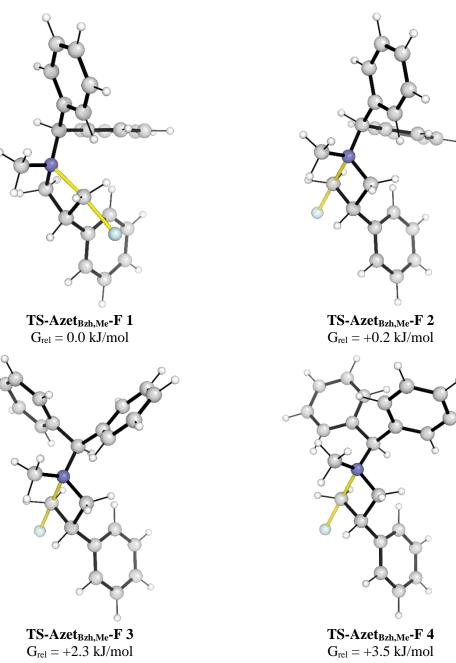
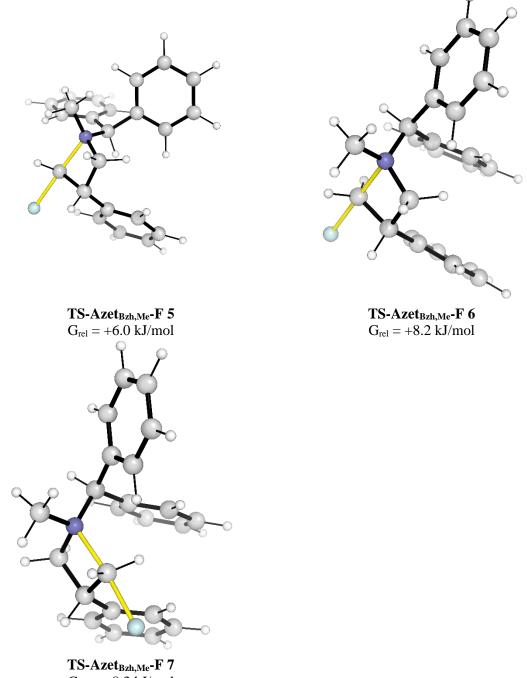




Figure S13: Azet OTf ion pairs


Azetidinium Fluorination Transition State Structures

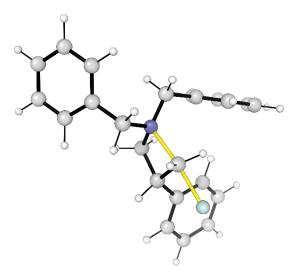
In the fluoride delivery transition state structures conformational space is greatly reduced over the ion pair and the relative energies of the TS conformations mirror those in the ion. The conformations of the TS with $Azet_{Me,Me}$ and the lowest energy conformations of the TS with $Azet_{Bzh,Me}$ are given in Figure S14 and Figure S15 respectively.



 $\begin{array}{c} \textbf{TS-Azet}_{Me,Me}\textbf{-F 1} & \textbf{TS-Azet}_{Me,Me}\textbf{-F 2} \\ G_{rel} = 0.0 \text{ kJ/mol} & G_{rel} = +3.6 \text{ kJ/mol} \end{array}$ Figure S14: TS conformations for delivery of fluoride to Azet_{Me,Me}

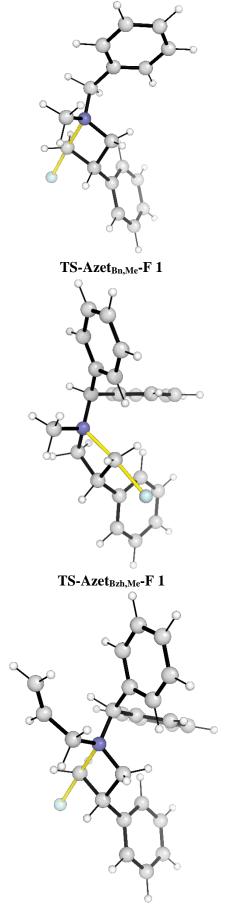


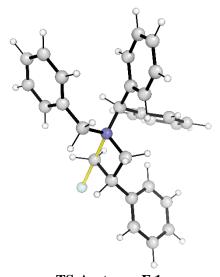
S89



 $G_{rel} = +8.3 \text{ kJ/mol}$ Figure S15: Geometries of TSs with Azet_{Bzh,Me}.


The lowest energy TSs with all azetidinium ions are given in Figure S16. All azetidinium ions, with the exception of $Azet_{Bn,Bn}$, adopt the same lowest energy conformation as in the free ion (the geometry adopted in the TS by $Azet_{Bn,Bn}$ is within computational error of the lowest energy conformer in the free ion, so this is not significant).


TS-Azet_{Me,Me}-F 1


TS-Azet_{Bn,Bn}-F1

TS-Azet_{Bzh,Et}-F1

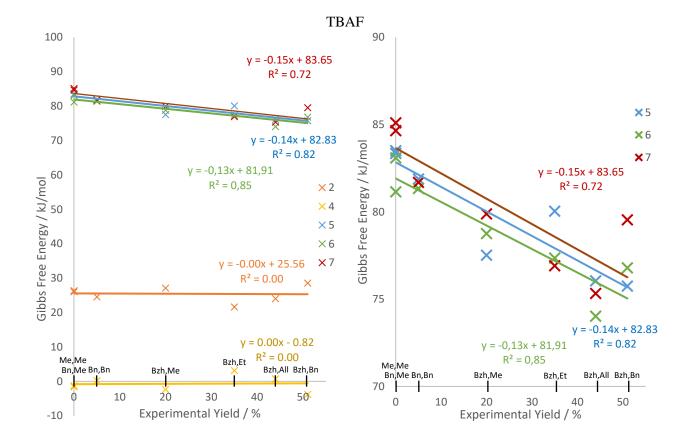
TS-Azet_{Bzh,Allyl}-F 1

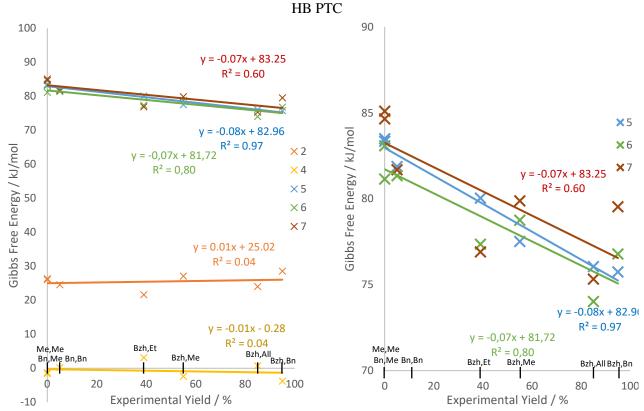
TS-Azet_{Bzh,Bn}-F 1 Figure S16: Geometries of lowest energy TSs with fluoride

Azetidinium Fluorination Energetics

The computed energies of key states for fluorination of the azetidinium ions are given in Table S17. Species in curly braces, {}, indicate a tight ion pair. Lowest energy conformers are used.

Table S17: Gibbs free energies (298.15 K, 1 M) of key species for reactivity of cis-azetidinium ions with fluoride without urea catalyst.


$ \left\{ \begin{array}{c} R_{cis} \\ R_{trans} \\ Ph^{V} TfO^{-} \end{array} \right\} \rightarrow $	Ph ^{···} + TfO ⁻		$ \left. \begin{array}{c} R_{cis} \\ R_{trans} \\ \end{array} \right\} \longrightarrow $ $ F^{-} $	$ \begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$
+ {NMe ₄ F}	+ {NMe ₄ F}	+ {N	IMe ₄ OTf}	+ {NMe ₄ OTf}
I	П		III	IV [‡]
Species (Aget)		Gibbs fr	ee energies / kJ/ı	nol
Species (Azet _{cis,trans})	Ι	II	III	IV [‡]
Azet _{Me,Me}	5.5	0.0	1.5	86.6
Azet _{Bn,Me}	3.4	0.0	1.8	86.5
Azet _{Bn,Bn}	3.7	0.0	3.3	85.0
Azet _{Bzh,Me}	1.9	0.0	0.8	80.7
Azet _{Bzh,Et}	5.8	0.0	6.3	83.2
$Azet_{Bzh,Allyl}$	5.2	0.0	3.9	79.2
Azet _{Bzh,Bn}	2.1	0.0	-0.6	78.9


Binding of the azetidinium triflate ion pair is relatively weak in all cases (I-II). Formation of the reactive ion pair from TBAF and the free azetidinium ion (II-III) is approximately neutral in Gibbs free energy, indicating similar affinity for fluoride of TBA⁺ and azetidinium ions. Fluoride delivery then proceeds with a barrier of approximately 75-85 kJ/mol.

The Gibbs free energy changes and activation barriers for various processes related to fluorination are tabulated in Table S18, with the appropriate kinetic barrier dependent on the reaction mechanism. Activation barriers are plotted against the yields of product obtained under HB PTC conditions (with catalyst) and with TBAF in Figure S17.

Barrier			Azetidinium Gibbs free energies / kJ/mol					
	Darrier	Me,Me	Bn,Me	Bn,Bn	Bzh,Me	Bzh,Et	Bzh,All	Bzh,Bn
1	${Azet^+OTf^-} \rightarrow Azet^+ + ^-OTf$	-5.5	-3.4	-3.7	-1.9	-5.8	-5.2	-2.1
2	${Azet^+F^-} \rightarrow Azet^+ + {}^-F$	26.3	26.0	24.5	27.1	21.6	24.0	28.5
3	$ {TBA+F^{-}} + {Azet+OTf^{-}} \rightarrow {TBA+OTf^{-}} + {Azet+F^{-}} $	-4.0	-1.6	-0.3	-1.1	0.4	-1.3	-2.7
4	$ {TBA^{+}F^{-}} + Azet^{+} \rightarrow TBA^{+} + {Azet^{+}F^{-}} $	-1.6	-1.3	0.2	-2.4	3.1	0.7	-3.8
5	${TBA^{+}F^{-}} + Azet^{+} \rightarrow TS + TBA^{+}$	83.5	83.3	81.9	77.5	80.0	76.1	75.7
6	${TBA+F} + {Azet+OTf} \rightarrow {TBA+OTf} + TS$	81.1	83.1	81.3	78.8	77.4	74.0	76.8
7	${Azet^+F^-} \rightarrow TS$	85.1	84.6	81.7	79.9	76.9	75.3	79.5

Table S18: Gibbs free energy changes and activation barriers for reactivity of azetidinium ions with fluoride without urea catalyst.

Figure S17: Plot of activation barriers/dissociation energies against experimental fluorination yields. Reactions yielding 'traces' are plotted as 5% yield. Linear trendlines are plotted to highlight general trends.

Both plots give qualitatively similar results. The uncertainty in computational results should be born in mind when interpreting the results, however, the correlation of several values reduces this. Activation barriers from free azetidinium ion (5), azetidinium triflate ion pair (6) and the reactive ion pair with fluoride (7) correlate negatively against reaction yield under both TBAF and HB PTC conditions, demonstrating consistency of computation and experiment. In contrast, there is no correlation (gradient ≤ 0.01 , $R^2 \leq 0.04$) between fluoride binding energy (2) and experimental yield with either fluoride source, suggesting that fluoride binding strength does not strongly influence reaction rate with either fluoride source.

HB PTC Mechanism

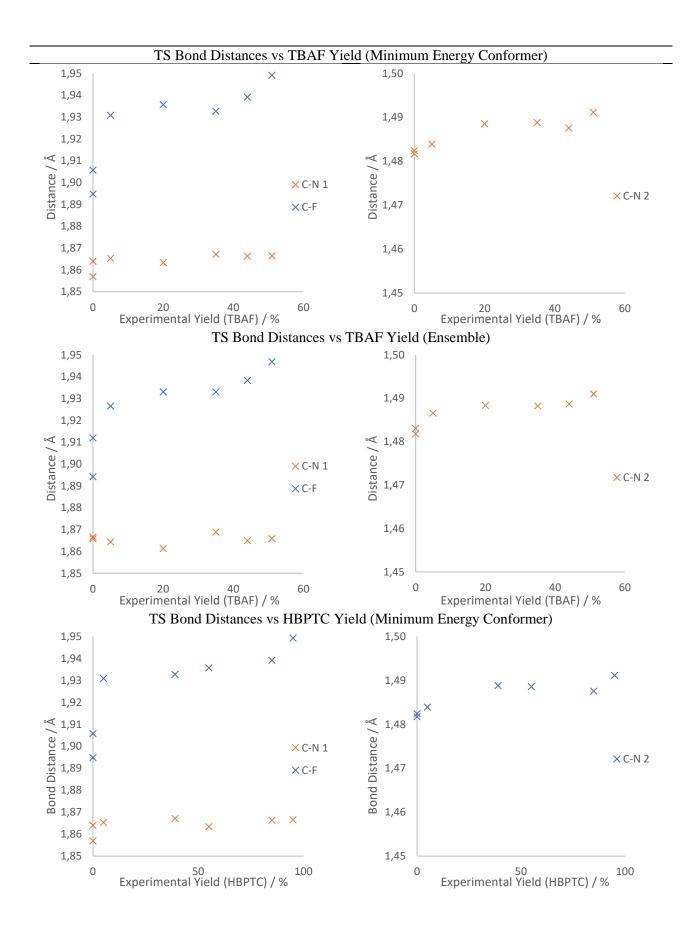
The lack of correlation of experimental yield (for a given reaction time) with the binding strength of azetidinium ion for fluoride suggests that the azetidinium-fluoride ion pair is not present in either of the turnover determining states in the catalyzed reaction (neither TDI nor TDTS). This supports that the azetidinium ion does not participate in a turnover determining phase-transfer process by binding fluoride. For example, **Azet**_{Bzh,Et} has the weakest complexation energy and therefore a low ability to bring fluoride into solution, but has a moderate yield. Note that the thermodynamics of phase-transfer may still contribute to the energetic span of the reaction, however the contribution is consistent for all of the azetidinium substrates.

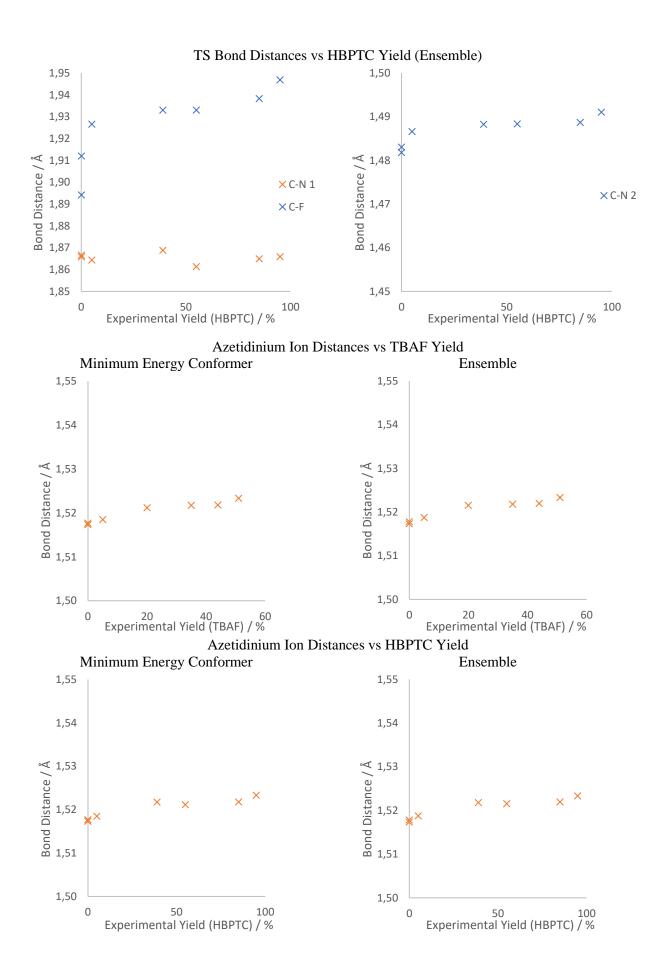
In contrast, the good correlation of yield with the Gibbs free energy barrier to fluoride delivery relative to separated fluoride (5) supports that fluoride delivery by the catalyst in the catalyzed reaction is the TDTS, backed experimentally by the strong dependence of yield on substrate identity and similar reactivity profiles for TBAF and HB PTC conditions.

Additionally, as the intrinsic barrier to fluorination of the azetidinium ion is high, and approaching the maximum energetic span for a viable catalytic reaction at room temperature, the likelihood that one or the other of these states is turnover limiting is high (when coordinated by catalyst).

The Effect of the Benzhydryl N-Substituent

Experimental yields demonstrate that having a benzhydryl substituent on nitrogen is important for reactivity. This is reflected in computed activation barriers where these substrates have transition state structures lower in Gibbs free energy (relative to separated ion, with TBAF) than those without a benzhydryl group. The series $Azet_{Me,Me} \rightarrow Azet_{Bn,Me} \rightarrow Azet_{Bzh,Me}$ (Series_{Me}) has activation barriers of 83.5, 83.3 and 77.5 kJ/mol, respectively, showing little change (< 1 kJ/mol) in barrier on conversion of methyl to benzyl, and a much larger change (6 kJ/mol) from benzyl to benzhydryl. A similar difference of 6 kJ/mol is seen between $Azet_{Bn,Bn}$ and $Azet_{Bzh,Bn}$ (Series_{Bn}) with barriers of 81.9 and 75.7 kJ/mol respectively, indicating a specific effect of the benzhydryl group worth a rate acceleration on the order of 10x over benzyl at room temperature. Critical bond distances are given in Table S19. Both minimum energy conformer and Boltzmann ensemble averaged distances are given.

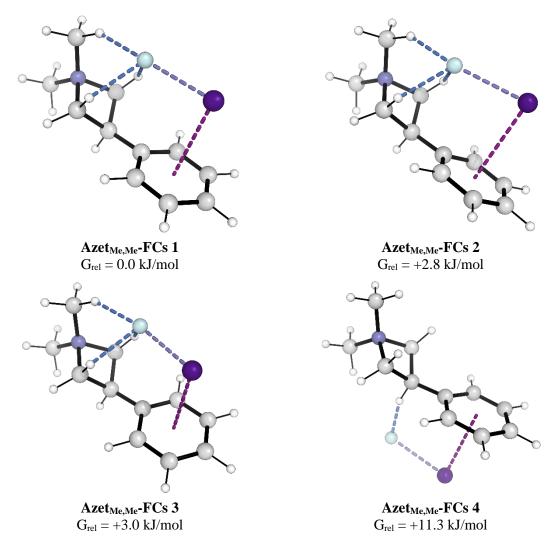

As reaction yield increases (activation barrier decreases), the C-N distance in the ground state ion is increased. In **Series_{Me}**, the average C-N distance in the ground state ions are 1.517, 1.518 and 1.521 Å respectively. Likewise for **Series_{Bn}**, the distances are 1.518 and 1.523 Å. In both cases, the C-N distance in the benzhydryl substituted ions are significantly longer than those without. C-N distance correlates positively with experimental fluorination yield.

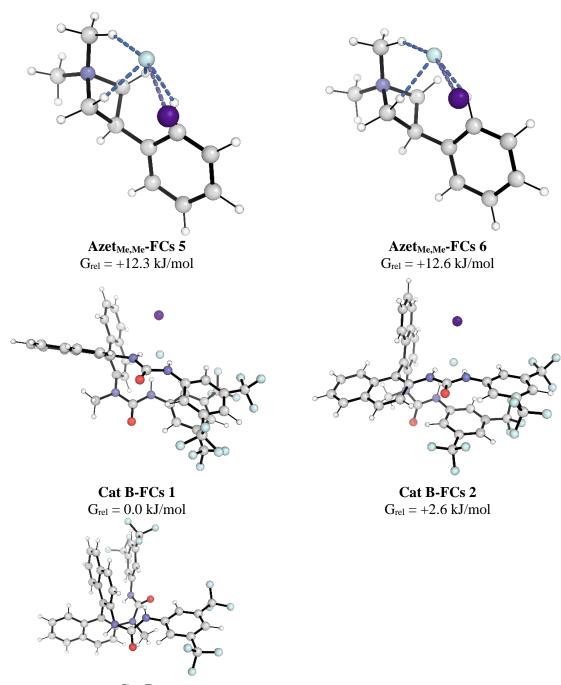

In the TSs, C-F separation increases as experimental yield increases, though without an orderly correlation. C-N separation of the breaking bond demonstrates no clear trend with experimental yield. This corresponds to a more ion pair like TS with increasing experimental yield. Increasing ground state C–N bond distances and more ion pair like TS positions are consistent with the Hammond postulate, where the TS more strongly resembles a more strained (closer in energy) ion. This is further supported by the increase in thermodynamic favorability of the ring opening reaction with fluoride in **Series_{Me}** of -85.5, -94.9 and -109.2 kJ/mol, where opening of the benzhydryl substituted ion is most exergonic.

Computation therefore supports that benzhydryl substituted azetidinium ions are intrinsically significantly more reactive than similarly substituted ions (such as benzyl) due to the ion being more strained.

	Distance	(Minimum Co	nformer) / Å	Dis	stance (Ensembl	e) / Å
	C-F	C-N 1*	C-N 2*	C-F	C-N 1*	C-N 2*
TS-Azet _{Me,Me} -F	1.895	1.864	1.482	1.894	1.867	1.482
TS-Azet _{Bn,Me} -F	1.906	1.857	1.482	1.912	1.866	1.483
TS-Azet _{Bn,Bn} -F	1.931	1.865	1.484	1.923	1.864	1.487
TS-Azet _{Bzh,Me} -F	1.936	1.863	1.489	1.933	1.861	1.488
TS-Azet _{Bzh,Et} -F	1.933	1.867	1.489	1.933	1.869	1.488
TS-Azet _{Bzh,Allyl} -F	1.939	1.866	1.488	1.938	1.865	1.489
TS-Azet _{Bzh,Bn} -F	1.949	1.867	1.491	1.947	1.866	1.491
$Azet_{Me,Me}$		1.517			1.517	
Azet _{Bn,Me}		1.518			1.518	
Azet _{Bn,Bn}		1.518			1.519	
Azet _{Bzh,Me}		1.521			1.522	
Azet _{Bzh,Et}		1.522			1.522	
Azet _{Bzh,Allyl}		1.522			1.522	
Azet _{Bzh,Bn}		1.523			1.523	

Table S19: Key bond distances with azetidinium ions

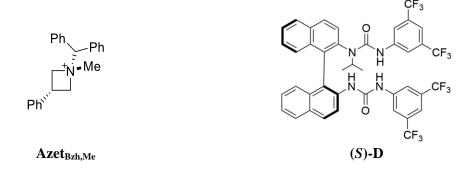




CsF Phase-Transfer

To further investigate the relative abilities of azetidinium ions and urea hydrogen bond donors to act as phase-transfer catalysts for CsF, the binding energies of $Azet_{Me,Me}$ and catalyst **B** with a solvated CsF formula unit were evaluated (Figure S18).

Azet_{Me,Me} binds a CsF ion pair weakly, with $\Delta G = -14.0$ kJ/mol, slightly overcoming the entropic penalty of coordination. Binding is weaker over the naked fluoride ion due to competition with the cesium ion and loss of rotational entropy of the CsF unit on coordination. Catalyst **B** on the other hand binds CsF much more strongly with $\Delta G = -69$ kJ/mol, originating from the three strong hydrogen bonds to fluoride. These results demonstrate that the neutral hydrogen bonding urea catalyst has a significantly higher potential to act as a CsF phase-transfer catalyst than the azetidinium ion.



Cat B Figure S18: Geometries of CsF complexes.

Enantioselective Fluorination of cis-Azet_{Bzh,Me}

Enantioselectivity was first evaluated on substrate $Azet_{Bzh,Me}$ with (*S*)-D catalyst. Gibbs free energies are evaluated at 298.15 K and 1 M concentration unless otherwise stated.

Transition State Structures

The transition state structures to both enantiomers of product with cis substrate were simulated using classical molecular dynamics for 300 ns, leading to a total simulation time of 600 ns. All frames with F---C---N > 150° in each trajectory were used for clustering with RMSD cutoff of 1.0 Å. For attack at the carbon leading to (*R*) product, herein referred to as *R*-attack, 21796 frames were clustered, resulting in 10 clusters of greater than 1% weight. Lower weight clusters were manually inspected and verified that they contained no additional conformations of interest. The central frame from each cluster was then optimized using DFT, resulting in 10 unique TSs to (*R*) product. The same procedure was followed for S-attack, with 20495 frames clustered, resulting in 8 clusters of over 1% weighting, and 8 unique DFT optimized TSs to (S) product. The intramolecular T-shape CH- π interaction of the azetidinium was sampled manually. A total of 24 TSs were optimized – 14 to (*S*) product and 10 to (*R*) product – spanning an energy range of 41 kJ/mol. The ensemble indicates that (*S*) catalyst affords (*S*) product in 54:46 e.r. in 1,2-dichloroethane at 298.15 K. The experimental enantioinduction is 80.5:19.5 e.r., consistent within computational error (approximately 3.5 kJ/mol deviation).

The Gibbs free energy distribution of the low energy TSs is illustrated in Figure S19. Key geometric parameters are tabulated in Table S20. The highest contributing TSs to major and minor product are shown in more detail in Figure S20.

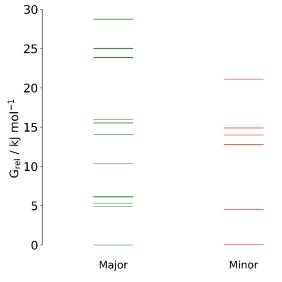
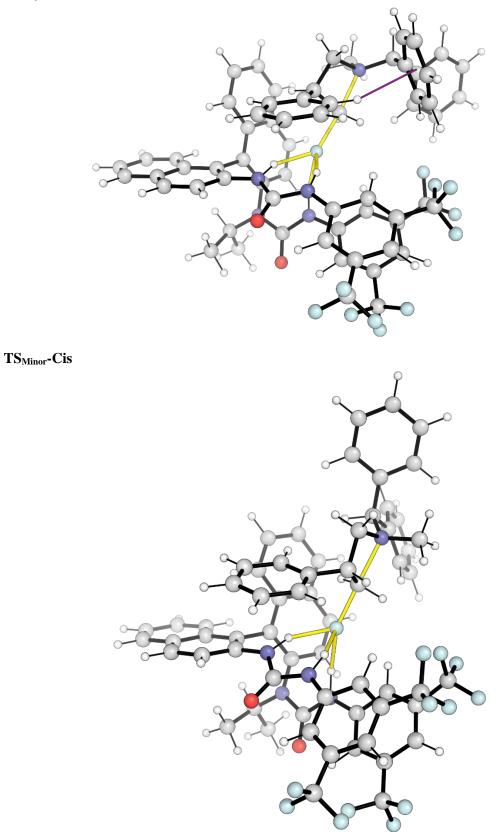



Figure S19: Gibbs free energy distribution of TSs in the ensemble.

1able 320: Key geometric parameters for the transition state structures	ameters for the t	ransition state st		•						
TC.	Imag		X	Key Distances/ A		-		Key.	Key Angle/ ^o	
61	IIIIdg.	C-F	C-N	HB 1	HB 2	HB 3	HB 3	Pucker	Benzhydryl	Backbone
SL	Imag.	1.862	1.973	1.905	1.832	1.836	148.0	-12.0	-61.5	72.0
TS_Cis-Azet-major1	-649.8	1.844	1.957	1.828	1.906	1.824	148.8	-19.2	179.7	74.8
TS_Cis-Azet-major2	-645.7	1.842	1.968	1.840	1.865	1.859	149.2	-8.8	59.3	71.3
TS_Cis-Azet-major3	-648.6	1.841	1.956	1.852	1.905	1.832	148.7	-19.8	154.4	74.1
TS_Cis-Azet-major4	-647.6	1.866	1.975	1.915	1.836	1.848	144.4	-11.8	-61.3	68.3
TS_Cis-Azet-major5	-648.4	1.843	1.958	1.846	1.930	1.833	146.2	-19.1	154.1	69.8
TS_Cis-Azet-major6	-650.0	1.848	1.962	1.850	1.886	1.836	145.7	-15.4	-178.4	69.69
TS_Cis-Azet-major7	-644.3	1.850	1.970	1.919	1.814	1.861	143.0	-9.2	62.3	68.3
TS_Cis-Azet-major8	-648.7	1.831	1.954	1.868	1.778	1.884	146.6	-24.7	-159.3	95.2
TS_Cis-Azet-major9	-646.1	1.853	1.963	1.777	1.848	2.056	133.3	-17.5	-176.8	65.7
TS_Cis-Azet-major10	-637.0	1.853	1.963	1.777	1.848	2.056	133.3	-17.5	-176.8	65.7
TS_Cis-Azet-major11	-637.0	1.827	1.962	1.834	1.926	1.874	164.2	-9.8	-56.7	109.7
TS_Cis-Azet-major12	-648.8	1.844	1.957	1.931	1.776	1.930	139.3	-5.4	-176.1	103.5
TS_Cis-Azet-major13	-642.8	1.853	1.971	2.152	1.694	1.886	152.1	-25.3	152.9	107.6
TS_Cis-Azet-major14	-642.9	1.851	1.959	1.841	1.838	1.916	145.5	-18.2	-178.1	70.6
TS_Cis-Azet-minor1	-645.0	1.838	1.952	1.866	1.822	1.875	146.1	-21.7	-157.8	71.0
TS_Cis-Azet-minor2	-647.7	1.845	1.956	1.819	1.846	1.904	142.3	-20.7	-178.7	67.7
TS_Cis-Azet-minor3	-644.9	1.834	1.962	1.864	1.797	1.938	142.4	-14.6	166.2	76.6
TS_Cis-Azet-minor4	-641.8	1.819	1.942	1.746	1.969	1.886	147.8	-14.7	175.2	110.6
TS_Cis-Azet-minor5	-644.7	1.818	1.958	1.812	1.787	1.870	151.2	-21.2	-168.2	111.2
TS_Cis-Azet-minor6	-645.8	1.842	1.963	1.942	1.780	1.900	147.5	-24.2	153.0	74.9
TS_Cis-Azet-minor7	-645.5	1.858	1.983	1.890	1.880	2.096	159.1	1.1	66.2	104.5
TS_Cis-Azet-minor8	-650.0	1.864	1.959	2.050	1.707	2.006	135.5	-26.5	-156.0	102.8
TS_Cis-Azet-minor9	-646.4	1.864	1.980	1.854	1.766	1.960	145.0	-31.1	60.6	69.5

TS_{Major}-Cis

Figure S20: Lowest energy TSs to major and minor product. Azetidinium intramolecular T-shape CH- π interaction illustrated in purple in **TS**_{Major}-**Cis**.

Origins of Enantioselectivity

The two lowest energy TSs, with $\Delta\Delta G^{\ddagger} = 0.0 \text{ kJ/mol}$, are superimposed in Figure S21. Catalyst geometry superimposes well. The phenyl group bonded to the azetidinium ring sits in the same place in both TSs, and results in a slight twist of the azetidinium ring. The benzhydryl group points in different directions in the two TSs.

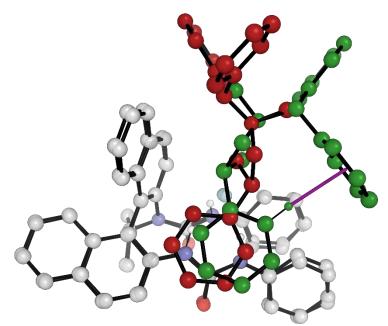


Figure S21: Superposition of TS_{Major} -Cis (green) and TS_{Minor} -Cis (red). Intramolecular T-shape CH- π interaction is shown in purple.

In TS_{Major} -Cis, the azetidinium ion can adopt the favored conformation seen with uncoordinated fluoride, forming an intramolecular T-shape CH- π interaction. The shape of the azetidinium ion, determined primarily by the phenyl group bonded to the azetidinium ring, fits neatly into the catalytic pocket, with phenyl group lying parallel to the bidentate urea. In contrast, the favored CH- π conformation cannot be adopted when delivering fluoride to the other carbon. In the lowest energy minor TS, the proximity of the binam backbone prevents formation of the CH- π interaction due to steric clash, however this must be compensated by stronger substrate-catalyst interactions. The difference in energy between the two azetidinium conformers in the absence of fluoride is 4.3 kJ/mol, reduced to 2.3 kJ/mol on uncoordinated fluoride delivery.

Distortion/Interaction-Activation Strain Analysis

Intrinsic reaction coordinate (IRC) calculations were run for TS_{Major} -Cis and TS_{Minor} -Cis and the distortion/interaction-activation strain analysis of Bickelhaupt and Houk applied.⁵¹ The system was partitioned into {catalyst-fluoride complex} + {azetidinium substrate}. The results of the analysis are given in Figure S22.

In both cases the total energy begins negative, as bringing the negatively charged fluoride complex and positively charged substrate together involves favorable coulombic interactions. In general, the profiles are very similar for both IRCs. **IRC**_{Minor} consistently has stronger interaction than **IRC**_{Major}, however this is accompanied by higher distortion. Interestingly, towards the TS positions, there is little difference in distortion despite the substrate adopting a less favored conformer along **IRC**_{Minor}. The TS positions are very similar, so this is not a significant factor when comparing the distortions at the respective TS positions.

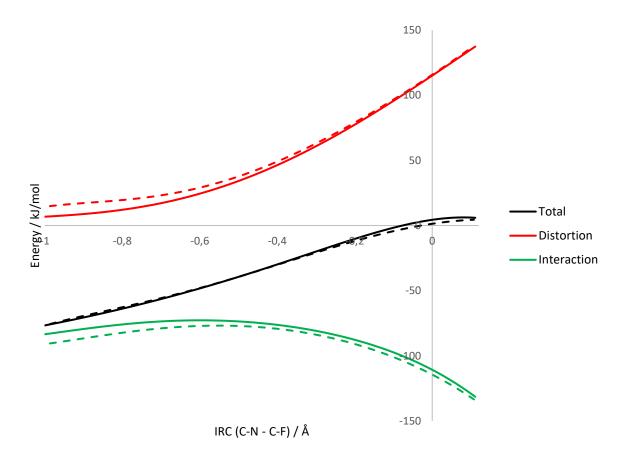
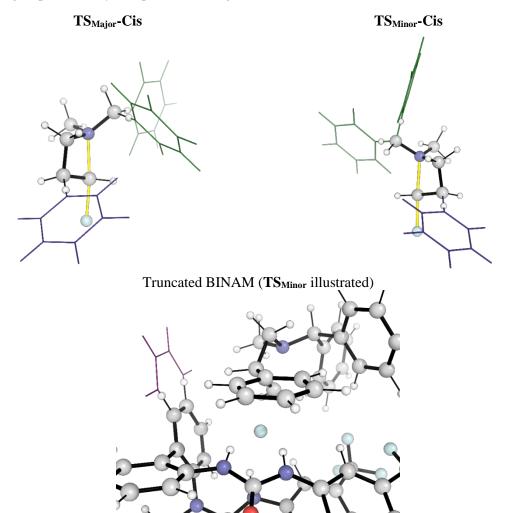



Figure S22: Distortion/interaction-activation strain analysis of fluoride delivery in TS_{Major} -Cis and TS_{Minor} -Cis. The TS to major product has lower distortion and both pathways have similar interaction. The difference in TS position is minimal.

Truncated Models

To probe the contributions of different structural elements to enantioselectivity, the TSs were truncated in various ways, and the energy re-evaluated without optimization (Figure S23). Energies are tabulated in Table S21. Whilst the error in $\Delta\Delta G^{\ddagger}$ is significant compared to its magnitude, how $\Delta\Delta G^{\ddagger}$ changes on truncation of different groups can still yield qualitative insight.

Figure S23: Illustration of the groups that are truncated to probe the origins of enantioselectivity. Green – benzhydryl, Blue – phenyl.

<i>Table S21:</i> $\Delta \Delta E^{\ddagger}$ selectivities with truncation of the system
--

Entry		Truncated Groups		$\Delta\Delta E^{\ddagger} / \text{kJ/mol}$
1	None			1.5*
2	Ph			4.5
3	Bzh			0.2
4	Ph	Bzh		-2.7
5	BINAM			-2.8
6	Azet			1.1
7	Cat	Fluoride		-1.6
8	Cat			-4.7
9	Cat	Ph		-0.2
10	Cat	Bzh		0.0
11	Cat	Ph	Bzh	-1.4
		Ph Intiomer due to exclusion		

Truncation of the azetidinium phenyl group $(1\rightarrow 2)$ results in a $\Delta\Delta E^{\ddagger}$ of 4.5 kJ/mol indicating a shift towards minor product of 3 kJ/mol. This suggests that interactions of the Ph group are more favorable in TS_{Major} than TS_{Minor} . This change can be accounted for through loss of azetidinium intramolecular CH- π interaction, or catalyst-substrate interactions. If the same truncation is performed with the catalyst also removed (8 \rightarrow 9), there is an energy change of 4.5 kJ/mol towards the minor, demonstrating that the major contributor is the loss of the intramolecular CH- π interaction in TS_{Major} .

Truncation of the benzhydryl group in the presence of catalyst $(1\rightarrow3)$ leads to a small change in $\Delta\Delta E^{\ddagger}$ of 1.3 kJ/mol, to 0.2 kJ/mol, suggesting the Bzh group has interactions of similar strength in both TSs. In the absence of catalyst, truncation of the Bzh group results in $\Delta\Delta E^{\ddagger}$ shifting towards minor product by 4.7 kJ/mol, highlighting significantly stronger interactions of the group in TS_{Major} . This is consistent with the intramolecular CH- π interaction only present in TS_{Major} . The large difference in behavior of truncating this group in the presence and absence of catalyst is consistent with stronger interactions of the Bzh group or the Bzh group or the Bzh group have a similar effect on $\Delta\Delta E^{\ddagger}$, consistent with the dominant effect being loss of the intramolecular CH- π interaction.

If one of the aromatic rings of the binam backbone is truncated $(1\rightarrow 5)$, selectivity increases by 4.3 kJ/mol, demonstrating a stronger interaction of the substrate with this group in the **TS**_{Minor}. This arises from interaction with the benzhydryl group of the substrate in **TS**_{Minor}, despite a shortened cation- π in **TS**_{Major}.

Non-covalent Interactions

Non-covalent interactions plays a key role in docking the substrate with the catalyst-fluoride complex. These non-covalent interactions are visualized in Figure S24 using the non-covalent interaction index. Both TSs have face-to-face π -interactions between azetidinium phenyl group and catalyst urea group, and a cation- π interaction between azetidinium and BINAM backbone. **TS**_{Major} benefits from an intramolecular T-shape CH- π interaction, which is not achieved in **TS**_{Minor}. However, **TS**_{Minor} can achieve an edge-to-face π -interaction between the catalyst BINAM backbone and one of the benzhydryl phenyl rings.

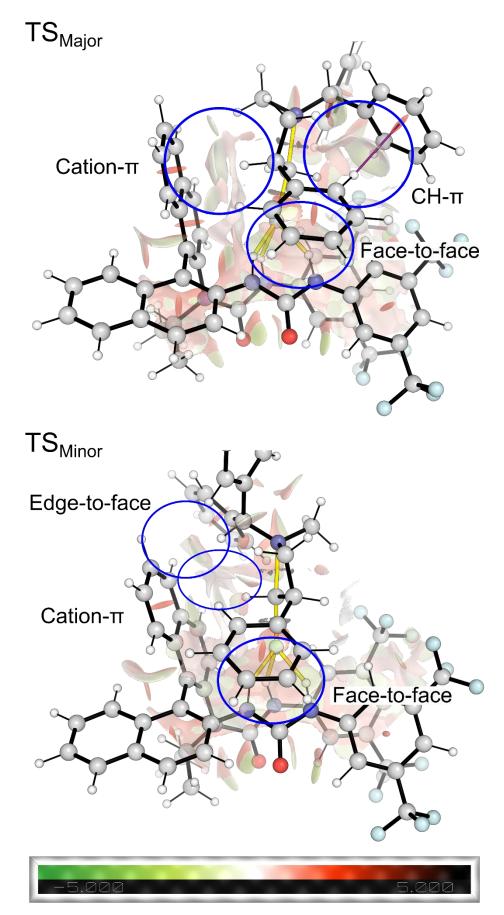
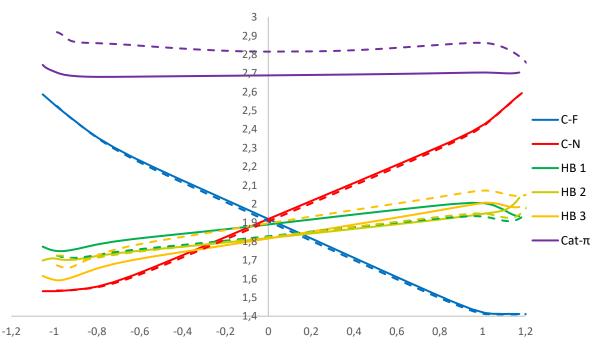
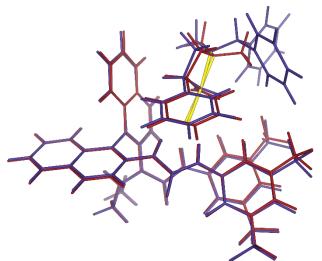



Figure S24: Non-covalent Interaction plots for $TS_{Major}\mbox{-}Cis$ and $TS_{Minor}\mbox{-}Cis$

Geometry Evolution over the Intrinsic Reaction Coordinate

Distances were monitored over the IRC pathway to major and minor products up to the TSs (**IRC**_{Major}-**Cis** and **IRC**_{Minor}-**Cis** respectively) and are plotted in Figure S25.


Figure S25: Plot of key geometric parameters over the IRC pathways to major and minor products. Distances on the pathway to major product

- i) Forming C-F and breaking C-N bonds are similar lengths along both IRC pathways, with **IRC**_{Major} slightly looser.
- ii) The azetidinium-binam cation- π interaction, measured from closest hydrogen atom, to the centroid of the ring is significantly longer along **IRC**_{Minor}, consistent with a weaker interaction.
- iii) HB 2 is the same length and evolves at the same rate along both IRC pathways.
- iv) HB 1 is longer in **IRC**_{Major} and HB 3 is shorter, with the bonds increasing in length at a similar rate along both pathways. HB 3 elongates at the fastest rate along both pathways.

Points iii-iv indicate that fluoride is positioned further from the BINAM backbone along IRC_{Major} and is positioned further towards the monodentate alkylated urea hydrogen bond donor.

Effect of the Bzh group

Superposition of TS_{Major} -Cis and reoptimized TS with $Azet_{Me,Me}$

Superposition of TS_{Minor} -Cis and reoptimized TS with $Azet_{Me,Me}$

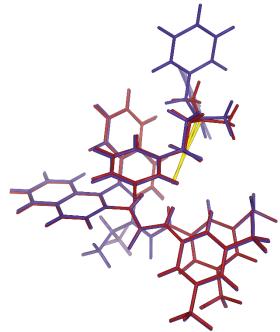


Figure S26: Reoptimization of TS_{Major} -Cis and TS_{Minor} -Cis without benzhydryl group demonstrates minimal change in TS geometries.

Replacement of the Bzh group in the two lowest energy TSs with a Me group (converting the substrate to $Azet_{Me,Me}$) followed by reoptimization yields TSs that superimpose well with the Bzh starting points, demonstrating that the Bzh group has minimal role in determining the substrate docking pose.

Enantioselectivity with Azet_{Bzh,Et}

To investigate the increased level of enantioselectivity with $Azet_{Bzh,Et}$ over $Azet_{Bzh,Me}$, TS_{Major} -Cis and TS_{Minor} -Cis were reoptimized after converting the *N*-Me group to *N*-Et. $\Delta\Delta G^{\ddagger}$ is increased from 0.0 to 6.4 kJ/mol. This is consistent in direction and qualitative magnitude with experimental results where e.r. is

increased from 81:19 to 96:4 corresponding to $\Delta\Delta G^{\ddagger}$ of approximately 3.6 and 7.9 kJ/mol. The TSs are superimposed in Figure S27.

In the TS_{Major} -Cis, the ethyl group slots cleanly into space, with the substrate as a whole adopting the lowest energy conformation seen in the TS with free fluoride. No change in catalyst or substrate geometry is seen, with perfect superposition of both (Figure S27, left). In contrast, in TS_{Minor} -Cis, the ethyl group cannot adopt a conformation without requiring distortion and movement of the substrate. The ethyl group adopts a less favored conformation, eclipsing the azetidinium ring. Figure S27, right, shows translation of the substrate and distortion of the azetidinium ring. As the ethyl groups fits so perfectly into the lowest energy major TS, all other TSs are expected to be destabilized relative to this, consistent with the increase in enantioselectivity seen experimentally.

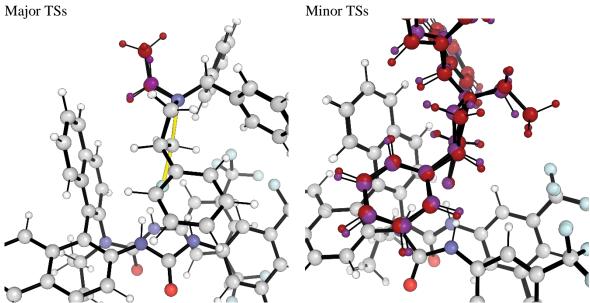


Figure S27: Superposition of lowest energy TSs with $Azet_{Bzh,Me}$ (purple) and reoptimization with $Azet_{Bzh,Et}$ (red) substrate. Left: Major, Right: Minor.

Summary

The catalyst adopts the same conformation in both the lowest energy TS to major and minor product, eliminating this as a major factor in enantioselectivity.

The docking pose of the substrate into the catalyst-fluoride complex in both cases is determined by face-to-face π -interactions between azetidinium phenyl ring and bidentate urea, in addition to the stereoelectronic requirements of the S_N2 mechanism.

The position of the large benzhydryl group has surprisingly little effect on TS geometries exemplified by completely different positioning in the lowest energy TSs to major and minor product.

In TS_{Major} -Cis, the benzhydryl groups forms a favorable intramolecular T-shape CH- π interaction, exhibited in the TS with naked fluoride, and worth approximately 2-5 kJ/mol. In TS_{Minor} -Cis, however, the benzhydryl group can form an edge-to-face π -interaction with the BINAM backbone, compensating for this loss.

The cation- π distance in **TS**_{Major}-**Cis** is shorter, consistent with a stronger interaction.

Enantioselective Fluorination of trans-Azet_{Bzh,Me}

Transition State Structures

The transition state structures to both enantiomers of product with trans substrate were simulated for 300 ns, leading to a total simulation time of 600 ns. All frames with F---C---N > 150° in each trajectory were used for clustering with RMSD cutoff of 1.0 Å. For R-attack, all frames were clustered, resulting in 10 clusters of greater than 1% weight. Lower weight clusters were manually inspected and verified that they contained no additional conformations of interest. The central frame from each cluster was then optimized using DFT, resulting in 9 unique TSs to (*R*) product. The same procedure was followed for S-attack, with all frames clustered, resulting in 9 clusters of over 1% weighting, and 9 unique DFT optimized TSs to (S) product. Manual sampling was used to augment the low energy conformers of the ensemble, resulting in a total of 37 TSs.

The TSs span an energy range of 46 kJ/mol. The ensemble indicates that (*S*) catalyst affords (*S*) product, however with greatly overestimated enantioselectivity of 98.6:1.4 e.r. in 1,2-dichloroethane at 298.15 K ($\Delta\Delta G^{\ddagger}$ = 12.6 kJ/mol compared to experiment of approximately 3.5 kJ/mol). The major enantiomer is in agreement with crystallography, suggesting that a low energy TS to minor product is missing despite extensive effort to locate it. The structural similarity of the lowest energy TS to major product to the lowest energy TSs with cis substrate, and its low energy compared to all the located minor TSs with trans substrate gives confidence that the lowest energy TS to major product has indeed been located. The Gibbs free energy distribution of the low energy TSs is illustrated in Figure S28. Key geometric parameters for the lowest energy TSs are tabulated in Table S22. The lowest energy TS to major product, **TS**_{Major}-**Trans** is shown in Figure S29.

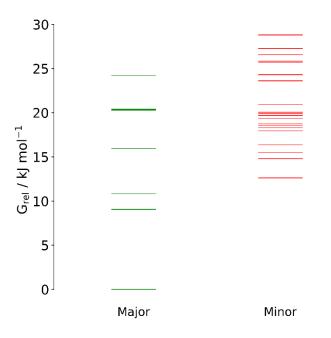


Figure S28: Gibbs free energy distribution of TSs in the ensemble. TS_{Major} -Trans is significantly lower in Gibbs free energy than all other TSs located.

1000 322. 110) goomount parameters for the massion start su actures		NO ANDIO HOMICIND		Kav Distances/ Å				Kev	Kav Angle/0	
TS	Imag.	C-F		HB 1	HB 2	HB 3	HB 3	Pucker	Benzhvdrvl	Backhone
TS Trans-Azet-maior1	-645 8	1 845	1 953	1 877	1 837	1 831	148.7	-15.8	172 8	74.5
										2
TS_Trans-Azet-major2	-646.0	1.843	1.954	1.819	1.850	1.826	145.7	-15.0	172.2	70.1
TS_Trans-Azet-major3	-653.9	1.826	1.960	1.868	1.838	1.822	146.1	-1.8	-163.7	74.1
TS_Trans-Azet-major4	-640.5	1.859	1.993	1.812	1.761	2.005	143.9	-15.7	59.2	71.3
TS_Trans-Azet-major5	-639.2	1.849	1.972	1.925	1.775	1.820	161.2	-22.6	170.2	86.1
TS_Trans-Azet-major6	-639.2	1.849	1.972	1.925	1.774	1.820	161.2	-22.6	170.2	86.0
TS_Trans-Azet-major7	-646.0	1.861	1.958	2.033	1.822	1.873	142.0	-16.0	166.3	75.3
TS_Trans-Azet-major8	-640.7	1.844	1.986	1.868	1.747	1.943	144.0	-16.9	171.1	75.8
TS_Trans-Azet-major9	-646.7	1.846	1.960	1.914	1.748	2.022	131.9	-19.2	-173.6	106.7
TS_Trans-Azet-major10	-654.7	1.813	1.943	1.814	1.822	1.960	139.3	12.8	172.9	105.3
TS_Trans-Azet-minor1	-648.7	1.842	1.977	1.786	1.968	1.849	147.9	13.7	60.3	74.5
TS_Trans-Azet-minor2	-642.4	1.823	1.994	1.836	1.851	1.778	162.1	19.8	-58.7	88.0
TS_Trans-Azet-minor3	-643.5	1.855	1.962	1.769	1.892	1.916	142.4	-16.0	-60.5	69.1
TS_Trans-Azet-minor4	-653.7	1.829	1.970	1.798	1.928	1.874	147.7	6.9	-71.9	71.9
TS_Trans-Azet-minor5	-648.1	1.837	1.967	1.848	1.965	1.844	147.6	3.0	-72.3	74.3
TS_Trans-Azet-minor6	-652.0	1.840	1.974	1.820	1.878	1.923	145.4	-15.0	65.5	71.6
TS_Trans-Azet-minor7	-652.7	1.859	1.983	1.847	1.801	1.976	147.8	-12.1	-51.2	69.2
TS_Trans-Azet-minor8	-652.7	1.859	1.981	1.818	1.837	1.949	147.4	-13.0	-52.5	69.5
TS_Trans-Azet-minor9	-642.7	1.889	1.984	1.843	2.000	1.878	147.0	15.1	-67.5	74.1
TS_Trans-Azet-minor10	-648.8	1.837	1.974	1.874	1.853	1.819	149.9	16.2	168.5	82.3
TS_Trans-Azet-minor11	-653.6	1.833	1.971	1.802	1.922	1.899	147.4	7.4	-72.3	72.0
TS_Trans-Azet-minor12	-647.7	1.879	1.987	1.909	1.753	2.014	145.3	-20.2	-52.9	6.69
TS_Trans-Azet-minor13	-647.7	1.850	1.975	1.773	2.015	1.879	149.9	-14.8	-72.6	73.5
TS_Trans-Azet-minor14	-649.1	1.870	1.984	1.845	1.915	1.953	146.8	-2.4	-57.9	69.8
TS_Trans-Azet-minor15	-651.1	1.834	1.967	1.829	1.974	1.848	143.9	1.9	-71.6	70.7
TS_Trans-Azet-minor16	-649.0	1.835	1.974	1.864	1.863	1.825	147.8	16.3	169.3	78.4
TS_Trans-Azet-minor17	-654.5	1.848	1.974	1.899	1.780	1.981	146.7	-13.8	64.3	68.8
TS_Trans-Azet-minor18	-644.2	1.888	1.989	1.860	1.856	1.975	147.7	-18.4	-59.9	70.1
TS_Trans-Azet-minor19	-648.5	1.853	1.970	1.908	1.761	1.873	149.2	-18.9	-39.0	69.8
TS_Trans-Azet-minor20	-646.6	1.847	1.976	1.850	1.930	1.902	149.3	8.5	-45.0	74.0

TS_{Major}-Trans

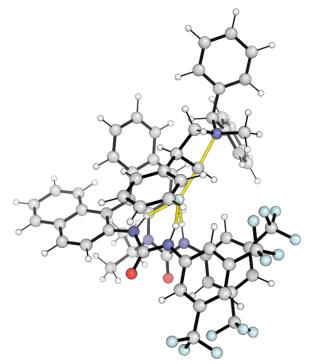


Figure S29: Lowest energy TS to major product

Non-covalent Interactions

Non-covalent interactions plays a key role in docking the substrate with the catalyst-fluoride complex. These non-covalent interactions are visualized in Figure S30 using the non-covalent interaction index. **TS**_{Major}-**Trans** features similar NCIs to the TSs with cis substrate, with face-to-face π -interaction between azetidinium phenyl group and catalyst urea group, and a cation- π interaction between azetidinium and BINAM backbone.

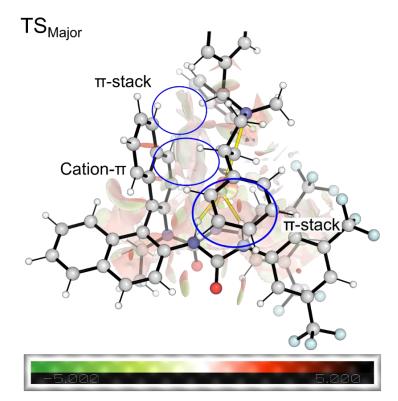
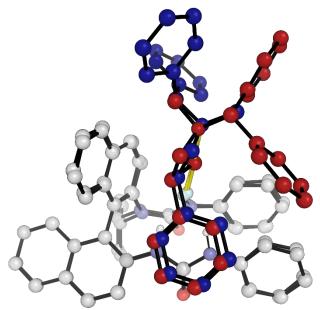



Figure S30: Non-covalent Interaction plots for TS_{Major}-Trans

Comparison of Cis and Trans TSs

Transition state structures with cis and trans substrate are superimposed in Figure S31.

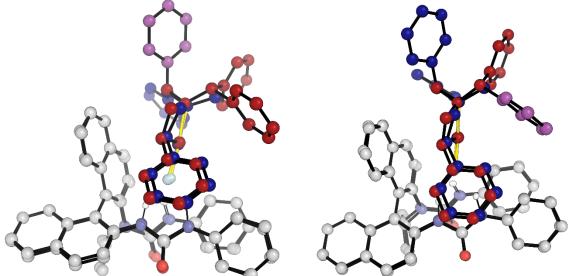
TS_{Major} Superposition (TS_{Major}-Cis (red), TS_{Major}-Trans (blue))

Figure S31: Superpositions of major and minor TSs with cis and trans substrates. Cis in green, trans in blue.

The major TSs with cis and trans substrate superimpose very well. Catalyst geometry is identical, and the substrates also superimpose very well, with the exception of the benzhydryl group pointing in opposite directions. The phenyl group directly bonded to the azetidinium aligns very well, forming a face-to-face interaction with the bidentate urea in both cases and dominating the docking pose of the substrate. The benzhydryl group, despite its steric bulk, projects away from the catalyst and into solvent, having a relatively minor effect on the TSs and enantioselectivity. In the TS with cis substrate, the benzhydryl group can form an intramolecular CH- π interaction whereas with the trans substrate, it can form an edge-to-face π -interaction with the BINAM backbone of the catalyst.

Origins of enantioconvergence of cis and trans azetidinium ions

The key reason for enantioconvergence is the importance of the azetidinium phenyl group in orienting the azetidinium ion in the catalytic pocket, and the lower importance of the orientation of the benzhydryl. The importance of the former is due to the shape complementarity of the ion and the catalyst, with phenyl group lying across the face of the bidentate urea. The lower importance of the latter is due to nitrogen substituents pointing out of the catalyst pocket and into solvent, despite the steric bulk of the group. The stereochemistry of the product is determined by the position of fluoride attack relative to the orientation of the azetidinium phenyl ring (the stereochemistry about nitrogen is lost in the product), and so fluoride favors attack at the same carbon regardless of whether the ion is cis or trans.


Generalization to Other Azetidinium Ions

A diverse range of azetidinium ions feature in the manuscript, not all of which have a phenyl group directly bonded to the azetidinium ring, nor Me/Et and Bzh nitrogen substituents. The TS model described above may be safely generalized to some substrates but can only give qualitative insight into others.

Substrates with different nitrogen substituents: The allyl group behaves similarly to the ethyl group in calculations with uncoordinated fluoride and so the TS model is expected to generalize well to *N*-allyl substrates. An *N*-Bn group is substantially larger and can form $CH-\pi$ interactions, potentially having a large

effect. However, the overlay of the major TSs for cis and trans substrates shows an almost perfect overlay (Figure S31), demonstrating that the catalytic pocket is able to accommodate a Bzh group in both cis and trans positions simultaneously, ignoring intramolecular clash. Envisaging the substrate with *N*-Bn and Bzh (minus one phenyl group), suggests directly TSs for both the cis and trans substrates, avoiding significant reorganization of the TS, and avoiding further steric clash (Figure S32). It is therefore plausible that these remain the lowest energy TSs.

Plausible Major TS for Azet
Bzh.Bn, with Bzh group
cis – Red and purple.Plausible Major TS for Azet
Bzh.Bn, with Bzh group
trans – Blue and purple.

Figure S32: Plausible lowest energy TSs to major product with $Azet_{Bzh,Bn}$, both cis and trans isomers, as implied by the lowest energy TSs to major product with $Azet_{Bzh,Me}$. Cis substrate is given in red, and trans in blue. The perfect overlay of the substrates suggests plausible positions for the additional *N*-Bn group in place of methyl (purple).

Substrates with different substituents bonded to the azetidinium ring (in place of phenyl): When this substituent is a substituted aryl group it is unlikely that the TSs will change significantly as the substituents can point away from the catalyst. All are also capable of forming the same π interactions. With other substituents without a directly bonded aromatic, such as OBn and OMe, it is likely that the TSs will change significantly, due to different favored conformations and an inability to form an intramolecular CH- π interaction. The general factors that govern the TS geometries are, however, likely to be conserved i) the broad shape of the substrate is unchanged (the substituent projects from the azetidinium ion at the same angle), so similar docking poses will be favored ii) the lack of π -interactions with the catalyst for substituents such as OMe affects TSs to major and minor products in the same way iii) the π -interactions and the general positioning of the Bzh groups are unchanged iv) most TSs do not feature an intramolecular CH- π interaction, which this substrate cannot form.

Summary of Computational Work

- i) The difference in reactivity of different *N*-substituted azetidinium ions is explained by the relative energies of the transition state structures to fluoride delivery. Good correlation is seen between increasing experimental yield and decreasing reaction barrier.
- ii) Azetidinium ions with *N*-benzhydryl group have lower energy, and earlier fluoride delivery TSs. The ground state C-N bond length are also elongated, consistent with a less thermodynamically stable ion.
- iii) Much smaller differences are seen changing azetidinium N-substituents from Me to Bn, than converting Bn to Bzh, consistent with experimental observation.

- iv) Poor correlation is seen between azetidinium-fluoride ion pair binding energy and experimental yield under HB PTC. The *N*-substituents determine how closely, and the geometry in which, the fluoride can approach the quaternary nitrogen.
- v) Good correlation between fluoride delivery TS energies and yield supports that fluoride delivery in the catalyzed reaction is turnover determining (TDTS). Poor correlation of azetidinium fluoride binding energies with yield is inconsistent with a turnover determining azetidinium assisted phase-transfer process.
- vi) Relatively weak binding of the azetidinium ion to fluoride and a CsF ion pair far inferior to the urea hydrogen bond donor is not consistent with the azetidinium ion playing a significant role in CsF phase-transfer.
- vii) Enantioconvergence of cis and trans substrates occurs as the dominant factor in orienting the azetidinium ion in the catalyst pocket is the phenyl ring directly bonded to the azetidinium ring, whereas the benzhydryl substituent largely projects into solvent and has lower geometric preference. As the position of fluoride delivery relative to the former determines the configuration of the product, the major product is invariant to the configuration at nitrogen.

Tabulated Thermochemical Data

Conformers containing a single low imaginary frequency are identified by * next to the name. Only significant conformers were reoptimized to remove these frequencies.

Azetidinium ions

<i>Table S23:</i> Azet _{Me,Me}

	Energy (opt)	G (opt)	G-qh (opt)	E (sp)	G-qh (sp)
Azet_Me_Me_1	-482.790099	-482.570035	-482.569047	-483.425336	-483.204285
Azet_Me_Me_2	-482.789334	-482.570039	-482.568864	-483.424241	-483.203771
Azet_Me_Me_3	-482.789113	-482.569459	-482.568327	-483.423418	-483.202631

Table S24: Azet_{Bn,Me}

Tuble 524. ALCIB	n,Me				
	Energy (opt)	G (opt)	G-qh (opt)	E (sp)	G-qh (sp)
Azet_Bn_Me_1	-713.579911	-713.285084	-713.282285	-714.492942	-714.195317
Azet_Bn_Me_2	-713.579911	-713.285070	-713.282279	-714.492943	-714.195312
Azet_Bn_Me_3	-713.582384	-713.286139	-713.284038	-714.493448	-714.195102
Azet_Bn_Me_4	-713.579912	-713.284325	-713.281781	-714.492821	-714.194690
Azet_Bn_Me_5	-713.579167	-713.285321	-713.282123	-714.491623	-714.194578
Azet_Bn_Me_6	-713.579276	-713.283691	-713.281285	-714.490948	-714.192956
Azet_Bn_Me_7	-713.579276	-713.283688	-713.281284	-714.490948	-714.192955
Azet_Bn_Me_8	-713.581435	-713.284250	-713.282685	-714.491593	-714.192843

Table S25: Azet_{Bn,Bn}

щDн				
Energy (opt)	G (opt)	G-qh (opt)	E (sp)	G-qh (sp)
-944.368987	-943.998373	-943.993976	-945.559212	-945.184201
-944.371126	-943.999223	-943.995352	-945.559951	-945.184177
-944.371126	-943.999216	-943.995347	-945.559949	-945.184170
-944.368192	-943.998609	-943.993911	-945.557888	-945.183606
-944.371771	-943.998686	-943.995264	-945.559695	-945.183188
-944.369345	-943.998408	-943.994220	-945.558219	-945.183093
-944.370320	-943.998548	-943.994997	-945.558203	-945.182880
-944.369739	-943.997336	-943.993743	-945.558843	-945.182847
-944.370131	-943.997804	-943.994383	-945.558109	-945.182361
-944.366682	-943.996835	-943.992094	-945.556741	-945.182152
-944.365984	-943.995179	-943.990918	-945.556731	-945.181665
-944.365892	-943.996849	-943.991874	-945.555458	-945.181441
-944.367747	-943.996478	-943.992364	-945.556799	-945.181416
	-944.368987 -944.371126 -944.371126 -944.368192 -944.369345 -944.369345 -944.370320 -944.369739 -944.360682 -944.365984 -944.365892	-944.368987 -943.998373 -944.371126 -943.999223 -944.371126 -943.999216 -944.368192 -943.998609 -944.371771 -943.998686 -944.369345 -943.998686 -944.369345 -943.998686 -944.369345 -943.998408 -944.369739 -943.997804 -944.366682 -943.997804 -944.365984 -943.995179 -944.365892 -943.996849	-944.368987-943.998373-943.993976-944.371126-943.999223-943.995352-944.371126-943.999216-943.995347-944.368192-943.998609-943.993911-944.369345-943.998686-943.995264-944.369345-943.998408-943.994220-944.370320-943.998548-943.994220-944.369739-943.997336-943.993743-944.366682-943.997804-943.994383-944.366682-943.996835-943.992094-944.365984-943.995179-943.990918-944.365892-943.996849-943.991874	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Azet_Bn_Bn_14	-944.365167	-943.994946	-943.990554	-945.555535	-945.180921
Azet_Bn_Bn_15	-944.366130	-943.995337	-943.991017	-945.555642	-945.180530
Azet_Bn_Bn_16	-944.366095	-943.994688	-943.990647	-945.555396	-945.179948
Azet_Bn_Bn_17	-944.366713	-943.995279	-943.991179	-945.555415	-945.179881
Azet_Bn_Bn_18	-944.366713	-943.995277	-943.991177	-945.555413	-945.179877
Azet_Bn_Bn_19	-944.365366	-943.995070	-943.990597	-945.554360	-945.179591
Azet_Bn_Bn_20	-944.364853	-943.993512	-943.989366	-945.554607	-945.179119
Azet_Bn_Bn_21	-944.364898	-943.993277	-943.989487	-945.554226	-945.178815
Azet_Bn_Bn_22	-944.364160	-943.993126	-943.989146	-945.553013	-945.178000
Azet_Bn_Bn_23	-944.363099	-943.992226	-943.988165	-945.552587	-945.177653
Azet_Bn_Bn_24	-944.364800	-943.992489	-943.988868	-945.552737	-945.176806
Azet_Bn_Bn_25	-944.362337	-943.991912	-943.987738	-945.551286	-945.176686
Azet_Bn_Bn_26	-944.362136	-943.990564	-943.986702	-945.550720	-945.175285

Table S26: Azet_{Bzh,Me}

	Energy (opt)	G (opt)	G-qh (opt)	E (sp)	G-qh (sp)
Azet_Bzh_Me_1	-944.367813	-943.995205	-943.991987	-945.555383	-945.179557
Azet_Bzh_Me_2	-944.367813	-943.995205	-943.991986	-945.555383	-945.179556
Azet_Bzh_Me_3	-944.366038	-943.993893	-943.990579	-945.553972	-945.178513
Azet_Bzh_Me_4	-944.366038	-943.993890	-943.990578	-945.553971	-945.178512
Azet_Bzh_Me_5	-944.362396	-943.991924	-943.987628	-945.552681	-945.177913
Azet_Bzh_Me_6	-944.362396	-943.991920	-943.987626	-945.552680	-945.177909
Azet_Bzh_Me_7	-944.366247	-943.993747	-943.990578	-945.553124	-945.177455
Azet_Bzh_Me_8	-944.361644	-943.992594	-943.987735	-945.551288	-945.177379
Azet_Bzh_Me_9	-944.363196	-943.992637	-943.988472	-945.551935	-945.177210
Azet_Bzh_Me_10	-944.361654	-943.991789	-943.987313	-945.551219	-945.176878
Azet_Bzh_Me_11	-944.361674	-943.991951	-943.987432	-945.550688	-945.176446
Azet_Bzh_Me_12	-944.362361	-943.991696	-943.987464	-945.550999	-945.176102
Azet_Bzh_Me_13	-944.362419	-943.992271	-943.988023	-945.550454	-945.176058
Azet_Bzh_Me_14	-944.362419	-943.992270	-943.988023	-945.550452	-945.176056
Azet_Bzh_Me_15	-944.362405	-943.990428	-943.986820	-945.549572	-945.173988
Azet_Bzh_Me_16	-944.362405	-943.990426	-943.986819	-945.549573	-945.173987

Table S27: Azet_{Bzh,Et}

	,				
	Energy (opt)	G (opt)	G-qh (opt)	E (sp)	G-qh (sp)
Azet_Bzh_Et_1	-983.634301	-983.234541	-983.231149	-984.876229	-984.473076
Azet_Bzh_Et_2	-983.633131	-983.233601	-983.230142	-984.874432	-984.471443
Azet_Bzh_Et_3	-983.629538	-983.232088	-983.227647	-984.872557	-984.470666
Azet_Bzh_Et_4	-983.629537	-983.232073	-983.227640	-984.872551	-984.470654
Azet_Bzh_Et_5	-983.631423	-983.231881	-983.228419	-984.873657	-984.470654
Azet_Bzh_Et_6	-983.625744	-983.228246	-983.223676	-984.870710	-984.468641
Azet_Bzh_Et_7	-983.627180	-983.229348	-983.224994	-984.870643	-984.468457
Azet_Bzh_Et_8	-983.624960	-983.228869	-983.223695	-984.869247	-984.467982
Azet_Bzh_Et_9	-983.628084	-983.228649	-983.225140	-984.870477	-984.467533
Azet_Bzh_Et_10	-983.626448	-983.229029	-983.224576	-984.869283	-984.467410
Azet_Bzh_Et_11	-983.626939	-983.227929	-983.224037	-984.868776	-984.465874
Azet_Bzh_Et_12	-983.626939	-983.227928	-983.224036	-984.868776	-984.465872
Azet_Bzh_Et_13	-983.627110	-983.226587	-983.223583	-984.868821	-984.465294
Azet_Bzh_Et_14	-983.624401	-983.226104	-983.221969	-984.867620	-984.465188
Azet_Bzh_Et_15	-983.624881	-983.225629	-983.221792	-984.868242	-984.465153
Azet_Bzh_Et_16	-983.624445	-983.226586	-983.222421	-984.866967	-984.464943
Azet_Bzh_Et_17*	-983.625266	-983.225268	-983.222119	-984.868057	-984.464910
Azet_Bzh_Et_18	-983.624682	-983.226170	-983.222267	-984.866452	-984.464036
Azet_Bzh_Et_19	-983.623107	-983.224651	-983.220555	-984.866506	-984.463954
Azet_Bzh_Et_20	-983.623107	-983.224647	-983.220553	-984.866506	-984.463952
Azet_Bzh_Et_21	-983.623655	-983.225371	-983.221231	-984.866216	-984.463792
Azet_Bzh_Et_22	-983.622222	-983.225061	-983.220516	-984.865165	-984.463459
Azet_Bzh_Et_23	-983.621959	-983.222202	-983.218684	-984.863978	-984.460703

Table S28: Azet_{Bzh,Allyl}

Energy (op) G (op) C-qh (op) E (sp) C-qh (op) Avet, Bb, All, 3 -1021.669513 -1022.126763 -1022.947635 -1022.947635 -1022.947635 -1022.947635 -1022.954664 -1022.954656 -1022.954656 -1022.954656 -1022.954656 -1022.954657 -1022.954657 -1022.954657 -1022.954657 -1022.954657 -1022.954671 -1022.954671 -1022.954671 -1022.954671 -1022.954671 -1022.954671 -1022.954671 -1022.954671 -1022.954671 -1022.954671 -1022.9545810 -1022.95262 -1022.9545800 -1022.954500 -1022.954500 -1022.954500 -1022.954500 -1022.954503 -1022.944944 -1022.544064 -1022.544064 -1022.54	<i>Table S28:</i> Azet _{Bzł}	n,Allyl				
Azet Dial 1021 166715 -1021 261847 1022.954069 1022.254694 Azet Bah All -1021.668367 1021.265188 -1022.95224 1022.95284 1022.95284 1022.95284 1022.95284 1022.95284 1022.95284 1022.95284 1022.95284 1022.95287 1022.95287 1022.95287 1022.95287 1022.95287 1022.95287 1022.9548810 Azet Bah All 667488 1021.266380 -1021.292951 1022.95287 1022.954678 Azet Bah All 1021.66539 -1021.263801 -1021.29502 1022.951131 -1022.545065 Azet Bah All 11021.665293 -1021.264384 -1021.95893 -1022.949346 -1022.94384 Azet Bah All 1201.665293 -1021.264793 -1022.94946 -1022.949346 -1022.949346 -1022.949346 -1022.949346 -1022.949346 -1022.949374 -1022.949374 -1022.949473 -1022.949473 -1022.949474 -1022.941947 -1022.941947 -1022.941947		Energy (opt)	G (opt)	G-qh (opt)	E (sp)	G-qh (sp)
Azet Br. 1021 66083 -1021 26133 -1022 95648 -1022 546135 Azet Br. 11 -1021 668367 -1021 261588 -1021 261588 -1022 952344 -1022 546135 Azet Br. 11 -1021 668374 -1021 26022 -1022 952333 -1022 545808 Azet Br. 1021 666374 -1021 260303 -1022 952333 -1022 545808 Azet Br. 1011 1021 665329 -1021 25363 -1021 25363 -1022 54368 -1022 54368 -1022 54368 -1022 54368 -1022 54384 -1022 54364 -1022 54364 -1022 54364 -1022 54364 -1022 54364 -1022 54364 -1022 54384 -1022 54384 -1022 54364 -1022 54364 -1022 54364 -10	Azet_Bzh_All_1	-1021.669513	-1021.266432	-1021.262689	-1022.954453	-1022.547630
Azet, Bzh_All, 4 1021_668367 -1021_255889 -1021_261678 -1022_952824 -1022_546072 Azet, Bzh_All, 5 -1021_666837 -1021_265185 -1021_260092 -1022_952173 -1022_954810 Azet, Bzh_All, 8 -1021_666748 -1021_264373 -1021_200393 -1022_95133 -1022_954808 Azet, Bzh_All, 10 -1021_665329 -1021_238301 -1021_9522 -1022_95133 -1022_545083 Azet, Bzh_All, 10 -1021_665293 -1021_263364 -1021_95806 -1022_950289 -1022_543063 Azet, Bzh_All, 11 -1021.665293 -1021_263634 -1021_256780 -1022_949346 -1022_543064 Azet, Bzh_All, 15 -1021_66226 -1021_265792 -1022_949346 -1022_543241 Azet, Bzh_All, 16 -1021_661294 -1021_265763 -1022_949402 -1022_543241 Azet, Bzh_All, 17 -1021_661295 -1021_261573 -1022_949746 -1022_542682 Azet, Bzh_All, 18 -1021_661995 -1021_261503 -1021_256737 -1022_947978 -1022_542682 Azet, Bzh_All, 20 -1021_661995 -1021_260574	Azet_Bzh_All_2	-1021.668952	-1021.265715	-1021.261847		-1022.546964
Azet, Bzh_All, 5 -1021.668387 -1021.265485 -1021.265078 -1022.95287 -1022.95287 -1022.95287 -1022.95287 -1022.95287 -1022.95287 -1022.95287 -1022.95287 -1022.95287 -1022.95287 -1022.95287 -1022.95287 -1022.952837 -1022.952833 -1022.954808 Azet, Bzh_All, 9 -1021.666329 -1021.263800 -1021.295261 -1022.95132 -1022.954808 Azet, Bzh_All, 11 -1021.665293 -1021.263807 -1021.256792 -1022.95089 -1022.954887 Azet, Bzh_All, 14 -1021.665264 -1021.261637 -1021.256792 -1022.949346 -1022.943511 Azet, Bzh_All, 14 -1021.662626 -1021.261637 -1021.256792 -1022.949346 -1022.94351 Azet, Bzh_All, 16 -1021.261637 -1021.261632 -1021.25776 -1022.949402 -1022.54255 Azet, Bzh_All, 16 -1021.66163 -1021.25776 -1022.949781 -1022.54265 Azet, Bzh_All, 21 -1021.661634 -1021.25776 -1022.947971 -1022.54265 Azet, Bzh_All, 21 -1021.661984 -1021.26103	Azet_Bzh_All_3	-1021.667432	-1021.266083	-1021.261336	-1022.952648	-1022.546552
Azet_Bzh_All_6 -1021.66743 -1021.265278 -1021.260962 -1022.95287 -1022.54580 Azet_Bzh_All_8 -1021.666874 -1021.264337 -1022.95133 -1022.54508 Azet_Bzh_All_9 -1021.665329 -1021.26393 -1022.95133 -1022.545063 Azet_Bzh_All_10 -1021.665329 -1021.263801 -1021.258966 -1022.950287 -1022.545063 Azet_Bzh_All_11 -1021.665293 -1021.263347 -1021.256786 -1022.940346 -1022.543687 Azet_Bzh_All_13 -1021.665263 -1021.261621 -1021.256782 -1022.949346 -1022.54356 Azet_Bzh_All_15 -1021.66129 -1021.256743 -1021.256743 -1022.949346 -1022.543261 Azet_Bzh_All_16 -1021.66129 -1021.261610 -1021.257736 -1022.949797 -1022.54265 Azet_Bzh_All_10 -1021.66137 -1021.26163 -1021.257736 -1022.947977 -1022.54265 Azet_Bzh_All_20 -1021.66137 -1021.26013 -1021.25763 -1022.94797 -1022.54265 Azet_Bzh_All_21 -1021.66197 -1021.26013	Azet_Bzh_All_4	-1021.668367	-1021.265589	-1021.261678	-1022.952824	-1022.546136
Azet, Bzh, All, 7 -1021.666744 -1021.264513 -1021.260509 -1022.545173 -1022.545678 Azet, Bzh, All, 9 -1021.665329 -1021.263801 -1021.259262 -1022.591131 -1022.545065 Azet, Bzh, All, 11 -1021.665329 -1021.263801 -1021.259262 -1022.591132 -1022.545065 Azet, Bzh, All, 11 -1021.665233 -1021.263347 -1021.258808 -1022.59028 -1022.543802 Azet, Bzh, All, 14 -1021.662626 -1021.261631 -1021.256786 -1022.543801 Azet, Bzh, All, 16 -1021.662726 -1021.256786 -1022.543012 -1022.454311 Azet, Bzh, All, 16 -1021.66477 -1021.261533 -1021.256762 -1022.949346 -1022.543501 Azet, Bzh, All, 18 -1021.66195 -1021.261633 -1021.256763 -1022.949797 -1022.542855 Azet, Bzh, All, 14 -1021.66195 -1021.261033 -1021.256163 -1022.949797 -1022.542855 Azet, Bzh, All, 21 -1021.661374 -1021.260674 -1021.256163 -1022.94779 -1022.542855 Azet, Bzh, All, 23 -102	Azet_Bzh_All_5	-1021.668367	-1021.265485	-1021.261628	-1022.952811	-1022.546072
Azet Bzh All 9 -1021.667048 -1021.264337 -1021.25033 -1022.951332 -1022.545678 Azet Bzh All 10 -1021.665329 -1021.63801 -1021.259261 -1022.951131 -1022.545063 Azet Bzh All 11 -1021.665239 -1021.26334 -1021.258961 -1022.951131 -1022.543893 Azet Bzh All 12 -1021.665293 -1021.256784 -1022.950287 -1022.543817 Azet Bzh All 15 -1021.66226 -1021.256784 -1022.949346 -1022.543817 Azet Bzh All 15 -1021.66129 -1021.256702 -1022.949473 -1022.543241 Azet Bzh All 14 -1021.66477 -1021.251706 -1022.949471 -1022.542682 Azet Bzh All 17 -1021.661591 -1021.261633 -1021.256702 -1022.949711 -1022.542682 Azet Bzh All 20 -1021.661337 -1021.256702 -1022.949714 -1022.542682 Azet Bzh All 21 -1021.66133 -1021.256703 -1022.949714 -1022.54276 Azet Bzh All 21 -1021.66133 -1021.256704 -1022.949714 -1022.54276 Azet Bzh All 23	Azet_Bzh_All_6	-1021.667438	-1021.265278	-1021.260962	-1022.952287	-1022.545810
Azet Bzh All 9 -1021.665329 -1021.25820 -1022.951131 -1022.454065 Azet Bzh All 11 -1021.665239 -1021.253840 -1022.950287 -1022.543892 Azet Bzh All 12 -1021.665293 -1021.263347 -1021.258896 -1022.950287 -1022.543892 Azet Bzh All 13 -1021.662626 -1021.261632 -1021.256787 -1022.949346 -1022.543811 Azet Bzh All 16 -1021.66226 -1021.261632 -1021.256786 -1022.949346 -1022.543261 Azet Bzh All 16 -1021.66477 -1021.26150 -1021.25702 -1022.949471 -1022.423655 Azet Bzh All 19 -1021.661391 -1021.261353 -1021.25675 -1022.949797 -1022.542675 Azet Bzh All 11 -1021.661374 -1021.260574 -1021.256013 -1022.947914 -1022.542675 Azet Bzh All 12 -1021.661384 -1021.260574 -1021.256914 -1022.948077 -1022.542675 Azet Bzh All 12 -1021.661384 -1021.260574 -1021.256914 -1022.948774 -1022.54276 Azet Bzh All 23 -1021.661362 -1021.26	Azet_Bzh_All_7	-1021.666874	-1021.264513	-1021.260509	-1022.952173	-1022.545808
Azet. Bzh. All. 10 -1021.665239 -1021.258803 -1022.545131 -1022.545063 Azet. Bzh. All. 12 -1021.665293 -1021.258893 -1022.590289 -1022.543892 Azet. Bzh. All. 12 -1021.665293 -1021.251847 -1021.258893 -1022.543817 Azet. Bzh. All. 13 -1021.665293 -1021.251632 -1021.25786 -1022.949346 -1022.543511 Azet. Bzh. All. 14 -1021.661279 -1021.251634 -1022.949346 -1022.543241 Azet. Bzh. All. 15 -1021.661279 -1021.251530 -1021.257602 -1022.949758 -1022.54324 Azet. Bzh. All. 17 -1021.661371 -1021.261001 -1021.257762 -1022.949758 -1022.542652 Azet. Bzh. All. 19 -1021.661384 -1021.261033 -1021.256153 -1022.947784 -1022.542652 Azet. Bzh. All. 22 -1021.661384 -1021.261033 -1021.256153 -1022.947744 -1022.542857 Azet. Bzh. All. 23 -1021.661384 -1021.261033 -1021.25573 -1022.947744 -1022.541346 Azet. Bzh. All. 24 -1021.660356 -1021.265031 <th-< th=""><th>Azet_Bzh_All_8</th><th>-1021.667048</th><th>-1021.264337</th><th>-1021.260393</th><th>-1022.952333</th><th>-1022.545678</th></th-<>	Azet_Bzh_All_8	-1021.667048	-1021.264337	-1021.260393	-1022.952333	-1022.545678
Azet, Bzh, All, 11 -1021.65293 -1021.263354 -1021.258896 -1022.950287 -1022.543892 Azet, Bzh, All, 13 -1021.652293 -1021.256132 -1022.950287 -1022.543887 Azet, Bzh, All, 14 -1021.66226 -1021.2561782 -1022.949346 -1022.543511 Azet, Bzh, All, 15 -1021.662724 -1021.2561784 -1022.949346 -1022.543261 Azet, Bzh, All, 16 -1021.66477 -1021.261520 -1021.257162 -1022.949473 -1022.542682 Azet, Bzh, All, 18 -1021.66477 -1021.26103 -1021.256055 -1022.947911 -1022.542682 Azet, Bzh, All, 21 -1021.661995 -1021.261033 -1021.256163 -1022.947914 -1022.54265 Azet, Bzh, All, 21 -1021.661342 -1021.260774 -1021.255061 -1022.947914 -1022.541804 Azet, Bzh, All, 24 -1021.661362 -1021.26073 -1022.947814 -1022.541348 Azet, Bzh, All, 24 -1021.661362 -1021.255061 -1022.947184 -1022.541348 Azet, Bzh, All, 25 -1021.660562 -1021.260501 -1022.948188 -1	Azet_Bzh_All_9	-1021.665329	-1021.263801	-1021.259262	-1022.951132	-1022.545065
Azet_Bzh_All_12 -1021.65293 -1021.263347 -1021.256789 -1022.949346 -1022.543851 Azet_Bzh_All_14 -1021.66262 -1021.261621 -1021.256786 -1022.949346 -1022.543511 Azet_Bzh_All_15 -1021.662724 -1021.261621 -1021.255786 -1022.949346 -1022.543241 Azet_Bzh_All_17 -1021.664571 -1021.261633 -1022.949788 -1022.542682 Azet_Bzh_All_19 -1021.661530 -1021.257620 -1022.949797 -1022.542655 Azet_Bzh_All_20 -1021.661834 -1021.261033 -1021.256163 -1022.947971 -1022.542275 Azet_Bzh_All_21 -1021.661834 -1021.261033 -1021.255873 -1022.947141 -1022.541275 Azet_Bzh_All_23 -1021.663626 -1021.260172 -1021.256901 -1022.948071 -1022.541348 Azet_Bzh_All_24 -1021.663626 -1021.260126 -1022.948071 -1022.541348 Azet_Bzh_All_23 -1021.660556 -1021.255041 -1022.948071 -1022.540458 Azet_Bzh_All_24 -1021.660266 -1021.255041 -1022.940716 -1	Azet_Bzh_All_10	-1021.665329	-1021.263800	-1021.259261	-1022.951131	-1022.545063
Azet, Bzh, All, 13 1021.65226 1021.226732 1022.249346 -1022.543511 Azet, Bzh, All, 15 1021.66626 1021.250743 1021.256786 1022.949473 -1022.543506 Azet, Bzh, All, 15 1021.666774 1021.25026 1022.949473 -1022.542655 Azet, Bzh, All, 17 1021.664579 -1021.261038 -1021.257736 -1022.949758 -1022.542655 Azet, Bzh, All, 20 -1021.661977 -1021.261033 -1021.256075 -1022.949714 -1022.542655 Azet, Bzh, All, 21 -1021.661977 -1021.261033 -1021.256665 -1022.949144 -1022.54276 Azet, Bzh, All, 23 -1021.661342 -1021.250676 -1022.94779 -1022.54180 Azet, Bzh, All, 24 -1021.66326 -1021.25073 -1022.948071 -1022.541348 Azet, Bzh, All, 25 -1021.66326 -1021.25072 -1021.250801 -1022.948071 -1022.541348 Azet, Bzh, All, 26 -1021.660356 -1021.250736 -1022.947179 -1022.540435 Azet, Bzh, All, 27 -1021.660356 -1021.250731 -1022.947110 -1022.540939	Azet_Bzh_All_11	-1021.665293	-1021.263354	-1021.258896	-1022.950289	-1022.543892
Azet Bzh All 1 1021.26626 1022.25786 1022.949346 1022.543261 Azet Bzh All 6 1021.662274 1021.257026 1022.949407 1022.543241 Azet Bzh All 1 1021.662477 1021.26108 1021.257736 1022.949402 1022.542682 Azet Bzh All 1 0121.66199 1021.26133 1021.256075 1022.947914 1022.542655 Azet Bzh All 1 0121.661342 1021.260574 1021.256075 1022.947141 1022.54275 Azet Bzh All 2 1021.661374 1021.255031 1022.947141 1022.54172 Azet Bzh All 2 1021.66326 1021.260723 1021.255001 1022.948071 1022.541802 Azet Bzh All 2 1021.66326 1021.260723 1022.948071 1022.541846 Azet Bzh All 2 1021.66326 1021.255031 1022.948071 102	Azet_Bzh_All_12	-1021.665293	-1021.263347	-1021.258893	-1022.950287	-1022.543887
Azet Bzh All 1021.259743 -1021.25626 -1022.949473 -1022.543241 Azet Bzh All 17 -1021.666274 -1021.25120 -1021.257602 -1022.949758 -1022.542652 Azet Bzh All 1901.664591 -1021.261033 -1021.257602 -1022.949758 -1022.542655 Azet Bzh All 1021.663484 -1021.261033 -1021.256965 -1022.949114 -1022.542100 Azet Bzh All 2 -1021.661977 -1021.260183 -1021.255863 -1022.947914 -1022.5411802 Azet Bzh All 2 -1021.66026 -1021.260723 -1021.255901 -1022.948072 -1022.541346 Azet Bzh All 2 -1021.660366 -1021.255901 -1022.948071 -1022.540685 Azet Bzh All 2 -1021.660209 -1021.255541 -1022.940645 -1022.540645 Azet Bzh All 2 -1021.650204 -1021.255541 -1022.9406457 </th <th>Azet_Bzh_All_13</th> <th>-1021.662626</th> <th>-1021.261632</th> <th>-1021.256792</th> <th>-1022.949346</th> <th>-1022.543511</th>	Azet_Bzh_All_13	-1021.662626	-1021.261632	-1021.256792	-1022.949346	-1022.543511
Azet_Bzh_All_16 -1021.662724 -1021.26108 -1021.257602 -1022.94902 -1022.542012 Azet_Bzh_All_18 -1021.664677 -1021.261601 -1021.257705 -1022.949718 -1022.542655 Azet_Bzh_All_20 -1021.661995 -1021.261031 -1021.256755 -1022.949797 -1022.542275 Azet_Bzh_All_21 -1021.661995 -1021.261033 -1021.256656 -1022.947914 -1022.542275 Azet_Bzh_All_21 -1021.661342 -1021.260733 -1021.255873 -1022.947141 -1022.541972 Azet_Bzh_All_23 -1021.663626 -1021.260723 -1021.256901 -1022.948071 -1022.541346 Azet_Bzh_All_24 -1021.660364 -1021.255806 -1021.255901 -1022.9418071 -1022.540645 Azet_Bzh_All_28 -1021.660044 -1021.2559206 -1021.255837 -1022.947109 -1022.540645 Azet_Bzh_All_30 -1021.660262 -1021.255927 -1022.947104 -1022.540642 Azet_Bzh_All_31 -1021.660264 -1021.255837 -1022.947136 -1022.540642 Azet_Bzh_All_33 -1021.660315 <th-< th=""><th>Azet_Bzh_All_14</th><th>-1021.662626</th><th>-1021.261621</th><th>-1021.256786</th><th>-1022.949346</th><th>-1022.543506</th></th-<>	Azet_Bzh_All_14	-1021.662626	-1021.261621	-1021.256786	-1022.949346	-1022.543506
Azet_Bzh_All_17 -1021.664677 -1021.25120 -1021.257602 -1022.949758 -1022.542682 Azet_Bzh_All_19 -1021.664591 -1021.251736 -1022.949111 -1022.542256 Azet_Bzh_All_20 -1021.661987 -1021.256275 -1022.9479911 -1022.542276 Azet_Bzh_All_21 -1021.661977 -1021.256075 -1022.947141 -1022.542103 Azet_Bzh_All_23 -1021.661977 -1021.255074 -1021.255873 -1022.947729 -1022.541802 Azet_Bzh_All_23 -1021.663626 -1021.205072 -1021.255001 -1022.948071 -1022.541346 Azet_Bzh_All_26 -1021.660566 -1021.20722 -1021.255001 -1022.948071 -1022.540853 Azet_Bzh_All_26 -1021.660056 -1021.20011 -1022.540618 -1022.540645 Azet_Bzh_All_28 -1021.660054 -1021.255921 -1022.947109 -1022.540645 Azet_Bzh_All_31 -1021.660054 -1021.255931 -1022.947109 -1022.540645 Azet_Bzh_All_31 -1021.660208 -1021.255931 -1022.947109 -1022.540645 Azet_Bzh_All_	Azet_Bzh_All_15	-1021.661259	-1021.259743	-1021.255026	-1022.949473	-1022.543241
Azet_Bzh_All_18 -1021.664591 -1021.261601 -1021.257736 -1022.949511 -1022.542655 Azet_Bzh_All_20 -1021.661995 -1021.261353 -1021.256675 -1022.949144 -1022.542275 Azet_Bzh_All_21 -1021.661342 -1021.260133 -1021.255873 -1022.947441 -1022.541972 Azet_Bzh_All_23 -1021.666326 -1021.260734 -1021.255901 -1022.947441 -1022.541802 Azet_Bzh_All_25 -1021.663626 -1021.260723 -1021.255061 -1022.948071 -1022.541802 Azet_Bzh_All_26 -1021.660356 -1021.260723 -1021.255061 -1022.948071 -1022.540885 Azet_Bzh_All_27 -1021.660364 -1021.258061 -1022.948710 -1022.540645 Azet_Bzh_All_30 -1021.66208 -1021.255541 -1022.947109 -1022.540642 Azet_Bzh_All_31 -1021.66208 -1021.25926 -1021.255541 -1022.940647 -1022.540464 Azet_Bzh_All_31 -1021.65624 -1021.25927 -1021.255541 -1022.940647 -1022.540464 Azet_Bzh_All_31 -1021.65624 -1021.	Azet_Bzh_All_16	-1021.662724	-1021.261068	-1021.256334	-1022.949402	-1022.543012
Azet_Bzh_All_19 -1021.661995 -1021.261353 -1021.256275 -1022.947997 -1022.542276 Azet_Bzh_All_21 -1021.663834 -1021.260471 -1021.256665 -1022.949144 -1022.542276 Azet_Bzh_All_23 -1021.661342 -1021.26073 -1021.255873 -1022.947944 -1022.541972 Azet_Bzh_All_23 -1021.666326 -1021.260733 -1022.949744 -1022.541380 Azet_Bzh_All_26 -1021.666326 -1021.260722 -1021.256901 -1022.947807 -1022.541346 Azet_Bzh_All_27 -1021.660556 -1021.260120 -1021.255306 -1022.947108 -1022.540645 Azet_Bzh_All_28 -1021.660326 -1021.255301 -1022.947109 -1022.540645 Azet_Bzh_All_30 -1021.660208 -1021.255541 -1022.947109 -1022.540645 Azet_Bzh_All_31 -1021.66135 -1021.255542 -1022.94710 -1022.540646 Azet_Bzh_All_33 -1021.659624 -1021.255543 -1022.94627 -1022.540128 Azet_Bzh_All_33 -1021.659876 -1021.255343 -1022.946635 -1022.540128 <t< th=""><th>Azet_Bzh_All_17</th><th>-1021.664677</th><th>-1021.261520</th><th>-1021.257602</th><th>-1022.949758</th><th>-1022.542682</th></t<>	Azet_Bzh_All_17	-1021.664677	-1021.261520	-1021.257602	-1022.949758	-1022.542682
Azet_Bzh_All_20 -1021.663834 -1021.260471 -1021.25665 -1022.949144 -1022.542275 Azet_Bzh_All_22 -1021.661977 -1021.260573 -1022.957914 -1022.541970 Azet_Bzh_All_23 -1021.661191 -1021.25073 -1022.948072 -1022.541802 Azet_Bzh_All_24 -1021.663626 -1021.260723 -1022.948072 -1022.541346 Azet_Bzh_All_25 -1021.660556 -1021.260722 -1021.255901 -1022.948071 -1022.541346 Azet_Bzh_All_26 -1021.660556 -1021.260120 -1021.255306 -1022.947109 -1022.540645 Azet_Bzh_All_27 -1021.660208 -1021.250015 -1021.255541 -1022.947109 -1022.540645 Azet_Bzh_All_30 -1021.662062 -1021.259206 -1021.255541 -1022.947130 -1022.540645 Azet_Bzh_All_33 -1021.663135 -1021.255543 -1022.946247 -1022.540146 Azet_Bzh_All_33 -1021.663135 -1021.255543 -1022.946247 -1022.540128 Azet_Bzh_All_33 -1021.663135 -1021.255543 -1022.946247 -1022.540128 Azet_Bzh_All_34 -1021.658976 -1021.255309 -1022.94	Azet_Bzh_All_18	-1021.664591	-1021.261601	-1021.257736	-1022.949511	-1022.542655
Azet_Bzh_All_21 -1021.661977 -1021.261033 -1021.256163 -1022.947414 -1022.542100 Azet_Bzh_All_23 -1021.661342 -1021.260174 -1021.255873 -1022.947441 -1022.541802 Azet_Bzh_All_24 -1021.663626 -1021.260723 -1021.256901 -1022.948072 -1022.541802 Azet_Bzh_All_25 -1021.663266 -1021.260722 -1021.255901 -1022.948071 -1022.540385 Azet_Bzh_All_27 -1021.660356 -1021.258506 -1022.946188 -1022.540685 Azet_Bzh_All_28 -1021.660344 -1021.258507 -1022.947109 -1022.540645 Azet_Bzh_All_31 -1021.660208 -1021.259207 -1021.255743 -1022.947109 -1022.540645 Azet_Bzh_All_31 -1021.66624 -1021.259207 -1021.255743 -1022.947130 -1022.540646 Azet_Bzh_All_31 -1021.656624 -1021.258797 -1022.947714 -1022.54018 Azet_Bzh_All_33 -1021.659878 -1021.255743 -1022.947714 -1022.54018 Azet_Bzh_All_34 -1021.659878 -1021.255842 -1022.947714 -1022.54018 Azet_Bzh_All_35 -1021.659878 -1021.2538	Azet_Bzh_All_19	-1021.661995	-1021.261353	-1021.256275	-1022.947997	-1022.542276
Azet_Bzh_All_22 -1021.661342 -1021.260574 -1021.255873 -1022.947729 -1022.541972 Azet_Bzh_All_23 -1021.6661362 -1021.260123 -1021.255264 -1022.947729 -1022.541802 Azet_Bzh_All_24 -1021.663626 -1021.260123 -1021.256901 -1022.948071 -1022.541386 Azet_Bzh_All_26 -1021.660556 -1021.260120 -1021.255306 -1022.947109 -1022.540685 Azet_Bzh_All_28 -1021.660209 -1021.250015 -1021.255543 -1022.947109 -1022.540645 Azet_Bzh_All_30 -1021.662009 -1021.250205 -1021.255543 -1022.947169 -1022.540642 Azet_Bzh_All_31 -1021.66262 -1021.259025 -1021.255543 -1022.947363 -1022.540484 Azet_Bzh_All_32 -1021.659624 -1021.258276 -1021.255309 -1022.947364 -1022.540188 Azet_Bzh_All_33 -1021.663135 -1021.259032 -1021.255543 -1022.947171 -1022.54018 Azet_Bzh_All_34 -1021.65987 -1021.257854 -1022.947171 -1022.54018 Azet_Bzh_All_35 -1021.257885 -1021.25336 -1022.948587 -1022.54018 <	Azet_Bzh_All_20	-1021.663834	-1021.260471	-1021.256965	-1022.949144	-1022.542275
Azet_Bzh_All_23 -1021.661191 -1021.260183 -1021.255264 -1022.947729 -1022.541802 Azet_Bzh_All_24 -1021.663626 -1021.260723 -1021.256901 -1022.948071 -1022.541348 Azet_Bzh_All_26 -1021.660556 -1021.260722 -1021.255306 -1022.946188 -1022.540685 Azet_Bzh_All_27 -1021.660344 -1021.258506 -1021.25543 -1022.947109 -1022.540685 Azet_Bzh_All_28 -1021.660008 -1021.250120 -1021.255541 -1022.947109 -1022.5406452 Azet_Bzh_All_30 -1021.660262 -1021.259006 -1021.255543 -1022.947109 -1022.540464 Azet_Bzh_All_31 -1021.660624 -1021.259226 -1021.255543 -1022.947714 -1022.540148 Azet_Bzh_All_33 -1021.660179 -1021.259022 -1021.25543 -1022.947714 -1022.540148 Azet_Bzh_All_34 -1021.650135 -1021.257854 -1022.947714 -1022.540118 Azet_Bzh_All_35 -1021.659455 -1021.257854 -1022.945268 -1022.539780 Azet_Bzh_All_36 -1021.659455 -1021.257898 -1022.945898 -1022.539780 Azet_Bzh_A	Azet_Bzh_All_21	-1021.661977	-1021.261033	-1021.256163	-1022.947914	-1022.542100
Azet_Bzh_All_24 -1021.663626 -1021.260723 -1021.256901 -1022.948072 -1022.541348 Azet_Bzh_All_25 -1021.660566 -1021.260722 -1021.255901 -1022.948071 -1022.541346 Azet_Bzh_All_26 -1021.660354 -1021.25806 -1022.947109 -1022.540685 Azet_Bzh_All_28 -1021.66009 -1021.250015 -1021.255543 -1022.947110 -1022.540645 Azet_Bzh_All_30 -1021.662062 -1021.259206 -1021.255307 -1022.947109 -1022.540645 Azet_Bzh_All_31 -1021.661729 -1021.259206 -1021.255309 -1022.946867 -1022.540144 Azet_Bzh_All_33 -1021.663135 -1021.259205 -1021.255543 -1022.946847 -1022.540128 Azet_Bzh_All_33 -1021.663135 -1021.25932 -1021.25542 -1022.946653 -1022.540128 Azet_Bzh_All_35 -1021.65987 -1021.257885 -1021.25336 -1022.946653 -1022.540128 Azet_Bzh_All_37 -1021.65987 -1021.257885 -1021.25336 -1022.945688 -1022.539700 Azet_Bzh_All_38 -1021.659455 -1021.257898 -1022.945897 -1022.539870	Azet_Bzh_All_22	-1021.661342	-1021.260574	-1021.255873	-1022.947441	-1022.541972
Azet_Bzh_All_25 -1021.663626 -1021.260722 -1021.255001 -1022.948071 -1022.54034 Azet_Bzh_All_27 -1021.660344 -1021.258306 -1021.255343 -1022.947109 -1022.540645 Azet_Bzh_All_29 -1021.660344 -1021.25021 -1022.947109 -1022.540645 Azet_Bzh_All_30 -1021.662008 -1021.25026 -1021.255543 -1022.947109 -1022.540642 Azet_Bzh_All_31 -1021.662662 -1021.259206 -1021.255309 -1022.946867 -1022.540642 Azet_Bzh_All_31 -1021.669624 -1021.259205 -1021.255315 -1022.946247 -1022.540138 Azet_Bzh_All_33 -1021.669624 -1021.259035 -1021.255543 -1022.947714 -1022.540128 Azet_Bzh_All_34 -1021.659967 -1021.257885 -1021.255346 -1022.946633 -1022.540012 Azet_Bzh_All_35 -1021.659957 -1021.257885 -1021.253366 -1022.945888 -1022.54002 Azet_Bzh_All_37 -1021.659455 -1021.257898 -1022.945888 -1022.53970 Azet_Bzh_All_38 -1021.659455 -1021.257898 -1022.945888 -1022.539788 Azet_Bzh_All_4	Azet_Bzh_All_23	-1021.661191	-1021.260183	-1021.255264	-1022.947729	-1022.541802
Azet_Bzh_All_26 -1021.660556 -1021.250120 -1021.255306 -1022.946188 -1022.540635 Azet_Bzh_All_27 -1021.660344 -1021.258506 -1021.253213 -1022.947110 -1022.540645 Azet_Bzh_All_29 -1021.662008 -1021.25021 -1022.947109 -1022.540642 Azet_Bzh_All_30 -1021.662662 -1021.2559206 -1021.255541 -1022.947163 -1022.540642 Azet_Bzh_All_31 -1021.65624 -1021.259206 -1021.255543 -1022.946867 -1022.540642 Azet_Bzh_All_32 -1021.65624 -1021.259205 -1021.255543 -1022.946714 -1022.540118 Azet_Bzh_All_33 -1021.656135 -1021.259032 -1021.255543 -1022.947714 -1022.540118 Azet_Bzh_All_35 -1021.659987 -1021.25785 -1021.255543 -1022.946653 -1022.540118 Azet_Bzh_All_36 -1021.659987 -1021.257885 -1021.253366 -1022.94588 -1022.540122 Azet_Bzh_All_37 -1021.659455 -1021.257885 -1021.253346 -1022.94588 -1022.539788 Azet_Bzh_All_40 -1021.659455 -1021.257888 -1021.253264 -1022.945310 -1022	Azet_Bzh_All_24	-1021.663626	-1021.260723	-1021.256901	-1022.948072	-1022.541348
Azet_Bzh_All_27 -1021.660344 -1021.258506 -1021.253921 -1022.947109 -1022.540685 Azet_Bzh_All_28 -1021.662009 -1021.260021 -1021.255543 -1022.947110 -1022.540645 Azet_Bzh_All_30 -1021.662008 -1021.259206 -1021.255897 -1022.947363 -1022.540642 Azet_Bzh_All_31 -1021.661729 -1021.259202 -1021.255309 -1022.947363 -1022.540598 Azet_Bzh_All_33 -1021.661729 -1021.25922 -1021.255543 -1022.94714 -1022.540112 Azet_Bzh_All_33 -1021.663135 -1021.259035 -1021.255543 -1022.947714 -1022.540112 Azet_Bzh_All_34 -1021.659987 -1021.25785 -1021.253366 -1022.947716 -1022.540012 Azet_Bzh_All_36 -1021.659987 -1021.257885 -1021.253366 -1022.94568 -1022.540012 Azet_Bzh_All_37 -1021.659455 -1021.257885 -1021.253346 -1022.945898 -1022.539790 Azet_Bzh_All_38 -1021.659455 -1021.257898 -1021.253346 -1022.945897 -1022.539780 Azet_Bzh_All_41 -1021.659242 -1021.257898 -1021.253246 -102	Azet_Bzh_All_25	-1021.663626	-1021.260722	-1021.256901	-1022.948071	-1022.541346
Azet_Bzh_All_28 -1021.662009 -1021.250015 -1021.255543 -1022.947110 -1022.540645 Azet_Bzh_All_29 -1021.662008 -1021.259206 -1021.255541 -1022.947109 -1022.540642 Azet_Bzh_All_30 -1021.662662 -1021.259202 -1021.255309 -1022.947363 -1022.540548 Azet_Bzh_All_31 -1021.659624 -1021.259202 -1021.255543 -1022.946247 -1022.540146 Azet_Bzh_All_33 -1021.663135 -1021.259035 -1021.255542 -1022.946247 -1022.540118 Azet_Bzh_All_34 -1021.659877 -1021.25785 -1021.255542 -1022.946653 -1022.540118 Azet_Bzh_All_35 -1021.659877 -1021.25785 -1021.253598 -1022.94568 -1022.540102 Azet_Bzh_All_36 -1021.659455 -1021.257885 -1021.253598 -1022.94568 -1022.539780 Azet_Bzh_All_38 -1021.669455 -1021.257885 -1021.253346 -1022.945898 -1022.539780 Azet_Bzh_All_41 -1021.660452 -1021.257887 -1021.253246 -1022.945897 -1022.539780 Azet_Bzh_All_41 -1021.660452 -1021.258187 -1021.25304 -1022	Azet_Bzh_All_26	-1021.660556	-1021.260120	-1021.255306	-1022.946188	-1022.540939
Azet_Bzh_All_29-1021.662008-1021.260015-1021.255541-1022.947109-1022.540642Azet_Bzh_All_30-1021.662662-1021.259206-1021.255897-1022.947363-1022.540598Azet_Bzh_All_31-1021.659624-1021.259025-1021.255309-1022.946867-1022.540138Azet_Bzh_All_32-1021.659624-1021.259035-1021.255543-1022.946247-1022.540138Azet_Bzh_All_33-1021.663135-1021.259035-1021.255543-1022.947714-1022.540112Azet_Bzh_All_36-1021.659987-1021.257785-1021.255336-1022.946653-1022.539870Azet_Bzh_All_37-1021.659987-1021.257885-1021.253346-1022.94653-1022.539790Azet_Bzh_All_38-1021.659455-1021.257899-1021.253346-1022.945268-1022.539790Azet_Bzh_All_39-1021.659455-1021.257888-1021.253346-1022.945897-1022.539790Azet_Bzh_All_39-1021.660452-1021.257888-1021.253346-1022.945871-1022.539090Azet_Bzh_All_40-1021.660521-1021.257818-1021.253604-1022.945310-1022.539094Azet_Bzh_All_41-1021.657030-1021.257411-1021.251731-1022.530987Azet_Bzh_All_43-1021.658300-1021.25727-1022.944001-1022.539086Azet_Bzh_All_44-1021.658580-1021.25727-1022.944001-1022.538693Azet_Bzh_All_44-1021.658580-1021.25727-1022.944001-1022.538693Azet_Bzh_All_44-1021.658580-10	Azet_Bzh_All_27	-1021.660344	-1021.258506	-1021.253921	-1022.947109	-1022.540685
Azet_Bzh_All_30-1021.662662-1021.259206-1021.255897-1022.947363-1022.540598Azet_Bzh_All_31-1021.661729-1021.259922-1021.255309-1022.946867-1022.540446Azet_Bzh_All_32-1021.663135-1021.259035-1021.255515-1022.946247-1022.540138Azet_Bzh_All_33-1021.663135-1021.259032-1021.255542-1022.947712-1022.540122Azet_Bzh_All_34-1021.659987-1021.257785-1021.25336-1022.947712-1022.540102Azet_Bzh_All_35-1021.659896-1021.25785-1021.253366-1022.945683-1022.53970Azet_Bzh_All_36-1021.659455-1021.25789-1021.253346-1022.945898-1022.53970Azet_Bzh_All_37-1021.660452-1021.25789-1021.253346-1022.945897-1022.539788Azet_Bzh_All_39-1021.660452-1021.258287-1021.253244-1022.539780Azet_Bzh_All_40-1021.659222-1021.258182-1021.253604-1022.945454-1022.539080Azet_Bzh_All_41-1021.660221-1021.257467-1021.25287-1022.944094-1022.539080Azet_Bzh_All_43-1021.65830-1021.257067-1021.25122-1022.945027-1022.538693Azet_Bzh_All_44-1021.658580-1021.257067-1021.251292-1022.944802-1022.538693Azet_Bzh_All_45-1021.658580-1021.25767-1021.251292-1022.944802-1022.538791Azet_Bzh_All_46-1021.658779-1021.25044-1021.251292-1022.538693Azet_Bzh_All_	Azet_Bzh_All_28	-1021.662009	-1021.260021	-1021.255543	-1022.947110	-1022.540645
Azet_Bzh_All_31-1021.661729-1021.259922-1021.255309-1022.946867-1022.540446Azet_Bzh_All_32-1021.663135-1021.258276-1021.253515-1022.946247-1022.540138Azet_Bzh_All_34-1021.663135-1021.259035-1021.255543-1022.947714-1022.540122Azet_Bzh_All_35-1021.659877-1021.257785-1021.25336-1022.946653-1022.540002Azet_Bzh_All_36-1021.659876-1021.257885-1021.253346-1022.945653-1022.539870Azet_Bzh_All_37-1021.659455-1021.257899-1021.253346-1022.945268-1022.53970Azet_Bzh_All_38-1021.659455-1021.257898-1021.253346-1022.945898-1022.539700Azet_Bzh_All_39-1021.660452-1021.257898-1021.253244-1022.945844-1022.539788Azet_Bzh_All_40-1021.659222-1021.258287-1021.253244-1022.945310-1022.539080Azet_Bzh_All_41-1021.650300-1021.257811-1021.25227-1022.944001-1022.539080Azet_Bzh_All_42-1021.658108-1021.25707-1021.25173-1022.944512-1022.538906Azet_Bzh_All_44-1021.658580-1021.25707-1021.25272-1022.944521-1022.538976Azet_Bzh_All_45-1021.658580-1021.257067-1022.25272-1022.944543-1022.538978Azet_Bzh_All_46-1021.658580-1021.257067-1022.944543-1022.538978Azet_Bzh_All_47-1021.658580-1021.257067-1022.944521-1022.538979Azet_Bzh_A	Azet_Bzh_All_29	-1021.662008	-1021.260015	-1021.255541	-1022.947109	-1022.540642
Azet_Bzh_All_32-1021.659624-1021.258276-1021.253515-1022.946247-1022.540138Azet_Bzh_All_33-1021.663135-1021.259035-1021.255543-1022.947714-1022.540122Azet_Bzh_All_34-1021.663135-1021.257785-1021.255542-1022.947712-1022.540118Azet_Bzh_All_35-1021.659987-1021.257785-1021.253336-1022.946653-1022.540002Azet_Bzh_All_36-1021.659996-1021.257885-1021.253386-1022.945683-1022.539870Azet_Bzh_All_37-1021.659455-1021.257899-1021.253346-1022.945898-1022.539780Azet_Bzh_All_38-1021.659455-1021.257898-1021.253244-1022.945897-1022.539780Azet_Bzh_All_39-1021.660452-1021.257888-1021.253224-1022.945897-1022.539602Azet_Bzh_All_40-1021.660221-1021.257818-1021.253604-1022.945711-1022.539080Azet_Bzh_All_44-1021.658108-1021.257811-1021.253173-1022.944044-1022.539080Azet_Bzh_All_44-1021.65830-1021.257627-1021.253253-1022.945027-1022.538993Azet_Bzh_All_45-1021.658586-1021.257067-1021.252572-1022.945827-1022.538093Azet_Bzh_All_46-1021.658779-1021.25768-1021.253046-1022.944543-1022.538936Azet_Bzh_All_46-1021.6588779-1021.25768-1021.253257-1022.944591-1022.538078Azet_Bzh_All_50-1021.6588779-1021.25768-1021.25172-1022.94359 <th>Azet_Bzh_All_30</th> <th>-1021.662662</th> <th>-1021.259206</th> <th>-1021.255897</th> <th>-1022.947363</th> <th>-1022.540598</th>	Azet_Bzh_All_30	-1021.662662	-1021.259206	-1021.255897	-1022.947363	-1022.540598
Azet_Bzh_All_33-1021.663135-1021.259035-1021.255543-1022.947714-1022.540122Azet_Bzh_All_34-1021.663135-1021.259032-1021.255542-1022.947712-1022.540118Azet_Bzh_All_35-1021.659987-1021.257785-1021.253336-1022.946653-1022.540002Azet_Bzh_All_36-1021.659996-1021.257885-1021.253598-1022.945683-1022.539700Azet_Bzh_All_37-1021.659455-1021.257899-1021.253346-1022.945898-1022.539780Azet_Bzh_All_38-1021.659455-1021.257898-1021.253346-1022.945897-1022.539788Azet_Bzh_All_40-1021.659452-1021.257898-1021.253224-1022.945847-1022.539788Azet_Bzh_All_41-1021.660221-1021.257446-1021.253604-1022.945711-1022.539094Azet_Bzh_All_42-1021.657300-1021.257446-1021.253173-1022.944014-1022.539080Azet_Bzh_All_43-1021.658108-1021.257627-1021.251924-1022.945512-1022.538965Azet_Bzh_All_44-1021.658580-1021.257067-1021.252287-1022.945027-1022.538936Azet_Bzh_All_45-1021.658868-1021.257667-1021.252572-1022.944521-1022.538078Azet_Bzh_All_46-1021.658779-1021.257667-1021.252841-1022.944522-1022.538078Azet_Bzh_All_47-1021.658877-1021.257668-1021.251998-1022.944592-1022.538078Azet_Bzh_All_50-1021.6588779-1021.25766-1021.252841-1022.94359	Azet_Bzh_All_31	-1021.661729	-1021.259922	-1021.255309	-1022.946867	-1022.540446
Azet_Bzh_All_34 -1021.663135 -1021.259032 -1021.255542 -1022.947712 -1022.540118 Azet_Bzh_All_35 -1021.659987 -1021.257785 -1021.253336 -1022.946653 -1022.539870 Azet_Bzh_All_36 -1021.658996 -1021.257885 -1021.253346 -1022.945268 -1022.539700 Azet_Bzh_All_37 -1021.659455 -1021.257899 -1021.253346 -1022.945897 -1022.539788 Azet_Bzh_All_39 -1021.660452 -1021.257898 -1021.253346 -1022.945897 -1022.539700 Azet_Bzh_All_41 -1021.659222 -1021.258182 -1021.253244 -1022.945464 -1022.539022 Azet_Bzh_All_41 -1021.660221 -1021.2578182 -1021.25287 -1022.945711 -1022.539094 Azet_Bzh_All_42 -1021.657300 -1021.257811 -1021.25287 -1022.944094 -1022.539080 Azet_Bzh_All_43 -1021.658530 -1021.257811 -1021.25173 -1022.944001 -1022.538906 Azet_Bzh_All_44 -1021.658580 -1021.257067 -1021.25173 -1022.944001 -1022.538906 Azet_Bzh_All_46 -1021.658779 -1021.257368 -1021.25272 -102	Azet_Bzh_All_32	-1021.659624	-1021.258276	-1021.253515	-1022.946247	-1022.540138
Azet_Bzh_All_35-1021.659987-1021.257785-1021.253336-1022.946653-1022.540002Azet_Bzh_All_36-1021.658996-1021.257885-1021.253598-1022.945268-1022.539870Azet_Bzh_All_37-1021.659455-1021.257899-1021.253346-1022.945898-1022.539790Azet_Bzh_All_38-1021.659455-1021.257898-1021.253346-1022.945897-1022.539788Azet_Bzh_All_39-1021.660452-1021.259319-1021.254590-1022.945897-1022.539120Azet_Bzh_All_40-1021.659222-1021.258287-1021.253224-1022.945464-1022.539040Azet_Bzh_All_41-1021.660221-1021.2578182-1021.25287-1022.945711-1022.539080Azet_Bzh_All_43-1021.658108-1021.257466-1021.25287-1022.944001-1022.539080Azet_Bzh_All_43-1021.658530-1021.257500-1021.253173-1022.944001-1022.539065Azet_Bzh_All_44-1021.658580-1021.25767-1021.25257-1022.944001-1022.538906Azet_Bzh_All_45-1021.65986-1021.257667-1021.252572-1022.944021-1022.538078Azet_Bzh_All_46-1021.658779-1021.25768-1021.25173-1022.944922-1022.538078Azet_Bzh_All_47-1021.658779-1021.257667-1021.25272-1022.944522-1022.538078Azet_Bzh_All_48-1021.658779-1021.257667-1021.25171-1022.943292-1022.538078Azet_Bzh_All_50-1021.65874-1021.25768-1021.25179-1022.943292-	Azet_Bzh_All_33	-1021.663135	-1021.259035	-1021.255543	-1022.947714	-1022.540122
AzetBzhAll36-1021.658996-1021.257885-1021.253598-1022.945268-1022.539870AzetBzhAll37-1021.659455-1021.257899-1021.253346-1022.945898-1022.539790AzetBzhAll38-1021.659455-1021.257898-1021.253346-1022.945897-1022.539788AzetBzhAll39-1021.660452-1021.259319-1021.254590-1022.945864-1022.539602AzetBzhAll40-1021.659222-1021.258287-1021.253224-1022.945310-1022.539312AzetBzhAll41-1021.660221-1021.257446-1021.252287-1022.945711-1022.539094AzetBzhAll42-1021.658108-1021.257446-1021.252287-1022.944094-1022.539080AzetBzhAll43-1021.658108-1021.257811-1021.25173-1022.944001-1022.539065AzetBzhAll44-1021.65830-1021.257007-1021.251924-1022.945027-1022.538036AzetBzhAll46-1021.658580-1021.257067-1021.252572-1022.944523-1022.538535AzetBzhAll47-1021.658779-1021.257368-1021.251924-1022.944322-1022.538535AzetBzhAll49-1021.658779-1021.25767-1021.252572-1022.944523-1022.538535AzetBzhAll49-1021.658779-1021.257368 <th< th=""><th>Azet_Bzh_All_34</th><th>-1021.663135</th><th>-1021.259032</th><th>-1021.255542</th><th>-1022.947712</th><th>-1022.540118</th></th<>	Azet_Bzh_All_34	-1021.663135	-1021.259032	-1021.255542	-1022.947712	-1022.540118
Azet_Bzh_All_37-1021.659455-1021.257899-1021.253346-1022.945898-1022.539790Azet_Bzh_All_38-1021.659455-1021.257898-1021.253346-1022.945897-1022.539788Azet_Bzh_All_39-1021.660452-1021.259319-1021.254590-1022.945864-1022.539602Azet_Bzh_All_40-1021.659222-1021.258287-1021.253224-1022.945310-1022.539312Azet_Bzh_All_41-1021.660221-1021.257818-1021.253604-1022.945711-1022.539094Azet_Bzh_All_42-1021.657300-1021.257811-1021.252287-1022.944094-1022.539080Azet_Bzh_All_43-1021.658108-1021.257811-1021.253173-1022.944001-1022.539065Azet_Bzh_All_44-1021.658530-1021.25707-1021.251924-1022.945512-1022.538066Azet_Bzh_All_45-1021.65986-1021.25700-1021.25227-1022.9445027-1022.538063Azet_Bzh_All_46-1021.658870-1021.257067-1021.252572-1022.944543-1022.538693Azet_Bzh_All_47-1021.658779-1021.25768-1021.253046-1022.944802-1022.537991Azet_Bzh_All_50-1021.658741-1021.25635-1021.251971-1022.943802-1022.537926Azet_Bzh_All_51-1021.658413-1021.254736-1021.251171-1022.943802-1022.536317Azet_Bzh_All_51-1021.658413-1021.254736-1021.251172-1022.943552-1022.536317Azet_Bzh_All_51-1021.658413-1021.254366-1021.251172-1022.943552 <th>Azet_Bzh_All_35</th> <th>-1021.659987</th> <th>-1021.257785</th> <th>-1021.253336</th> <th>-1022.946653</th> <th>-1022.540002</th>	Azet_Bzh_All_35	-1021.659987	-1021.257785	-1021.253336	-1022.946653	-1022.540002
Azet_Bzh_All_37-1021.659455-1021.257899-1021.253346-1022.945898-1022.539790Azet_Bzh_All_38-1021.659455-1021.257898-1021.253346-1022.945897-1022.539788Azet_Bzh_All_39-1021.660452-1021.259319-1021.254590-1022.945864-1022.539602Azet_Bzh_All_40-1021.659222-1021.258287-1021.253224-1022.945310-1022.539312Azet_Bzh_All_41-1021.660221-1021.257818-1021.253604-1022.945711-1022.539094Azet_Bzh_All_42-1021.657300-1021.257811-1021.252287-1022.944094-1022.539080Azet_Bzh_All_43-1021.658108-1021.257811-1021.253173-1022.944001-1022.539065Azet_Bzh_All_44-1021.658530-1021.25707-1021.251924-1022.945512-1022.538066Azet_Bzh_All_45-1021.65986-1021.25700-1021.25227-1022.9445027-1022.538063Azet_Bzh_All_46-1021.658870-1021.257067-1021.252572-1022.944543-1022.538693Azet_Bzh_All_47-1021.658779-1021.25768-1021.253046-1022.944802-1022.537991Azet_Bzh_All_50-1021.658741-1021.25635-1021.251971-1022.943802-1022.537926Azet_Bzh_All_51-1021.658413-1021.254736-1021.251171-1022.943802-1022.536317Azet_Bzh_All_51-1021.658413-1021.254736-1021.251172-1022.943552-1022.536317Azet_Bzh_All_51-1021.658413-1021.254366-1021.251172-1022.943552 <th>Azet_Bzh_All_36</th> <th>-1021.658996</th> <th>-1021.257885</th> <th>-1021.253598</th> <th>-1022.945268</th> <th>-1022.539870</th>	Azet_Bzh_All_36	-1021.658996	-1021.257885	-1021.253598	-1022.945268	-1022.539870
Azet_Bzh_All_39-1021.660452-1021.259319-1021.254590-1022.945464-1022.539602Azet_Bzh_All_40-1021.659222-1021.258287-1021.253224-1022.945310-1022.539312Azet_Bzh_All_41-1021.660221-1021.258182-1021.253604-1022.945711-1022.539094Azet_Bzh_All_42-1021.657300-1021.257446-1021.252287-1022.944094-1022.539080Azet_Bzh_All_43-1021.658108-1021.257811-1021.25173-1022.944001-1022.539065Azet_Bzh_All_44-1021.658530-1021.257811-1021.251924-1022.945512-1022.538066Azet_Bzh_All_45-1021.659586-1021.257500-1021.253253-1022.945027-1022.538093Azet_Bzh_All_46-1021.658580-1021.257667-1021.25272-1022.944543-1022.538535Azet_Bzh_All_47-1021.658779-1021.25768-1021.25272-1022.944322-1022.538078Azet_Bzh_All_48-1021.658779-1021.25768-1021.252841-1022.94322-1022.537926Azet_Bzh_All_50-1021.658874-1021.254736-1021.251171-1022.943552-1022.536317Azet_Bzh_All_51-1021.658413-1021.254736-1021.251171-1022.943552-1022.536312Azet_Bzh_All_51-1021.65555-1021.25235-1021.251172-1022.943552-1022.536312Azet_Bzh_All_52-1021.657153-1021.254366-1021.25085-1022.942619-1022.535989Azet_Bzh_All_53-1021.657153-1021.253322-1022.94091-1022.534492 <th></th> <th>-1021.659455</th> <th>-1021.257899</th> <th>-1021.253346</th> <th>-1022.945898</th> <th>-1022.539790</th>		-1021.659455	-1021.257899	-1021.253346	-1022.945898	-1022.539790
Azet_Bzh_All_40-1021.659222-1021.258287-1021.253224-1022.945310-1022.539312Azet_Bzh_All_41-1021.660221-1021.258182-1021.253604-1022.945711-1022.539094Azet_Bzh_All_42-1021.657300-1021.257446-1021.252287-1022.944094-1022.539080Azet_Bzh_All_43-1021.658108-1021.257811-1021.253173-1022.944001-1022.539065Azet_Bzh_All_44-1021.658530-1021.25727-1021.251924-1022.945512-1022.538066Azet_Bzh_All_45-1021.659586-1021.25700-1021.253253-1022.945027-1022.538693Azet_Bzh_All_46-1021.658580-1021.257067-1021.252572-1022.944543-1022.538078Azet_Bzh_All_47-1021.65879-1021.257368-1021.253046-1022.944322-1022.538078Azet_Bzh_All_48-1021.658779-1021.257368-1021.251924-1022.944322-1022.537991Azet_Bzh_All_50-1021.658874-1021.256044-1021.25198-1022.944802-1022.537926Azet_Bzh_All_51-1021.658413-1021.254736-1021.251171-1022.943552-1022.536317Azet_Bzh_All_51-1021.658413-1021.25235-1021.251172-1022.943552-1022.536312Azet_Bzh_All_51-1021.65755-1021.25235-1021.250285-1022.942619-1022.535989Azet_Bzh_All_52-1021.65755-1021.252332-1021.250285-1022.942619-1022.535751Azet_Bzh_All_54-1021.654302-1021.25332-1021.248303-1022.940491 <th< th=""><th>Azet_Bzh_All_38</th><th>-1021.659455</th><th>-1021.257898</th><th>-1021.253346</th><th>-1022.945897</th><th>-1022.539788</th></th<>	Azet_Bzh_All_38	-1021.659455	-1021.257898	-1021.253346	-1022.945897	-1022.539788
Azet_Bzh_All_41-1021.660221-1021.258182-1021.253604-1022.945711-1022.539094Azet_Bzh_All_42-1021.657300-1021.257446-1021.252287-1022.944094-1022.539080Azet_Bzh_All_43-1021.658108-1021.257811-1021.253173-1022.944001-1022.539065Azet_Bzh_All_44-1021.658530-1021.256227-1021.251924-1022.945512-1022.538066Azet_Bzh_All_45-1021.659586-1021.25700-1021.253253-1022.945027-1022.538693Azet_Bzh_All_46-1021.659586-1021.257067-1021.252572-1022.944543-1022.538693Azet_Bzh_All_47-1021.659290-1021.257368-1021.253046-1022.944543-1022.538078Azet_Bzh_All_48-1021.658779-1021.257368-1021.252841-1022.943929-1022.537991Azet_Bzh_All_50-1021.65874-1021.256044-1021.251998-1022.94352-1022.536317Azet_Bzh_All_51-1021.658413-1021.254736-1021.251171-1022.943552-1022.536312Azet_Bzh_All_51-1021.658413-1021.254736-1021.251172-1022.943552-1022.536312Azet_Bzh_All_51-1021.657153-1021.254366-1021.250285-1022.942619-1022.535989Azet_Bzh_All_53-1021.657153-1021.253322-1021.250285-1022.94091-1022.534492Azet_Bzh_All_54-1021.65652-1021.253322-1021.248303-1022.94096-1022.534492Azet_Bzh_All_55-1021.65652-1021.253324-1021.248898-1022.94096 <t< th=""><th>Azet_Bzh_All_39</th><th>-1021.660452</th><th>-1021.259319</th><th>-1021.254590</th><th>-1022.945464</th><th>-1022.539602</th></t<>	Azet_Bzh_All_39	-1021.660452	-1021.259319	-1021.254590	-1022.945464	-1022.539602
Azet_Bzh_All_42-1021.657300-1021.257446-1021.252287-1022.944094-1022.539080Azet_Bzh_All_43-1021.658108-1021.257811-1021.253173-1022.944001-1022.539065Azet_Bzh_All_44-1021.658530-1021.256227-1021.251924-1022.945512-1022.538906Azet_Bzh_All_45-1021.659586-1021.25700-1021.253253-1022.945027-1022.538693Azet_Bzh_All_46-1021.658580-1021.257067-1021.252572-1022.944543-1022.538693Azet_Bzh_All_47-1021.659290-1021.257683-1021.253046-1022.944322-1022.538078Azet_Bzh_All_48-1021.658779-1021.257368-1021.252841-1022.943929-1022.537991Azet_Bzh_All_50-1021.658779-1021.256444-1021.251171-1022.943559-1022.536317Azet_Bzh_All_51-1021.658413-1021.254736-1021.251171-1022.943559-1022.536312Azet_Bzh_All_51-1021.658413-1021.254736-1021.251172-1022.943552-1022.536312Azet_Bzh_All_51-1021.65755-1021.25235-1021.251172-1022.943552-1022.536312Azet_Bzh_All_51-1021.657153-1021.254736-1021.250285-1022.942619-1022.537989Azet_Bzh_All_53-1021.657153-1021.253322-1021.250285-1022.942619-1022.53751Azet_Bzh_All_54-1021.654302-1021.253324-1021.248803-1022.940096-1022.534432Azet_Bzh_All_55-1021.65652-1021.253294-1021.248899-1022.940096 <th>Azet_Bzh_All_40</th> <th>-1021.659222</th> <th>-1021.258287</th> <th>-1021.253224</th> <th>-1022.945310</th> <th>-1022.539312</th>	Azet_Bzh_All_40	-1021.659222	-1021.258287	-1021.253224	-1022.945310	-1022.539312
Azet_Bzh_All_43-1021.658108-1021.257811-1021.253173-1022.944001-1022.539065Azet_Bzh_All_44-1021.658530-1021.256227-1021.251924-1022.945012-1022.538906Azet_Bzh_All_45-1021.659586-1021.257500-1021.253253-1022.945027-1022.538693Azet_Bzh_All_46-1021.658580-1021.257067-1021.252572-1022.944543-1022.538693Azet_Bzh_All_47-1021.659290-1021.257368-1021.253046-1022.944543-1022.538078Azet_Bzh_All_48-1021.658779-1021.257368-1021.252841-1022.943929-1022.537991Azet_Bzh_All_49-1021.658874-1021.256044-1021.251171-1022.943559-1022.536317Azet_Bzh_All_50-1021.658413-1021.254736-1021.251171-1022.943559-1022.536312Azet_Bzh_All_51-1021.658413-1021.25235-1021.251171-1022.943552-1022.536312Azet_Bzh_All_51-1021.658413-1021.25235-1021.251172-1022.943552-1022.536312Azet_Bzh_All_51-1021.658413-1021.254736-1021.251172-1022.943552-1022.536312Azet_Bzh_All_52-1021.65555-1021.252235-1021.250285-1022.942619-1022.535789Azet_Bzh_All_53-1021.657153-1021.253322-1021.250285-1022.940491-1022.534492Azet_Bzh_All_54-1021.654302-1021.253324-1021.248803-1022.940096-1022.534333Azet_Bzh_All_55-1021.655652-1021.253294-1021.248899-1022.940096 </th <th>Azet_Bzh_All_41</th> <th>-1021.660221</th> <th>-1021.258182</th> <th>-1021.253604</th> <th>-1022.945711</th> <th>-1022.539094</th>	Azet_Bzh_All_41	-1021.660221	-1021.258182	-1021.253604	-1022.945711	-1022.539094
Azet_Bzh_All_44-1021.658530-1021.256227-1021.251924-1022.945512-1022.538906Azet_Bzh_All_45-1021.659586-1021.257500-1021.253253-1022.945512-1022.538693Azet_Bzh_All_46-1021.658580-1021.257067-1021.252572-1022.944543-1022.538693Azet_Bzh_All_47-1021.659290-1021.256835-1021.253046-1022.944543-1022.538078Azet_Bzh_All_48-1021.658779-1021.257368-1021.252841-1022.943929-1022.537991Azet_Bzh_All_49-1021.658874-1021.256044-1021.251171-1022.943559-1022.536317Azet_Bzh_All_50-1021.658413-1021.254736-1021.251171-1022.943559-1022.536312Azet_Bzh_All_51-1021.658413-1021.252235-1021.251172-1022.943295-1022.536312Azet_Bzh_All_51-1021.65755-1021.25233-1021.248250-1022.943295-1022.535989Azet_Bzh_All_52-1021.657153-1021.253322-1021.250285-1022.942619-1022.535751Azet_Bzh_All_54-1021.654302-1021.253322-1021.248303-1022.940491-1022.534492Azet_Bzh_All_55-1021.65555-1021.253324-1021.248899-1022.940096-1022.533433			-1021.257446	-1021.252287	-1022.944094	-1022.539080
Azet_Bzh_All_45-1021.659586-1021.257500-1021.253253-1022.945027-1022.538693Azet_Bzh_All_46-1021.658580-1021.257067-1021.252572-1022.944543-1022.538535Azet_Bzh_All_47-1021.659290-1021.256835-1021.253046-1022.944543-1022.538078Azet_Bzh_All_48-1021.658779-1021.257368-1021.252841-1022.944322-1022.537991Azet_Bzh_All_49-1021.658874-1021.256044-1021.251998-1022.944802-1022.537926Azet_Bzh_All_50-1021.658413-1021.254738-1021.251171-1022.943559-1022.536317Azet_Bzh_All_51-1021.658413-1021.254736-1021.251172-1022.943552-1022.536312Azet_Bzh_All_51-1021.658413-1021.252235-1021.251172-1022.943295-1022.536312Azet_Bzh_All_52-1021.657555-1021.252332-1021.248250-1022.943295-1022.535989Azet_Bzh_All_53-1021.657153-1021.253322-1021.250285-1022.942619-1022.535751Azet_Bzh_All_54-1021.654302-1021.253322-1021.248303-1022.940491-1022.534492Azet_Bzh_All_55-1021.655652-1021.253294-1021.248899-1022.940096-1022.533433		-1021.658108	-1021.257811	-1021.253173	-1022.944001	
Azet_Bzh_All_46-1021.658580-1021.257067-1021.252572-1022.944543-1022.538535Azet_Bzh_All_47-1021.659290-1021.256835-1021.253046-1022.944322-1022.538078Azet_Bzh_All_48-1021.658779-1021.257368-1021.252841-1022.944322-1022.537991Azet_Bzh_All_49-1021.658874-1021.256044-1021.251998-1022.944802-1022.537926Azet_Bzh_All_50-1021.658413-1021.254738-1021.251171-1022.943559-1022.536317Azet_Bzh_All_51-1021.658413-1021.254736-1021.251172-1022.943552-1022.536312Azet_Bzh_All_51-1021.658413-1021.252235-1021.251172-1022.943295-1022.536312Azet_Bzh_All_52-1021.657555-1021.254366-1021.250285-1022.943295-1022.535989Azet_Bzh_All_53-1021.657153-1021.253322-1021.250285-1022.942619-1022.535751Azet_Bzh_All_54-1021.654302-1021.253322-1021.248303-1022.940096-1022.533433Azet_Bzh_All_55-1021.655652-1021.253294-1021.248989-1022.940096-1022.533433	Azet_Bzh_All_44	-1021.658530	-1021.256227	-1021.251924	-1022.945512	-1022.538906
Azet_Bzh_All_47-1021.659290-1021.256835-1021.253046-1022.944322-1022.538078Azet_Bzh_All_48-1021.658779-1021.257368-1021.252841-1022.943929-1022.537991Azet_Bzh_All_49-1021.658874-1021.256044-1021.251998-1022.944802-1022.537926Azet_Bzh_All_50-1021.658413-1021.254738-1021.251171-1022.943559-1022.536317Azet_Bzh_All_51-1021.658413-1021.254736-1021.251172-1022.943552-1022.536312Azet_Bzh_All_51-1021.65555-1021.252235-1021.248250-1022.943295-1022.535989Azet_Bzh_All_52-1021.657153-1021.254366-1021.250285-1022.942619-1022.535751Azet_Bzh_All_54-1021.654302-1021.253322-1021.248303-1022.940096-1022.534492Azet_Bzh_All_55-1021.655652-1021.253294-1021.248989-1022.940096-1022.533433		-1021.659586		-1021.253253		-1022.538693
Azet_Bzh_All_48-1021.658779-1021.257368-1021.252841-1022.943929-1022.537991Azet_Bzh_All_49-1021.658874-1021.256044-1021.251998-1022.943929-1022.537926Azet_Bzh_All_50-1021.658413-1021.254738-1021.251171-1022.943559-1022.536317Azet_Bzh_All_51-1021.658413-1021.254736-1021.251172-1022.943552-1022.536312Azet_Bzh_All_52-1021.65555-1021.252235-1021.248250-1022.943295-1022.535989Azet_Bzh_All_53-1021.657153-1021.254366-1021.250285-1022.942619-1022.535751Azet_Bzh_All_54-1021.654302-1021.253322-1021.248303-1022.940491-1022.534492Azet_Bzh_All_55-1021.655652-1021.253294-1021.248989-1022.940096-1022.533433						
Azet_Bzh_All_49-1021.658874-1021.256044-1021.251998-1022.944802-1022.537926Azet_Bzh_All_50-1021.658413-1021.254738-1021.251171-1022.943559-1022.536317Azet_Bzh_All_51-1021.658413-1021.254736-1021.251172-1022.943552-1022.536312Azet_Bzh_All_52-1021.65555-1021.252235-1021.248250-1022.943295-1022.535989Azet_Bzh_All_53-1021.657153-1021.254366-1021.250285-1022.942619-1022.535751Azet_Bzh_All_54-1021.654302-1021.253322-1021.248303-1022.940491-1022.534492Azet_Bzh_All_55-1021.655652-1021.253294-1021.248989-1022.940096-1022.533433		-1021.659290	-1021.256835	-1021.253046	-1022.944322	-1022.538078
Azet_Bzh_All_50-1021.658413-1021.254738-1021.251171-1022.943559-1022.536317Azet_Bzh_All_51-1021.658413-1021.254736-1021.251172-1022.943552-1022.536312Azet_Bzh_All_52-1021.655555-1021.252235-1021.248250-1022.943295-1022.536312Azet_Bzh_All_53-1021.657153-1021.254366-1021.250285-1022.943295-1022.535989Azet_Bzh_All_54-1021.654302-1021.253322-1021.248303-1022.942619-1022.534492Azet_Bzh_All_55-1021.655652-1021.253294-1021.248989-1022.940096-1022.533433						
Azet_Bzh_All_51-1021.658413-1021.254736-1021.251172-1022.943552-1022.536312Azet_Bzh_All_52-1021.65555-1021.252235-1021.248250-1022.943295-1022.535989Azet_Bzh_All_53-1021.657153-1021.254366-1021.250285-1022.942619-1022.535751Azet_Bzh_All_54-1021.654302-1021.253332-1021.248303-1022.940491-1022.534492Azet_Bzh_All_55-1021.655652-1021.253294-1021.248989-1022.940096-1022.533433						
Azet_Bzh_All_52-1021.655555-1021.252235-1021.248250-1022.943295-1022.535989Azet_Bzh_All_53-1021.657153-1021.254366-1021.250285-1022.942619-1022.535751Azet_Bzh_All_54-1021.654302-1021.253332-1021.248303-1022.940491-1022.534492Azet_Bzh_All_55-1021.655652-1021.253294-1021.248989-1022.940096-1022.533433						
Azet_Bzh_All_53-1021.657153-1021.254366-1021.250285-1022.942619-1022.535751Azet_Bzh_All_54-1021.654302-1021.253332-1021.248303-1022.940491-1022.534492Azet_Bzh_All_55-1021.655652-1021.253294-1021.248989-1022.940096-1022.533433						
Azet_Bzh_All_54-1021.654302-1021.253332-1021.248303-1022.940491-1022.534492Azet_Bzh_All_55-1021.655652-1021.253294-1021.248989-1022.940096-1022.534433						
Azet_Bzh_All_55 -1021.655652 -1021.253294 -1021.248989 -1022.940096 -1022.533433						
Azet_Bzh_All_56 -1021.656226 -1021.253050 -1021.249393 -1022.939827 -1022.532993						
	Azet_Bzh_All_56	-1021.656226	-1021.253050	-1021.249393	-1022.939827	-1022.532993

Table S29: Azet_{Bzh,Bn}

	Energy (opt)	G (opt)	G-qh (opt)	E (sp)	G-qh (sp)
Azet_Bzh_Bn_1	-1175.156809	-1174.709106	-1174.703834	-1176.621556	-1176.168581
Azet_Bzh_Bn_2	-1175.156448	-1174.708435	-1174.703410	-1176.621277	-1176.168239
Azet_Bzh_Bn_3	-1175.156515	-1174.707931	-1174.703259	-1176.620081	-1176.166825
Azet_Bzh_Bn_4	-1175.156515	-1174.707925	-1174.703255	-1176.620080	-1176.166820
Azet_Bzh_Bn_5	-1175.152032	-1174.706731	-1174.700431	-1176.618411	-1176.166809
Azet_Bzh_Bn_6	-1175.152032	-1174.706687	-1174.700409	-1176.618411	-1176.166788
Azet_Bzh_Bn_7	-1175.154226	-1174.707105	-1174.701663	-1176.618903	-1176.166339
Azet_Bzh_Bn_8	-1175.151323	-1174.705157	-1174.699222	-1176.616910	-1176.164809
Azet_Bzh_Bn_9	-1175.151324	-1174.705015	-1174.699152	-1176.616915	-1176.164744
Azet_Bzh_Bn_10*	-1175.150684	-1174.701586	-1174.696897	-1176.618414	-1176.164627
Azet_Bzh_Bn_11	-1175.149918	-1174.703972	-1174.697845	-1176.616605	-1176.164532
Azet_Bzh_Bn_12	-1175.153734	-1174.704987	-1174.700500	-1176.617666	-1176.164433
Azet_Bzh_Bn_13*	-1175.149846	-1174.701752	-1174.696687	-1176.616912	-1176.163753
Azet_Bzh_Bn_14	-1175.149981	-1174.703267	-1174.697500	-1176.616198	-1176.163718
Azet_Bzh_Bn_15	-1175.149869	-1174.703039	-1174.697240	-1176.616018	-1176.163388
Azet_Bzh_Bn_16	-1175.149623	-1174.702937	-1174.697470	-1176.614989	-1176.162835
Azet_Bzh_Bn_17	-1175.150583	-1174.703600	-1174.697904	-1176.615162	-1176.162483
Azet_Bzh_Bn_18	-1175.152544	-1174.702858	-1174.698926	-1176.615723	-1176.162105
Azet_Bzh_Bn_19	-1175.147141	-1174.699977	-1174.694432	-1176.613926	-1176.161217
Azet_Bzh_Bn_20	-1175.148805	-1174.701643	-1174.696022	-1176.613888	-1176.161105
Azet_Bzh_Bn_21	-1175.148663	-1174.699907	-1174.695296	-1176.613882	-1176.160514
Azet_Bzh_Bn_22	-1175.148333	-1174.699865	-1174.695127	-1176.613014	-1176.159808
Azet_Bzh_Bn_23	-1175.146934	-1174.698457	-1174.693794	-1176.612543	-1176.159402
Azet_Bzh_Bn_24	-1175.146934	-1174.698440	-1174.693784	-1176.612540	-1176.159389
Azet_Bzh_Bn_25	-1175.147325	-1174.699867	-1174.694669	-1176.611572	-1176.158915
Azet_Bzh_Bn_26	-1175.148472	-1174.698747	-1174.694417	-1176.612604	-1176.158549
Azet_Bzh_Bn_27	-1175.148472	-1174.698749	-1174.694418	-1176.612602	-1176.158548
Azet_Bzh_Bn_28	-1175.146116	-1174.698070	-1174.693306	-1176.611063	-1176.158253
Azet_Bzh_Bn_29	-1175.148535	-1174.697963	-1174.693964	-1176.610848	-1176.156276

Azetidinium-Fluoride Ion Pairs

Table S30: Azet_{Me,Me}

	L C C C C C C C C C C C C C C C C C C C				
	Energy (opt)	G (opt)	G-qh (opt)	E (sp)	G-qh (sp)
Azet_Me_Me_F_1	-582.677639	-582.460844	-582.458859	-583.439845	-583.221065
Azet_Me_Me_F_2	-582.673553	-582.456974	-582.455031	-583.439000	-583.220478
Azet_Me_Me_F_3	-582.672790	-582.456562	-582.454584	-583.437988	-583.219782
Azet_Me_Me_F_4	-582.674890	-582.457172	-582.455733	-583.438576	-583.219418
Azet_Me_Me_F_5	-582.674890	-582.457167	-582.455730	-583.438574	-583.219415
Azet_Me_Me_F_6	-582.674159	-582.457594	-582.455722	-583.437323	-583.218885
Azet_Me_Me_F_7	-582.674710	-582.457174	-582.455690	-583.437505	-583.218485
Azet_Me_Me_F_8	-582.675630	-582.458535	-582.456846	-583.437266	-583.218482
Azet_Me_Me_F_9	-582.673867	-582.456746	-582.455008	-583.436531	-583.217672
Azet_Me_Me_F_10	-582.673868	-582.456723	-582.454995	-583.436522	-583.217649
Azet_Me_Me_F_11	-582.672584	-582.455852	-582.454026	-583.435937	-583.217379
Azet_Me_Me_F_12	-582.672584	-582.455783	-582.453989	-583.435942	-583.217347
Azet_Me_Me_F_13	-582.659366	-582.443906	-582.441487	-583.428883	-583.211004
Azet_Me_Me_F_14	-582.658450	-582.444154	-582.441198	-583.427697	-583.210445
Azet_Me_Me_F_15	-582.659493	-582.443072	-582.441224	-583.428357	-583.210087
Azet_Me_Me_F_16	-582.659682	-582.443009	-582.441092	-583.427670	-583.209080
Azet_Me_Me_F_17	-582.658670	-582.443162	-582.440636	-583.426981	-583.208948

Table S31: Azet_{Bn,Me}

	Energy (opt)	G (opt)	G-qh (opt)	E (sp)	G-qh (sp)
Azet_Bn_Me_F_1	-813.470129	-813.176288	-813.173393	-814.508720	-814.211984
Azet_Bn_Me_F_2	-813.470130	-813.176295	-813.173396	-814.508717	-814.211983
Azet_Bn_Me_F_3	-813.465220	-813.173055	-813.169316	-814.506990	-814.211087

Azet_Bn_Me_F_4	-813.463354	-813.172073	-813.168022	-814.506330	-814.210998
Azet_Bn_Me_F_5	-813.465038	-813.173390	-813.169671	-814.505656	-814.210289
Azet_Bn_Me_F_6	-813.466822	-813.174664	-813.171093	-814.505844	-814.210115
Azet_Bn_Me_F_7	-813.466822	-813.174647	-813.171087	-814.505838	-814.210103
Azet_Bn_Me_F_8	-813.462575	-813.171197	-813.167316	-814.505312	-814.210053
Azet_Bn_Me_F_9	-813.465445	-813.171673	-813.168773	-814.506683	-814.210011
Azet_Bn_Me_F_10	-813.469365	-813.174314	-813.172014	-814.506927	-814.209576
Azet_Bn_Me_F_11	-813.464877	-813.172602	-813.169052	-814.504892	-814.209066
Azet_Bn_Me_F_12	-813.464877	-813.172599	-813.169051	-814.504890	-814.209064
Azet_Bn_Me_F_13	-813.461444	-813.169364	-813.165877	-814.504608	-814.209041
Azet_Bn_Me_F_14	-813.461444	-813.169350	-813.165871	-814.504602	-814.209029
Azet_Bn_Me_F_15	-813.465758	-813.172394	-813.169392	-814.504837	-814.208471
Azet_Bn_Me_F_16	-813.465759	-813.172380	-813.169385	-814.504832	-814.208458
Azet_Bn_Me_F_17	-813.460921	-813.168671	-813.165207	-814.503616	-814.207903
Azet_Bn_Me_F_18	-813.468388	-813.172872	-813.171021	-814.505046	-814.207680
Azet_Bn_Me_F_19	-813.466638	-813.171397	-813.169401	-814.504230	-814.206993
Azet_Bn_Me_F_20	-813.466638	-813.171393	-813.169397	-814.504227	-814.206985
Azet_Bn_Me_F_21	-813.455903	-813.164287	-813.160580	-814.499197	-814.203874
Azet_Bn_Me_F_22	-813.453644	-813.162043	-813.158201	-814.498328	-814.202885
Azet_Bn_Me_F_23	-813.456697	-813.162916	-813.160019	-814.498425	-814.201746
Azet_Bn_Me_F_24	-813.456697	-813.162907	-813.160014	-814.498424	-814.201741

Table S32: Azet_{Bn,Bn}

I WOIC DOD: I MECUBI,BI	1				
	Energy (opt)	G (opt)	G-qh (opt)	E (sp)	G-qh (sp)
Azet_Bn_Bn_F_1	-1044.258298	-1043.888433	-1043.884060	-1045.574538	-1045.200300
Azet_Bn_Bn_F_2	-1044.258298	-1043.888431	-1043.884059	-1045.574537	-1045.200298
Azet_Bn_Bn_F_3	-1044.256859	-1043.888147	-1043.883205	-1045.573531	-1045.199876
Azet_Bn_Bn_F_4	-1044.259784	-1043.889429	-1043.885193	-1045.574247	-1045.199655
Azet_Bn_Bn_F_5	-1044.259034	-1043.888722	-1043.884569	-1045.573802	-1045.199338
Azet_Bn_Bn_F_6	-1044.256096	-1043.888205	-1043.883022	-1045.572236	-1045.199162
Azet_Bn_Bn_F_7	-1044.256048	-1043.887360	-1043.882385	-1045.572729	-1045.199065
Azet_Bn_Bn_F_8	-1044.256826	-1043.886532	-1043.882393	-1045.573377	-1045.198943
Azet_Bn_Bn_F_9	-1044.256728	-1043.887379	-1043.882696	-1045.572439	-1045.198407
Azet_Bn_Bn_F_10	-1044.258313	-1043.888057	-1043.884041	-1045.572610	-1045.198337
Azet_Bn_Bn_F_11	-1044.255213	-1043.885606	-1043.881249	-1045.572216	-1045.198252
Azet_Bn_Bn_F_12	-1044.257794	-1043.887009	-1043.883305	-1045.572255	-1045.197766
Azet_Bn_Bn_F_13	-1044.257794	-1043.887005	-1043.883303	-1045.572250	-1045.197759
Azet_Bn_Bn_F_14	-1044.254700	-1043.886484	-1043.881338	-1045.570764	-1045.197401
Azet_Bn_Bn_F_15	-1044.255838	-1043.885943	-1043.881552	-1045.571682	-1045.197395
Azet_Bn_Bn_F_16	-1044.257696	-1043.886991	-1043.883266	-1045.571634	-1045.197204
Azet_Bn_Bn_F_17	-1044.252393	-1043.883308	-1043.878833	-1045.570626	-1045.197067
Azet_Bn_Bn_F_18	-1044.257964	-1043.887083	-1043.883361	-1045.571598	-1045.196994
Azet_Bn_Bn_F_19	-1044.255587	-1043.886092	-1043.881601	-1045.570936	-1045.196950
Azet_Bn_Bn_F_20	-1044.254154	-1043.884733	-1043.880575	-1045.570521	-1045.196942
Azet_Bn_Bn_F_21	-1044.252944	-1043.884948	-1043.879792	-1045.570037	-1045.196886
Azet_Bn_Bn_F_22	-1044.255346	-1043.886223	-1043.881515	-1045.570702	-1045.196871
Azet_Bn_Bn_F_23	-1044.252781	-1043.884822	-1043.879641	-1045.569967	-1045.196827
Azet_Bn_Bn_F_24	-1044.253746	-1043.884104	-1043.879788	-1045.570229	-1045.196271
Azet_Bn_Bn_F_25	-1044.251027	-1043.883801	-1043.878512	-1045.568671	-1045.196156
Azet_Bn_Bn_F_26	-1044.251027	-1043.883801	-1043.878512	-1045.568671	-1045.196155
Azet_Bn_Bn_F_27	-1044.251563	-1043.882768	-1043.878093	-1045.569273	-1045.195803
Azet_Bn_Bn_F_28	-1044.253432	-1043.885131	-1043.879969	-1045.569009	-1045.195546
Azet_Bn_Bn_F_29	-1044.253383	-1043.885134	-1043.879977	-1045.568873	-1045.195466
Azet_Bn_Bn_F_30	-1044.253383	-1043.885131	-1043.879975	-1045.568873	-1045.195464

Table S33: Azet_{Bzh,Me}

	Energy (opt)	G (opt)	G-qh (opt)	E (sp)	G-qh (sp)
Azet_Bzh_Me_F_1	-1044.255741	-1043.885965	-1043.881860	-1045.570510	-1045.196628
Azet_Bzh_Me_F_2	-1044.254795	-1043.885884	-1043.881433	-1045.569762	-1045.196401

Azet_Bzh_Me_F_3	-1044.254773	-1043.885488	-1043.880962	-1045.569860	-1045.196050
Azet_Bzh_Me_F_4	-1044.253813	-1043.885075	-1043.880472	-1045.568841	-1045.195500
Azet_Bzh_Me_F_5	-1044.250705	-1043.881568	-1043.877207	-1045.568681	-1045.195183
Azet_Bzh_Me_F_6	-1044.253892	-1043.885215	-1043.880710	-1045.568064	-1045.194882
Azet Bzh Me F 7	-1044.253892	-1043.885212	-1043.880708	-1045.568064	-1045.194880
Azet_Bzh_Me_F_8	-1044.251664	-1043.883560	-1043.878572	-1045.567240	-1045.194148
Azet_Bzh_Me_F_9	-1044.251168	-1043.882011	-1043.877885	-1045.567391	-1045.194108
Azet_Bzh_Me_F_10	-1044.249725	-1043.881576	-1043.876813	-1045.566664	-1045.193752
Azet Bzh Me F 11	-1044.251369	-1043.883230	-1043.878574	-1045.566406	-1045.193611
Azet Bzh Me F 12	-1044.252135	-1043.880591	-1043.877500	-1045.568231	-1045.193596
Azet_Bzh_Me_F_13	-1044.252135	-1043.880583	-1043.877494	-1045.568233	-1045.193592
Azet_Bzh_Me_F_14	-1044.245792	-1043.877773	-1043.872652	-1045.566253	-1045.193114
Azet_Bzh_Me_F_15	-1044.249030	-1043.881656	-1043.876626	-1045.565385	-1045.192981
Azet_Bzh_Me_F_16	-1044.249030	-1043.881550	-1043.876572	-1045.565394	-1045.192936
Azet_Bzh_Me_F_17	-1044.244994	-1043.878885	-1043.872980	-1045.564893	-1045.192880
Azet_Bzh_Me_F_18	-1044.244983	-1043.878274	-1043.872703	-1045.564883	-1045.192604
Azet_Bzh_Me_F_19	-1044.248734	-1043.881589	-1043.876129	-1045.565035	-1045.192429
Azet_Bzh_Me_F_20	-1044.251090	-1043.881728	-1043.877790	-1045.565489	-1045.192188
Azet Bzh Me F 21	-1044.251090	-1043.881699	-1043.877774	-1045.565491	-1045.192175
Azet_Bzh_Me_F_22	-1044.247038	-1043.879920	-1043.874441	-1045.564740	-1045.192144
Azet_Bzh_Me_F_23	-1044.246481	-1043.877578	-1043.873049	-1045.565402	-1045.191970
Azet_Bzh_Me_F_24	-1044.248734	-1043.880683	-1043.875679	-1045.565022	-1045.191968
Azet Bzh Me F 25	-1044.249783	-1043.879671	-1043.876106	-1045.564586	-1045.190909
Azet Bzh Me F 26	-1044.248734	-1043.877977	-1043.874255	-1045.565025	-1045.190546
Azet_Bzh_Me_F_27	-1044.244939	-1043.876811	-1043.872167	-1045.563149	-1045.190376
Azet_Bzh_Me_F_28	-1044.246460	-1043.876436	-1043.872327	-1045.563853	-1045.189720
Azet_Bzh_Me_F_29	-1044.246460	-1043.876434	-1043.872325	-1045.563853	-1045.189718
Azet_Bzh_Me_F_30	-1044.249162	-1043.879508	-1043.875259	-1045.563595	-1045.189692
Azet_Bzh_Me_F_31	-1044.247077	-1043.876365	-1043.872780	-1045.563208	-1045.188911
Azet_Bzh_Me_F_32	-1044.247077	-1043.876355	-1043.872775	-1045.563204	-1045.188902
Azet_Bzh_Me_F_33	-1044.239415	-1043.871832	-1043.866727	-1045.560604	-1045.187917
Azet_Bzh_Me_F_34	-1044.239578	-1043.871057	-1043.866398	-1045.560892	-1045.187712
Azet_Bzh_Me_F_35	-1044.239578	-1043.871054	-1043.866394	-1045.560891	-1045.187707
Azet_Bzh_Me_F_36	-1044.239074	-1043.871006	-1043.866132	-1045.560154	-1045.187212
Azet_Bzh_Me_F_37	-1044.243063	-1043.874258	-1043.869876	-1045.560223	-1045.187036
Azet_Bzh_Me_F_38	-1044.238091	-1043.869907	-1043.865119	-1045.559585	-1045.186613
Azet_Bzh_Me_F_39	-1044.238572	-1043.869573	-1043.865178	-1045.560001	-1045.186607
Azet_Bzh_Me_F_40	-1044.237767	-1043.869782	-1043.864882	-1045.559285	-1045.186401
Azet_Bzh_Me_F_41	-1044.240532	-1043.870942	-1043.866855	-1045.560073	-1045.186396
Azet_Bzh_Me_F_42	-1044.237767	-1043.869763	-1043.864872	-1045.559284	-1045.186389
Azet_Bzh_Me_F_43	-1044.236856	-1043.868040	-1043.863489	-1045.559261	-1045.185894
Azet_Bzh_Me_F_44	-1044.237870	-1043.869939	-1043.865060	-1045.558572	-1045.185763
Azet_Bzh_Me_F_45	-1044.237870	-1043.869897	-1043.865042	-1045.558571	-1045.185744
Azet_Bzh_Me_F_46	-1044.236928	-1043.868330	-1043.863729	-1045.558704	-1045.185505
Azet_Bzh_Me_F_47	-1044.236828	-1043.868188	-1043.863708	-1045.557764	-1045.184644
Azet_Bzh_Me_F_48	-1044.237233	-1043.868387	-1043.863995	-1045.557698	-1045.184460
Azet_Bzh_Me_F_49	-1044.236388	-1043.867729	-1043.863301	-1045.557251	-1045.184163
Azet_Bzh_Me_F_50	-1044.235447	-1043.868057	-1043.863033	-1045.556379	-1045.183965

Table S34: Azet_{Bzh,Et}

	Energy (opt)	G (opt)	G-qh (opt)	E (sp)	G-qh (sp)
Azet_Bzh_Et_F_1	-1083.516936	-1083.120077	-1083.115816	-1084.889173	-1084.488053
Azet_Bzh_Et_F_2	-1083.517995	-1083.120794	-1083.116805	-1084.889082	-1084.487892
Azet_Bzh_Et_F_3	-1083.519086	-1083.122576	-1083.118179	-1084.888760	-1084.487854
Azet_Bzh_Et_F_4	-1083.519050	-1083.124015	-1083.119091	-1084.887686	-1084.487728
Azet_Bzh_Et_F_5	-1083.520493	-1083.122445	-1083.118801	-1084.889189	-1084.487497
Azet_Bzh_Et_F_6	-1083.519057	-1083.122789	-1083.118462	-1084.888017	-1084.487422
Azet_Bzh_Et_F_7	-1083.517708	-1083.120376	-1083.116452	-1084.888613	-1084.487357
Azet_Bzh_Et_F_8	-1083.519085	-1083.121395	-1083.117591	-1084.888773	-1084.487280
Azet_Bzh_Et_F_9	-1083.517111	-1083.121436	-1083.116645	-1084.887504	-1084.487038

Azet_Bzh_Et_F_10	-1083.517111	-1083.121421	-1083.116638	-1084.887509	-1084.487035
Azet_Bzh_Et_F_11	-1083.519320	-1083.121717	-1083.117720	-1084.888604	-1084.487004
Azet_Bzh_Et_F_12	-1083.518160	-1083.119604	-1083.116376	-1084.888648	-1084.486865
Azet_Bzh_Et_F_13	-1083.515910	-1083.118796	-1083.114771	-1084.887226	-1084.486088
Azet_Bzh_Et_F_14	-1083.515909	-1083.118787	-1083.114767	-1084.887227	-1084.486085
Azet_Bzh_Et_F_15	-1083.517724	-1083.120321	-1083.116059	-1084.887617	-1084.485952
Azet_Bzh_Et_F_16	-1083.516638	-1083.118953	-1083.115374	-1084.886914	-1084.485651
Azet_Bzh_Et_F_17	-1083.517570	-1083.119697	-1083.116107	-1084.886521	-1084.485058
Azet_Bzh_Et_F_18	-1083.517570	-1083.119696	-1083.116105	-1084.886516	-1084.485051
Azet_Bzh_Et_F_19	-1083.510786	-1083.115543	-1083.110441	-1084.885109	-1084.484764
Azet_Bzh_Et_F_20	-1083.516933	-1083.119489	-1083.115409	-1084.886156	-1084.484633
Azet_Bzh_Et_F_21	-1083.515256	-1083.118054	-1083.114005	-1084.885726	-1084.484474
Azet_Bzh_Et_F_22	-1083.514536	-1083.118511	-1083.113775	-1084.885197	-1084.484436
Azet_Bzh_Et_F_23	-1083.513777	-1083.117058	-1083.112620	-1084.885183	-1084.484026
Azet_Bzh_Et_F_24	-1083.516079	-1083.118381	-1083.114499	-1084.885382	-1084.483802
Azet_Bzh_Et_F_25	-1083.513130	-1083.116474	-1083.112060	-1084.884017	-1084.482947
Azet_Bzh_Et_F_26	-1083.514332	-1083.116211	-1083.112643	-1084.884362	-1084.482674
Azet_Bzh_Et_F_27	-1083.514534	-1083.116840	-1083.113088	-1084.883678	-1084.482233
Azet_Bzh_Et_F_28	-1083.511334	-1083.114822	-1083.110289	-1084.879812	-1084.478767

Table S35: Azet_{Bzh,Allyl}

	Energy (opt)	G (opt)	G-qh (opt)	E (sp)	G-qh (sp)
Azet_Bzh_All_F_1	-1121.553328	-1121.153166	-1121.148583	-1122.968267	-1122.563522
Azet Bzh All F 2	-1121.553527	-1121.153645	-1121.148725	-1122.967762	-1122.562960
Azet Bzh All F 3	-1121.551635	-1121.152095	-1121.147051	-1122.967482	-1122.562899
Azet_Bzh_All_F_4	-1121.555663	-1121.155175	-1121.150546	-1122.967900	-1122.562783
Azet_Bzh_All_F_5	-1121.555501	-1121.155053	-1121.150477	-1122.967751	-1122.562726
Azet_Bzh_All_F_6	-1121.554111	-1121.154183	-1121.149530	-1122.967156	-1122.562575
Azet Bzh All F 7	-1121.555786	-1121.154875	-1121.150603	-1122.967754	-1122.562571
Azet_Bzh_All_F_8	-1121.553694	-1121.154891	-1121.149473	-1122.966776	-1122.562555
Azet_Bzh_All_F_9	-1121.553427	-1121.152849	-1121.148426	-1122.967242	-1122.562242
Azet_Bzh_All_F_10	-1121.553622	-1121.154204	-1121.148997	-1122.966825	-1122.562200
Azet_Bzh_All_F_11	-1121.552786	-1121.152878	-1121.148014	-1122.966664	-1122.561891
Azet_Bzh_All_F_12	-1121.554188	-1121.154221	-1121.149609	-1122.965983	-1122.561404
Azet_Bzh_All_F_13	-1121.553616	-1121.152505	-1121.148088	-1122.966731	-1122.561203
Azet_Bzh_All_F_14	-1121.554167	-1121.153272	-1121.149107	-1122.966117	-1122.561056
Azet_Bzh_All_F_15	-1121.554167	-1121.153273	-1121.149107	-1122.966115	-1122.561055
Azet_Bzh_All_F_16	-1121.552069	-1121.151740	-1121.147140	-1122.965611	-1122.560683
Azet_Bzh_All_F_17	-1121.550730	-1121.151261	-1121.146147	-1122.965219	-1122.560636
Azet_Bzh_All_F_18	-1121.551697	-1121.151604	-1121.147004	-1122.964935	-1122.560242
Azet_Bzh_All_F_19	-1121.553208	-1121.152077	-1121.147753	-1122.965332	-1122.559878
Azet_Bzh_All_F_20	-1121.553202	-1121.152252	-1121.147683	-1122.965290	-1122.559771
Azet_Bzh_All_F_21	-1121.552305	-1121.151351	-1121.147158	-1122.964850	-1122.559702
Azet_Bzh_All_F_22	-1121.552358	-1121.151354	-1121.147177	-1122.964851	-1122.559669
Azet_Bzh_All_F_23	-1121.550752	-1121.150123	-1121.145803	-1122.963211	-1122.558262
Azet_Bzh_All_F_24	-1121.550752	-1121.150122	-1121.145800	-1122.963210	-1122.558259
Azet_Bzh_All_F_25	-1121.551236	-1121.150697	-1121.145945	-1122.963387	-1122.558097

Table S36: Azet_{Bzh,Bn}

	Energy (opt)	G (opt)	G-qh (opt)	E (sp)	G-qh (sp)
Azet_Bzh_Bn_F_1	-1275.045778	-1274.600736	-1274.594651	-1276.637323	-1276.186195
Azet_Bzh_Bn_F_2	-1275.042985	-1274.597830	-1274.591827	-1276.635679	-1276.184521
Azet_Bzh_Bn_F_3	-1275.042985	-1274.597820	-1274.591821	-1276.635682	-1276.184518
Azet_Bzh_Bn_F_4	-1275.043430	-1274.597931	-1274.592187	-1276.635001	-1276.183758
Azet_Bzh_Bn_F_5	-1275.043429	-1274.597925	-1274.592182	-1276.635002	-1276.183754
Azet_Bzh_Bn_F_6	-1275.041916	-1274.596424	-1274.590678	-1276.634742	-1276.183505
Azet_Bzh_Bn_F_7	-1275.041998	-1274.596518	-1274.590397	-1276.634946	-1276.183346
Azet_Bzh_Bn_F_8*	-1275.043421	-1274.596709	-1274.591444	-1276.635146	-1276.183170
Azet_Bzh_Bn_F_9	-1275.043041	-1274.597600	-1274.592030	-1276.634142	-1276.183132

Azet_Bzh_Bn_F_10	-1275.042301	-1274.595783	-1274.590588	-1276.634749	-1276.183036
Azet_Bzh_Bn_F_11	-1275.043394	-1274.597995	-1274.592098	-1276.634219	-1276.182922
Azet_Bzh_Bn_F_12	-1275.039765	-1274.595734	-1274.589350	-1276.633252	-1276.182836
Azet_Bzh_Bn_F_13	-1275.042375	-1274.596017	-1274.590571	-1276.634434	-1276.182631
Azet_Bzh_Bn_F_14	-1275.042375	-1274.596016	-1274.590571	-1276.634434	-1276.182631
Azet_Bzh_Bn_F_15	-1275.040178	-1274.595420	-1274.589270	-1276.633063	-1276.182154
Azet_Bzh_Bn_F_16	-1275.043486	-1274.596464	-1274.591477	-1276.634116	-1276.182107
Azet_Bzh_Bn_F_17	-1275.043486	-1274.596453	-1274.591470	-1276.634116	-1276.182100
Azet_Bzh_Bn_F_18	-1275.042732	-1274.596270	-1274.591127	-1276.633590	-1276.181985
Azet_Bzh_Bn_F_19	-1275.040928	-1274.594468	-1274.589317	-1276.633116	-1276.181505
Azet_Bzh_Bn_F_20	-1275.040584	-1274.593483	-1274.588573	-1276.633485	-1276.181475
Azet_Bzh_Bn_F_21	-1275.038186	-1274.594317	-1274.587763	-1276.631456	-1276.181032
Azet_Bzh_Bn_F_22	-1275.039839	-1274.593167	-1274.588044	-1276.632732	-1276.180937
Azet_Bzh_Bn_F_23	-1275.040956	-1274.594560	-1274.589390	-1276.632405	-1276.180840
Azet_Bzh_Bn_F_24	-1275.039839	-1274.593286	-1274.588091	-1276.632392	-1276.180644
Azet_Bzh_Bn_F_25	-1275.041920	-1274.594692	-1274.589906	-1276.632571	-1276.180557
Azet_Bzh_Bn_F_26	-1275.041920	-1274.594692	-1274.589907	-1276.632568	-1276.180555
Azet_Bzh_Bn_F_27	-1275.041301	-1274.594478	-1274.589701	-1276.631593	-1276.179993
Azet_Bzh_Bn_F_28	-1275.036808	-1274.591981	-1274.586000	-1276.630468	-1276.179659
Azet_Bzh_Bn_F_29	-1275.038785	-1274.593028	-1274.587554	-1276.630729	-1276.179498
Azet_Bzh_Bn_F_30	-1275.037959	-1274.592208	-1274.586597	-1276.630683	-1276.179321
Azet_Bzh_Bn_F_31	-1275.038536	-1274.592660	-1274.587295	-1276.630152	-1276.178911
Azet_Bzh_Bn_F_32	-1275.035376	-1274.590608	-1274.584297	-1276.628703	-1276.177624
Azet_Bzh_Bn_F_33	-1275.039469	-1274.592627	-1274.587712	-1276.629130	-1276.177372
Azet_Bzh_Bn_F_34	-1275.039469	-1274.592606	-1274.587701	-1276.629130	-1276.177362

Azetidinium-Triflate Ion Pairs

Table S37: Azet_{Me,Me}

	Energy (opt)	G (opt)	G-qh (opt)	E (sp)	G-qh (sp)
Azet_Me_Me_OTf_1	-1443.698994	-1443.465156	-1443.460315	-1445.227439	-1444.988760
Azet_Me_Me_OTf_2	-1443.698995	-1443.465082	-1443.460277	-1445.227434	-1444.988717
Azet_Me_Me_OTf_3	-1443.697351	-1443.464071	-1443.459021	-1445.226776	-1444.988446
Azet_Me_Me_OTf_4	-1443.697124	-1443.464116	-1443.458962	-1445.226488	-1444.988326
Azet_Me_Me_OTf_5	-1443.697125	-1443.464096	-1443.458952	-1445.226485	-1444.988312
Azet_Me_Me_OTf_6	-1443.697384	-1443.463708	-1443.458847	-1445.226707	-1444.988169
Azet_Me_Me_OTf_7	-1443.697384	-1443.463702	-1443.458844	-1445.226701	-1444.988161
Azet_Me_Me_OTf_8	-1443.696697	-1443.463804	-1443.458512	-1445.226338	-1444.988153
Azet_Me_Me_OTf_9	-1443.695979	-1443.464797	-1443.458813	-1445.225260	-1444.988093
Azet_Me_Me_OTf_10	-1443.697071	-1443.463874	-1443.458751	-1445.226379	-1444.988059
Azet_Me_Me_OTf_11	-1443.697596	-1443.464068	-1443.459133	-1445.226512	-1444.988049
Azet_Me_Me_OTf_12	-1443.697879	-1443.463161	-1443.458838	-1445.227075	-1444.988034
Azet_Me_Me_OTf_13	-1443.697317	-1443.464265	-1443.459006	-1445.226314	-1444.988003
Azet_Me_Me_OTf_14	-1443.697317	-1443.464271	-1443.459009	-1445.226306	-1444.987997
Azet_Me_Me_OTf_15	-1443.696869	-1443.464040	-1443.458920	-1445.225848	-1444.987899
Azet_Me_Me_OTf_16	-1443.697403	-1443.464460	-1443.459275	-1445.226024	-1444.987897
Azet_Me_Me_OTf_17	-1443.696869	-1443.464037	-1443.458918	-1445.225847	-1444.987896
Azet_Me_Me_OTf_18*	-1443.697543	-1443.462833	-1443.458445	-1445.226982	-1444.987884
Azet_Me_Me_OTf_19	-1443.696432	-1443.464302	-1443.458853	-1445.225442	-1444.987863
Azet_Me_Me_OTf_20	-1443.696432	-1443.464299	-1443.458852	-1445.225441	-1444.987861
Azet_Me_Me_OTf_21	-1443.695568	-1443.463337	-1443.457817	-1445.225597	-1444.987846
Azet_Me_Me_OTf_22	-1443.696218	-1443.462864	-1443.457812	-1445.226180	-1444.987774
Azet_Me_Me_OTf_23	-1443.697266	-1443.463176	-1443.458599	-1445.226435	-1444.987768
Azet_Me_Me_OTf_24	-1443.695909	-1443.463790	-1443.458351	-1445.225314	-1444.987756
Azet_Me_Me_OTf_25	-1443.695568	-1443.462866	-1443.457577	-1445.225595	-1444.987604
Azet_Me_Me_OTf_26	-1443.696479	-1443.463493	-1443.458325	-1445.225717	-1444.987562
Azet_Me_Me_OTf_27	-1443.697273	-1443.462797	-1443.458468	-1445.226326	-1444.987521
Azet_Me_Me_OTf_28	-1443.696655	-1443.463940	-1443.458562	-1445.225592	-1444.987500
Azet_Me_Me_OTf_29	-1443.695544	-1443.462630	-1443.457402	-1445.225588	-1444.987447
Azet_Me_Me_OTf_30	-1443.696017	-1443.462439	-1443.457486	-1445.225967	-1444.987437

Azet_Me_Me_OTf_31	-1443.695533	-1443.462652	-1443.457389	-1445.225572	-1444.987428
Azet_Me_Me_OTf_32	-1443.695568	-1443.462461	-1443.457362	-1445.225586	-1444.987380
Azet_Me_Me_OTf_33*	-1443.695903	-1443.462987	-1443.457596	-1445.225574	-1444.987268
Azet_Me_Me_OTf_34	-1443.696822	-1443.464509	-1443.459083	-1445.224975	-1444.987237
Azet_Me_Me_OTf_35	-1443.696822	-1443.464506	-1443.459082	-1445.224972	-1444.987231
Azet_Me_Me_OTf_36	-1443.696884	-1443.462725	-1443.458003	-1445.226007	-1444.987126
Azet_Me_Me_OTf_37	-1443.697232	-1443.464458	-1443.459173	-1445.225185	-1444.987125
Azet_Me_Me_OTf_38	-1443.697925	-1443.464147	-1443.459321	-1445.225577	-1444.986974
Azet_Me_Me_OTf_39	-1443.696788	-1443.462470	-1443.457847	-1445.225828	-1444.986887
Azet_Me_Me_OTf_40	-1443.696904	-1443.464291	-1443.458843	-1445.224923	-1444.986862
Azet_Me_Me_OTf_41	-1443.697490	-1443.463969	-1443.458964	-1445.225303	-1444.986778
Azet_Me_Me_OTf_42	-1443.695813	-1443.463857	-1443.458185	-1445.224400	-1444.986772
Azet_Me_Me_OTf_43	-1443.697490	-1443.463890	-1443.458920	-1445.225295	-1444.986726
Azet_Me_Me_OTf_44	-1443.697498	-1443.463594	-1443.458706	-1445.225440	-1444.986648
Azet_Me_Me_OTf_45	-1443.696203	-1443.462791	-1443.457825	-1445.224962	-1444.986584
Azet_Me_Me_OTf_46*	-1443.696863	-1443.461996	-1443.457656	-1445.225740	-1444.986532
Azet_Me_Me_OTf_47	-1443.697114	-1443.463844	-1443.458651	-1445.224961	-1444.986498
Azet_Me_Me_OTf_48	-1443.697114	-1443.463831	-1443.458645	-1445.224959	-1444.986489
Azet_Me_Me_OTf_49*	-1443.697109	-1443.461772	-1443.457718	-1445.225200	-1444.985810
Azet_Me_Me_OTf_50	-1443.696584	-1443.463346	-1443.458105	-1445.224221	-1444.985742
Azet_Me_Me_OTf_51	-1443.697800	-1443.462859	-1443.458655	-1445.224859	-1444.985714
Azet_Me_Me_OTf_52*	-1443.697112	-1443.461424	-1443.457362	-1445.224907	-1444.985156

Table S38:Azet_{Bn,Me}

Energy (opt)	G (opt)	G-qh (opt)	E (sp)	G-qh (sp)
-1674.491463	-1674.182673	-1674.175550	-1676.296505	-1675.980591
-1674.492066	-1674.181088	-1674.175123	-1676.296734	-1675.979791
-1674.492040	-1674.181250	-1674.175017	-1676.296439	-1675.979416
-1674.488535	-1674.179304	-1674.172359	-1676.295558	-1675.979382
-1674.492040	-1674.181182	-1674.174984	-1676.296433	-1675.979376
-1674.488535	-1674.179273	-1674.172342	-1676.295556	-1675.979363
-1674.490859	-1674.179959	-1674.173822	-1676.296085	-1675.979049
-1674.490859	-1674.179952	-1674.173818	-1676.296081	-1675.979041
-1674.489442	-1674.179735	-1674.173054	-1676.295379	-1675.978991
-1674.488927	-1674.178852	-1674.172521	-1676.295354	-1675.978948
-1674.491208	-1674.180901	-1674.174499	-1676.295473	-1675.978764
-1674.491208	-1674.180900	-1674.174498	-1676.295474	-1675.978764
-1674.491321	-1674.180686	-1674.174410	-1676.295598	-1675.978686
-1674.487655	-1674.179078	-1674.171977	-1676.294348	-1675.978670
-1674.490885	-1674.180228	-1674.174009	-1676.295529	-1675.978653
-1674.486061	-1674.180014	-1674.171748	-1676.292934	-1675.978620
-1674.487809	-1674.179718	-1674.172433	-1676.293977	-1675.978600
-1674.490534	-1674.180227	-1674.173893	-1676.295201	-1675.978560
-1674.491000	-1674.180205			-1675.978540
-1674.491000				-1675.978534
				-1675.978521
				-1675.978506
-1674.489752	-1674.179295	-1674.172927	-1676.295321	-1675.978497
-1674.491366				-1675.978494
				-1675.978424
				-1675.978140
				-1675.978038
				-1675.978004
				-1675.977864
				-1675.977793
				-1675.977688
				-1675.977638
				-1675.977615
	-1674.179396			-1675.977610
-1674.487823	-1674.179023	-1674.171930	-1676.293464	-1675.977570
	$\begin{array}{r} -1674.491463\\ -1674.492066\\ -1674.492040\\ -1674.48535\\ -1674.492040\\ -1674.488535\\ -1674.490859\\ -1674.490859\\ -1674.490859\\ -1674.491208\\ -1674.491208\\ -1674.491208\\ -1674.491208\\ -1674.491208\\ -1674.491321\\ -1674.490885\\ -1674.490885\\ -1674.490885\\ -1674.490885\\ -1674.490885\\ -1674.490885\\ -1674.490885\\ -1674.49000\\ -1674.491000\\ -1674.491000\\ -1674.491365\\ -1674.489752\\ -1674.489752\\ -1674.489752\\ -1674.489752\\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Azet_Bn_Me_OTf_36	-1674.491654	-1674.179510	-1674.174133	-1676.295023	-1675.977502
Azet_Bn_Me_OTf_37	-1674.491654	-1674.179488	-1674.174121	-1676.295021	-1675.977487
Azet_Bn_Me_OTf_38	-1674.490534	-1674.179896	-1674.173677	-1676.294292	-1675.977435
Azet_Bn_Me_OTf_39	-1674.490533	-1674.179884	-1674.173666	-1676.294282	-1675.977414
Azet_Bn_Me_OTf_40	-1674.491207	-1674.179773	-1674.174026	-1676.294260	-1675.977079
Azet_Bn_Me_OTf_41	-1674.487177	-1674.177733	-1674.170953	-1676.293047	-1675.976822
Azet_Bn_Me_OTf_42	-1674.490515	-1674.179042	-1674.173396	-1676.293777	-1675.976659
Azet_Bn_Me_OTf_43	-1674.490515	-1674.179034	-1674.173392	-1676.293767	-1675.976645
Azet_Bn_Me_OTf_44	-1674.487768	-1674.178178	-1674.171644	-1676.292304	-1675.976181

Table S39: Azet_{Bn,Bn}

	Energy (opt)	G (opt)	G-qh (opt)	E (sp)	G-qh (sp)
Azet_Bn_Bn_OTf_1	-1905.281263	-1904.895744	-1904.887165	-1907.363466	-1906.969369
Azet_Bn_Bn_OTf_2	-1905.282862	-1904.896229	-1904.888176	-1907.363383	-1906.968697
Azet_Bn_Bn_OTf_3	-1905.280321	-1904.894997	-1904.886465	-1907.362427	-1906.968571
Azet_Bn_Bn_OTf_4	-1905.280259	-1904.893874	-1904.885739	-1907.362937	-1906.968417
Azet_Bn_Bn_OTf_5	-1905.283691	-1904.894991	-1904.888004	-1907.364052	-1906.968365
Azet_Bn_Bn_OTf_6	-1905.282094	-1904.895140	-1904.887304	-1907.363151	-1906.968362
Azet_Bn_Bn_OTf_7	-1905.282094	-1904.895128	-1904.887300	-1907.363156	-1906.968362
Azet_Bn_Bn_OTf_8	-1905.280740	-1904.894403	-1904.886308	-1907.362568	-1906.968136
Azet_Bn_Bn_OTf_9	-1905.280889	-1904.894826	-1904.886869	-1907.362115	-1906.968095
Azet_Bn_Bn_OTf_10	-1905.282495	-1904.894669	-1904.887338	-1907.363197	-1906.968039
Azet_Bn_Bn_OTf_11	-1905.281002	-1904.894820	-1904.886825	-1907.362189	-1906.968012
Azet_Bn_Bn_OTf_12	-1905.277026	-1904.894155	-1904.884490	-1907.360406	-1906.967870
Azet_Bn_Bn_OTf_13	-1905.278728	-1904.893409	-1904.884764	-1907.361796	-1906.967832
Azet_Bn_Bn_OTf_14	-1905.281726	-1904.894533	-1904.887044	-1907.362458	-1906.967775
Azet_Bn_Bn_OTf_15	-1905.281726	-1904.894522	-1904.887038	-1907.362456	-1906.967768
Azet_Bn_Bn_OTf_16	-1905.282225	-1904.894822	-1904.887150	-1907.362670	-1906.967595
Azet_Bn_Bn_OTf_17	-1905.280606	-1904.895030	-1904.886705	-1907.361400	-1906.967500
Azet_Bn_Bn_OTf_18	-1905.282183	-1904.894172	-1904.887037	-1907.362603	-1906.967458
Azet_Bn_Bn_OTf_19	-1905.280652	-1904.894226	-1904.886012	-1907.362082	-1906.967442
Azet_Bn_Bn_OTf_20	-1905.280354	-1904.893836	-1904.886089	-1907.361648	-1906.967383
Azet_Bn_Bn_OTf_21	-1905.281933	-1904.894623	-1904.887215	-1907.361735	-1906.967018
Azet_Bn_Bn_OTf_22	-1905.281933	-1904.894596	-1904.887200	-1907.361729	-1906.966996
Azet_Bn_Bn_OTf_23	-1905.278074	-1904.892955	-1904.884325	-1907.360693	-1906.966945
Azet_Bn_Bn_OTf_24	-1905.282317	-1904.893758	-1904.886849	-1907.362146	-1906.966678
Azet_Bn_Bn_OTf_25	-1905.280964	-1904.891727	-1904.885225	-1907.362197	-1906.966458
Azet_Bn_Bn_OTf_26	-1905.282300	-1904.893187	-1904.886585	-1907.362159	-1906.966444
Azet_Bn_Bn_OTf_27	-1905.282300	-1904.893177	-1904.886582	-1907.362151	-1906.966432
Azet_Bn_Bn_OTf_28	-1905.281240	-1904.892636	-1904.885889	-1907.361651	-1906.966299
Azet_Bn_Bn_OTf_29	-1905.281241	-1904.892573	-1904.885862	-1907.361622	-1906.966244
Azet_Bn_Bn_OTf_30	-1905.279682	-1904.893142	-1904.885296	-1907.360563	-1906.966178
Azet_Bn_Bn_OTf_31	-1905.279682	-1904.893126	-1904.885288	-1907.360563	-1906.966169
Azet_Bn_Bn_OTf_32	-1905.281514	-1904.893082	-1904.886228	-1907.361233	-1906.965946
Azet_Bn_Bn_OTf_33	-1905.279455	-1904.892147	-1904.884680	-1907.360678	-1906.965903
Azet_Bn_Bn_OTf_34	-1905.279455	-1904.892148	-1904.884681	-1907.360676	-1906.965901
Azet_Bn_Bn_OTf_35	-1905.277105	-1904.892234	-1904.883455	-1907.359441	-1906.965791
Azet_Bn_Bn_OTf_36	-1905.280330	-1904.892510	-1904.885361	-1907.360464	-1906.965495
Azet_Bn_Bn_OTf_37	-1905.279370	-1904.891647	-1904.884281	-1907.360189	-1906.965101

Table S40: Azet_{Bzh,Me}

	Energy (opt)	G (opt)	G-qh (opt)	E (sp)	G-qh (sp)
Azet_Bzh_Me_OTf_1	-1905.277419	-1904.891864	-1904.883723	-1907.359096	-1906.965400
Azet_Bzh_Me_OTf_2	-1905.278552	-1904.890803	-1904.883712	-1907.359352	-1906.964512
Azet_Bzh_Me_OTf_3	-1905.277939	-1904.890957	-1904.883405	-1907.358768	-1906.964235
Azet_Bzh_Me_OTf_4	-1905.277939	-1904.890947	-1904.883401	-1907.358762	-1906.964225
Azet_Bzh_Me_OTf_5	-1905.278861	-1904.891035	-1904.883986	-1907.359052	-1906.964177
Azet_Bzh_Me_OTf_6	-1905.278861	-1904.891026	-1904.883983	-1907.359054	-1906.964175
Azet_Bzh_Me_OTf_7	-1905.278095	-1904.890608	-1904.883358	-1907.358729	-1906.963992

Azet_Bzh_Me_OTf_8	-1905.277302	-1904.891346	-1904.883271	-1907.357996	-1906.963965
Azet_Bzh_Me_OTf_9	-1905.276235	-1904.889919	-1904.882197	-1907.357834	-1906.963796
Azet_Bzh_Me_OTf_10	-1905.276236	-1904.889904	-1904.882191	-1907.357837	-1906.963792
Azet_Bzh_Me_OTf_11	-1905.276110	-1904.890898	-1904.882523	-1907.357232	-1906.963645
Azet_Bzh_Me_OTf_12	-1905.276502	-1904.889808	-1904.882260	-1907.357760	-1906.963519
Azet_Bzh_Me_OTf_13	-1905.276966	-1904.890469	-1904.882821	-1907.357659	-1906.963514
Azet_Bzh_Me_OTf_14	-1905.277602	-1904.890649	-1904.883096	-1907.358018	-1906.963511
Azet_Bzh_Me_OTf_15	-1905.277601	-1904.890654	-1904.883100	-1907.358013	-1906.963511
Azet_Bzh_Me_OTf_16	-1905.273710	-1904.890075	-1904.880906	-1907.356177	-1906.963373
Azet_Bzh_Me_OTf_17	-1905.277155	-1904.890284	-1904.882661	-1907.357663	-1906.963169
Azet_Bzh_Me_OTf_18	-1905.275893	-1904.890177	-1904.882014	-1907.356817	-1906.962937
Azet_Bzh_Me_OTf_19	-1905.274455	-1904.889194	-1904.880902	-1907.356410	-1906.962857
Azet_Bzh_Me_OTf_20	-1905.276548	-1904.890096	-1904.882327	-1907.356949	-1906.962729
Azet_Bzh_Me_OTf_21	-1905.274455	-1904.888955	-1904.880782	-1907.356401	-1906.962727
Azet_Bzh_Me_OTf_22	-1905.274399	-1904.888502	-1904.880451	-1907.356573	-1906.962624
Azet_Bzh_Me_OTf_23	-1905.274242	-1904.887899	-1904.880247	-1907.356495	-1906.962500
Azet_Bzh_Me_OTf_24	-1905.276089	-1904.889678	-1904.882135	-1907.356420	-1906.962466
Azet_Bzh_Me_OTf_25	-1905.276089	-1904.889683	-1904.882136	-1907.356417	-1906.962464
Azet_Bzh_Me_OTf_26	-1905.275226	-1904.889882	-1904.881718	-1907.355901	-1906.962394
Azet_Bzh_Me_OTf_27	-1905.275674	-1904.888644	-1904.881299	-1907.356560	-1906.962185
Azet_Bzh_Me_OTf_28	-1905.275674	-1904.888622	-1904.881290	-1907.356556	-1906.962172
Azet_Bzh_Me_OTf_29	-1905.276077	-1904.889701	-1904.881927	-1907.356289	-1906.962138
Azet_Bzh_Me_OTf_30	-1905.274465	-1904.889827	-1904.881054	-1907.355460	-1906.962048
Azet_Bzh_Me_OTf_31	-1905.276768	-1904.888647	-1904.881943	-1907.356705	-1906.961879
Azet_Bzh_Me_OTf_32	-1905.276769	-1904.888590	-1904.881909	-1907.356693	-1906.961832
Azet_Bzh_Me_OTf_33	-1905.274226	-1904.887634	-1904.879975	-1907.356056	-1906.961805
Azet_Bzh_Me_OTf_34*	-1905.274535	-1904.886298	-1904.879163	-1907.357161	-1906.961789
Azet_Bzh_Me_OTf_35*	-1905.275808	-1904.887882	-1904.880848	-1907.356645	-1906.961685
Azet_Bzh_Me_OTf_36	-1905.276767	-1904.889055	-1904.881804	-1907.356560	-1906.961597
Azet_Bzh_Me_OTf_37	-1905.274964	-1904.887330	-1904.880207	-1907.356256	-1906.961499
Azet_Bzh_Me_OTf_38	-1905.275830	-1904.888937	-1904.881481	-1907.355631	-1906.961282

Table S41: Azet_{Bzh,Et}

	Energy (opt)	G (opt)	G-qh (opt)	E (sp)	G-qh (sp)
Azet_Bzh_Et_OTf_1	-1944.543731	-1944.130145	-1944.122221	-1946.678935	-1946.257424
Azet_Bzh_Et_OTf_2	-1944.543731	-1944.129954	-1944.122126	-1946.678936	-1946.257330
Azet_Bzh_Et_OTf_3	-1944.545202	-1944.129845	-1944.122693	-1946.679704	-1946.257195
Azet_Bzh_Et_OTf_4	-1944.540849	-1944.129061	-1944.120357	-1946.677667	-1946.257175
Azet_Bzh_Et_OTf_5	-1944.544017	-1944.128834	-1944.121691	-1946.679370	-1946.257043
Azet_Bzh_Et_OTf_6	-1944.544019	-1944.128830	-1944.121684	-1946.679376	-1946.257041
Azet_Bzh_Et_OTf_7	-1944.543606	-1944.130213	-1944.122253	-1946.678285	-1946.256932
Azet_Bzh_Et_OTf_8	-1944.542924	-1944.130025	-1944.121875	-1946.677862	-1946.256814
Azet_Bzh_Et_OTf_9	-1944.544305	-1944.129230	-1944.121977	-1946.679119	-1946.256792
Azet_Bzh_Et_OTf_10	-1944.542006	-1944.128631	-1944.120592	-1946.678148	-1946.256734
Azet_Bzh_Et_OTf_11	-1944.543650	-1944.129354	-1944.121647	-1946.678674	-1946.256671
Azet_Bzh_Et_OTf_12	-1944.542547	-1944.128451	-1944.120947	-1946.678230	-1946.256629
Azet_Bzh_Et_OTf_13	-1944.543287	-1944.129345	-1944.121510	-1946.678086	-1946.256309
Azet_Bzh_Et_OTf_14	-1944.542831	-1944.128302	-1944.120831	-1946.678297	-1946.256297
Azet_Bzh_Et_OTf_15	-1944.543289	-1944.129314	-1944.121489	-1946.678086	-1946.256286
Azet_Bzh_Et_OTf_16	-1944.542646	-1944.127705	-1944.120430	-1946.678350	-1946.256133
Azet_Bzh_Et_OTf_17	-1944.542586	-1944.127850	-1944.120569	-1946.678110	-1946.256093
Azet_Bzh_Et_OTf_18	-1944.542142	-1944.127669	-1944.120194	-1946.677890	-1946.255941
Azet_Bzh_Et_OTf_19	-1944.540726	-1944.127209	-1944.119342	-1946.677013	-1946.255630
Azet_Bzh_Et_OTf_20	-1944.542188	-1944.128002	-1944.120387	-1946.677368	-1946.255566
Azet_Bzh_Et_OTf_21	-1944.540458	-1944.127768	-1944.119484	-1946.676422	-1946.255448
Azet_Bzh_Et_OTf_22	-1944.542691	-1944.126914	-1944.120263	-1946.677850	-1946.255422
Azet_Bzh_Et_OTf_23	-1944.540185	-1944.126876	-1944.118821	-1946.676722	-1946.255358
Azet_Bzh_Et_OTf_24	-1944.540915	-1944.127814	-1944.119559	-1946.676444	-1946.255088
Azet_Bzh_Et_OTf_25	-1944.541946	-1944.127757	-1944.120055	-1946.676630	-1946.254739
Azet_Bzh_Et_OTf_26	-1944.540491	-1944.126397	-1944.118730	-1946.675810	-1946.254050

Azet_Bzh_Et_OTf_27	-1944.540049	-1944.125384	-1944.117856	-1946.675961	-1946.253768
Azet_Bzh_Et_OTf_28	-1944.540416	-1944.127053	-1944.119061	-1946.674835	-1946.253480
Azet_Bzh_Et_OTf_29	-1944.540416	-1944.127061	-1944.119056	-1946.674812	-1946.253452
Azet_Bzh_Et_OTf_30	-1944.539514	-1944.127184	-1944.118595	-1946.674362	-1946.253444
Azet_Bzh_Et_OTf_31	-1944.539966	-1944.125798	-1944.118156	-1946.674860	-1946.253051
Azet_Bzh_Et_OTf_32	-1944.539966	-1944.125784	-1944.118148	-1946.674857	-1946.253040
Azet_Bzh_Et_OTf_33	-1944.540462	-1944.125382	-1944.118191	-1946.675290	-1946.253019
Azet_Bzh_Et_OTf_34	-1944.540462	-1944.125374	-1944.118186	-1946.675291	-1946.253015
Azet_Bzh_Et_OTf_35	-1944.540333	-1944.125930	-1944.118216	-1946.674987	-1946.252870
Azet_Bzh_Et_OTf_36	-1944.537381	-1944.124575	-1944.116078	-1946.673429	-1946.252125

Table S42: Azet_{Bzh,Allyl}

v	Energy (opt)	G (opt)	G-qh (opt)	E (sp)	G-qh (sp)
Azet_Bzh_All_OTf_1	-1982.579455	-1982.161508	-1982.153719	-1984.757965	-1984.332229
Azet_Bzh_All_OTf_2	-1982.577067	-1982.162086	-1982.152819	-1984.756146	-1984.331898
Azet Bzh All OTf 3	-1982.577067	-1982.162030	-1982.152819	-1984.756147	-1984.331874
Azet_Bzh_All_OTf_4	-1982.579471	-1982.161333	-1982.152794	-1984.757581	-1984.331788
Azet_Bzh_All_OTf_5	-1982.578507	-1982.160933	-1982.152913	-1984.757306	-1984.331788
Azet Bzh All OTf 6	-1982.580886	-1982.161972	-1982.152913	-1984.758009	-1984.331712
Azet_Bzh_All_OTf_7	-1982.578023	-1982.160782	-1982.152682	-1984.756833	-1984.331014
Azet_Bzh_All_OTf_8	-1982.578164	-1982.161320	-1982.152082	-1984.756765	-1984.331492
Azet_Bzh_All_OTf_9	-1982.578998	-1982.160999	-1982.152808	-1984.757183	-1984.331409
	-1982.579397	-1982.160999	-1982.153178	-1984.756906	-1984.331362
Azet_Bzh_All_OTf_10	-1982.578085	-1982.160270	-1982.152396	-1984.756797	-1984.331287 -1984.331108
Azet_Bzh_All_OTf_11					
Azet_Bzh_All_OTf_12	-1982.577262	-1982.161326	-1982.152358	-1984.755948	-1984.331044
Azet_Bzh_All_OTf_13	-1982.577495	-1982.160283	-1982.151945	-1984.756589	-1984.331039
Azet_Bzh_All_OTf_14	-1982.577033	-1982.159419	-1982.151586	-1984.756434	-1984.330987
Azet_Bzh_All_OTf_15	-1982.578643	-1982.161110	-1982.152979	-1984.756648	-1984.330984
Azet_Bzh_All_OTf_16	-1982.577505	-1982.160569	-1982.152109	-1984.756094	-1984.330698
Azet_Bzh_All_OTf_17	-1982.578021	-1982.160309	-1982.152316	-1984.756302	-1984.330597
Azet_Bzh_All_OTf_18	-1982.578021	-1982.160301	-1982.152312	-1984.756298	-1984.330588
Azet_Bzh_All_OTf_19	-1982.576527	-1982.160347	-1982.151557	-1984.755492	-1984.330522
Azet_Bzh_All_OTf_20	-1982.577728	-1982.160846	-1982.152331	-1984.755765	-1984.330369
Azet_Bzh_All_OTf_21	-1982.576105	-1982.160067	-1982.151192	-1984.755190	-1984.330276
Azet_Bzh_All_OTf_22	-1982.577926	-1982.159725	-1982.152160	-1984.756013	-1984.330247
Azet_Bzh_All_OTf_23	-1982.577926	-1982.159693	-1982.152147	-1984.755997	-1984.330218
Azet_Bzh_All_OTf_24	-1982.576553	-1982.160223	-1982.151472	-1984.755274	-1984.330193
Azet_Bzh_All_OTf_25	-1982.576634	-1982.159601	-1982.151204	-1984.755609	-1984.330179
Azet_Bzh_All_OTf_26	-1982.577109	-1982.159373	-1982.151181	-1984.756021	-1984.330093
Azet_Bzh_All_OTf_27	-1982.575867	-1982.159506	-1982.150723	-1984.755092	-1984.329948
Azet_Bzh_All_OTf_28	-1982.577748	-1982.159203	-1982.151476	-1984.756178	-1984.329906
Azet_Bzh_All_OTf_29	-1982.578061	-1982.160674	-1982.152431	-1984.755518	-1984.329887
Azet_Bzh_All_OTf_30	-1982.576851	-1982.159896	-1982.151419	-1984.755270	-1984.329839
Azet_Bzh_All_OTf_31	-1982.576513	-1982.159616	-1982.151076	-1984.755058	-1984.329621
Azet_Bzh_All_OTf_32	-1982.576033	-1982.160489	-1982.151443	-1984.754191	-1984.329601
Azet_Bzh_All_OTf_33	-1982.575832	-1982.158379	-1982.150144	-1984.755253	-1984.329565
Azet_Bzh_All_OTf_34	-1982.576033	-1982.160416	-1982.151405	-1984.754179	-1984.329552
Azet_Bzh_All_OTf_35*	-1982.576147	-1982.158429	-1982.150293	-1984.755325	-1984.329471
Azet_Bzh_All_OTf_36	-1982.576214	-1982.159180	-1982.150925	-1984.754565	-1984.329276
Azet_Bzh_All_OTf_37	-1982.576214	-1982.159162	-1982.150916	-1984.754563	-1984.329265
Azet_Bzh_All_OTf_38	-1982.576582	-1982.159223	-1982.150891	-1984.754740	-1984.329048
Azet_Bzh_All_OTf_39	-1982.576583	-1982.159206	-1982.150882	-1984.754737	-1984.329037

Table S43: Azet_{Bzh,Bn}

	Energy (opt)	G (opt)	G-qh (opt)	E (sp)	G-qh (sp)
Azet_Bzh_Bn_OTf_1	-2136.068799	-2135.605692	-2135.596489	-2138.426659	-2137.954349
Azet_Bzh_Bn_OTf_2	-2136.068799	-2135.605685	-2135.596486	-2138.426661	-2137.954348
Azet_Bzh_Bn_OTf_3	-2136.068857	-2135.605911	-2135.596687	-2138.426414	-2137.954244
Azet_Bzh_Bn_OTf_4	-2136.067984	-2135.605590	-2135.595977	-2138.425917	-2137.953910

Azet_Bzh_Bn_OTf_5	-2136.067766	-2135.606168	-2135.596211	-2138.425180	-2137.953625
Azet_Bzh_Bn_OTf_6	-2136.068544	-2135.604495	-2135.595714	-2138.426310	-2137.953480
Azet_Bzh_Bn_OTf_7	-2136.067561	-2135.605470	-2135.595654	-2138.425273	-2137.953366
Azet_Bzh_Bn_OTf_8	-2136.066197	-2135.605090	-2135.594984	-2138.424433	-2137.953221
Azet_Bzh_Bn_OTf_9	-2136.066663	-2135.605033	-2135.595073	-2138.424709	-2137.953119
Azet_Bzh_Bn_OTf_10	-2136.066663	-2135.605018	-2135.595065	-2138.424712	-2137.953113
Azet_Bzh_Bn_OTf_11	-2136.066779	-2135.604144	-2135.594802	-2138.424862	-2137.952885
Azet_Bzh_Bn_OTf_12	-2136.066748	-2135.603997	-2135.594621	-2138.424991	-2137.952864
Azet_Bzh_Bn_OTf_13*	-2136.067302	-2135.601881	-2135.593779	-2138.426341	-2137.952819
Azet_Bzh_Bn_OTf_14	-2136.065644	-2135.603092	-2135.593646	-2138.424594	-2137.952597
Azet_Bzh_Bn_OTf_15	-2136.065619	-2135.603861	-2135.594058	-2138.424029	-2137.952467
Azet_Bzh_Bn_OTf_16	-2136.066052	-2135.605201	-2135.595144	-2138.423361	-2137.952453
Azet_Bzh_Bn_OTf_17	-2136.066733	-2135.603959	-2135.594680	-2138.424242	-2137.952188
Azet_Bzh_Bn_OTf_18	-2136.065446	-2135.602838	-2135.593498	-2138.424011	-2137.952063
Azet_Bzh_Bn_OTf_19	-2136.064383	-2135.602717	-2135.592865	-2138.423554	-2137.952035
Azet_Bzh_Bn_OTf_20	-2136.065201	-2135.602379	-2135.593027	-2138.424042	-2137.951869
Azet_Bzh_Bn_OTf_21	-2136.065202	-2135.602353	-2135.593014	-2138.424043	-2137.951855
Azet_Bzh_Bn_OTf_22	-2136.066629	-2135.602918	-2135.594099	-2138.424272	-2137.951742
Azet_Bzh_Bn_OTf_23	-2136.066546	-2135.603812	-2135.594550	-2138.423528	-2137.951533
Azet_Bzh_Bn_OTf_24	-2136.067008	-2135.603017	-2135.594425	-2138.424043	-2137.951460
Azet_Bzh_Bn_OTf_25	-2136.066653	-2135.602481	-2135.593953	-2138.423980	-2137.951280
Azet_Bzh_Bn_OTf_26	-2136.066653	-2135.602438	-2135.593937	-2138.423970	-2137.951254
Azet_Bzh_Bn_OTf_27	-2136.067918	-2135.602968	-2135.594835	-2138.424264	-2137.951180
Azet_Bzh_Bn_OTf_28	-2136.065721	-2135.602214	-2135.593504	-2138.422500	-2137.950283
Azet_Bzh_Bn_OTf_29	-2136.064232	-2135.601271	-2135.592092	-2138.422260	-2137.950119
Azet_Bzh_Bn_OTf_30	-2136.065560	-2135.600870	-2135.592796	-2138.422835	-2137.950070
Azet_Bzh_Bn_OTf_31	-2136.065560	-2135.600871	-2135.592794	-2138.422834	-2137.950067
Azet_Bzh_Bn_OTf_32	-2136.066808	-2135.601630	-2135.593810	-2138.422965	-2137.949966
Azet_Bzh_Bn_OTf_33	-2136.065812	-2135.601078	-2135.592936	-2138.422328	-2137.949453
Azet_Bzh_Bn_OTf_34	-2136.064915	-2135.601020	-2135.592365	-2138.421431	-2137.948882
Azet_Bzh_Bn_OTf_35	-2136.064840	-2135.600541	-2135.592306	-2138.421044	-2137.948510
Azet_Bzh_Bn_OTf_36	-2136.063457	-2135.599965	-2135.591252	-2138.420408	-2137.948203
Azet_Bzh_Bn_OTf_37	-2136.063299	-2135.598857	-2135.590581	-2138.420775	-2137.948057
Azet_Bzh_Bn_OTf_38	-2136.063836	-2135.599653	-2135.591300	-2138.419610	-2137.947074

Azetidinium Fluorination Transition State Structures

Table S44: Azet_{Me,Me}

	Energy (opt)	G (opt)	G-qh (opt)	E (sp)	G-qh (sp)
TS_Me_Me_F_1	-582.644436	-582.428903	-582.427323	-583.405767	-583.188653
TS_Me_Me_F_2	-582.645614	-582.428995	-582.427974	-583.404913	-583.187272
TS_Me_Me_F_3	-582.645614	-582.428991	-582.427971	-583.404908	-583.187264

Table S45: Azet_{Bn,Me}

	Energy (opt)	G (opt)	G-qh (opt)	E (sp)	G-qh (sp)
TS_Bn_Me_F_1	-813.435421	-813.144173	-813.140916	-814.474250	-814.179744
TS_Bn_Me_F_2	-813.434691	-813.144325	-813.140638	-814.473635	-814.179582
TS_Bn_Me_F_3	-813.436899	-813.143884	-813.141469	-814.474775	-814.179345
TS_Bn_Me_F_4	-813.436899	-813.143882	-813.141468	-814.474769	-814.179338
TS_Bn_Me_F_5	-813.436899	-813.143879	-813.141466	-814.474770	-814.179337
TS_Bn_Me_F_6	-813.437395	-813.144843	-813.142228	-814.474045	-814.178878
TS_Bn_Me_F_7	-813.437395	-813.144842	-813.142228	-814.474043	-814.178876
TS_Bn_Me_F_8	-813.435712	-813.143502	-813.140737	-814.472622	-814.177647
TS_Bn_Me_F_9	-813.435712	-813.143499	-813.140735	-814.472619	-814.177641
TS_Bn_Me_F_10	-813.436557	-813.142480	-813.140660	-814.472194	-814.176297
TS_Bn_Me_F_11	-813.436557	-813.142480	-813.140660	-814.472194	-814.176297
TS_Bn_Me_F_12	-813.432898	-813.142201	-813.138815	-814.469521	-814.175438
TS_Bn_Me_F_13	-813.433285	-813.141334	-813.138401	-814.470115	-814.175231

Table S46: Azet_{Bn,Bn}

I dote 5 10: I Let Bil, Bl	1				
	Energy (opt)	G (opt)	G-qh (opt)	E (sp)	G-qh (sp)
TS_Bn_Bn_F_1	-1044.226744	-1043.857865	-1043.853752	-1045.542179	-1045.169187
TS_Bn_Bn_F_2	-1044.224829	-1043.857864	-1043.852778	-1045.540916	-1045.168865
TS_Bn_Bn_F_3	-1044.227483	-1043.858951	-1043.854579	-1045.541629	-1045.168725
TS_Bn_Bn_F_4	-1044.223862	-1043.857185	-1043.852043	-1045.540148	-1045.168329
TS_Bn_Bn_F_5	-1044.224122	-1043.857973	-1043.852476	-1045.539870	-1045.168224
TS_Bn_Bn_F_6	-1044.225211	-1043.856521	-1043.852388	-1045.541041	-1045.168218
TS_Bn_Bn_F_7	-1044.223366	-1043.856525	-1043.851454	-1045.539837	-1045.167925
TS_Bn_Bn_F_8	-1044.224254	-1043.857181	-1043.852189	-1045.539804	-1045.167739
TS_Bn_Bn_F_9	-1044.225800	-1043.857190	-1043.852845	-1045.540472	-1045.167517
TS_Bn_Bn_F_10	-1044.223745	-1043.856848	-1043.851816	-1045.539314	-1045.167385
TS_Bn_Bn_F_11	-1044.225124	-1043.856263	-1043.852162	-1045.540109	-1045.167147
TS_Bn_Bn_F_12	-1044.225124	-1043.856263	-1043.852162	-1045.540109	-1045.167147
TS_Bn_Bn_F_13	-1044.225362	-1043.857374	-1043.852749	-1045.539621	-1045.167009
TS_Bn_Bn_F_14	-1044.225380	-1043.857638	-1043.852877	-1045.539330	-1045.166826
TS_Bn_Bn_F_15	-1044.225412	-1043.857673	-1043.852791	-1045.539369	-1045.166748
TS_Bn_Bn_F_16	-1044.226500	-1043.857163	-1043.853467	-1045.539731	-1045.166698
TS_Bn_Bn_F_17	-1044.226500	-1043.857163	-1043.853466	-1045.539731	-1045.166697
TS_Bn_Bn_F_18	-1044.225763	-1043.856961	-1043.852960	-1045.539312	-1045.166509
TS_Bn_Bn_F_19	-1044.225763	-1043.856961	-1043.852960	-1045.539312	-1045.166509
TS_Bn_Bn_F_20	-1044.224217	-1043.855534	-1043.851190	-1045.539089	-1045.166063
TS_Bn_Bn_F_21	-1044.223963	-1043.855325	-1043.850960	-1045.538998	-1045.165994
TS_Bn_Bn_F_22	-1044.221989	-1043.855090	-1043.850118	-1045.537862	-1045.165991
TS_Bn_Bn_F_23	-1044.225470	-1043.856164	-1043.852199	-1045.538941	-1045.165671
TS_Bn_Bn_F_24	-1044.221493	-1043.854138	-1043.849479	-1045.537372	-1045.165358
TS_Bn_Bn_F_25	-1044.225834	-1043.855610	-1043.852127	-1045.538777	-1045.165070
TS_Bn_Bn_F_26	-1044.219786	-1043.852986	-1043.848004	-1045.536046	-1045.164265
TS_Bn_Bn_F_27	-1044.223383	-1043.855015	-1043.850819	-1045.536663	-1045.164099
TS_Bn_Bn_F_28	-1044.223701	-1043.854141	-1043.850384	-1045.537322	-1045.164005
TS_Bn_Bn_F_29	-1044.223628	-1043.854568	-1043.850690	-1045.536919	-1045.163980

Table S47: Azet_{Bzh,Me}

`	Energy (opt)	G (opt)	G-qh (opt)	E (sp)	G-qh (sp)
TS_Bzh_Me_F_1	-1044.224371	-1043.855352	-1043.851688	-1045.538887	-1045.166204
TS_Bzh_Me_F_2	-1044.224412	-1043.855370	-1043.851700	-1045.538842	-1045.166130
TS_Bzh_Me_F_3	-1044.221393	-1043.854836	-1043.849986	-1045.536720	-1045.165313
TS_Bzh_Me_F_4	-1044.221932	-1043.854513	-1043.849970	-1045.536836	-1045.164873
TS_Bzh_Me_F_5	-1044.224260	-1043.855111	-1043.851244	-1045.536947	-1045.163931
TS_Bzh_Me_F_6	-1044.223795	-1043.854197	-1043.850953	-1045.535921	-1045.163079
TS_Bzh_Me_F_7	-1044.222760	-1043.852724	-1043.849596	-1045.536192	-1045.163027
TS_Bzh_Me_F_8	-1044.222769	-1043.852695	-1043.849633	-1045.535182	-1045.162046
TS_Bzh_Me_F_9	-1044.222020	-1043.853298	-1043.849350	-1045.534636	-1045.161966

Table S48: Azet_{Bzh,Et}

Table 546. Azet _{Bzh,E}	Et				
	Energy (opt)	G (opt)	G-qh (opt)	E (sp)	G-qh (sp)
TS_Bzh_Et_F_1	-1083.490333	-1083.093341	-1083.089800	-1084.859294	-1084.458761
TS_Bzh_Et_F_2	-1083.490148	-1083.093588	-1083.089832	-1084.858983	-1084.458666
TS_Bzh_Et_F_3	-1083.489687	-1083.092297	-1083.089010	-1084.856603	-1084.455925
TS_Bzh_Et_F_4	-1083.488428	-1083.091873	-1083.087960	-1084.856110	-1084.455642
TS_Bzh_Et_F_5	-1083.486271	-1083.089829	-1083.086104	-1084.855553	-1084.455385
TS_Bzh_Et_F_6	-1083.484842	-1083.089655	-1083.085140	-1084.855001	-1084.455299
TS_Bzh_Et_F_7	-1083.486301	-1083.089857	-1083.086054	-1084.855459	-1084.455211
TS_Bzh_Et_F_8	-1083.489195	-1083.091394	-1083.088387	-1084.855926	-1084.455117
TS_Bzh_Et_F_9	-1083.484283	-1083.090003	-1083.085053	-1084.854069	-1084.454839
TS_Bzh_Et_F_10	-1083.485359	-1083.089059	-1083.085187	-1084.854884	-1084.454712
TS_Bzh_Et_F_11	-1083.486526	-1083.090298	-1083.086389	-1084.854129	-1084.453992
TS_Bzh_Et_F_12	-1083.482936	-1083.088047	-1083.083433	-1084.852914	-1084.453410
TS_Bzh_Et_F_13	-1083.483152	-1083.087401	-1083.083158	-1084.852592	-1084.452598

TS_Bzh_Et_F_14	-1083.482972	-1083.086768	-1083.082808	-1084.852693	-1084.452529
TS_Bzh_Et_F_15	-1083.483922	-1083.088626	-1083.084183	-1084.852136	-1084.452397
TS_Bzh_Et_F_16	-1083.483147	-1083.087012	-1083.082776	-1084.852622	-1084.452250
TS_Bzh_Et_F_17	-1083.483751	-1083.088049	-1083.084019	-1084.851901	-1084.452169
TS_Bzh_Et_F_18	-1083.481776	-1083.086692	-1083.082301	-1084.851531	-1084.452056
TS_Bzh_Et_F_19	-1083.485114	-1083.088927	-1083.084802	-1084.852269	-1084.451957
TS_Bzh_Et_F_20	-1083.482132	-1083.086438	-1083.082076	-1084.851984	-1084.451928
TS_Bzh_Et_F_21	-1083.483617	-1083.087307	-1083.083312	-1084.852033	-1084.451728
TS_Bzh_Et_F_22	-1083.484602	-1083.087729	-1083.084242	-1084.852034	-1084.451673
TS_Bzh_Et_F_23	-1083.486026	-1083.088842	-1083.085436	-1084.852214	-1084.451624
TS_Bzh_Et_F_24	-1083.486026	-1083.088840	-1083.085435	-1084.852213	-1084.451623
TS_Bzh_Et_F_25	-1083.481898	-1083.086289	-1083.081922	-1084.851135	-1084.451160
TS_Bzh_Et_F_26	-1083.481222	-1083.086395	-1083.081605	-1084.850054	-1084.450437
TS_Bzh_Et_F_27	-1083.481088	-1083.084740	-1083.080937	-1084.850209	-1084.450058
TS_Bzh_Et_F_28	-1083.481545	-1083.085209	-1083.081073	-1084.850257	-1084.449785
TS_Bzh_Et_F_29	-1083.478935	-1083.083483	-1083.079046	-1084.848424	-1084.448535
TS_Bzh_Et_F_30	-1083.480468	-1083.084219	-1083.080061	-1084.848851	-1084.448443

Table S49: Azet_{Bzh,Allyl}

Table S49: Azet _{Bzh,Allyl}							
	Energy (opt)	G (opt)	G-qh (opt)	E (sp)	G-qh (sp)		
TS_Bzh_All_F_1	-1121.526327	-1121.126787	-1121.122438	-1122.938723	-1122.534834		
TS_Bzh_All_F_2	-1121.526411	-1121.126266	-1121.122155	-1122.938657	-1122.534401		
TS_Bzh_All_F_3	-1121.525680	-1121.125495	-1121.121303	-1122.938076	-1122.533699		
TS_Bzh_All_F_4	-1121.524757	-1121.124885	-1121.120553	-1122.937064	-1122.532860		
TS_Bzh_All_F_5	-1121.526005	-1121.125300	-1121.121487	-1122.936425	-1122.531907		
TS_Bzh_All_F_6	-1121.522829	-1121.123475	-1121.119013	-1122.935275	-1122.531459		
TS_Bzh_All_F_7	-1121.522772	-1121.123112	-1121.118861	-1122.935332	-1122.531421		
TS_Bzh_All_F_8	-1121.522511	-1121.123362	-1121.118826	-1122.934836	-1122.531151		
TS_Bzh_All_F_9	-1121.522505	-1121.123011	-1121.118619	-1122.935029	-1122.531143		
TS_Bzh_All_F_10	-1121.524148	-1121.124245	-1121.119739	-1122.935325	-1122.530917		
TS_Bzh_All_F_11	-1121.520993	-1121.122711	-1121.117547	-1122.934354	-1122.530909		
TS_Bzh_All_F_12	-1121.520109	-1121.123301	-1121.117507	-1122.933437	-1122.530835		
TS_Bzh_All_F_13	-1121.521602	-1121.122238	-1121.117886	-1122.934540	-1122.530824		
TS_Bzh_All_F_14	-1121.522177	-1121.122584	-1121.118096	-1122.934854	-1122.530772		
TS_Bzh_All_F_15	-1121.525266	-1121.124004	-1121.120570	-1122.935412	-1122.530717		
TS_Bzh_All_F_16	-1121.521105	-1121.122356	-1121.117456	-1122.934330	-1122.530680		
TS_Bzh_All_F_17	-1121.523974	-1121.124223	-1121.119709	-1122.934896	-1122.530632		
TS_Bzh_All_F_18	-1121.520679	-1121.122873	-1121.117451	-1122.933858	-1122.530630		
TS_Bzh_All_F_19	-1121.523467	-1121.123851	-1121.119414	-1122.934327	-1122.530273		
TS_Bzh_All_F_20	-1121.524408	-1121.123400	-1121.119730	-1122.934824	-1122.530146		
TS_Bzh_All_F_21	-1121.519950	-1121.121628	-1121.116559	-1122.933149	-1122.529758		
TS_Bzh_All_F_22	-1121.524105	-1121.123208	-1121.119293	-1122.934549	-1122.529737		
TS_Bzh_All_F_23	-1121.518836	-1121.121561	-1121.116292	-1122.932198	-1122.529654		
TS_Bzh_All_F_24	-1121.520204	-1121.121299	-1121.116631	-1122.933122	-1122.529549		
TS_Bzh_All_F_25	-1121.519911	-1121.120460	-1121.116116	-1122.932964	-1122.529170		
TS_Bzh_All_F_26	-1121.520694	-1121.121500	-1121.116947	-1122.932733	-1122.528985		
TS_Bzh_All_F_27	-1121.518344	-1121.120676	-1121.115343	-1122.931931	-1122.528930		
TS_Bzh_All_F_28	-1121.520652	-1121.121929	-1121.117128	-1122.932435	-1122.528911		
TS_Bzh_All_F_29	-1121.520652	-1121.121868	-1121.117098	-1122.932430	-1122.528877		
TS_Bzh_All_F_30	-1121.521158	-1121.122147	-1121.117745	-1122.932208	-1122.528795		
TS_Bzh_All_F_31	-1121.521127	-1121.121832	-1121.117421	-1122.932489	-1122.528782		
TS_Bzh_All_F_32	-1121.517775	-1121.120180	-1121.115323	-1122.931134	-1122.528682		
TS_Bzh_All_F_33	-1121.518463	-1121.120107	-1121.115090	-1122.931884	-1122.528511		
TS_Bzh_All_F_34	-1121.520553	-1121.121784	-1121.116979	-1122.931847	-1122.528272		
TS_Bzh_All_F_35	-1121.519540	-1121.119789	-1121.115370	-1122.932193	-1122.528023		
TS_Bzh_All_F_36	-1121.520149	-1121.120896	-1121.116626	-1122.931496	-1122.527973		
TS_Bzh_All_F_37	-1121.520612	-1121.120679	-1121.116440	-1122.932108	-1122.527936		
TS_Bzh_All_F_38	-1121.520852	-1121.120864	-1121.116875	-1122.931903	-1122.527926		
TS_Bzh_All_F_39	-1121.521044	-1121.121928	-1121.117152	-1122.931785	-1122.527894		
TS_Bzh_All_F_40	-1121.522294	-1121.121890	-1121.117999	-1122.932077	-1122.527781		

TS_Bzh_All_F_41	-1121.519323	-1121.119576	-1121.114889	-1122.932082	-1122.527649
TS_Bzh_All_F_42	-1121.517465	-1121.119201	-1121.114481	-1122.930532	-1122.527548
TS_Bzh_All_F_43	-1121.521188	-1121.120690	-1121.116672	-1122.931819	-1122.527303
TS_Bzh_All_F_44	-1121.520429	-1121.120778	-1121.116146	-1122.931128	-1122.526844
TS_Bzh_All_F_45	-1121.520041	-1121.120100	-1121.116004	-1122.930513	-1122.526477
TS_Bzh_All_F_46	-1121.518071	-1121.117381	-1121.113701	-1122.929764	-1122.525394

Table S50: Azet_{Bzh,Bn}

Table S50: Azet _{Bzh,E}	8n				
	Energy (opt)	G (opt)	G-qh (opt)	E (sp)	G-qh (sp)
TS_Bzh_Bn_F_1	-1275.014246	-1274.569739	-1274.564087	-1276.606060	-1276.155901
TS_Bzh_Bn_F_2	-1275.014410	-1274.569500	-1274.563963	-1276.605929	-1276.155482
TS_Bzh_Bn_F_3	-1275.015001	-1274.569547	-1274.564416	-1276.604562	-1276.153977
TS_Bzh_Bn_F_4	-1275.012089	-1274.567064	-1274.561705	-1276.604157	-1276.153772
TS_Bzh_Bn_F_5	-1275.012080	-1274.567353	-1274.561816	-1276.603952	-1276.153688
TS_Bzh_Bn_F_6	-1275.010379	-1274.566507	-1274.560440	-1276.603355	-1276.153416
TS_Bzh_Bn_F_7	-1275.009693	-1274.567250	-1274.560575	-1276.602436	-1276.153317
TS_Bzh_Bn_F_8	-1275.012476	-1274.567097	-1274.562056	-1276.603688	-1276.153268
TS_Bzh_Bn_F_9	-1275.012633	-1274.567775	-1274.562121	-1276.603485	-1276.152974
TS_Bzh_Bn_F_10	-1275.013740	-1274.567690	-1274.562856	-1276.602895	-1276.152011
TS_Bzh_Bn_F_11	-1275.010036	-1274.566391	-1274.560048	-1276.601902	-1276.151914
TS_Bzh_Bn_F_12	-1275.009709	-1274.565461	-1274.559821	-1276.601392	-1276.151504
TS_Bzh_Bn_F_13	-1275.008377	-1274.564488	-1274.558460	-1276.601056	-1276.151139
TS_Bzh_Bn_F_14	-1275.008541	-1274.564380	-1274.558606	-1276.600735	-1276.150800
TS_Bzh_Bn_F_15	-1275.009538	-1274.564181	-1274.559183	-1276.600897	-1276.150542
TS_Bzh_Bn_F_16	-1275.011049	-1274.565666	-1274.560294	-1276.601152	-1276.150397
TS_Bzh_Bn_F_17	-1275.010522	-1274.566154	-1274.560504	-1276.600264	-1276.150246
TS_Bzh_Bn_F_18	-1275.011748	-1274.565545	-1274.561032	-1276.600847	-1276.150131
TS_Bzh_Bn_F_19	-1275.009271	-1274.565145	-1274.559162	-1276.599788	-1276.149680
TS_Bzh_Bn_F_20	-1275.006608	-1274.561289	-1274.556162	-1276.598737	-1276.148291
TS_Bzh_Bn_F_21	-1275.006434	-1274.561510	-1274.556112	-1276.598598	-1276.148276
TS_Bzh_Bn_F_22	-1275.011134	-1274.564005	-1274.559454	-1276.599943	-1276.148263
TS_Bzh_Bn_F_23	-1275.007642	-1274.562160	-1274.557310	-1276.598275	-1276.147943
TS_Bzh_Bn_F_24	-1275.009346	-1274.562289	-1274.557716	-1276.599475	-1276.147845
TS_Bzh_Bn_F_25	-1275.008435	-1274.562912	-1274.557743	-1276.598341	-1276.147648

Azetidinium Fluorination Products

Table S51: Azet_{Me,Me}

<i>Table 551:</i> Azet _{Me,M}	le				
	Energy (opt)	G (opt)	G-qh (opt)	E (sp)	G-qh (sp)
Prod_Me_Me_1	-582.708649	-582.492942	-582.490973	-583.461258	-583.243582
Prod_Me_Me_2	-582.708489	-582.492633	-582.490690	-583.461308	-583.243509
Prod_Me_Me_3	-582.708375	-582.492466	-582.490536	-583.461300	-583.243461
Prod_Me_Me_4	-582.708933	-582.492694	-582.490879	-583.460845	-583.242791
Prod_Me_Me_5	-582.708704	-582.492630	-582.490682	-583.460549	-583.242528
Prod_Me_Me_6	-582.707018	-582.491058	-582.489134	-583.459804	-583.241920
Prod_Me_Me_7	-582.707167	-582.490762	-582.489146	-583.459361	-583.241339
Prod_Me_Me_8	-582.706151	-582.490525	-582.488433	-583.459015	-583.241297
Prod_Me_Me_9	-582.706093	-582.490345	-582.488560	-583.458489	-583.240956
Prod_Me_Me_10	-582.707046	-582.490220	-582.488733	-583.459111	-583.240799
Prod_Me_Me_11	-582.706825	-582.490873	-582.488924	-583.458389	-583.240489
Prod_Me_Me_12	-582.706351	-582.490133	-582.488218	-583.458491	-583.240358
Prod_Me_Me_13	-582.706054	-582.490507	-582.488352	-583.457865	-583.240164
Prod_Me_Me_14	-582.707221	-582.490332	-582.488840	-583.458393	-583.240012
Prod_Me_Me_15	-582.704668	-582.488806	-582.486760	-583.457782	-583.239874
Prod_Me_Me_16	-582.704530	-582.488352	-582.486502	-583.457569	-583.239542
Prod_Me_Me_17	-582.703981	-582.488009	-582.486071	-583.456137	-583.238226
Prod_Me_Me_18	-582.704105	-582.487730	-582.485982	-583.456167	-583.238044
Prod_Me_Me_19	-582.703397	-582.487382	-582.485367	-583.455251	-583.237221
Prod_Me_Me_20	-582.703356	-582.487107	-582.485586	-583.454930	-583.237160

Prod_Me_Me_21	-582.703034	-582.485967	-582.484438	-583.455006	-583.236410
Prod_Me_Me_22	-582.702512	-582.486705	-582.484754	-583.454000	-583.236242
Prod_Me_Me_23	-582.703387	-582.486031	-582.484660	-583.454566	-583.235839
Prod_Me_Me_24	-582.702799	-582.485538	-582.484164	-583.453825	-583.235190
Prod_Me_Me_25	-582.703258	-582.485801	-582.484421	-583.453662	-583.234825
Prod_Me_Me_26	-582.701842	-582.484796	-582.483284	-583.452360	-583.233802
Prod_Me_Me_27	-582.701838	-582.484066	-582.482725	-583.452817	-583.233705

Table S52: Azet_{Bn,Me}

	Energy (opt)	G (opt)	G-qh (opt)	E (sp)	G-qh (sp)
Prod_Bn_Me_1	-813.502216	-813.211663	-813.207690	-814.532734	-814.238208
Prod_Bn_Me_2	-813.502523	-813.210508	-813.207381	-814.532668	-814.237526
Prod_Bn_Me_3	-813.502442	-813.211223	-813.207604	-814.532283	-814.237444
Prod_Bn_Me_4	-813.501457	-813.211418	-813.207166	-814.531628	-814.237337
Prod_Bn_Me_5	-813.502589	-813.211801	-813.207831	-814.532049	-814.237291
Prod_Bn_Me_6	-813.500917	-813.210564	-813.206513	-814.531158	-814.236754
Prod_Bn_Me_7	-813.501971	-813.210465	-813.207072	-814.531463	-814.236564
Prod_Bn_Me_8	-813.500755	-813.210738	-813.206492	-814.530707	-814.236444
Prod_Bn_Me_9	-813.500462	-813.210408	-813.206201	-814.530508	-814.236247
Prod_Bn_Me_10	-813.501815	-813.210793	-813.206884	-814.530918	-814.235988
Prod_Bn_Me_11	-813.500322	-813.209634	-813.205564	-814.530704	-814.235945
Prod_Bn_Me_12	-813.500346	-813.208859	-813.205223	-814.530655	-814.235533
Prod_Bn_Me_13	-813.500314	-813.209519	-813.205542	-814.530189	-814.235417
Prod_Bn_Me_14	-813.499197	-813.208850	-813.204807	-814.529803	-814.235413
Prod_Bn_Me_15	-813.501524	-813.209494	-813.206314	-814.530540	-814.235330
Prod_Bn_Me_16	-813.502244	-813.209826	-813.206865	-814.530595	-814.235216
Prod_Bn_Me_17	-813.500156	-813.209614	-813.205673	-814.529678	-814.235195
Prod_Bn_Me_18	-813.500378	-813.208672	-813.205019	-814.530523	-814.235164
Prod_Bn_Me_19	-813.500919	-813.209609	-813.205803	-814.530161	-814.235045
Prod_Bn_Me_20	-813.500232	-813.209116	-813.205256	-814.529923	-814.234948
Prod_Bn_Me_21	-813.499464	-813.208947	-813.204952	-814.529439	-814.234928
Prod_Bn_Me_22	-813.500032	-813.209149	-813.205365	-814.529531	-814.234864
Prod_Bn_Me_23	-813.499644	-813.208837	-813.205040	-814.529146	-814.234542
Prod_Bn_Me_24	-813.500618	-813.208699	-813.205211	-814.529544	-814.234137
Prod_Bn_Me_25	-813.499446	-813.208245	-813.204590	-814.528892	-814.234037
Prod_Bn_Me_26	-813.500364	-813.208287	-813.204845	-814.529552	-814.234034
Prod_Bn_Me_27	-813.498446	-813.208839	-813.204279	-814.528094	-814.233926
Prod_Bn_Me_28	-813.500219	-813.209046	-813.205295	-814.528833	-814.233909
Prod_Bn_Me_29	-813.498692	-813.208329	-813.204200	-814.528124	-814.233632
Prod_Bn_Me_30	-813.498704	-813.207245	-813.203493	-814.528656	-814.233444
Prod_Bn_Me_31	-813.499657	-813.208195	-813.204627	-814.528242	-814.233212
Prod_Bn_Me_32	-813.500900	-813.208266	-813.205069	-814.529024	-814.233193
Prod_Bn_Me_33	-813.500579	-813.208422	-813.204956	-814.528793	-814.233170
Prod_Bn_Me_34	-813.498116	-813.206145	-813.202713	-814.528174	-814.232771
Prod_Bn_Me_35	-813.500135	-813.205824	-813.203599	-814.528391	-814.231855
Prod_Bn_Me_36	-813.499746	-813.205566	-813.203201	-814.528075	-814.231529
Prod_Bn_Me_37	-813.499776	-813.205683	-813.203322	-814.527201	-814.230747

Table S53: Azet_{Bzh,Me}

	Energy (opt)	G (opt)	G-qh (opt)	E (sp)	G-qh (sp)
Prod_Bzh_Me_1	-1044.293768	-1043.926966	-1043.921938	-1045.599729	-1045.227898
Prod_Bzh_Me_2	-1044.291928	-1043.926607	-1043.920787	-1045.598807	-1045.227665
Prod_Bzh_Me_3	-1044.292568	-1043.925762	-1043.920615	-1045.599618	-1045.227665
Prod_Bzh_Me_4	-1044.293776	-1043.926585	-1043.921766	-1045.599546	-1045.227536
Prod_Bzh_Me_5	-1044.293643	-1043.926221	-1043.921402	-1045.599457	-1045.227217
Prod_Bzh_Me_6	-1044.292969	-1043.926189	-1043.920936	-1045.598859	-1045.226825
Prod_Bzh_Me_7	-1044.291627	-1043.925416	-1043.920050	-1045.597598	-1045.226022
Prod_Bzh_Me_8	-1044.293808	-1043.925704	-1043.921314	-1045.598504	-1045.226011
Prod_Bzh_Me_9	-1044.293539	-1043.925043	-1043.920839	-1045.598547	-1045.225847

Prod_Bzh_Me_10	-1044.291513	-1043.925306	-1043.919821	-1045.597462	-1045.225770
Prod_Bzh_Me_11	-1044.292696	-1043.924765	-1043.920134	-1045.598072	-1045.225511
Prod_Bzh_Me_12	-1044.290150	-1043.923953	-1043.918459	-1045.597099	-1045.225408
Prod_Bzh_Me_13	-1044.290416	-1043.924075	-1043.918763	-1045.596973	-1045.225320
Prod_Bzh_Me_14	-1044.292313	-1043.924266	-1043.919739	-1045.597791	-1045.225217
Prod_Bzh_Me_15	-1044.292590	-1043.924150	-1043.919754	-1045.598030	-1045.225194
Prod_Bzh_Me_16	-1044.291997	-1043.923881	-1043.919285	-1045.597778	-1045.225065
Prod_Bzh_Me_17	-1044.291737	-1043.924434	-1043.919447	-1045.597328	-1045.225038
Prod_Bzh_Me_18	-1044.291201	-1043.924176	-1043.918995	-1045.597086	-1045.224880
Prod_Bzh_Me_19	-1044.289820	-1043.923228	-1043.917955	-1045.596700	-1045.224835
Prod_Bzh_Me_20	-1044.289619	-1043.923571	-1043.918221	-1045.596171	-1045.224773
Prod_Bzh_Me_21	-1044.292907	-1043.924711	-1043.920160	-1045.597427	-1045.224680
Prod_Bzh_Me_22	-1044.292612	-1043.924125	-1043.919845	-1045.597117	-1045.224350
Prod_Bzh_Me_23	-1044.291197	-1043.923423	-1043.918522	-1045.596791	-1045.224116
Prod_Bzh_Me_24	-1044.290997	-1043.924061	-1043.918908	-1045.596116	-1045.224028
Prod_Bzh_Me_25	-1044.290511	-1043.922670	-1043.917872	-1045.596565	-1045.223926
Prod_Bzh_Me_26	-1044.292119	-1043.924078	-1043.919280	-1045.596691	-1045.223852
Prod_Bzh_Me_27	-1044.291503	-1043.923654	-1043.918814	-1045.596428	-1045.223739
Prod_Bzh_Me_28	-1044.289632	-1043.922824	-1043.917621	-1045.595576	-1045.223564
Prod_Bzh_Me_29	-1044.290036	-1043.922529	-1043.917612	-1045.595739	-1045.223315
Prod_Bzh_Me_30	-1044.291393	-1043.922001	-1043.918094	-1045.595765	-1045.222467
Prod_Bzh_Me_31	-1044.290065	-1043.921388	-1043.916944	-1045.595511	-1045.222390
Prod_Bzh_Me_32	-1044.288578	-1043.921249	-1043.916241	-1045.593453	-1045.221116
Prod_Bzh_Me_33	-1044.287460	-1043.920568	-1043.915537	-1045.592898	-1045.220976
Prod_Bzh_Me_34	-1044.289761	-1043.920646	-1043.916346	-1045.594300	-1045.220885
Prod_Bzh_Me_35	-1044.288864	-1043.920578	-1043.916167	-1045.593293	-1045.220595

Asymmetric Fluorination Transition State Structures

Table S54: Azet_{Bzh,Me}

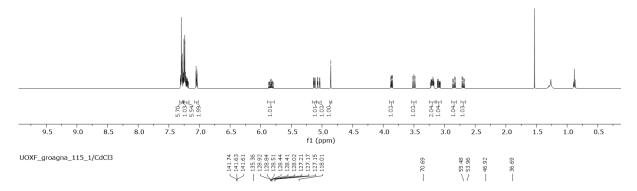
,		\mathbf{C} (and)	$\mathbf{C} = 1 \cdot (\mathbf{z} = \mathbf{z})$	$\mathbf{F}(\mathbf{x},\mathbf{x})$	\mathbf{C} alt (\mathbf{a},\mathbf{a})
	Energy (opt)	G (opt)	G-qh (opt)	E (sp)	G-qh (sp)
TS _{Major} -Cis-1	-4187.904254	-4186.958416	-4186.940769	-4193.014743	-4192.051258
TS _{Major} -Cis-2	-4187.902588	-4186.957131	-4186.939106	-4193.012853	-4192.049371
TS _{Major} -Cis-3	-4187.903028	-4186.957249	-4186.939442	-4193.012822	-4192.049235
TS _{Major} -Cis-4	-4187.900377	-4186.956354	-4186.937643	-4193.011656	-4192.048923
TS _{Major} -Cis-5	-4187.903048	-4186.955345	-4186.938193	-4193.012178	-4192.047323
TS _{Major} -Cis-6	-4187.899365	-4186.954568	-4186.936071	-4193.009194	-4192.045900
TS _{Major} -Cis-7	-4187.901646	-4186.954038	-4186.936445	-4193.010540	-4192.045339
TS _{Major} -Cis-8	-4187.901408	-4186.953317	-4186.936213	-4193.010378	-4192.045183
TS _{Major} -Cis-9	-4187.893810	-4186.948599	-4186.929989	-4193.005990	-4192.042169
TS _{Major} -Cis-10	-4187.897339	-4186.950562	-4186.932517	-4193.006553	-4192.041731
TS _{Major} -Cis-11	-4187.897339	-4186.950560	-4186.932515	-4193.006549	-4192.041726
TS _{Major} -Cis-12	-4187.888635	-4186.946068	-4186.925600	-4193.003343	-4192.040309
TS _{Major} -Cis-13	-4187.895675	-4186.949604	-4186.931273	-4193.003238	-4192.038836
TS _{Major} -Cis-14	-4187.886415	-4186.944989	-4186.924476	-4193.000511	-4192.038572
TS _{Minor} -Cis-1	-4187.905521	-4186.958870	-4186.941462	-4193.015301	-4192.051242
TS _{Minor} -Cis-2	-4187.901322	-4186.956487	-4186.938179	-4193.012674	-4192.049531
TS _{Minor} -Cis-3	-4187.900990	-4186.955505	-4186.936718	-4193.010657	-4192.046384
TS _{Minor} -Cis-4	-4187.899292	-4186.952503	-4186.934907	-4193.010312	-4192.045926
TS _{Minor} -Cis-5	-4187.896368	-4186.952598	-4186.932663	-4193.009285	-4192.045580
TS _{Minor} -Cis-6	-4187.889391	-4186.948794	-4186.927601	-4193.005009	-4192.043219
TS _{Minor} -Cis-7	-4187.891753	-4186.945306	-4186.927335	-4193.003092	-4192.038675
TS _{Minor} -Cis-8	-4187.887141	-4186.944431	-4186.924367	-4193.001446	-4192.038672
TS _{Minor} -Cis-9	-4187.890274	-4186.945841	-4186.927181	-4193.001015	-4192.037921
TS _{Minor} -Cis-10	-4187.894899	-4186.942936	-4186.927355	-4193.003041	-4192.035498

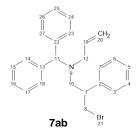
Table S55: Azet_{Bzh,Et}

	Energy (opt)	G (opt)	G-qh (opt)	E (sp)	G-qh (sp)
TS _{Major} -Cis-1-Ethyl-1	-4227.170278	-4226.197188	-4226.179290	-4232.335611	-4231.344623

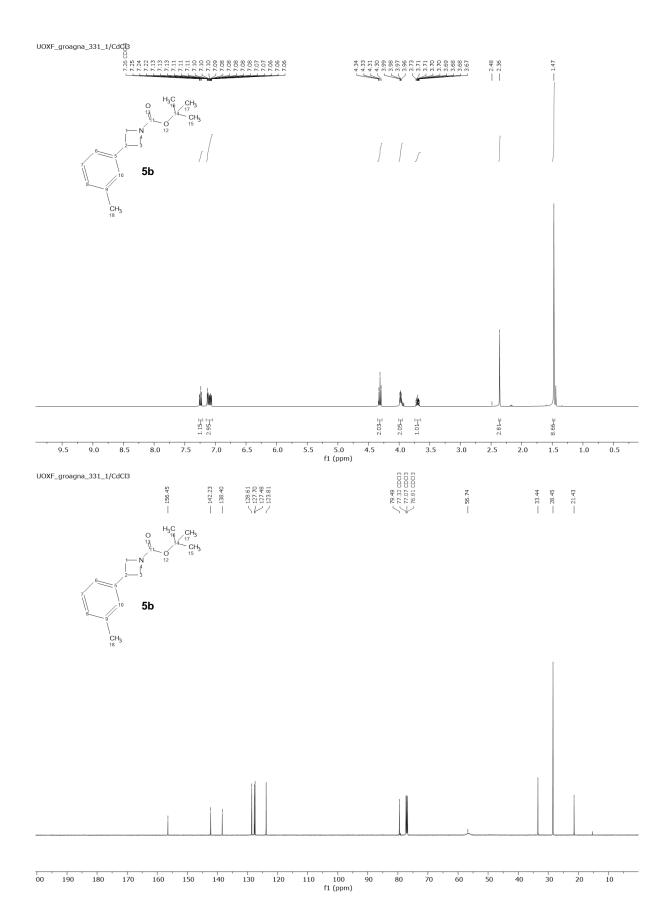
TS _{Major} -Cis-1-Ethyl-2	-4227.164451	-4226.190737	-4226.172949	-4232.330775	-4231.339274
TS _{Major} -Cis-1-Ethyl-3	-4227.164319	-4226.188732	-4226.171693	-4232.330099	-4231.337474
TS _{Minor} -Cis-1-Ethyl-1	-4227.168998	-4226.194329	-4226.177033	-4232.334152	-4231.342187
TS _{Minor} -Cis-1-Ethyl-2	-4227.166980	-4226.193250	-4226.175415	-4232.332037	-4231.340473
TS _{Minor} -Cis-1-Ethyl-3	-4227.164560	-4226.191401	-4226.173213	-4232.330216	-4231.338868
TS _{Minor} -Cis-2-Ethyl-1	-4227.163884	-4226.190944	-4226.172576	-4232.330271	-4231.338962
TS _{Minor} -Cis-2-Ethyl-2	-4227.160871	-4226.188861	-4226.170188	-4232.327466	-4231.336782
TS _{Minor} -Cis-2-Ethyl-3	-4227.163653	-4226.190470	-4226.172172	-4232.330386	-4231.338905

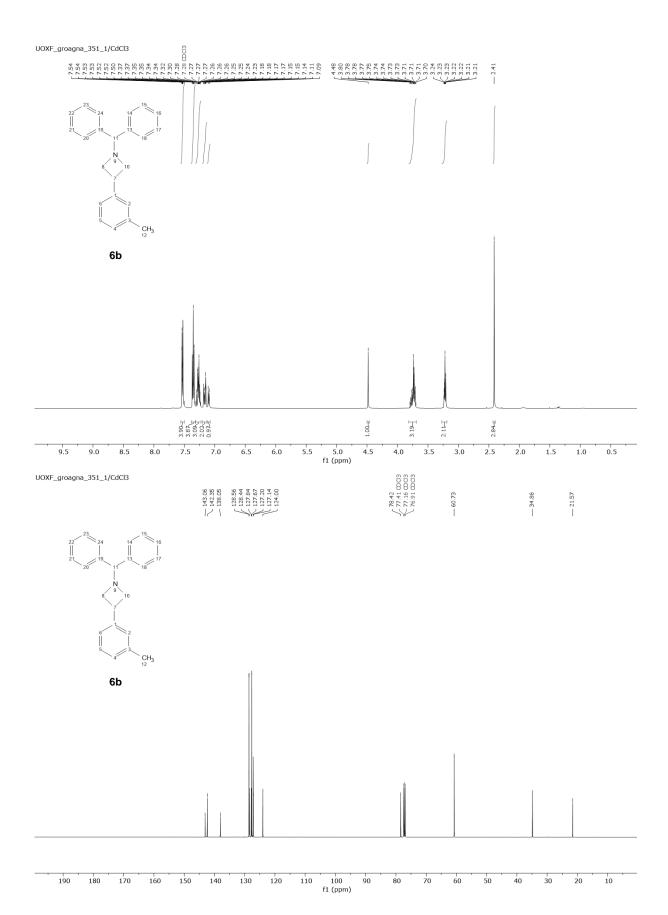
Table S56: Azet_{Bzh,Me}

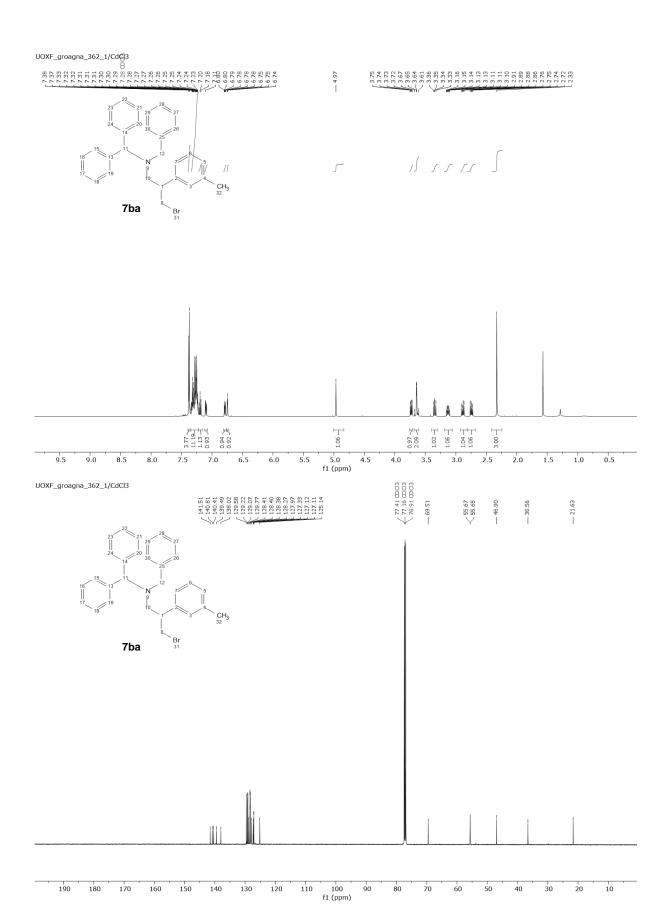

	Energy (opt)	G (opt)	G-qh (opt)	E (sp)	G-qh (sp)
TS _{Major} -Trans-1	-4187.906300	-4186.961432	-4186.942932	-4193.017984	-4192.054616
TS _{Major} -Trans-2	-4187.904980	-4186.958483	-4186.940490	-4193.015650	-4192.051160
TS _{Major} -Trans-3	-4187.901550	-4186.957388	-4186.938780	-4193.013264	-4192.050494
TS _{Major} -Trans-4	-4187.901172	-4186.956080	-4186.937598	-4193.012123	-4192.048549
TS _{Major} -Trans-5	-4187.893903	-4186.952134	-4186.931890	-4193.008899	-4192.046886
TS _{Major} -Trans-6	-4187.893903	-4186.952057	-4186.931851	-4193.008897	-4192.046846
TS _{Major} -Trans-7	-4187.896600	-4186.949868	-4186.932015	-4193.009991	-4192.045406
TS _{Major} -Trans-8	-4187.892564	-4186.947150	-4186.928749	-4193.006197	-4192.042382
TS _{Major} -Trans-9	-4187.887409	-4186.944195	-4186.924335	-4193.001313	-4192.038239
TS_{Major} -Trans-10	-4187.894851	-4186.948029	-4186.929774	-4193.002894	-4192.037817
TS _{Minor} -Trans-1	-4187.899930	-4186.957014	-4186.937528	-4193.012209	-4192.049807
TS _{Minor} -Trans-2	-4187.894128	-4186.953579	-4186.933096	-4193.010013	-4192.048981
TS _{Minor} -Trans-3	-4187.901958	-4186.956438	-4186.937731	-4193.012930	-4192.048704
TS _{Minor} -Trans-4	-4187.900386	-4186.956443	-4186.937532	-4193.011239	-4192.048385
TS _{Minor} -Trans-5	-4187.900206	-4186.956120	-4186.937371	-4193.010613	-4192.047779
TS _{Minor} -Trans-6	-4187.900019	-4186.955845	-4186.937368	-4193.010297	-4192.047646
TS _{Minor} -Trans-7	-4187.899421	-4186.954517	-4186.936254	-4193.010704	-4192.047536
TS _{Minor} -Trans-8	-4187.899686	-4186.953001	-4186.935626	-4193.011540	-4192.047479
TS _{Minor} -Trans-9	-4187.896802	-4186.953341	-4186.934371	-4193.009664	-4192.047233
TS _{Minor} -Trans-10	-4187.896587	-4186.953591	-4186.934528	-4193.009168	-4192.047109
TS _{Minor} -Trans-11	-4187.900309	-4186.954689	-4186.936676	-4193.010651	-4192.047017
TS _{Minor} -Trans-12	-4187.897677	-4186.953011	-4186.934666	-4193.009981	-4192.046969
TS _{Minor} -Trans-13	-4187.898909	-4186.953881	-4186.935226	-4193.010333	-4192.046651
TS_{Minor} -Trans-14	-4187.897524	-4186.951264	-4186.933777	-4193.009363	-4192.045616
TS _{Minor} -Trans-15	-4187.899780	-4186.954993	-4186.935997	-4193.009137	-4192.045354
TS _{Minor} -Trans-16	-4187.894892	-4186.951313	-4186.932382	-4193.007333	-4192.044823
TS _{Minor} -Trans-17	-4187.896789	-4186.952900	-4186.934439	-4193.007129	-4192.044778
TS _{Minor} -Trans-18	-4187.898485	-4186.950531	-4186.933677	-4193.009301	-4192.044494
TS _{Minor} -Trans-19	-4187.898350	-4186.951462	-4186.934183	-4193.008391	-4192.044224
TS _{Minor} -Trans-20	-4187.896470	-4186.951406	-4186.932998	-4193.007115	-4192.043643
TS _{Minor} -Trans-21	-4187.890583	-4186.945910	-4186.927264	-4193.006153	-4192.042834
TS _{Minor} -Trans-22	-4187.885516	-4186.945170	-4186.924292	-4193.003980	-4192.042756
TS _{Minor} -Trans-23	-4187.898829	-4186.951560	-4186.934242	-4193.006945	-4192.042359
TS _{Minor} -Trans-24	-4187.893252	-4186.947821	-4186.928800	-4193.004564	-4192.040112
TS _{Minor} -Trans-25	-4187.892450	-4186.948890	-4186.929381	-4193.003038	-4192.039970
TS _{Minor} -Trans-26	-4187.891363	-4186.947716	-4186.928204	-4193.002697	-4192.039538
TS _{Minor} -Trans-27	-4187.888556	-4186.944575	-4186.925201	-4193.000575	-4192.037221

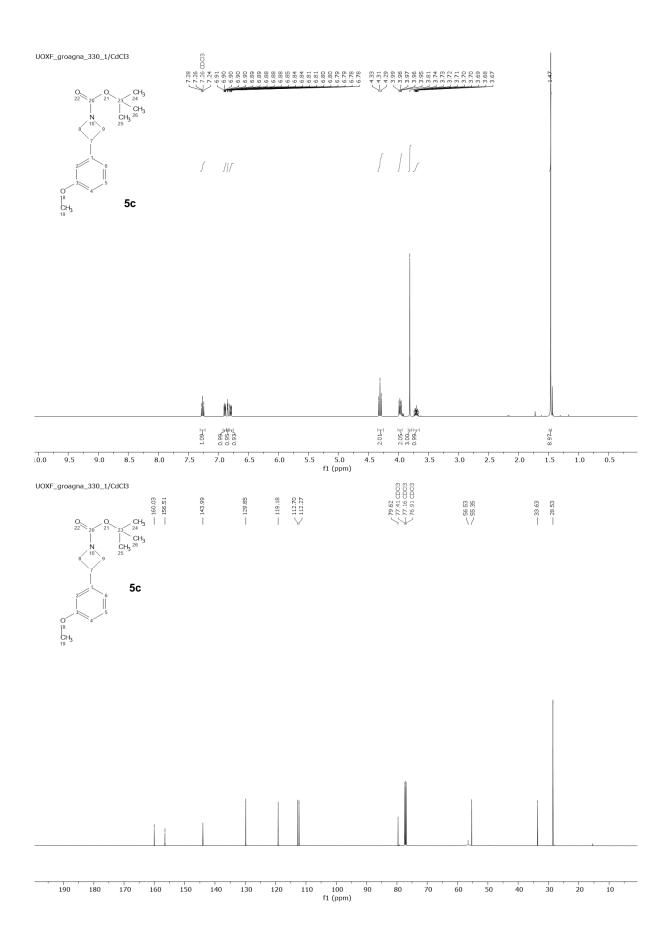

Copies of NMR Spectra

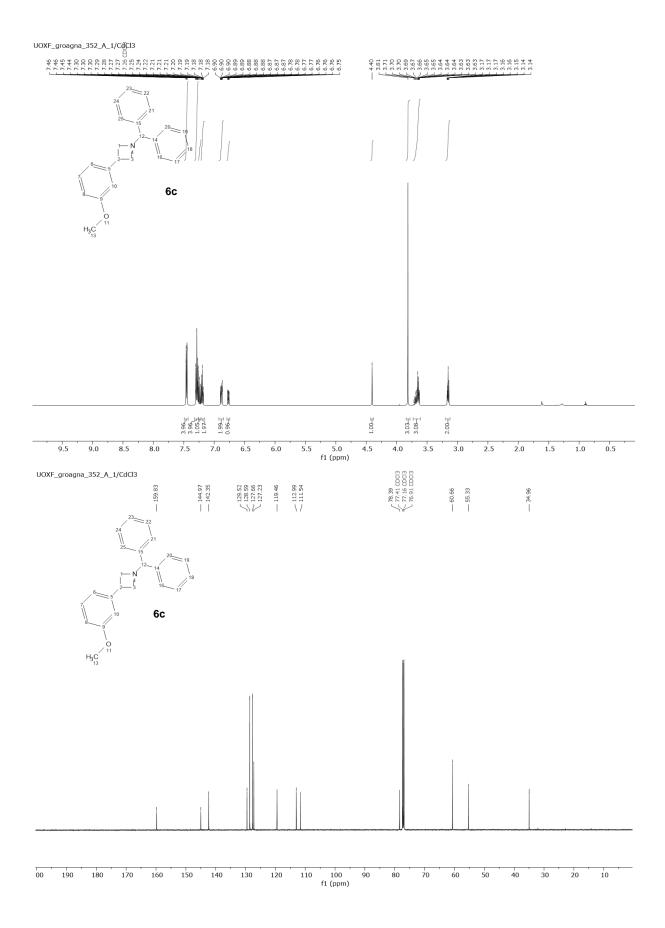


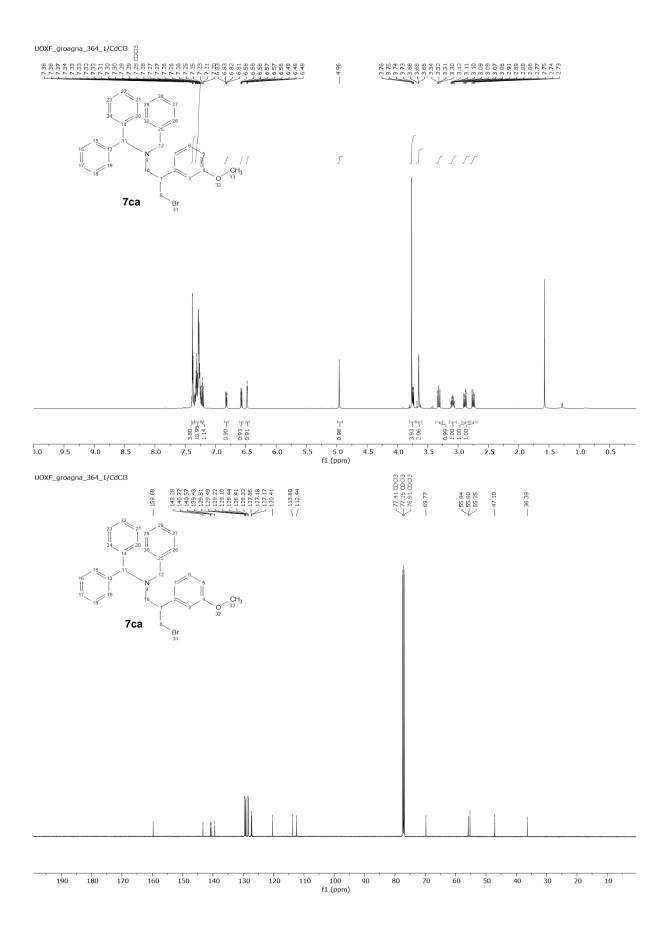


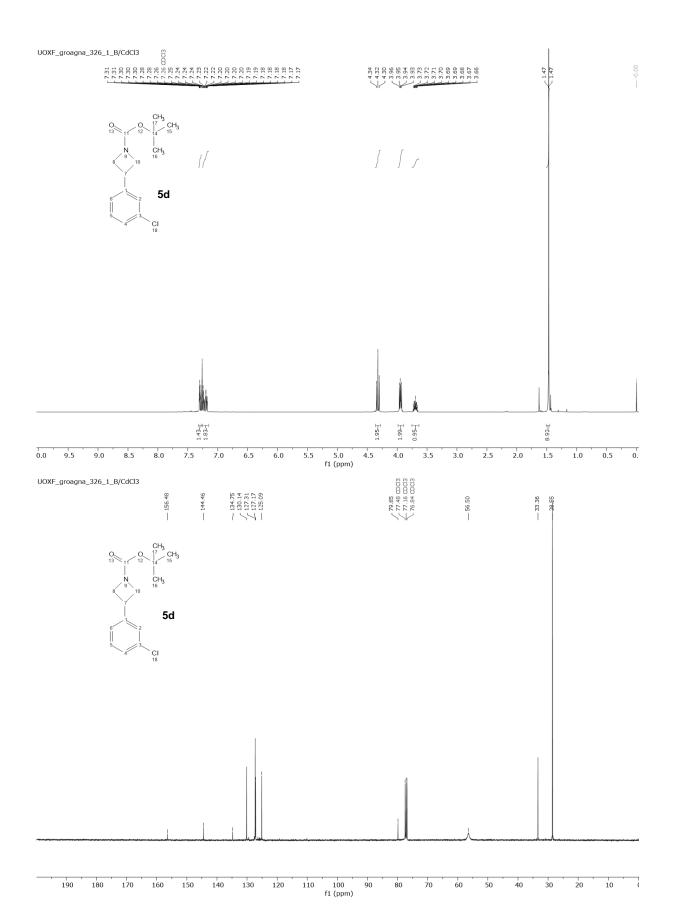


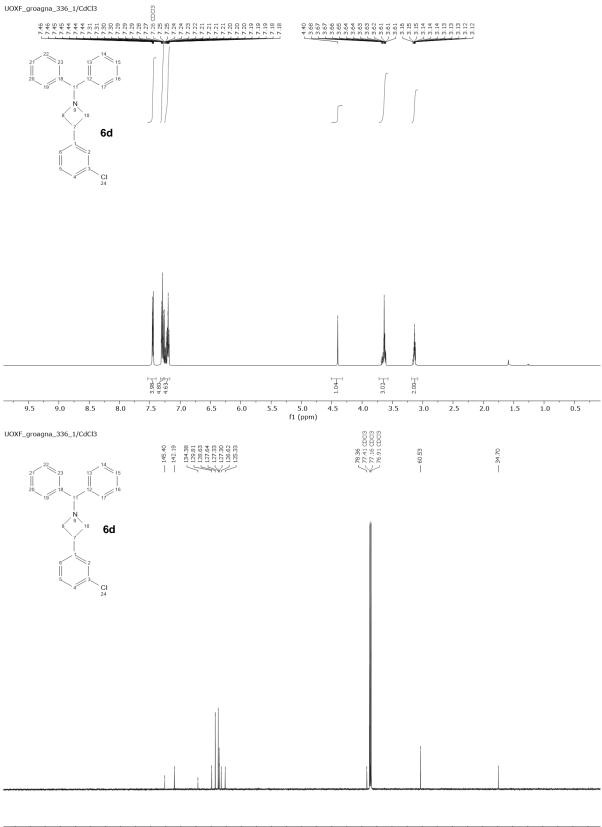


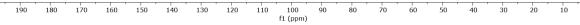


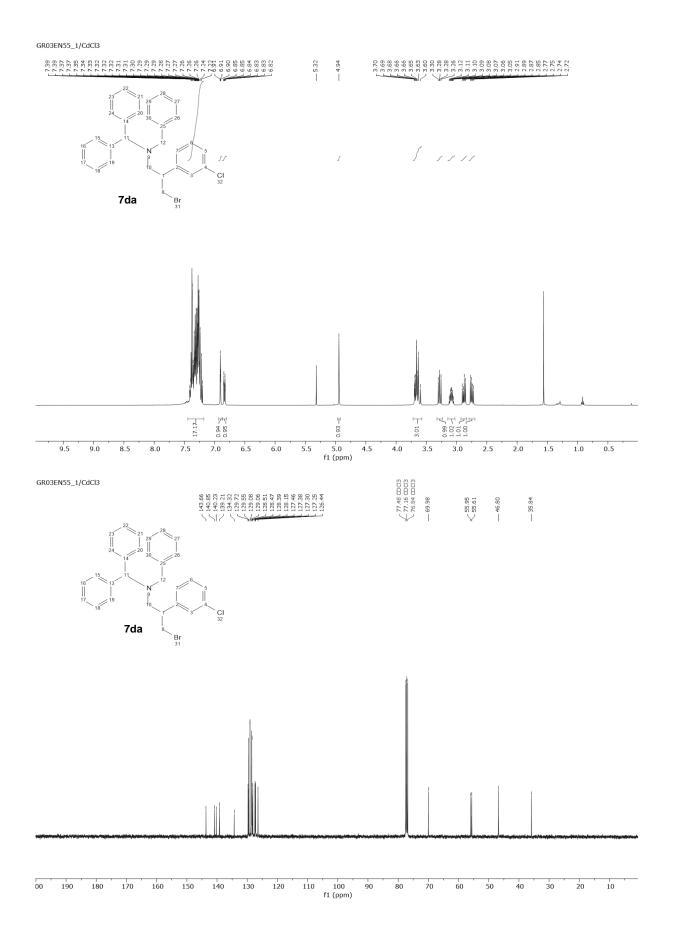

S137

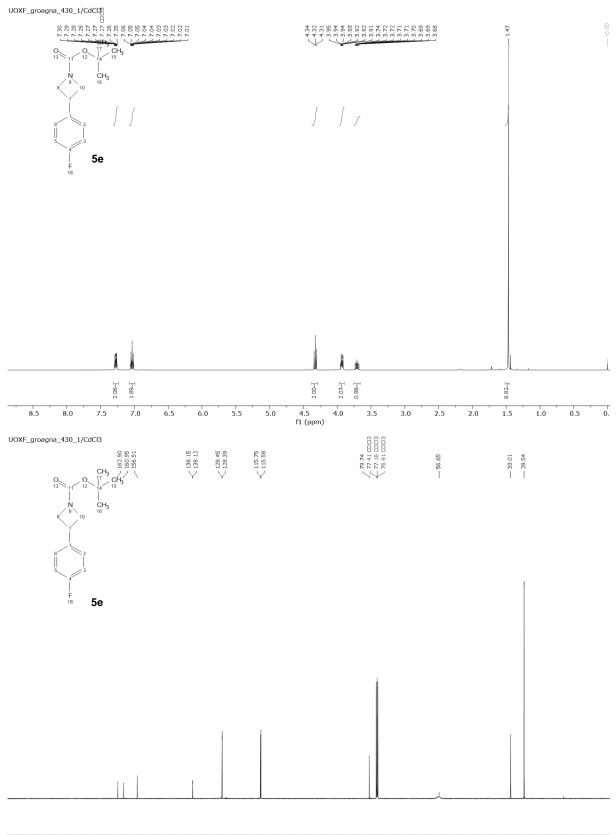


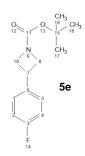


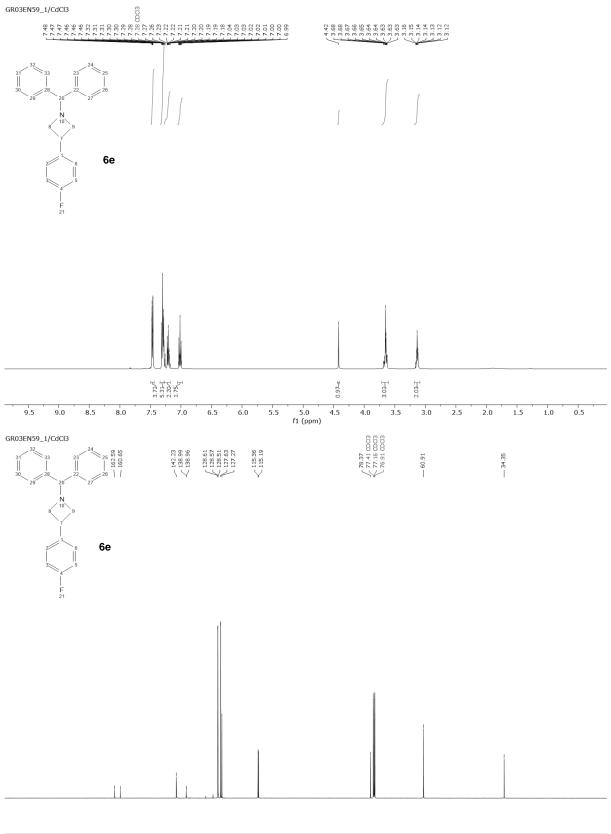

S139

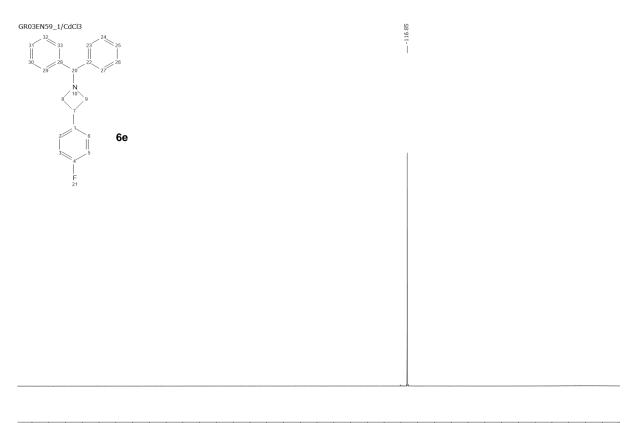




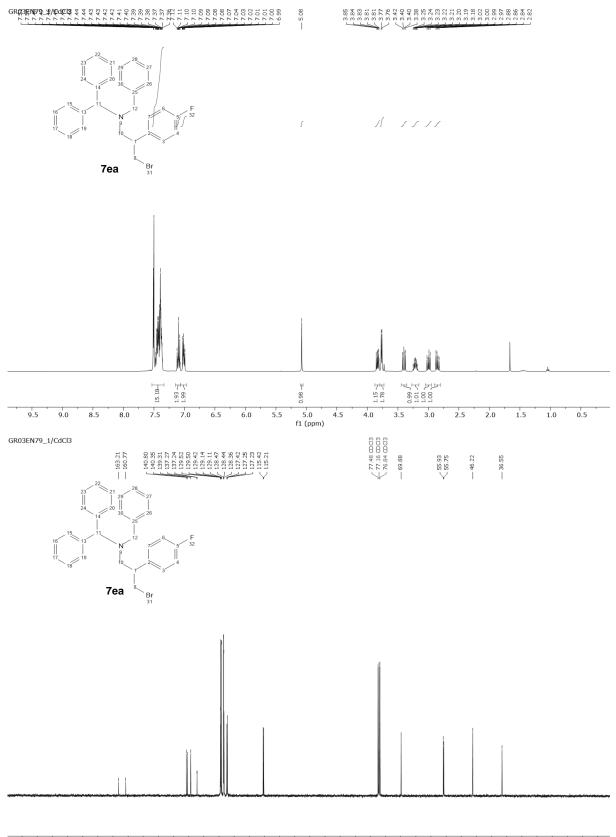




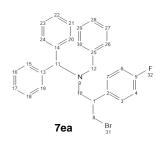




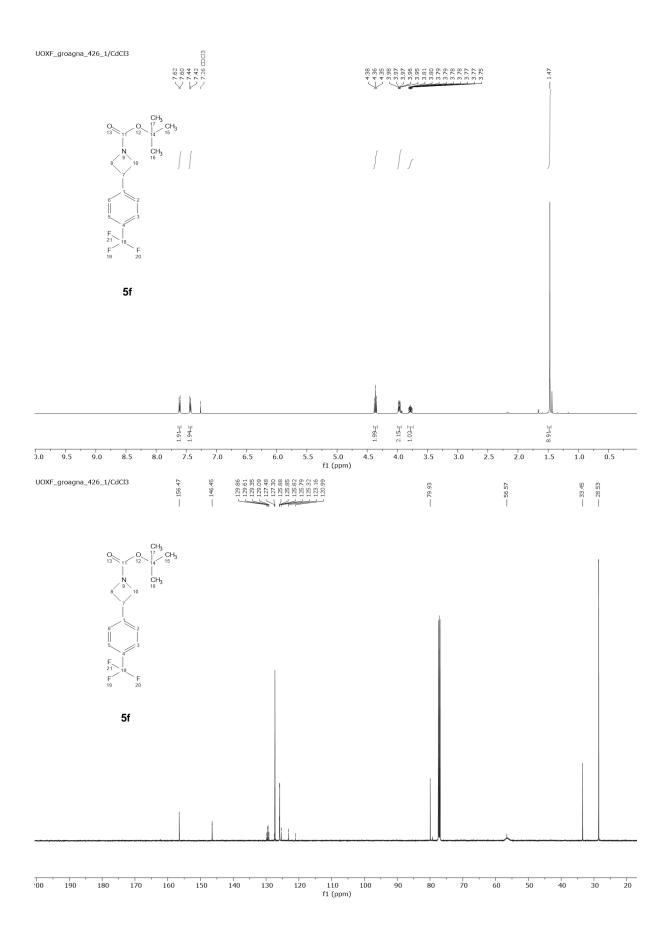
r -115.74 -115.75 -115.76 -115.76 -115.78 -115.78 -115.78 -115.78 -115.80 -115.81

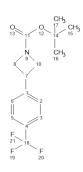


90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 f1 (ppm)

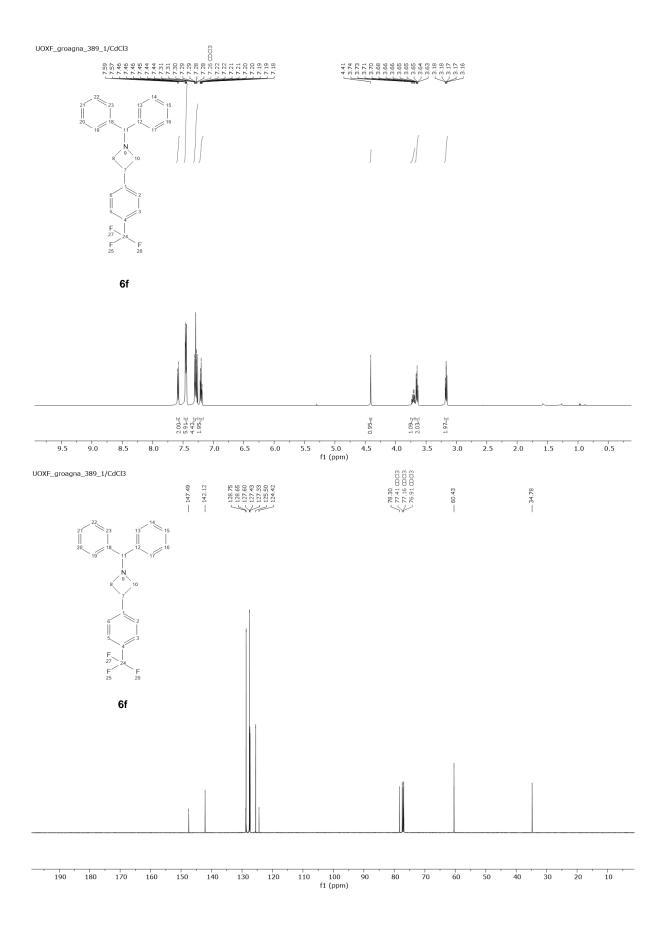


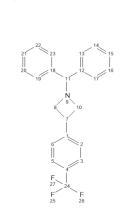
-90 f1 (ppm) -1 -10 -20 -30 -40 -50 -60 -70 -80 -100 -110 -120 -130 -140 -150 -160 -170

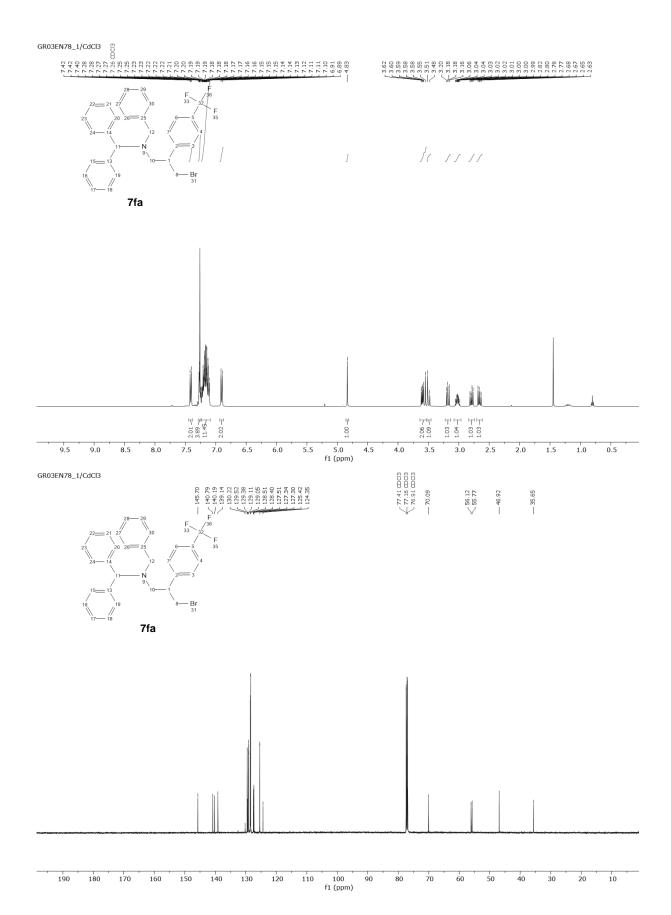



GR03EN79_1/CdCl3

-115.59 -115.61 -115.61 -115.62 -115.63 -115.64 -115.64

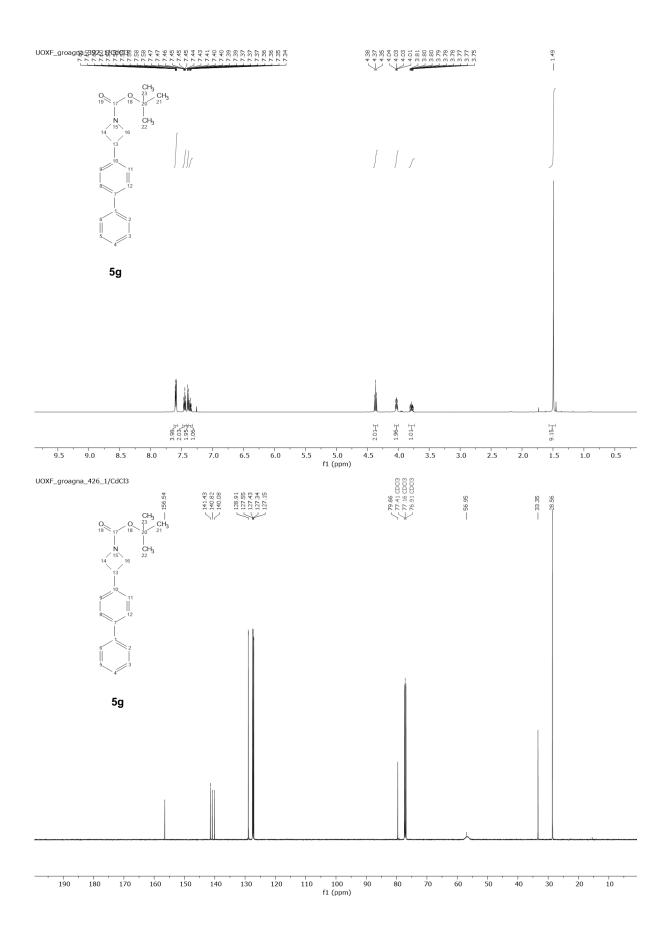

-95 f1 (ppm) -75 -55 -60 -65 -70 -80 -85 -90 -100 -105 -110 -115 -120 -125 -130 -135 -140

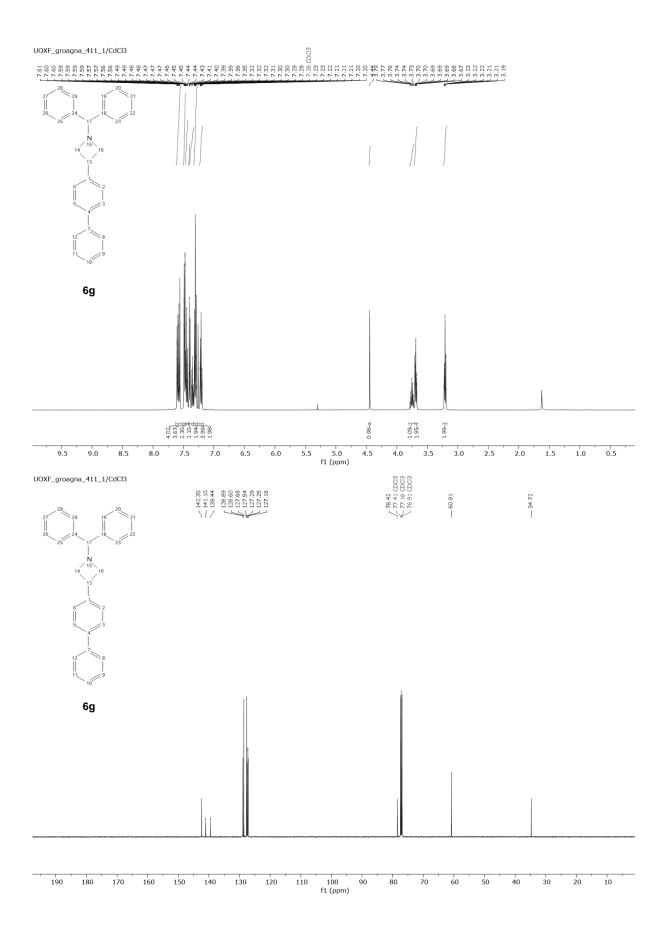


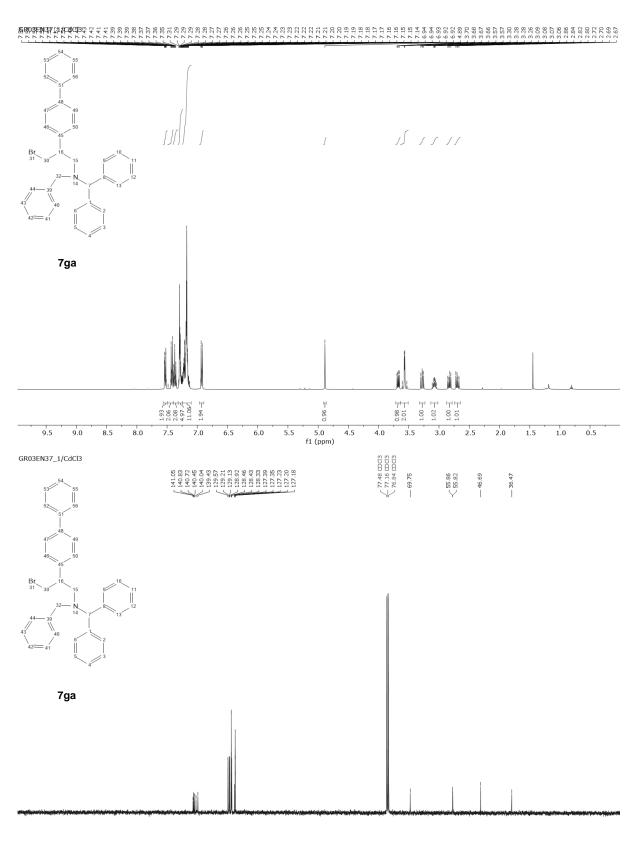

200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -20(f1 (ppm)

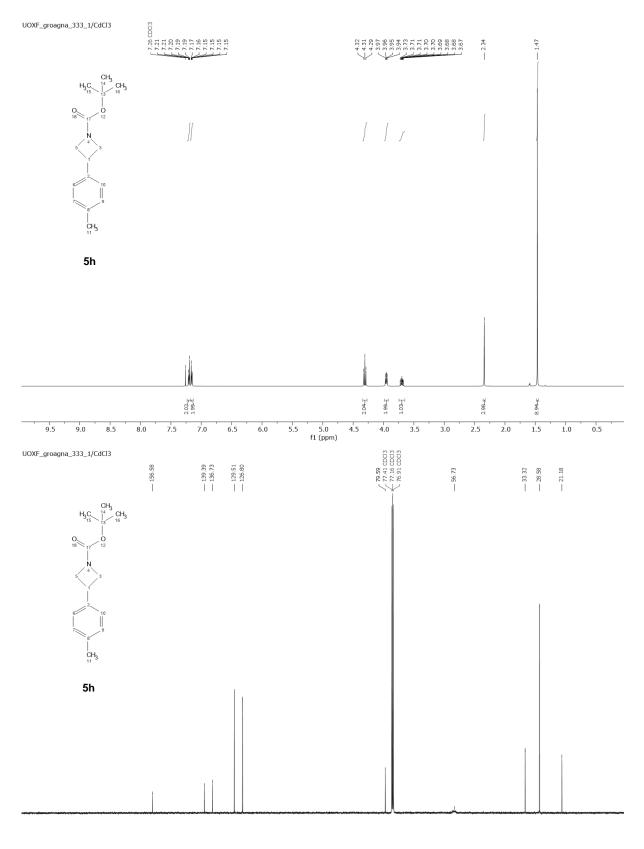


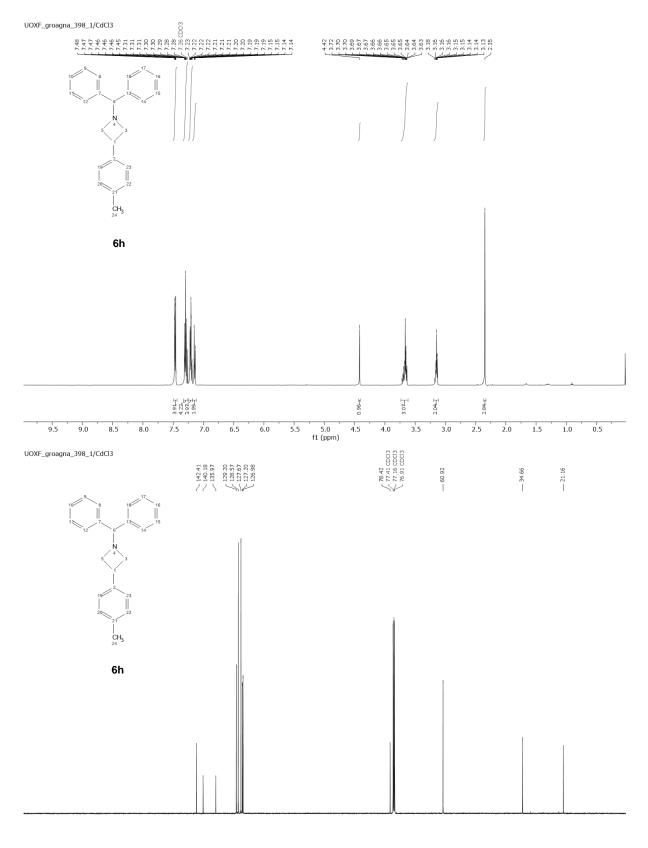
200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 f1 (ppm)

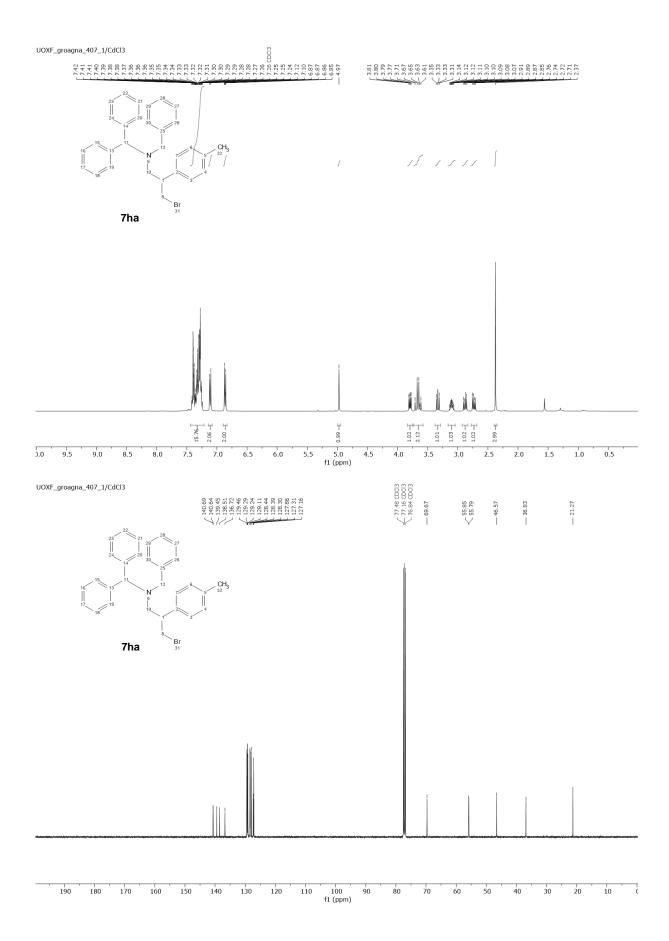


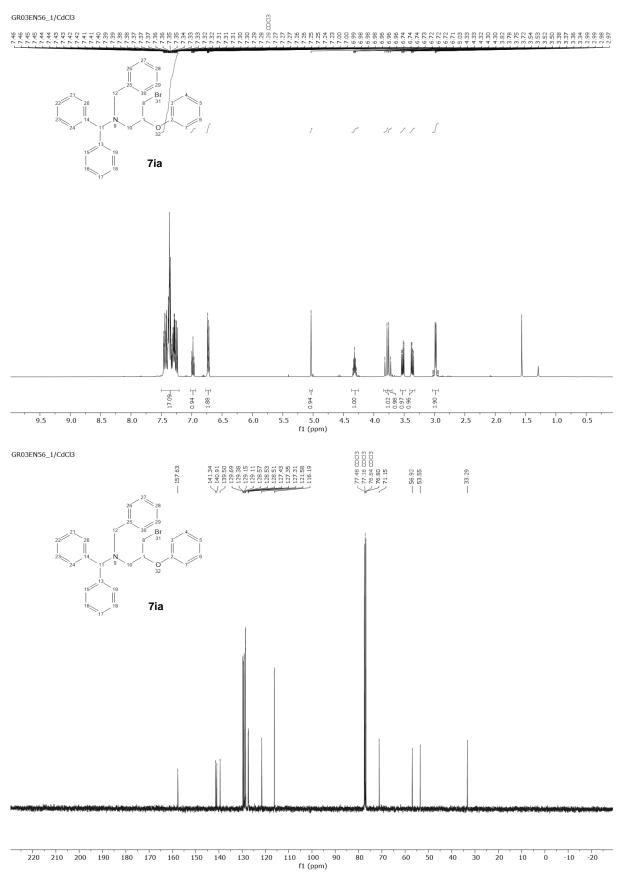

GR03EN78_1/CdCl3

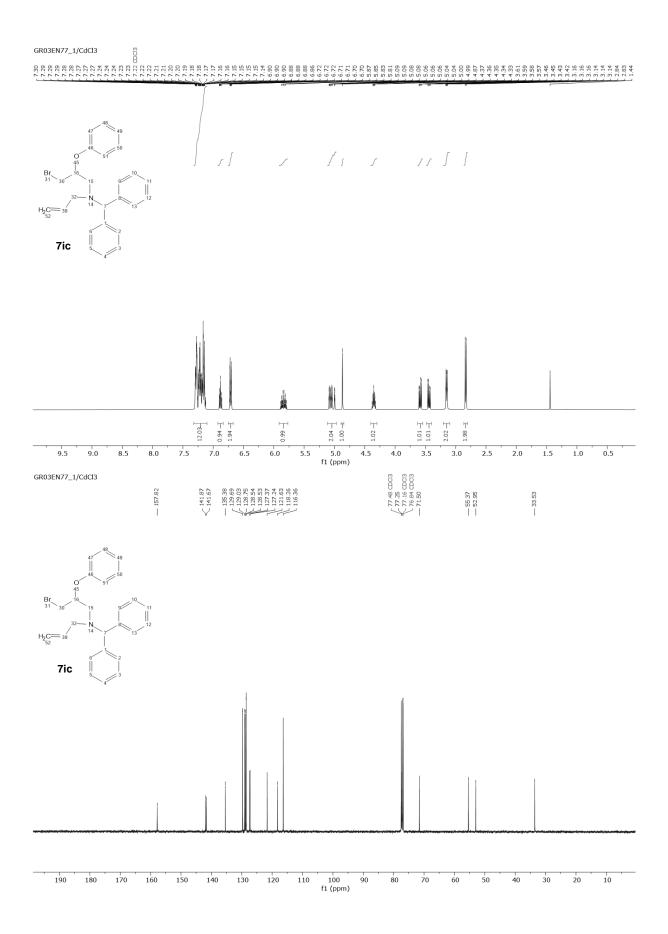


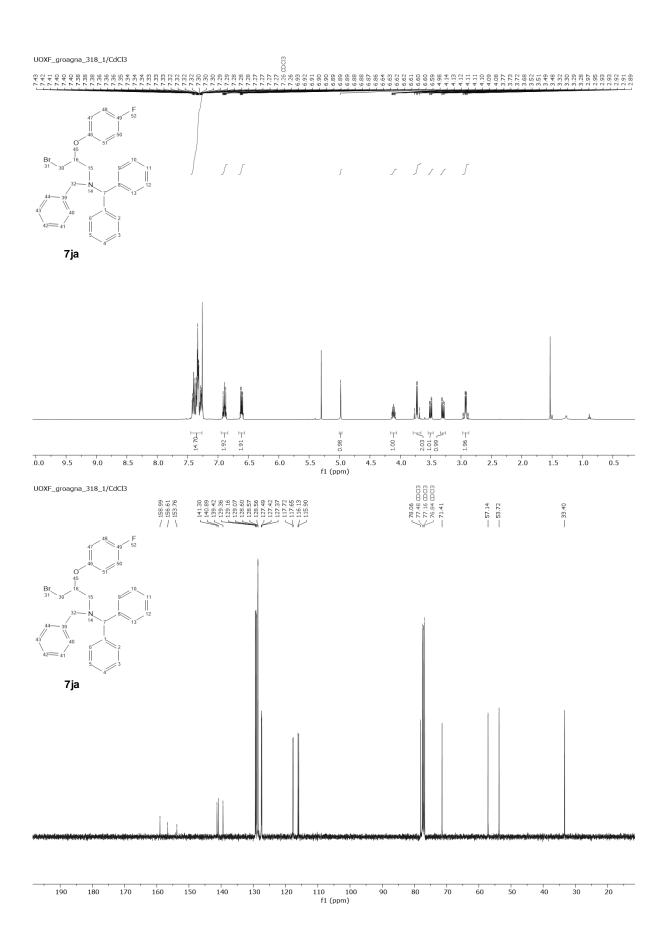


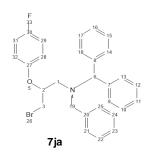

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 f1 (ppm)

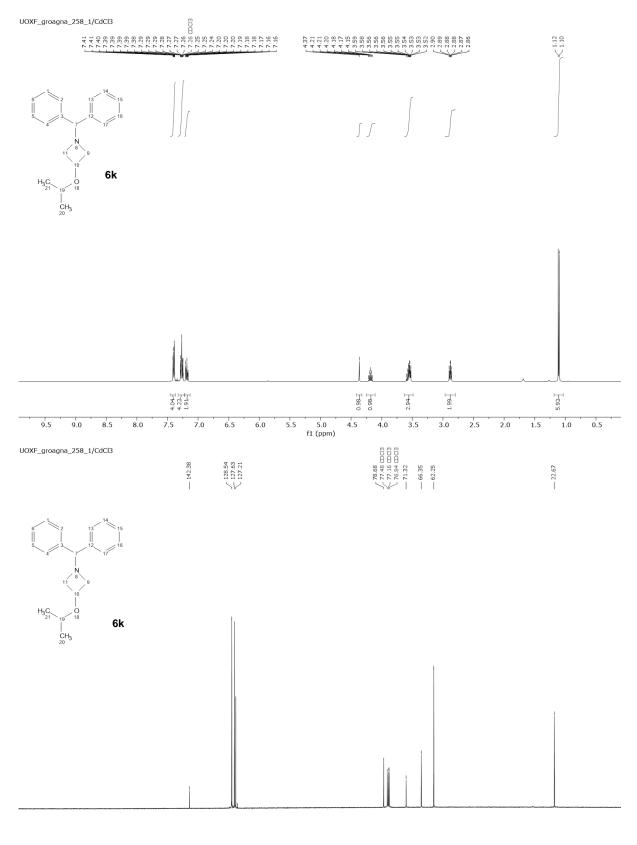


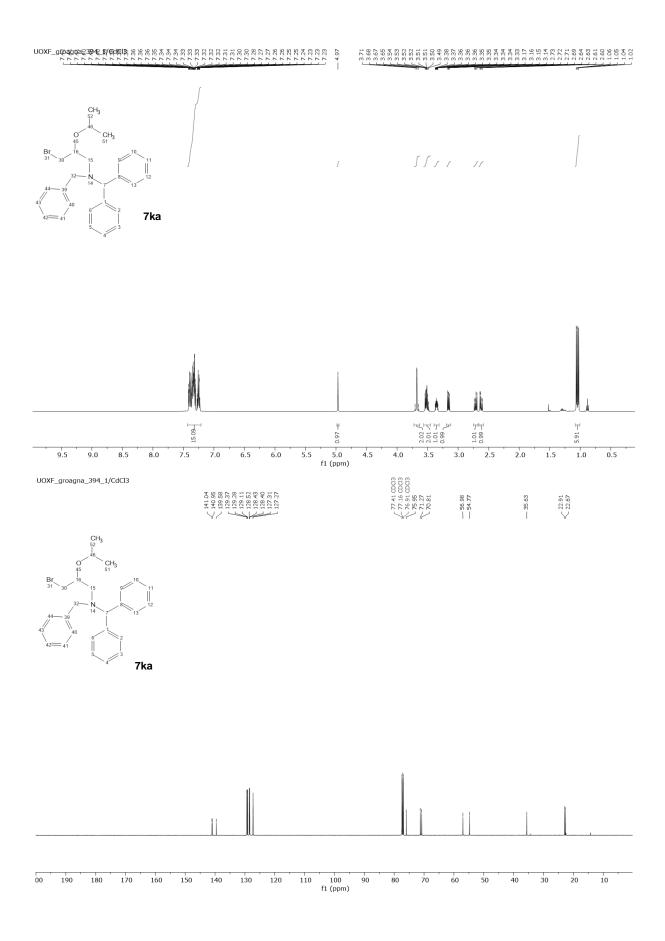


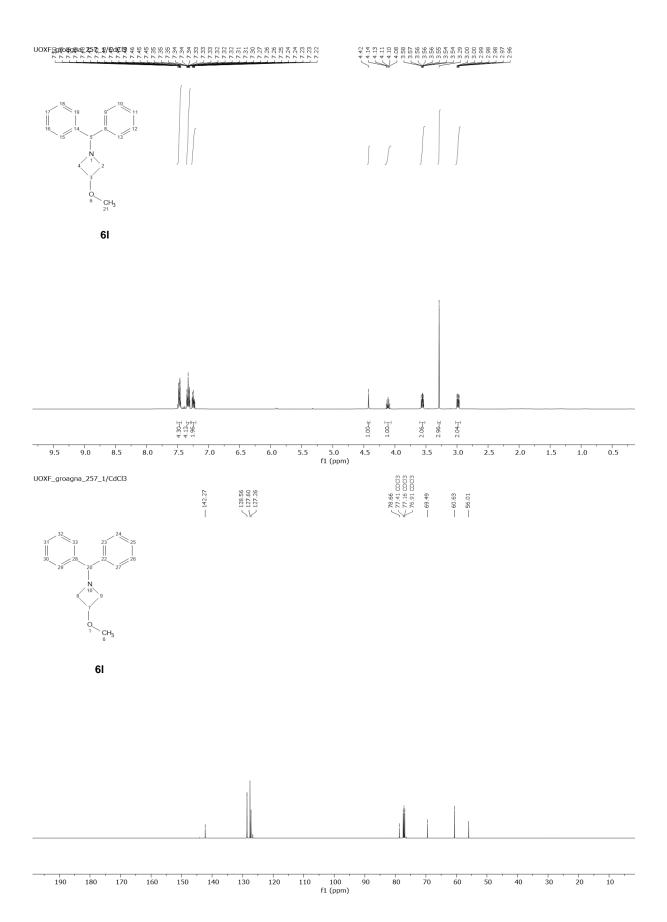


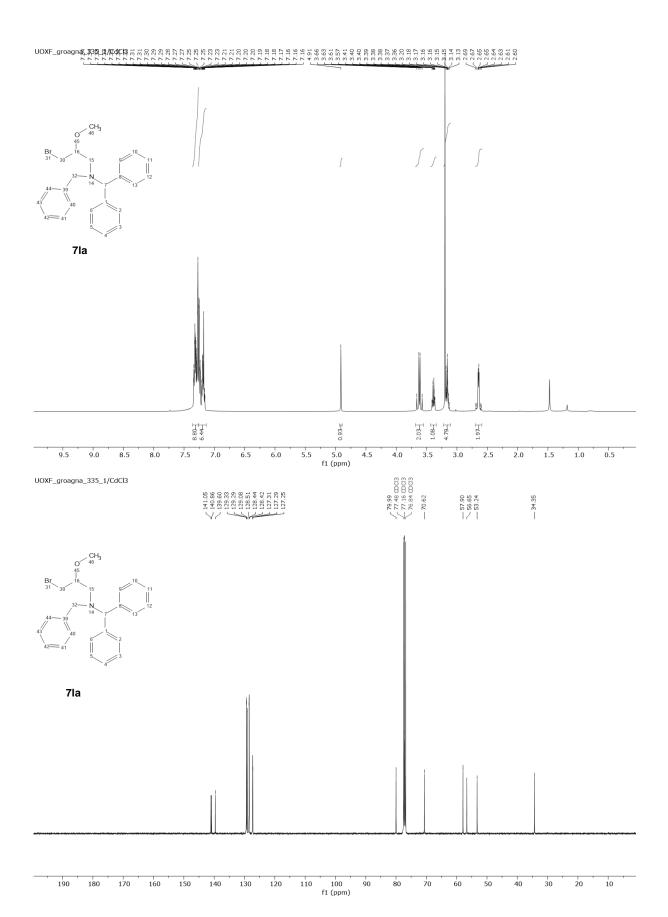


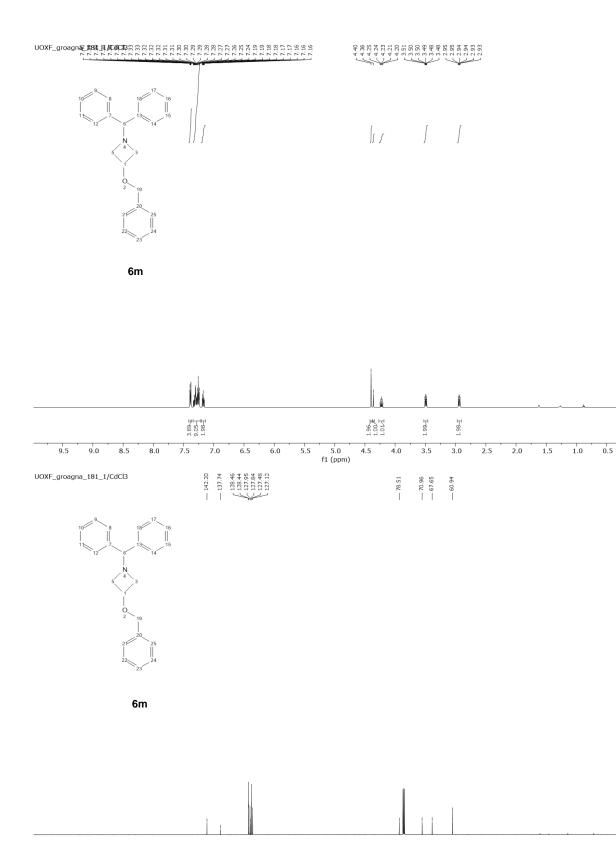


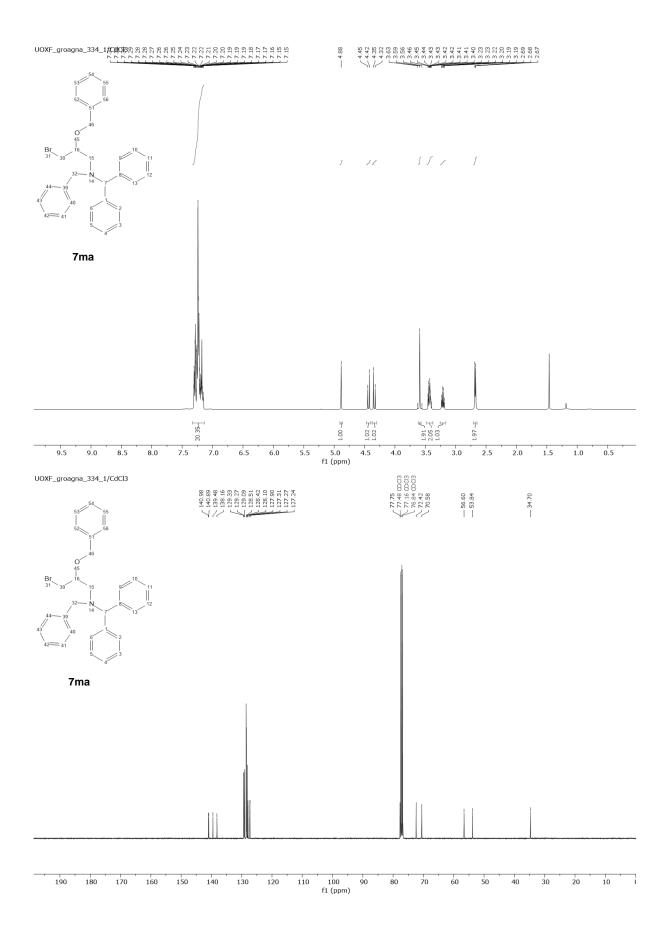


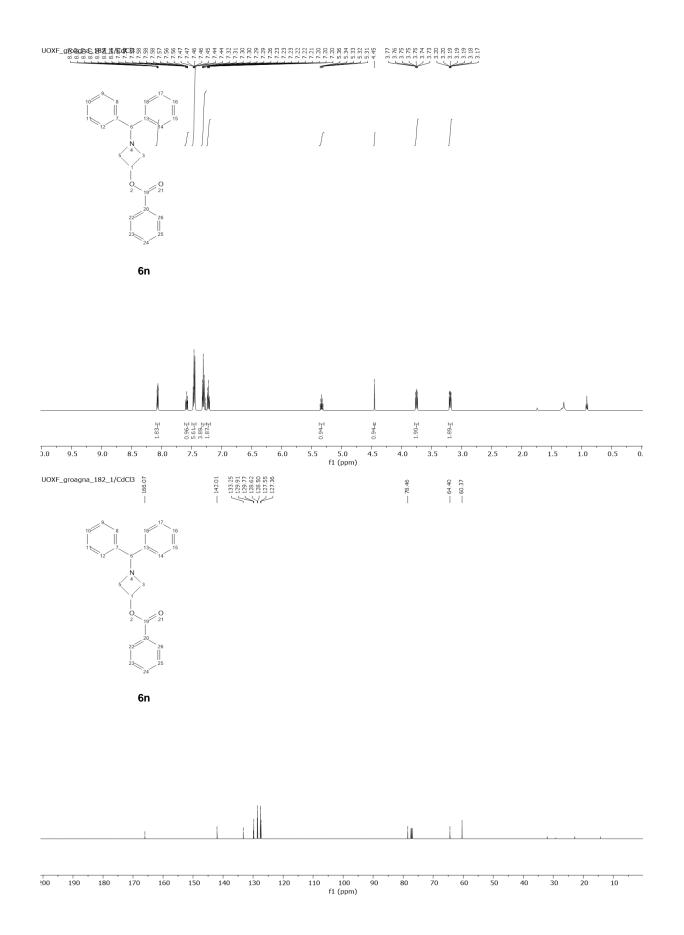


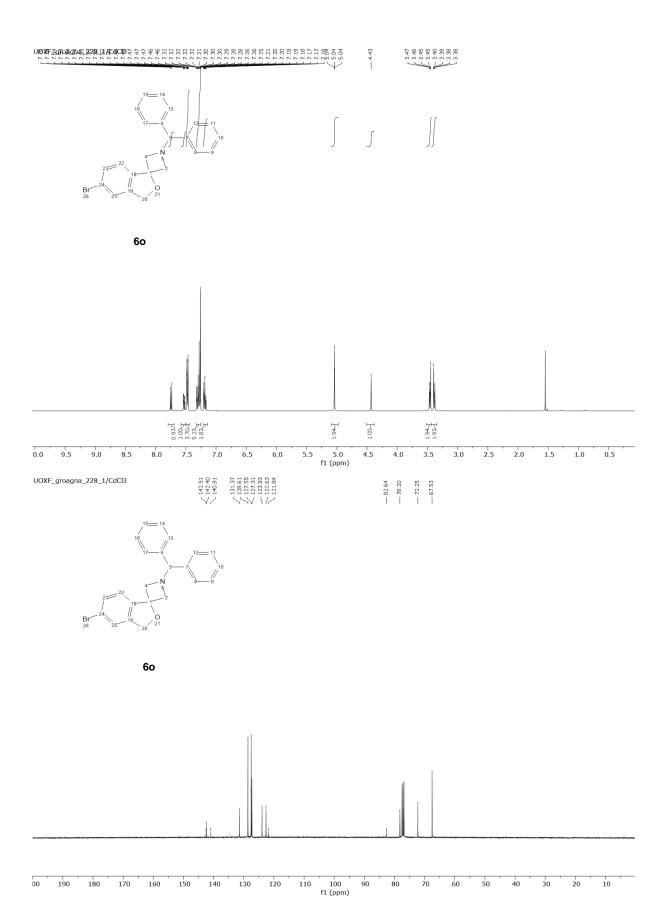


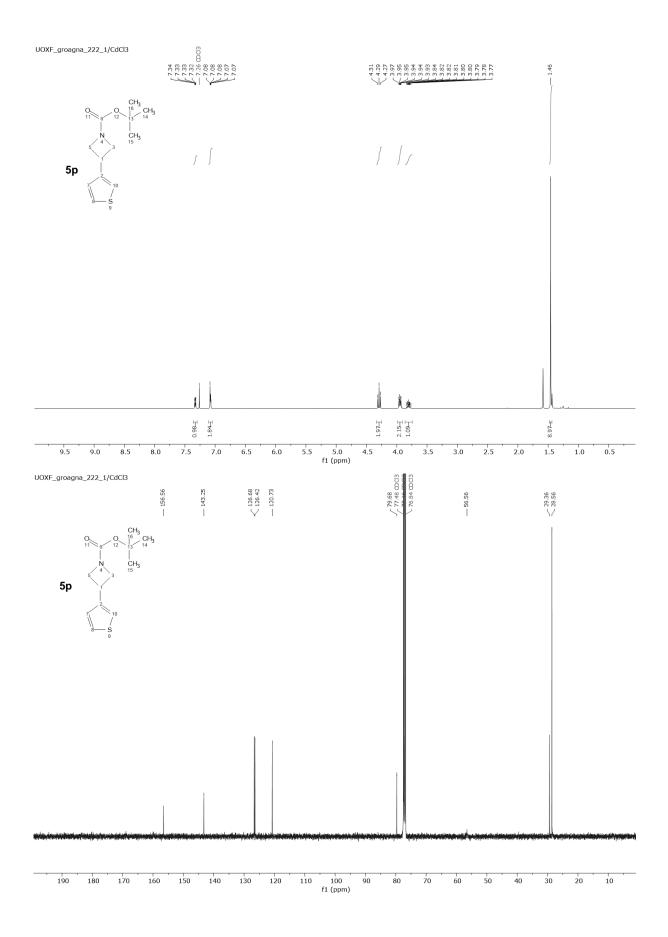


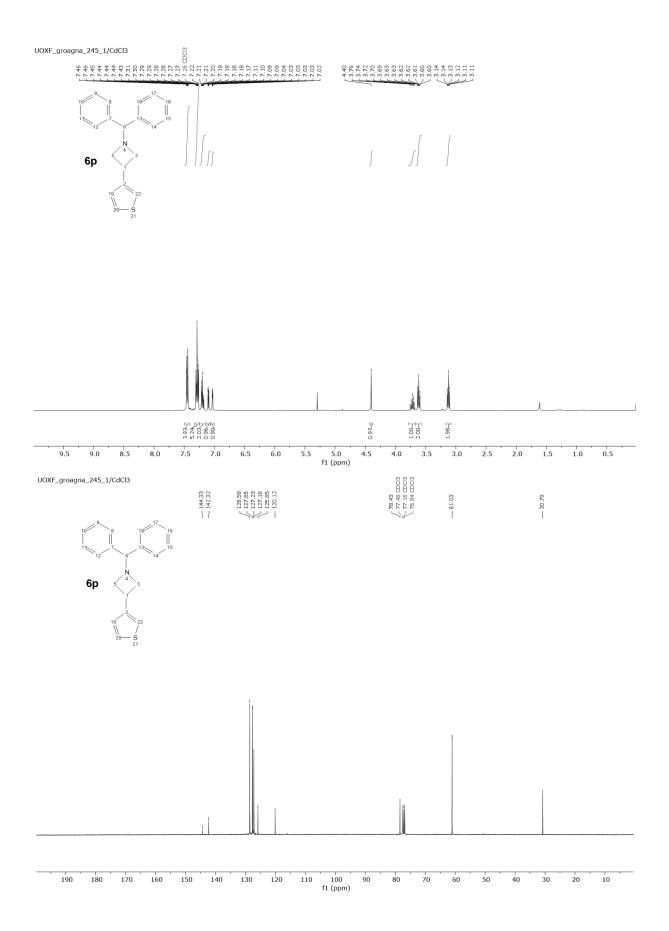

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2. f1 (ppm)

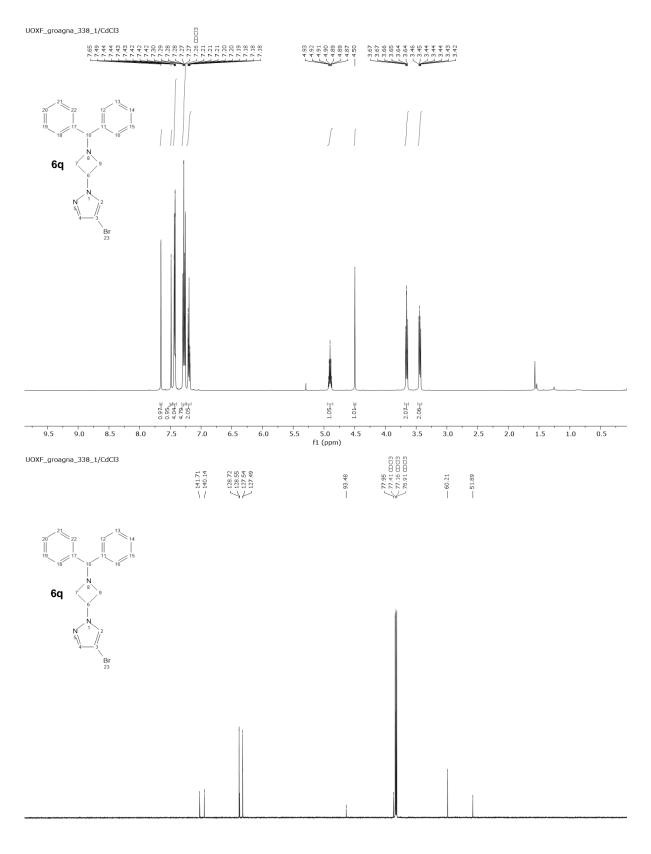


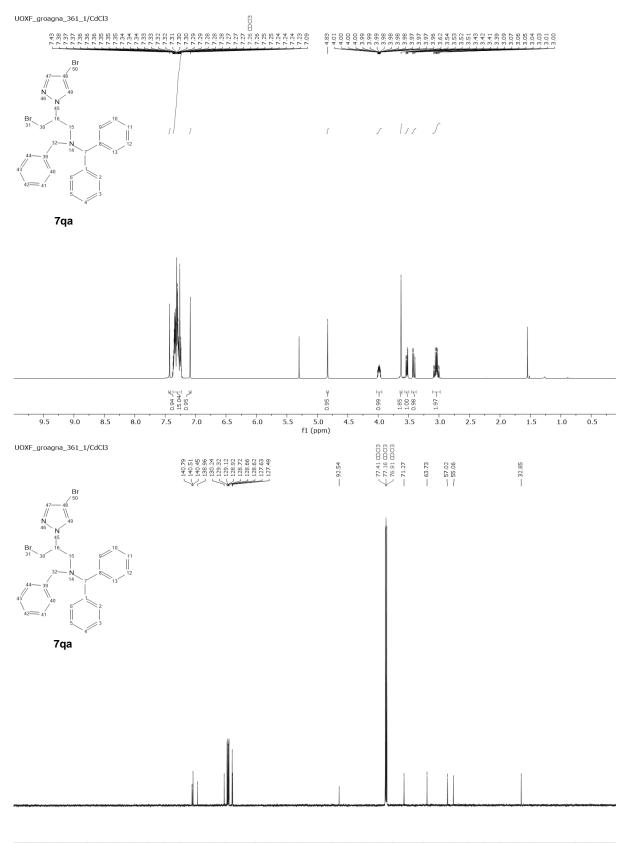


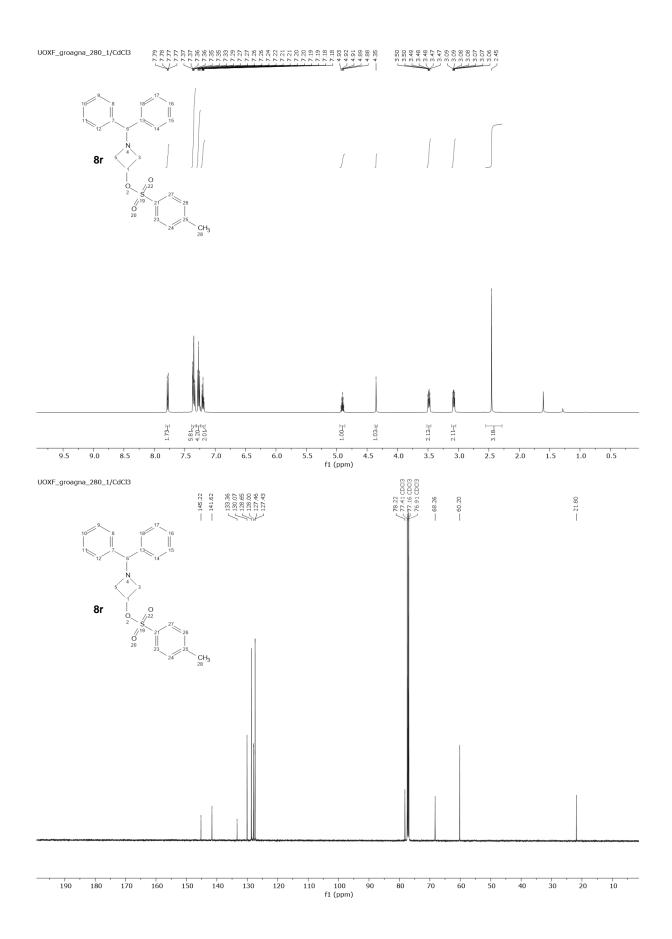


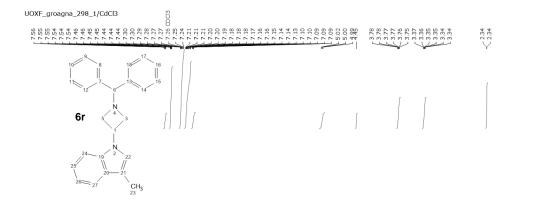


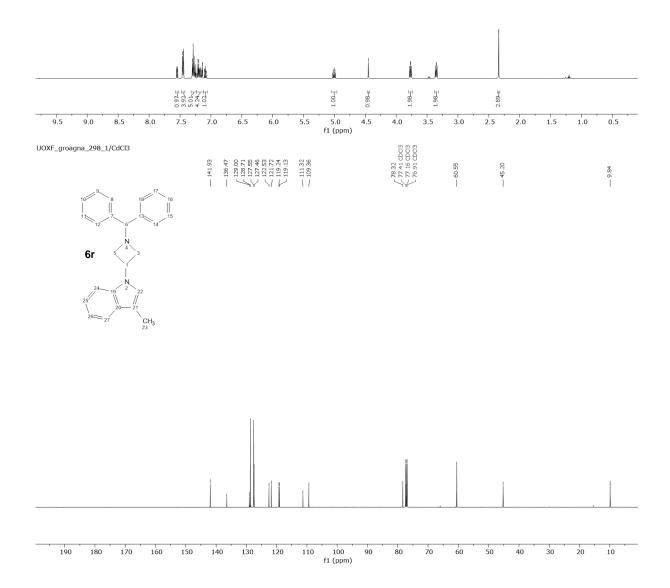


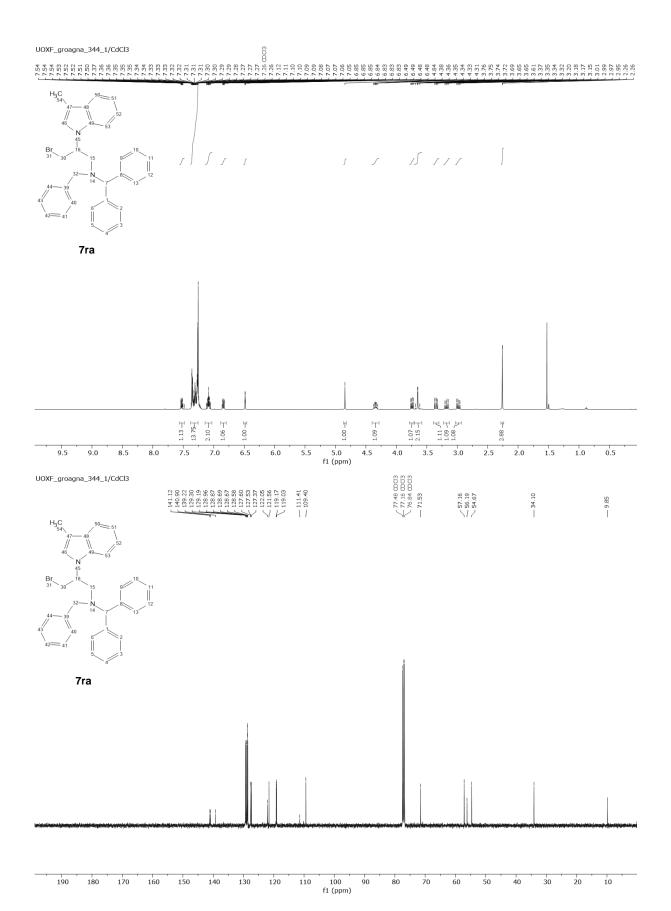

S174

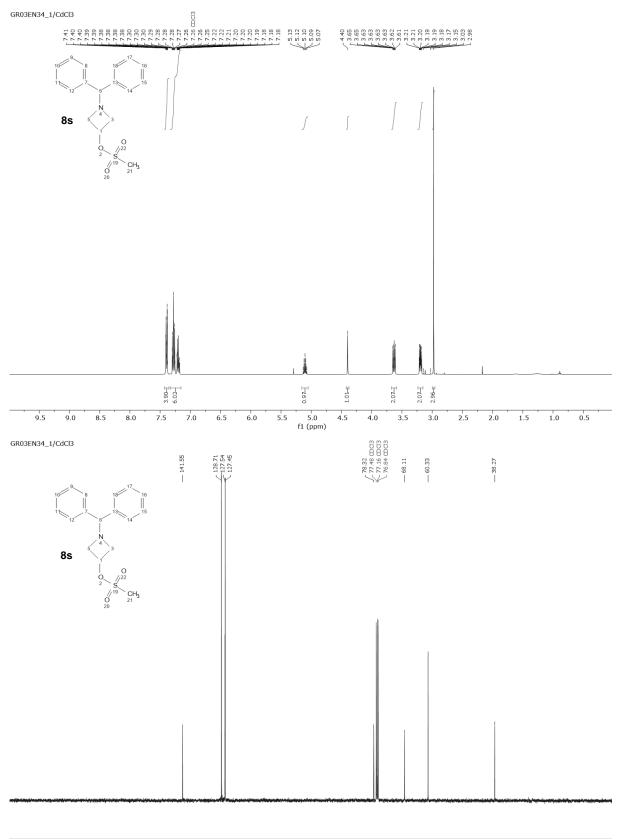



S175

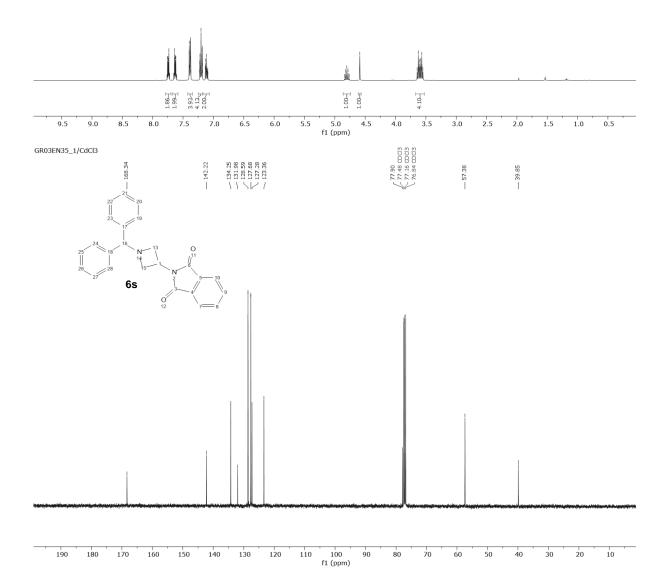


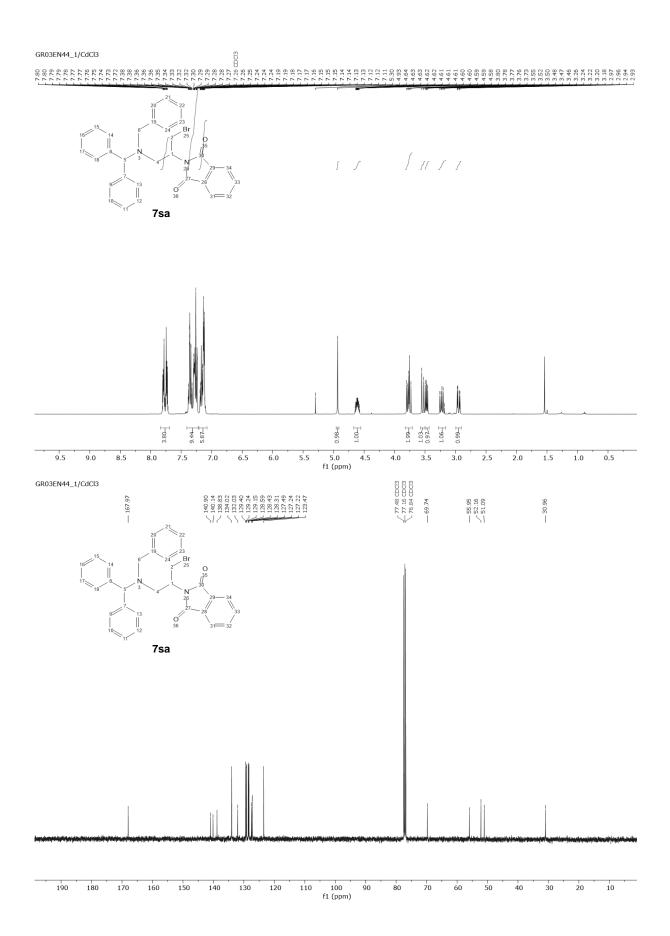


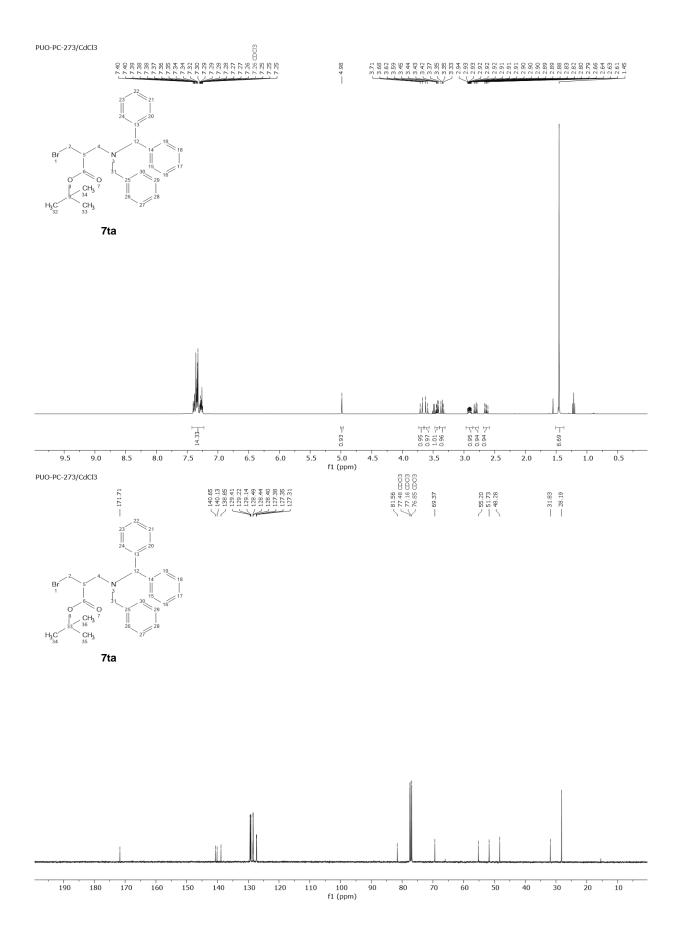


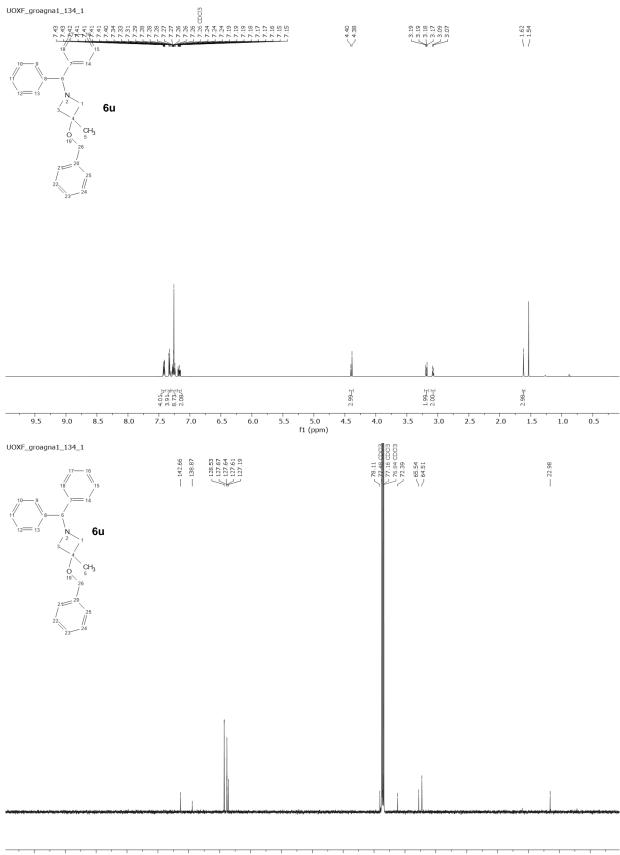


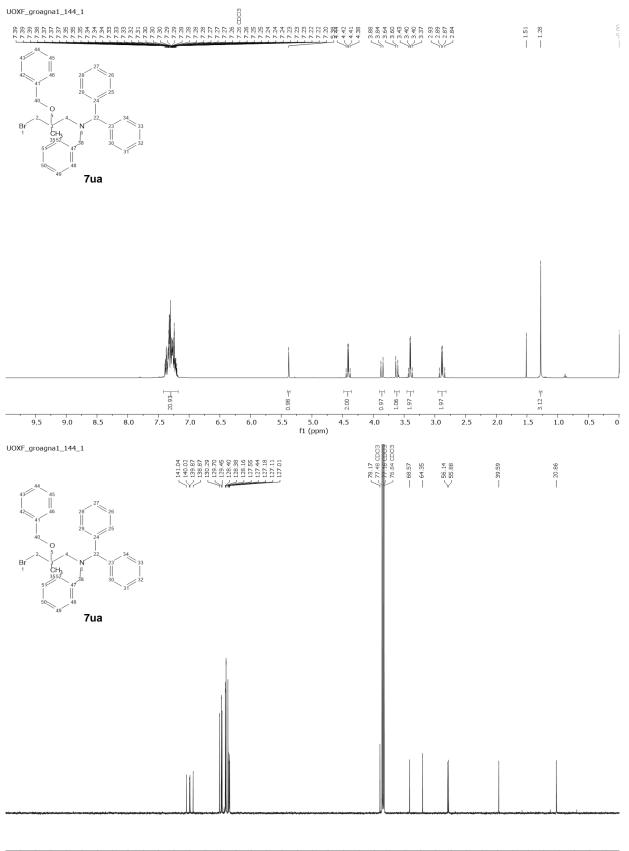


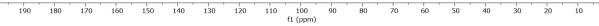


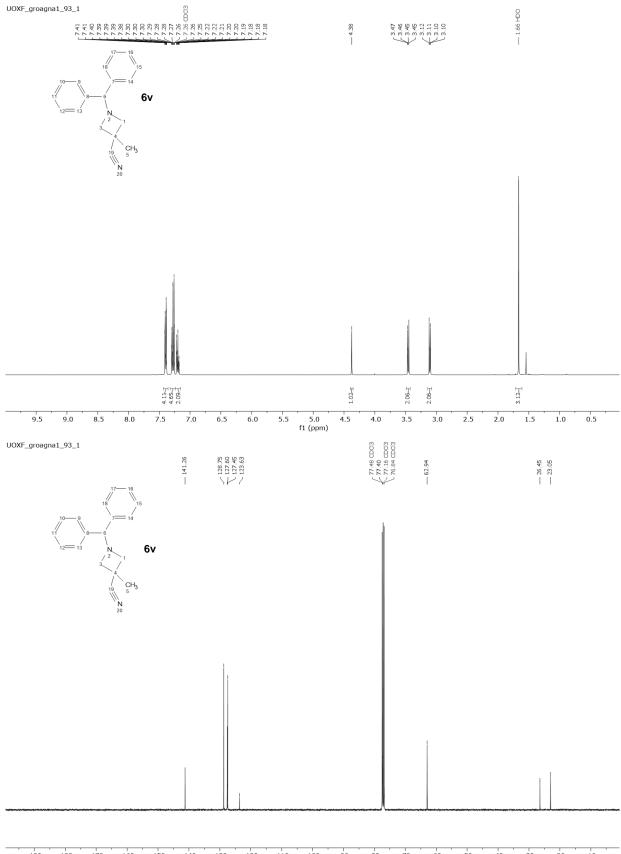


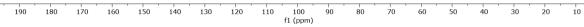


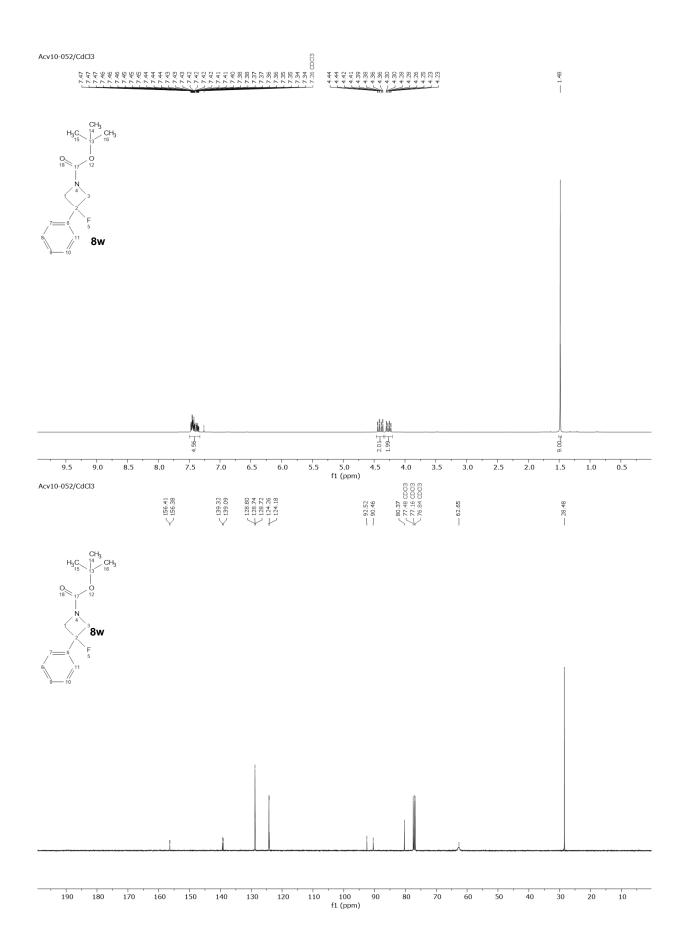

f1 (ppm) Ċ

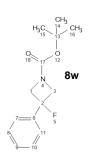


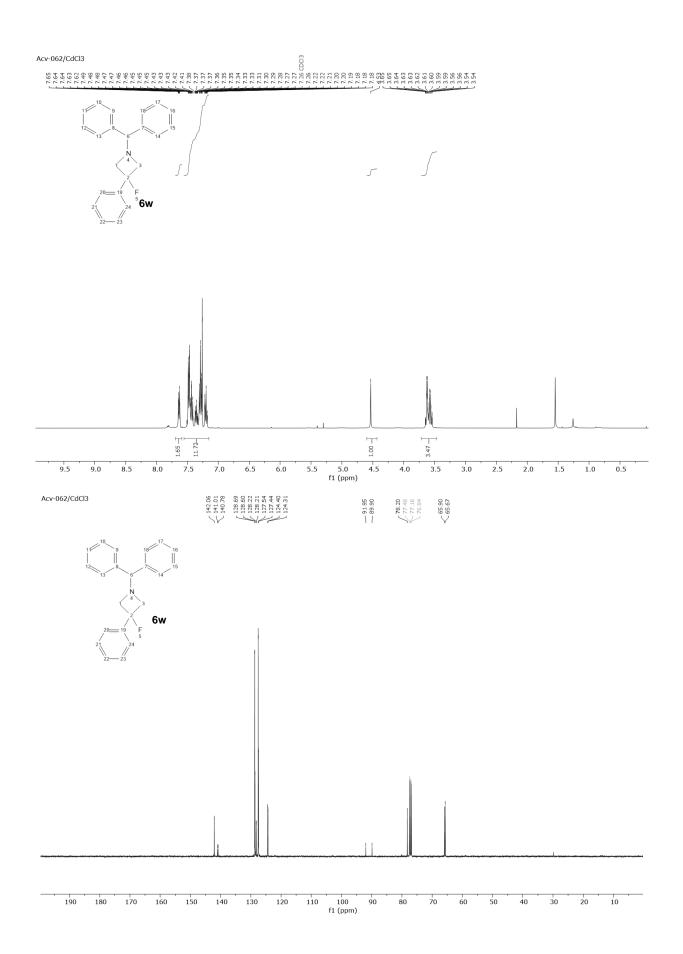




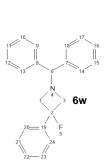



f1 (ppm)

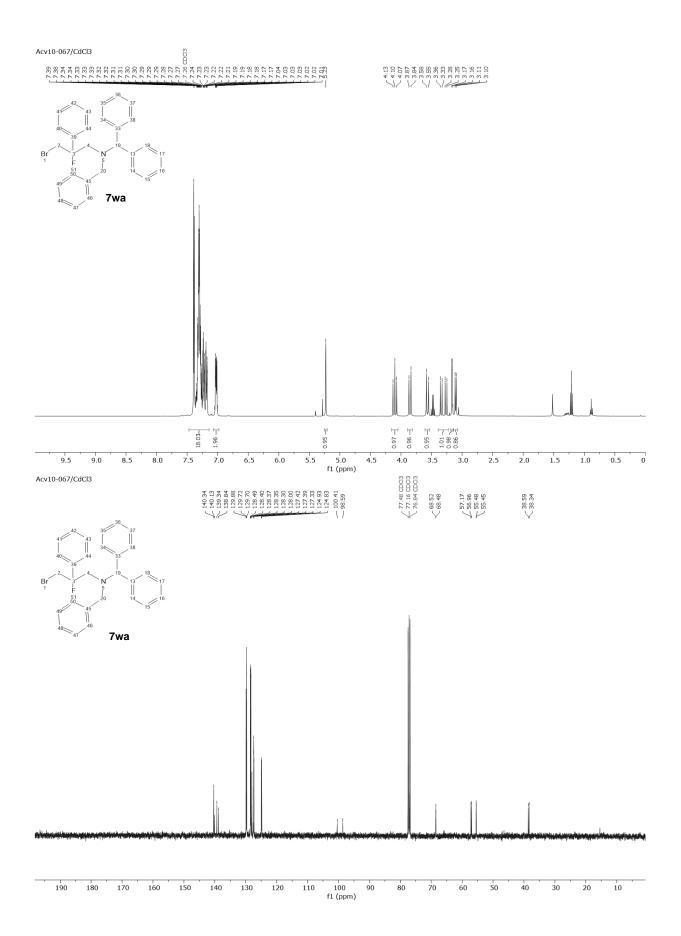




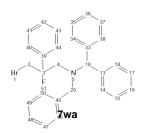
Acv10-052/CdCl3



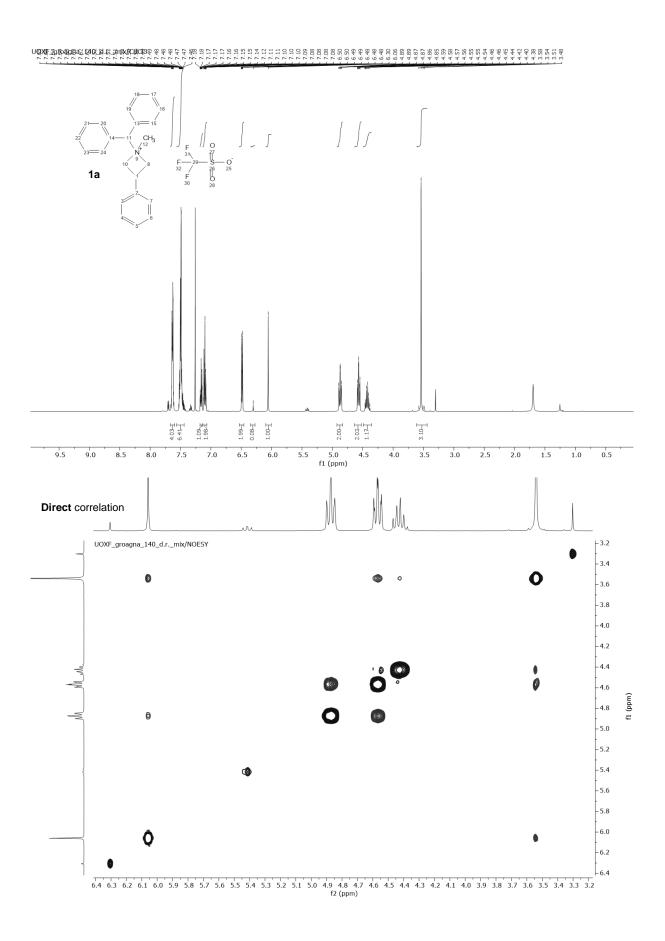
90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 f1 (ppm)

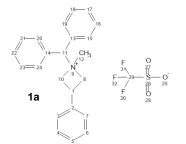


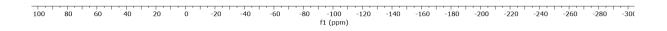
Acv-062/CdCl3

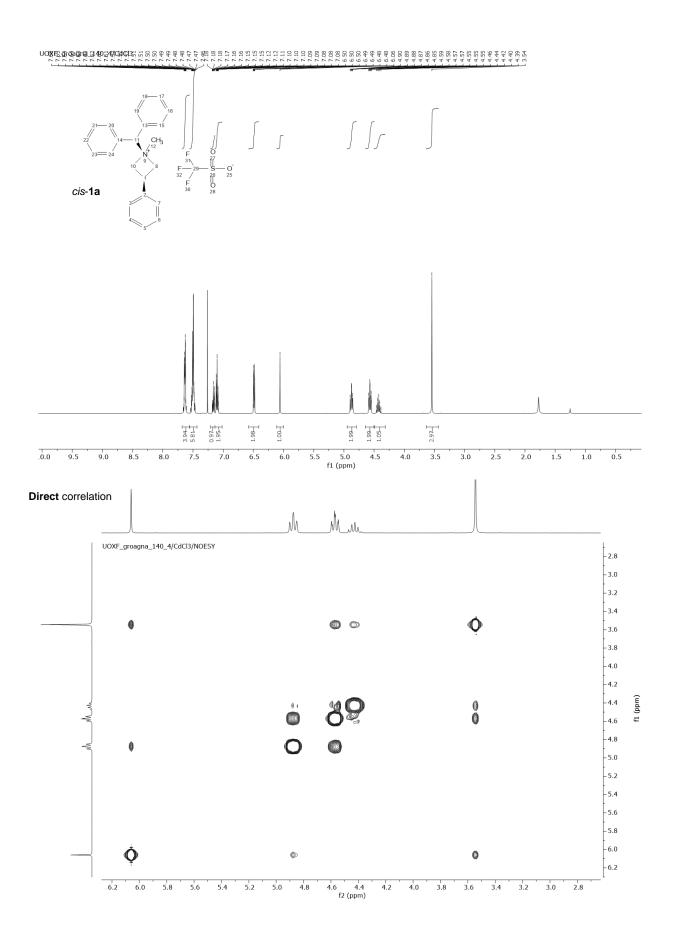

-144.35 -144.39 -144.45 -144.45 -144.47 -144.49 -144.51

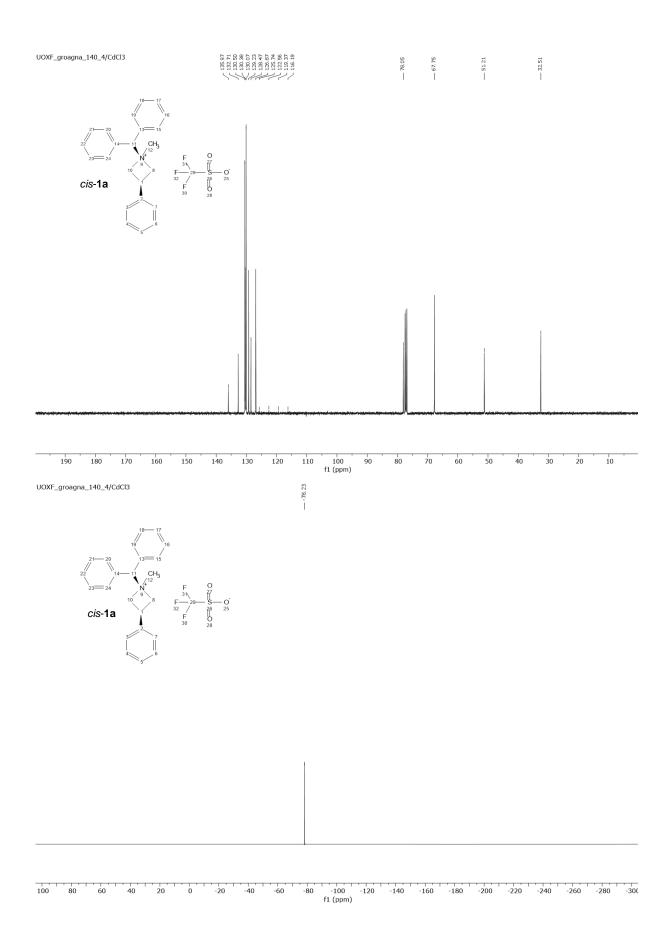
.00 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 -200 -205 -210 -215 -220 -225 -230 -235 -240 -245 f1 (ppm)

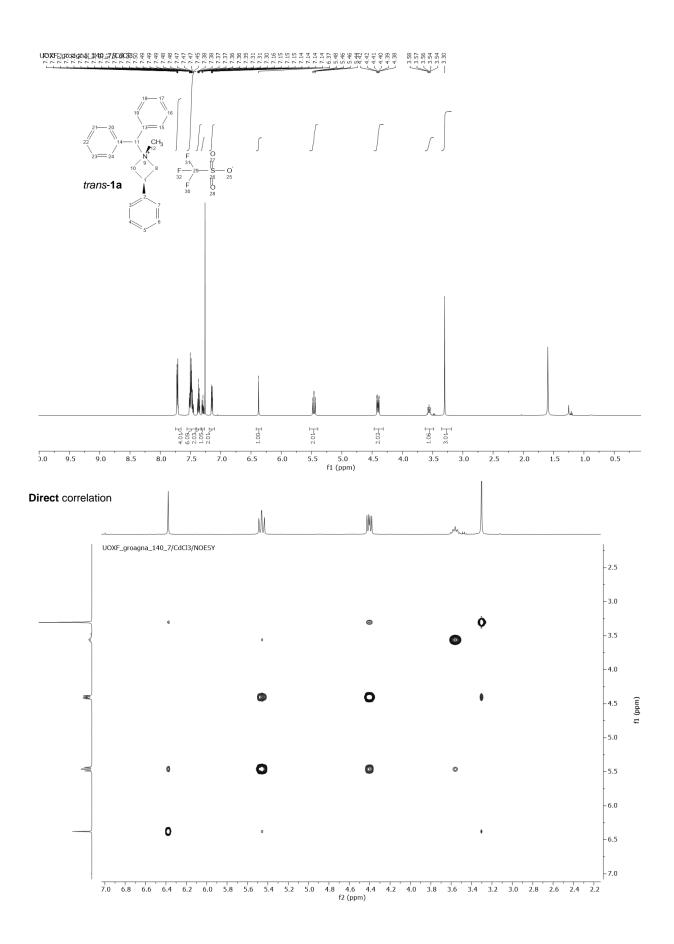


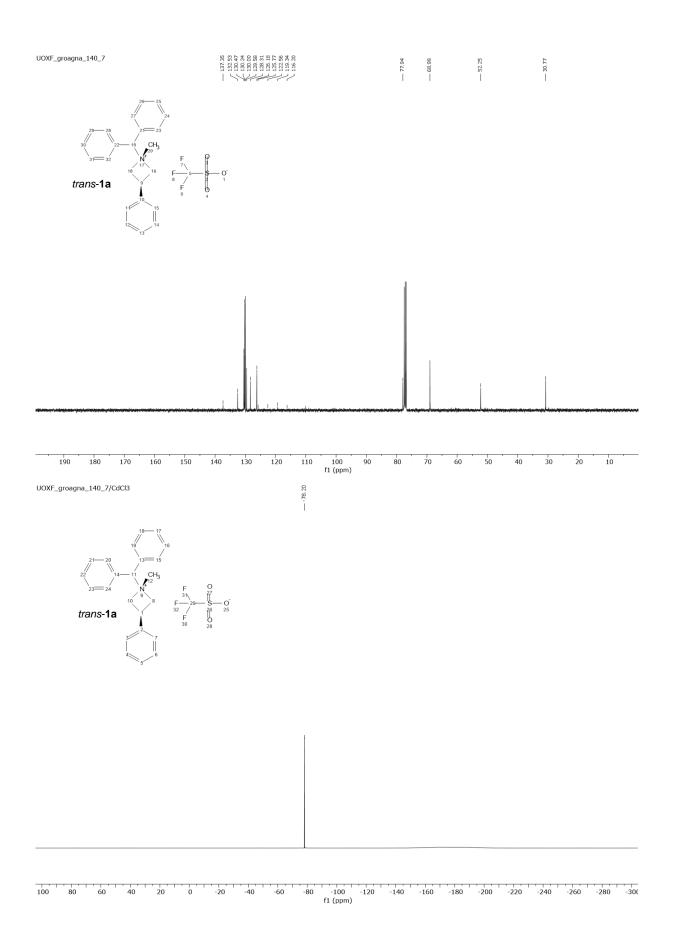

Acv10-067/CdCl3

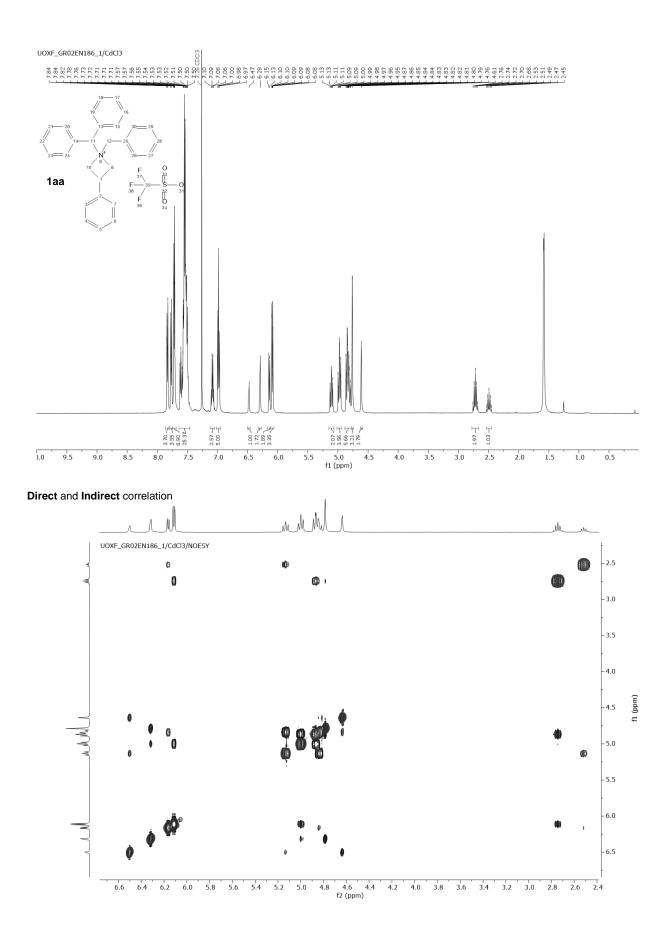


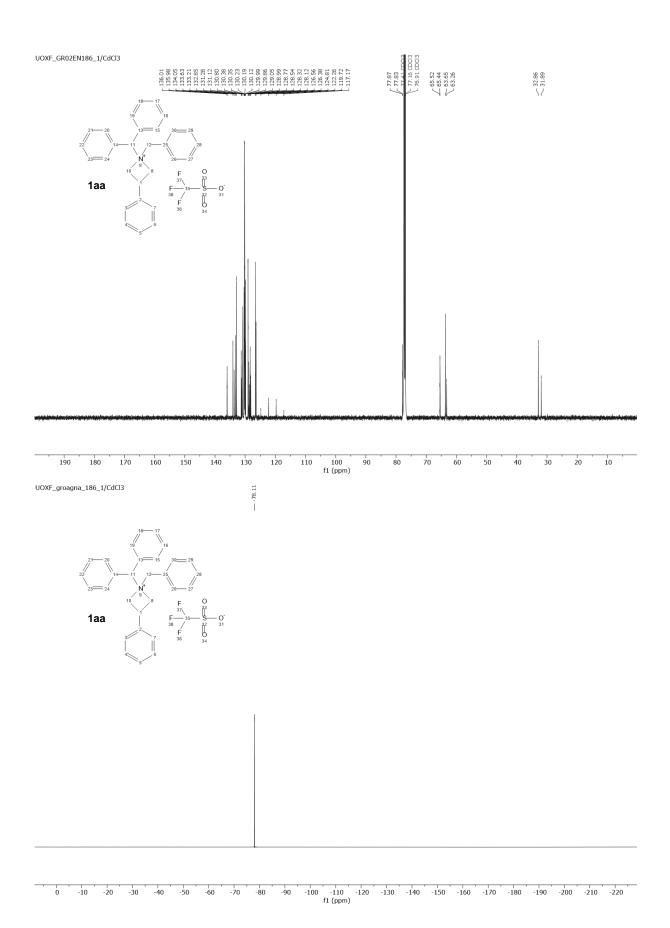


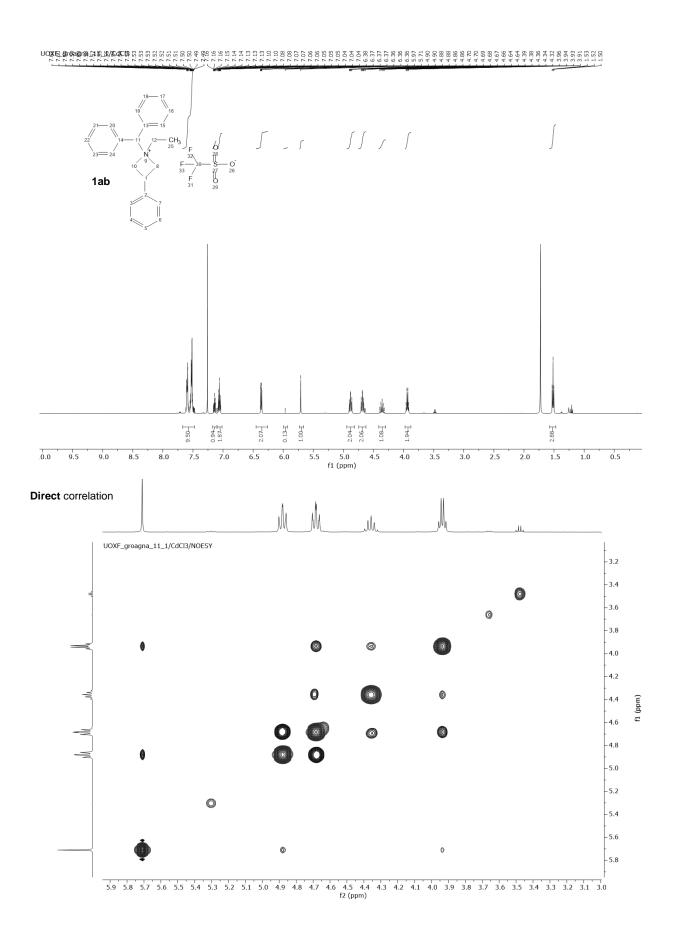

-150 f1 (ppm) -100 -105 -110 -115 -120 -135 -140 -145 -155 -165 -170 -175 -195 -2(-125 -130 -160 -180 -185 -190

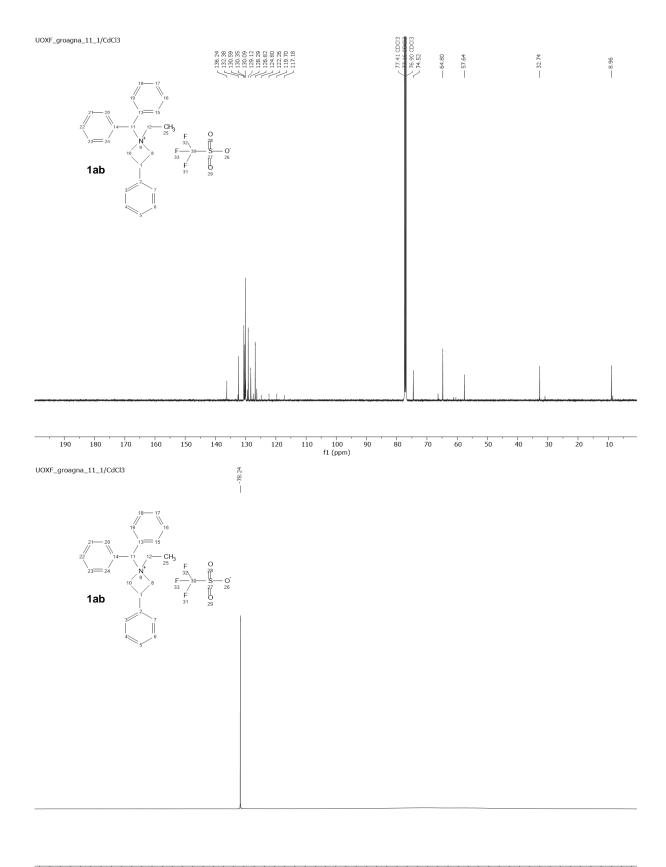


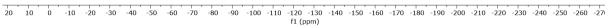


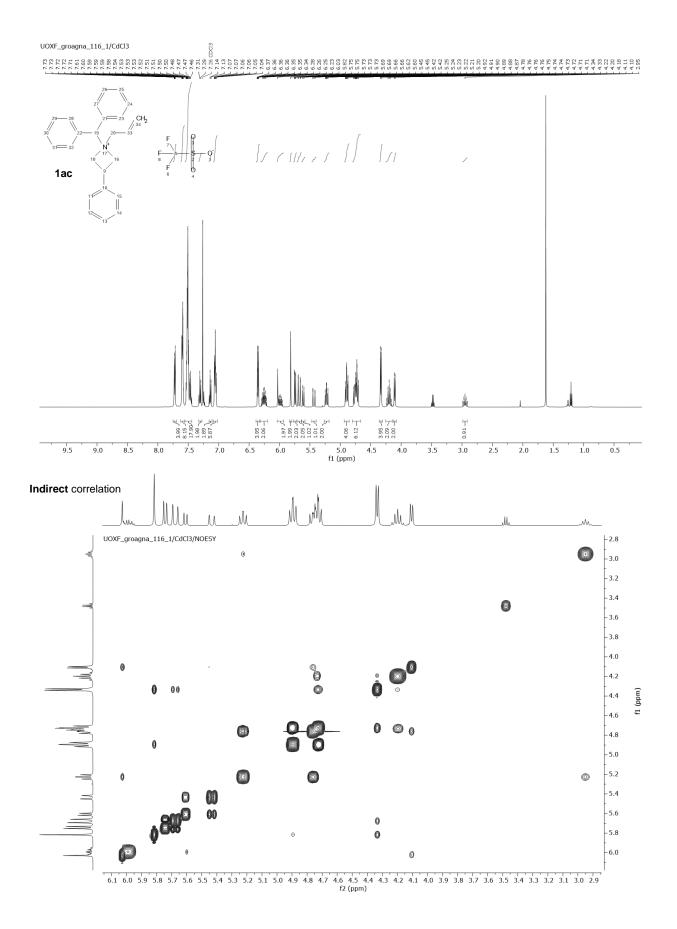


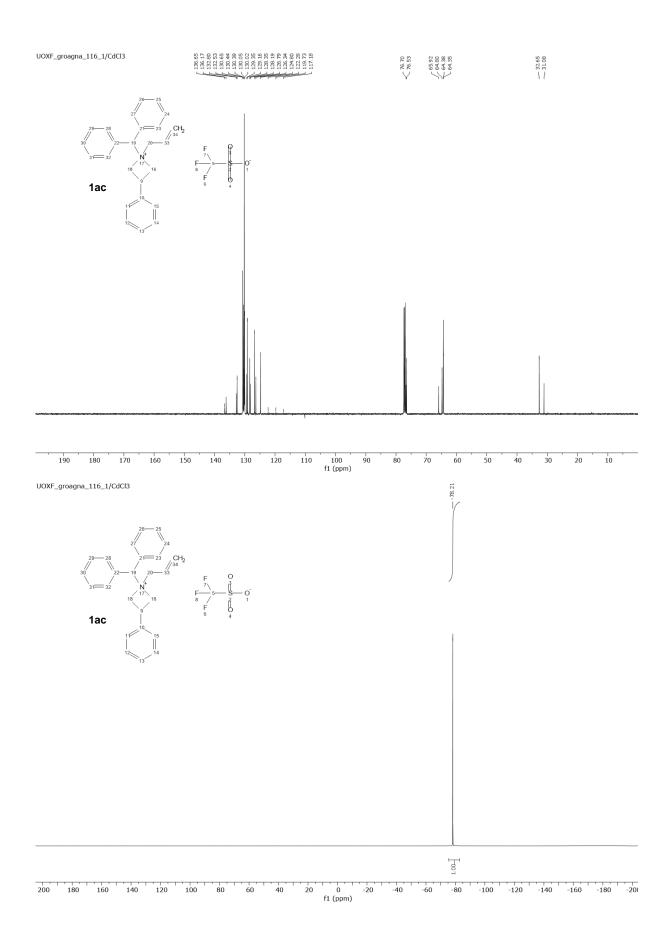


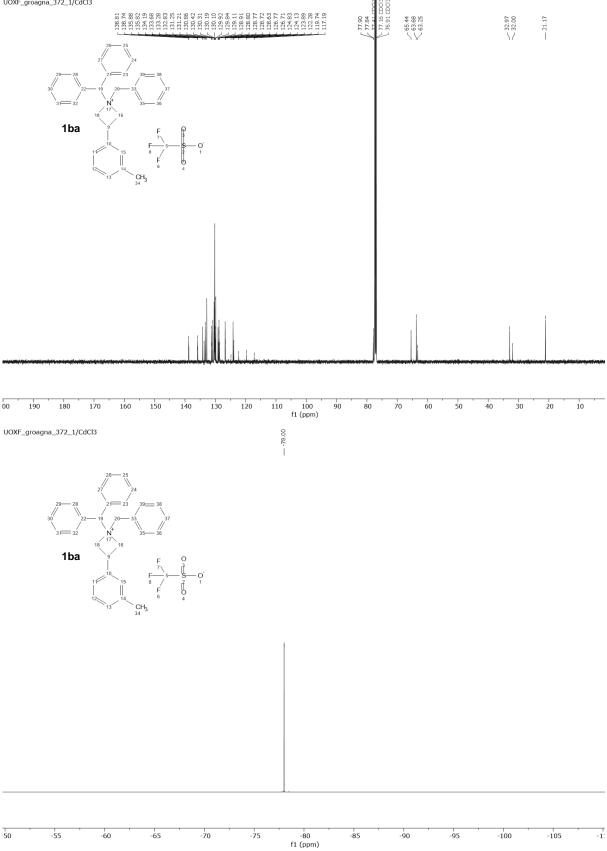


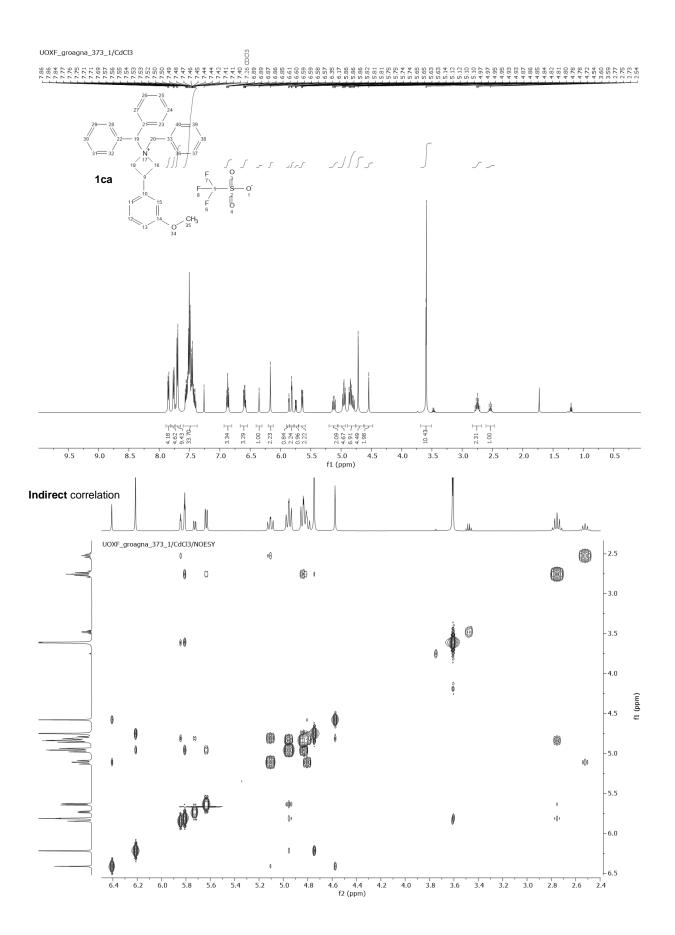


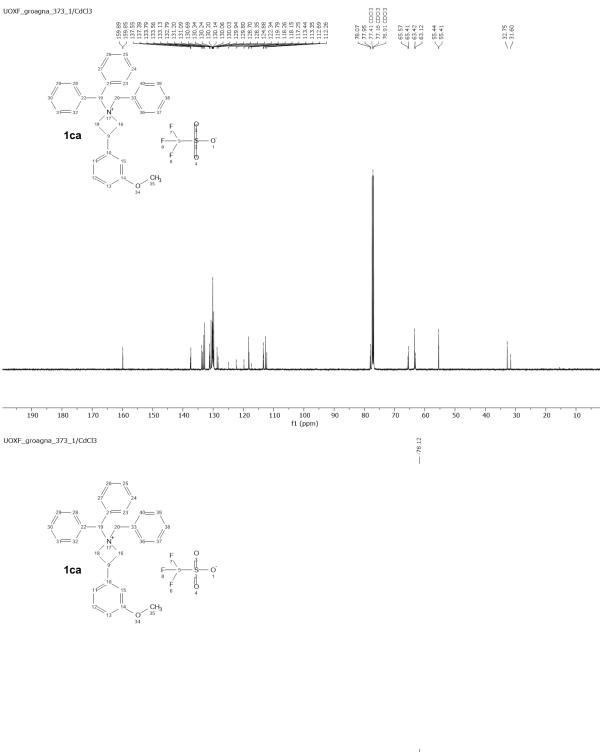


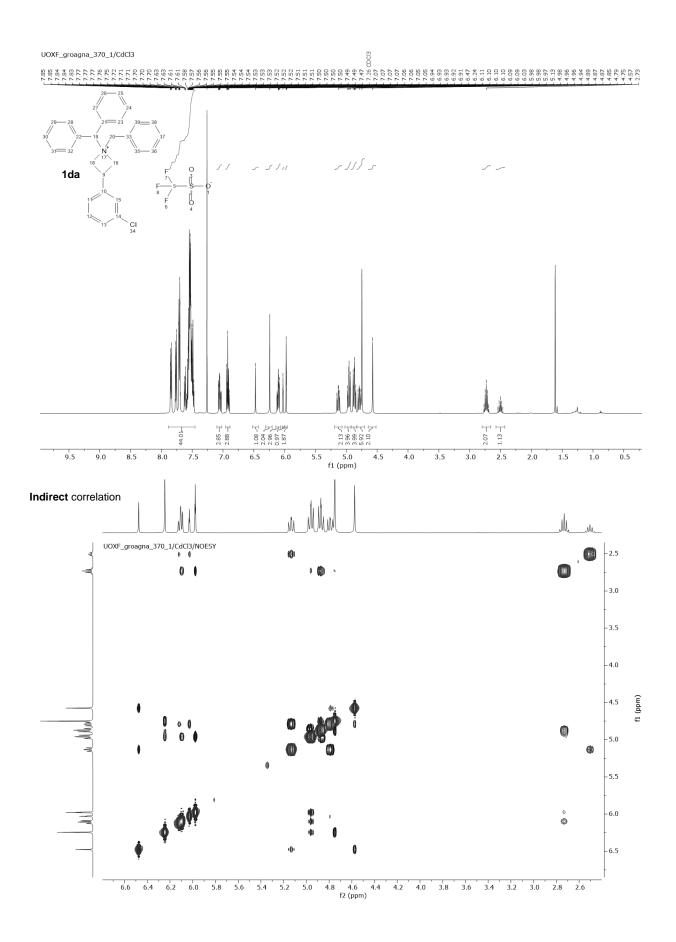


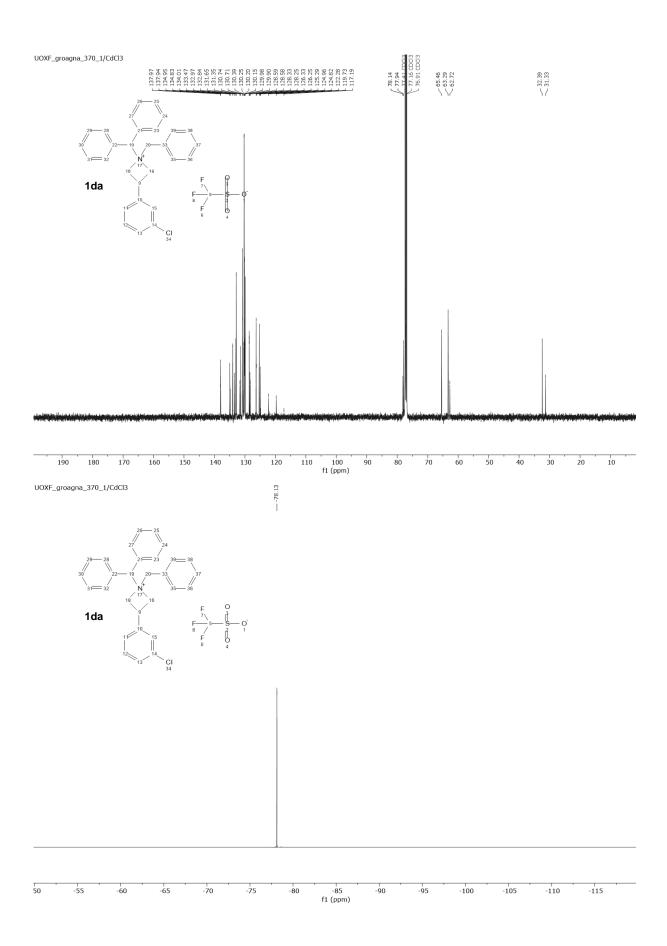

S203

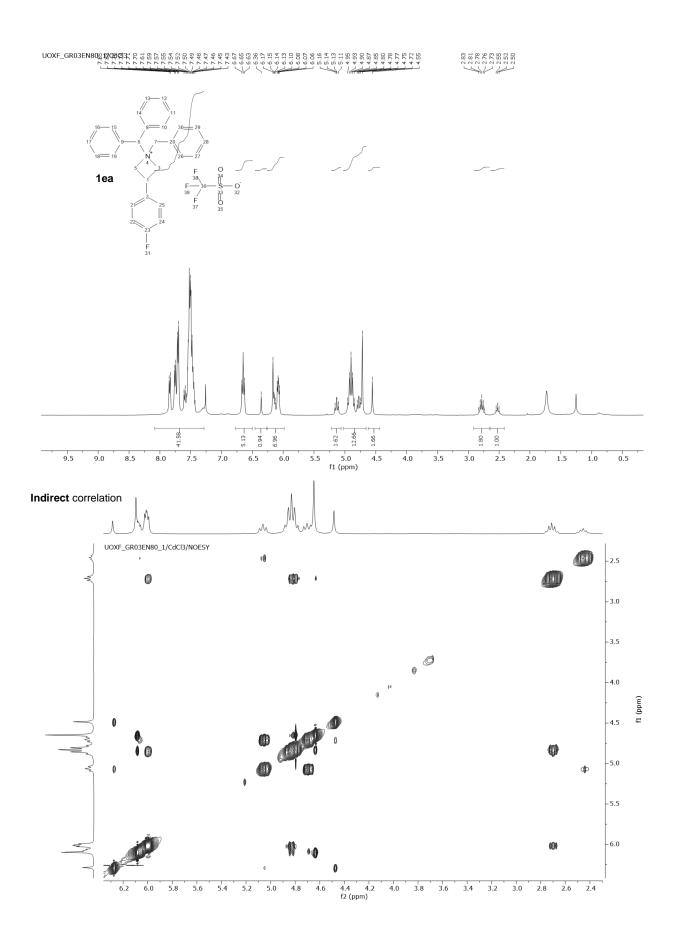


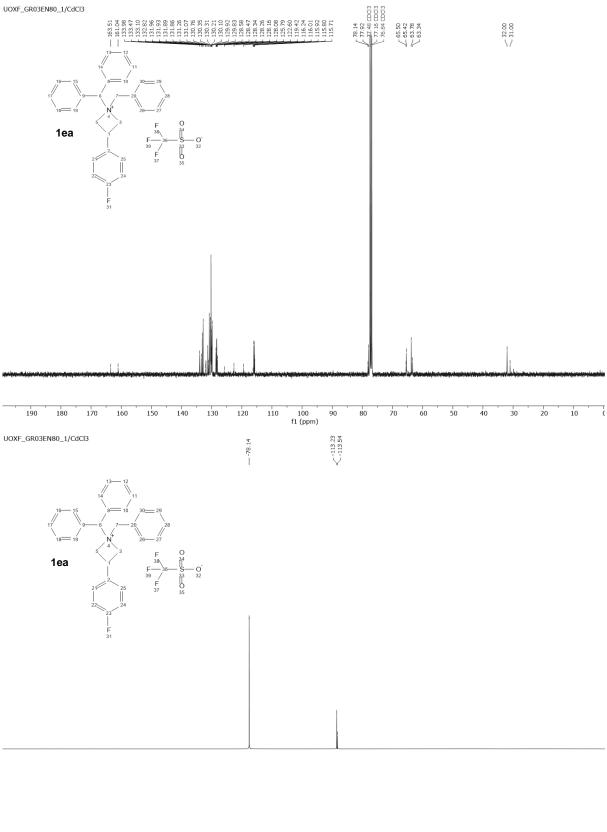


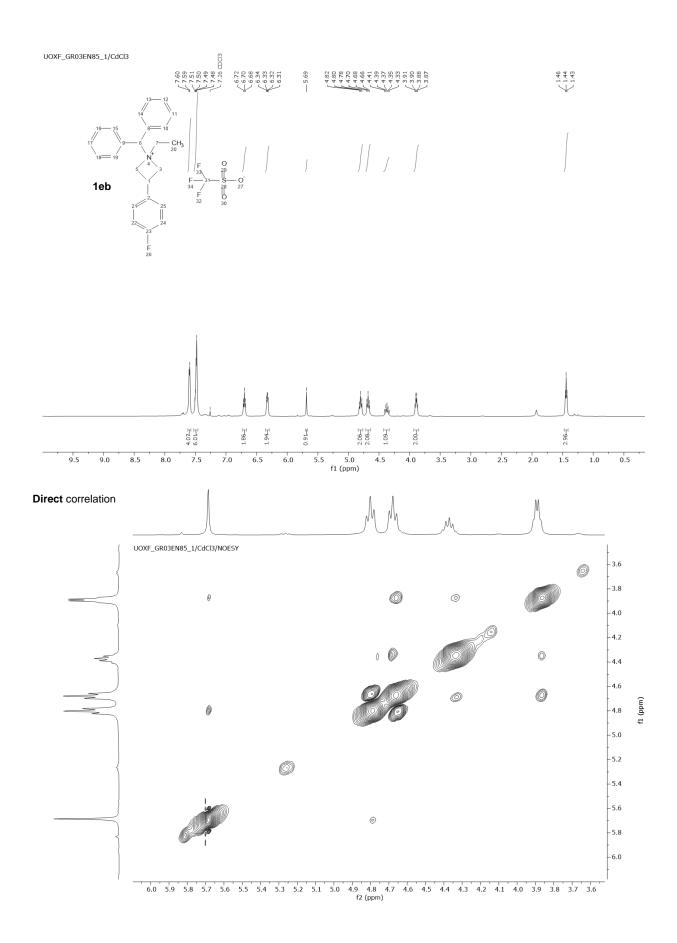

UOXF_groagna_372_1/CdCl3

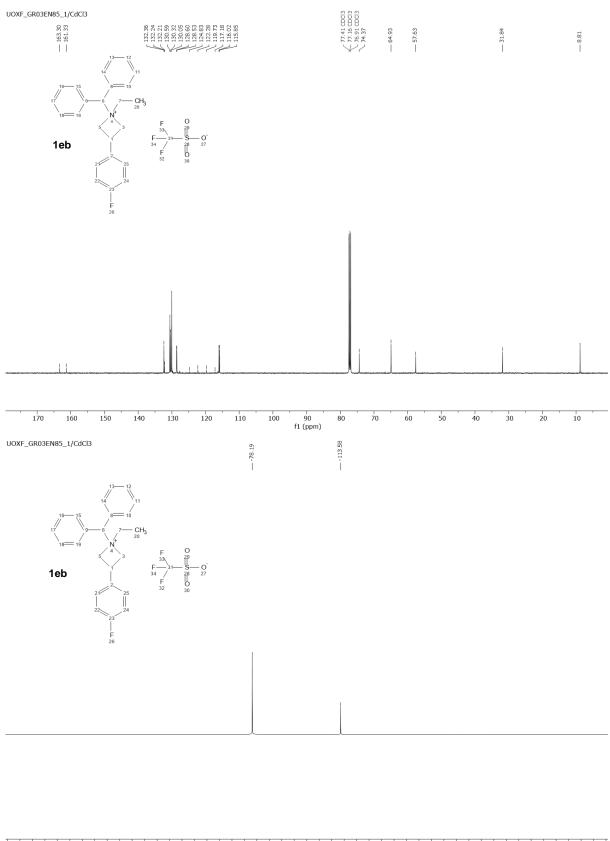


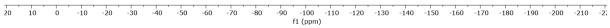


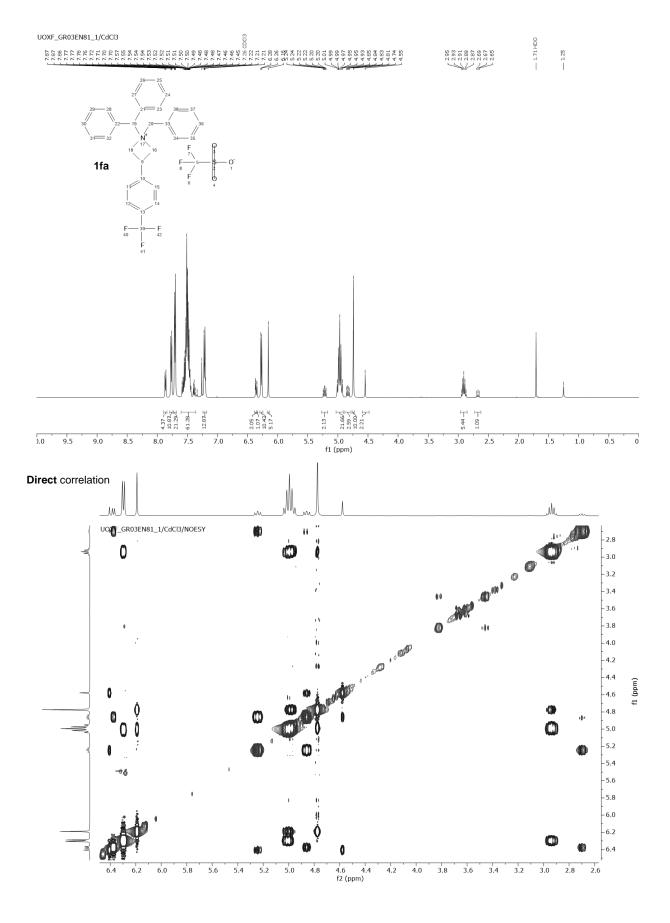


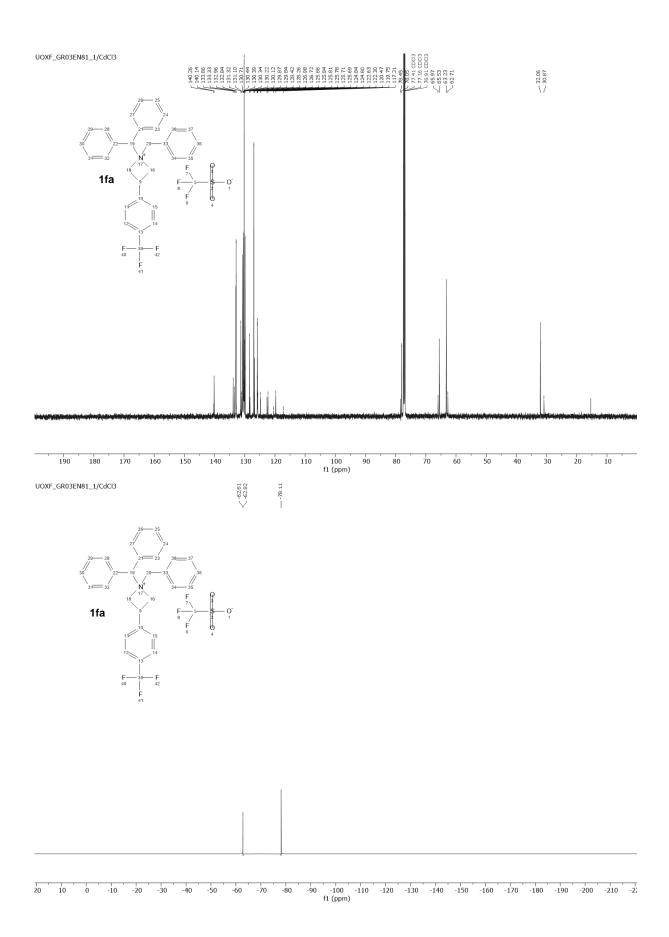

0 f1 (ppm) -40 200 40 20 -180 -200 180 160 140 120 100 80 60 -20 -60 -80 -100 -120 -140 -160

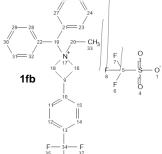


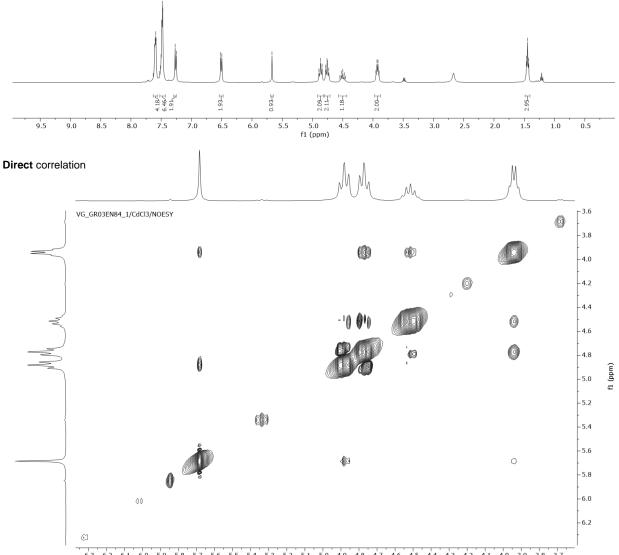


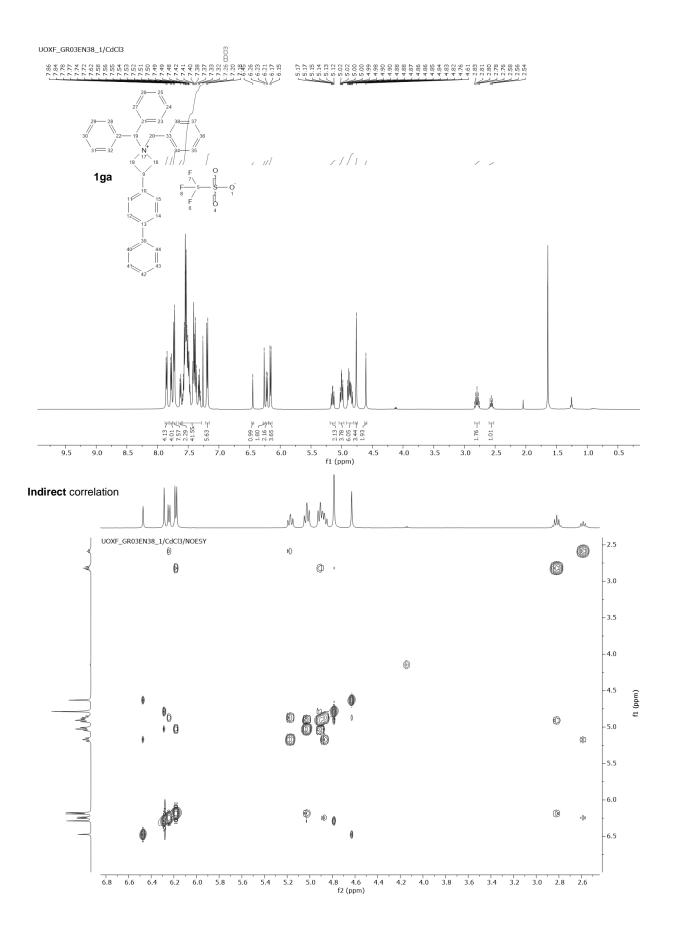




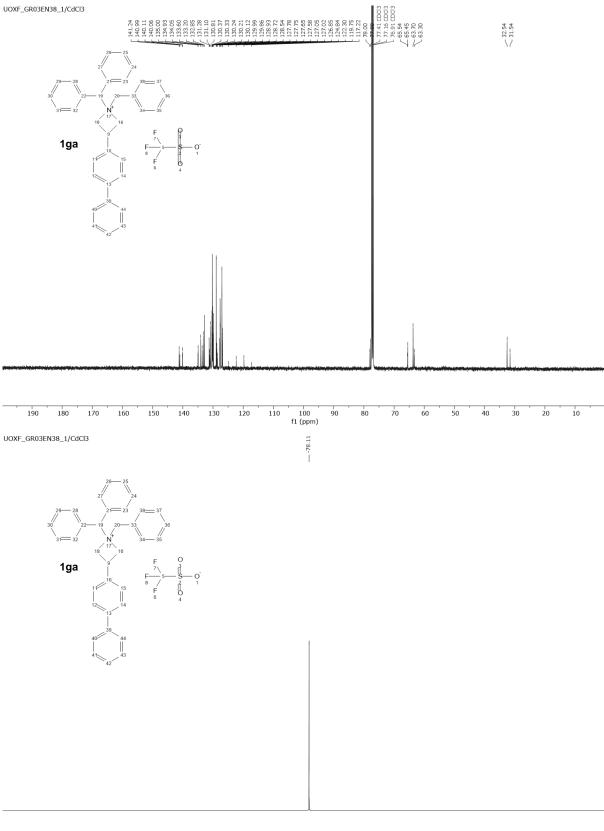


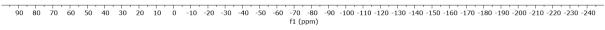


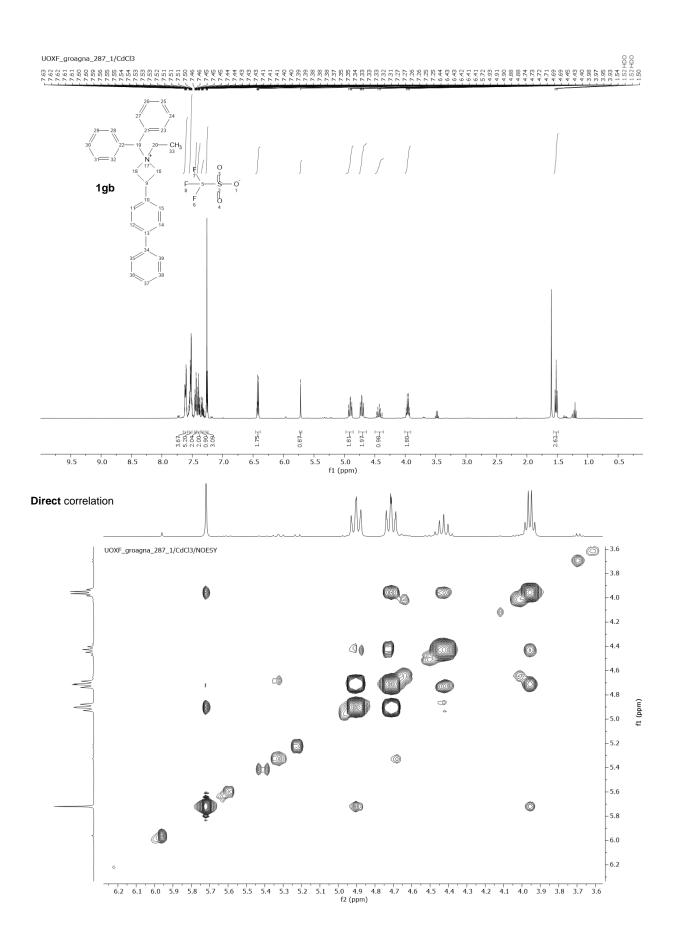


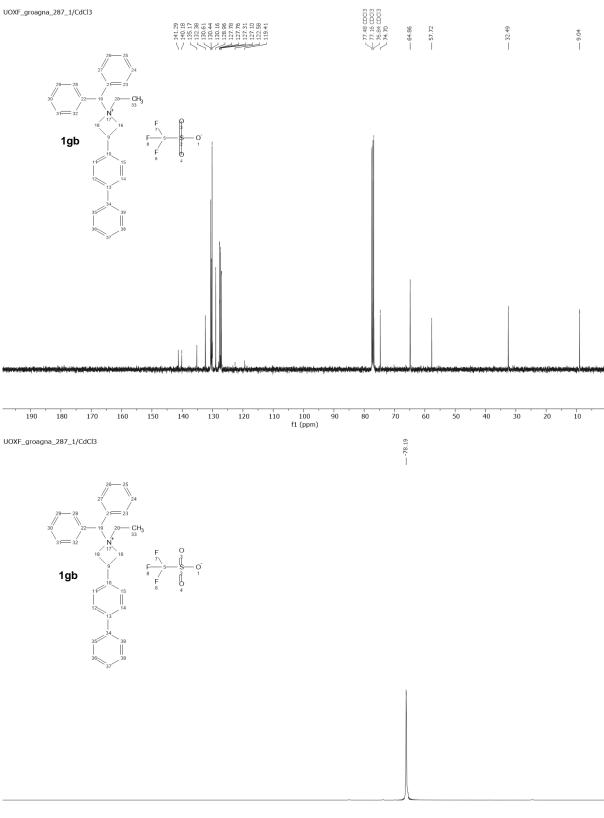


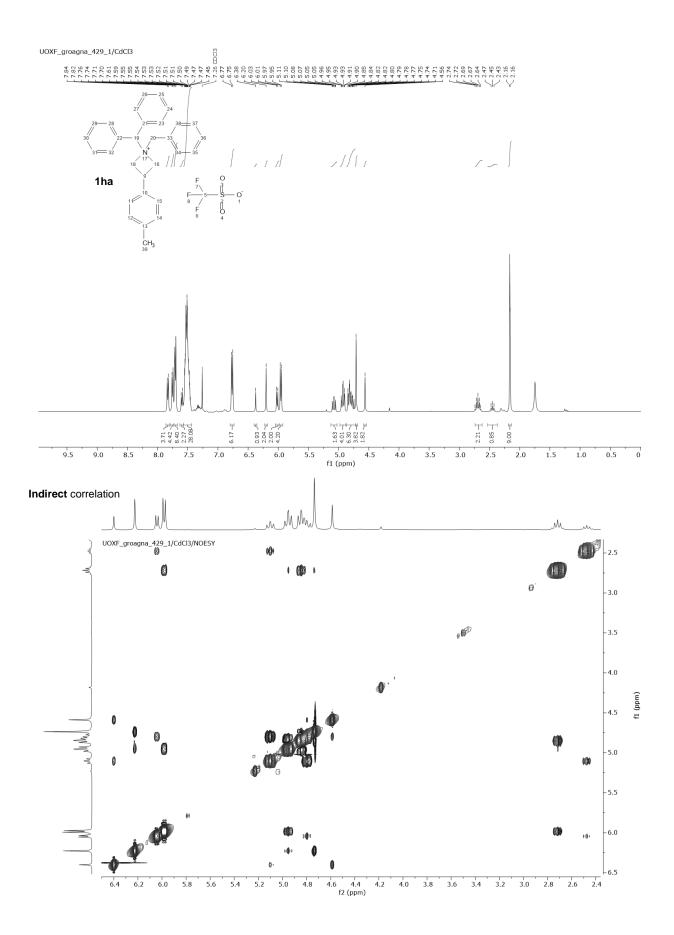
 $\bigwedge^{1.46}_{1.43}$

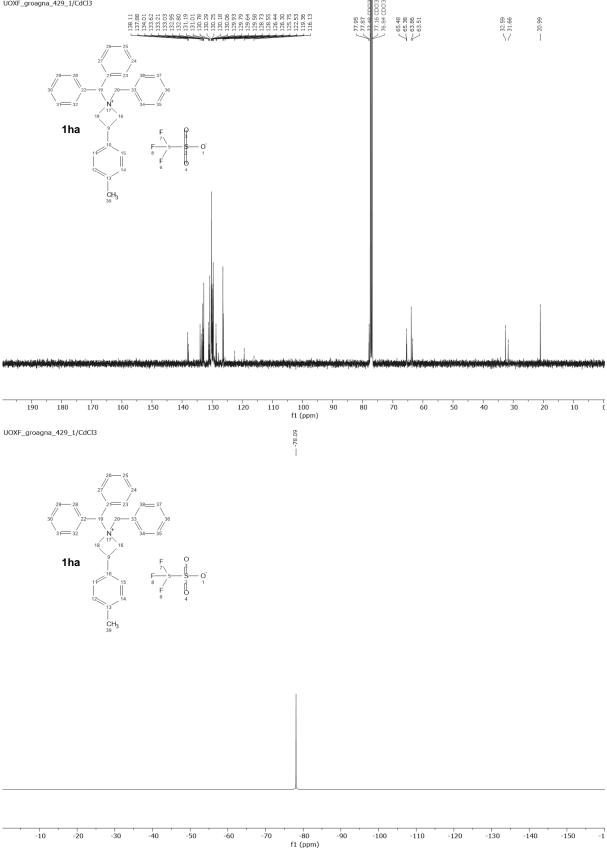


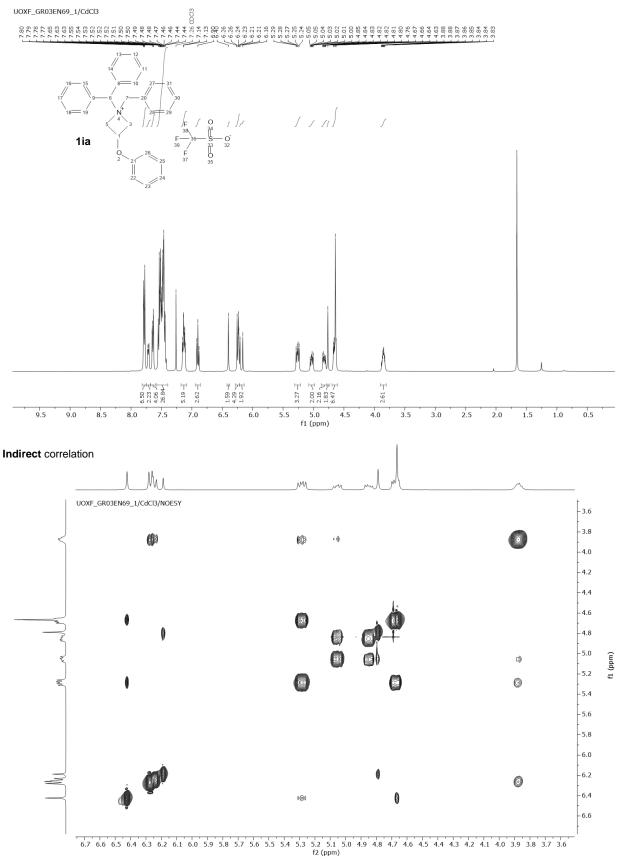

UOXF_GR03EN84_1/CdCl3



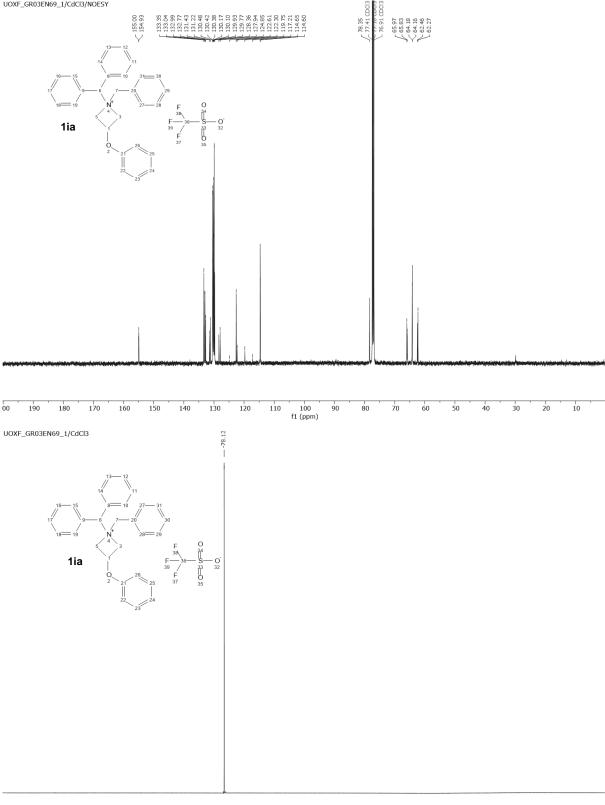


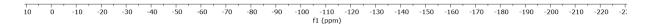


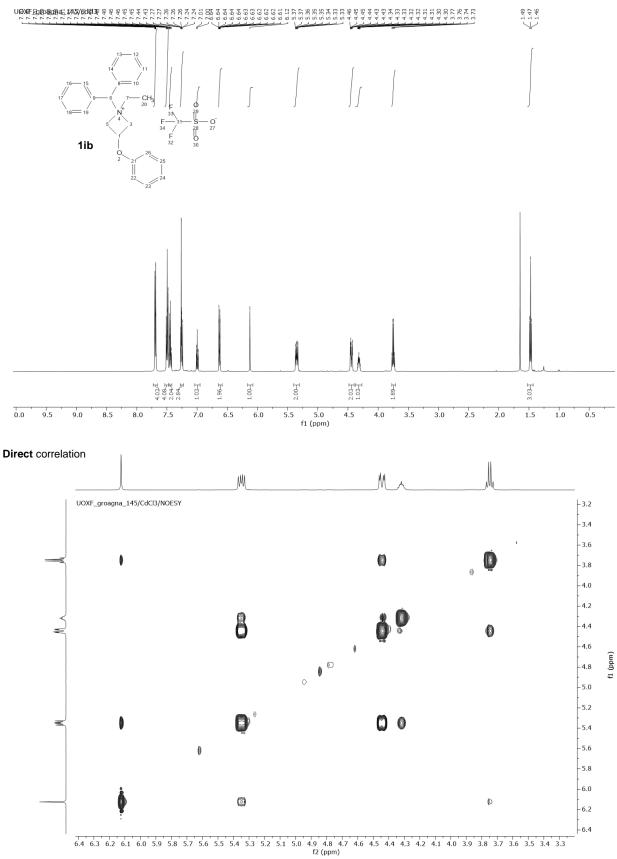


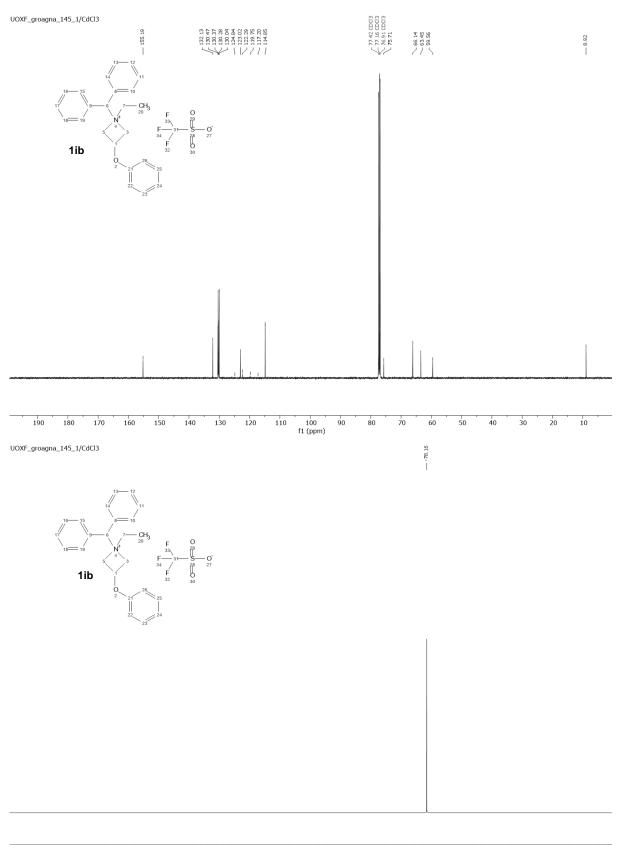


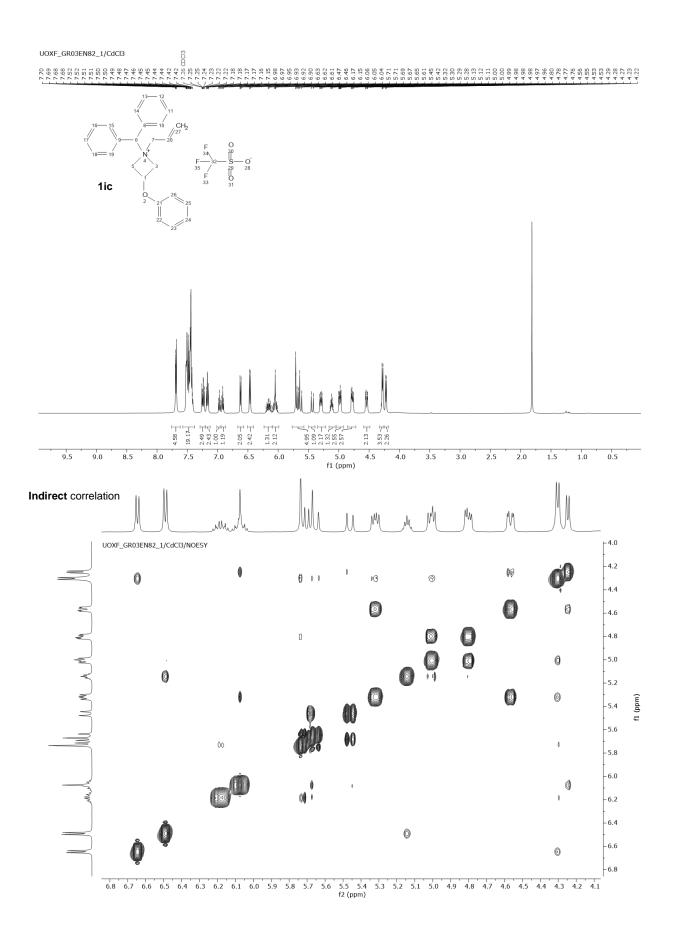
'6.7 -76.8 -76.9 -77.0 -77.1 -77.2 -77.3 -77.4 -77.5 -77.6 -77.7 -77.8 -77.9 -78.0 -78.1 -78.2 -78.3 -78.4 -78.5 -78.6 -78.7 -78.8 -78.9 f1 (ppm)

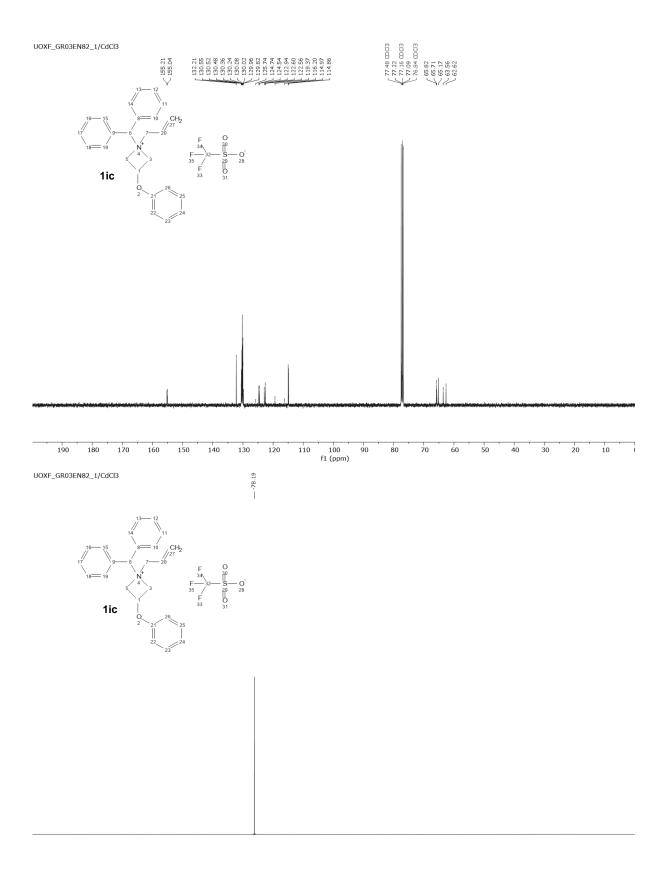


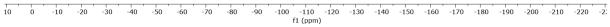


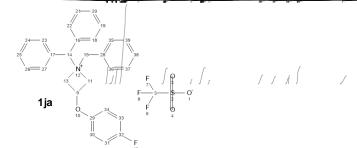


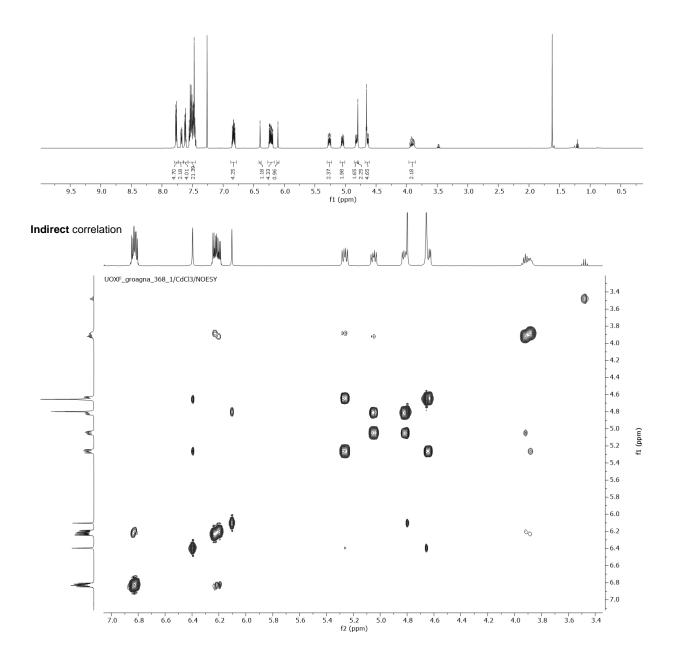


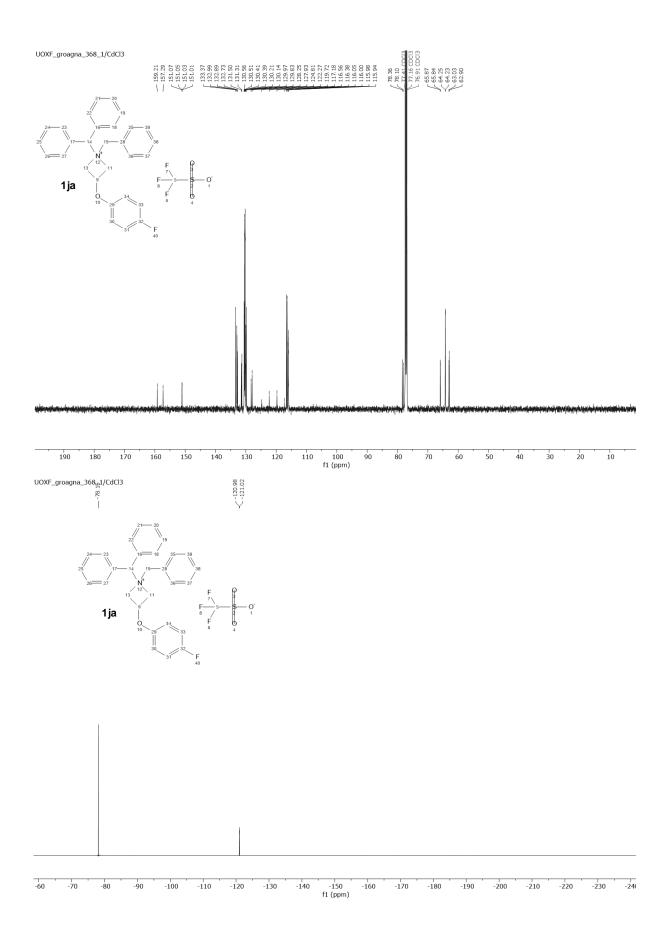


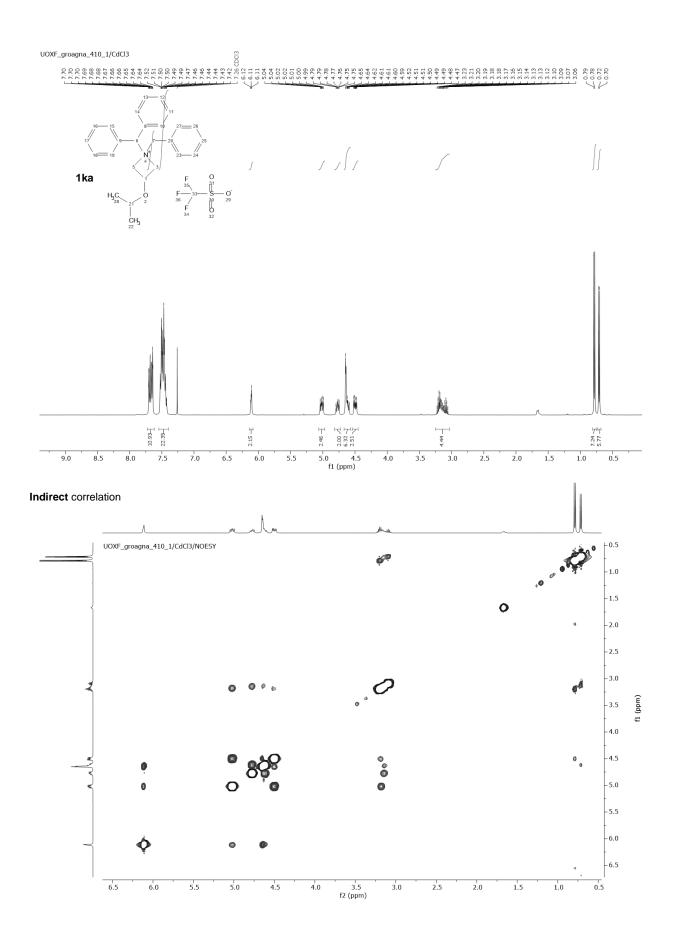


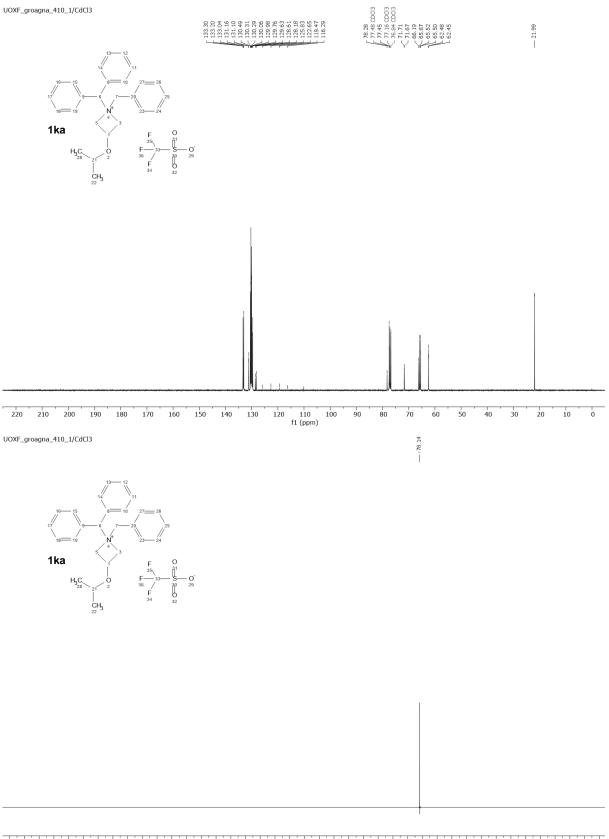


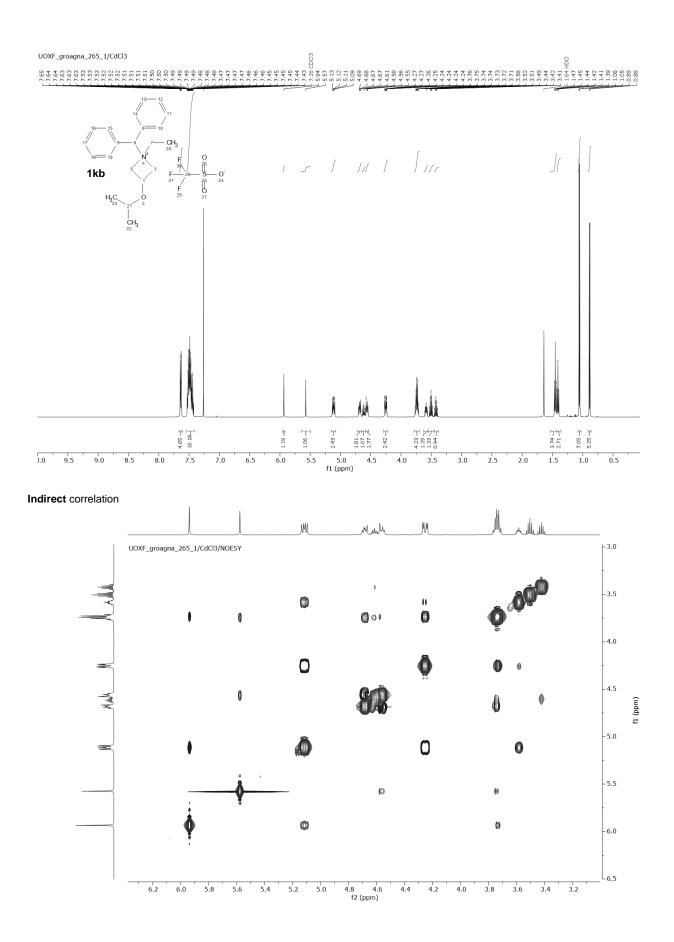

200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -20(f1 (ppm)

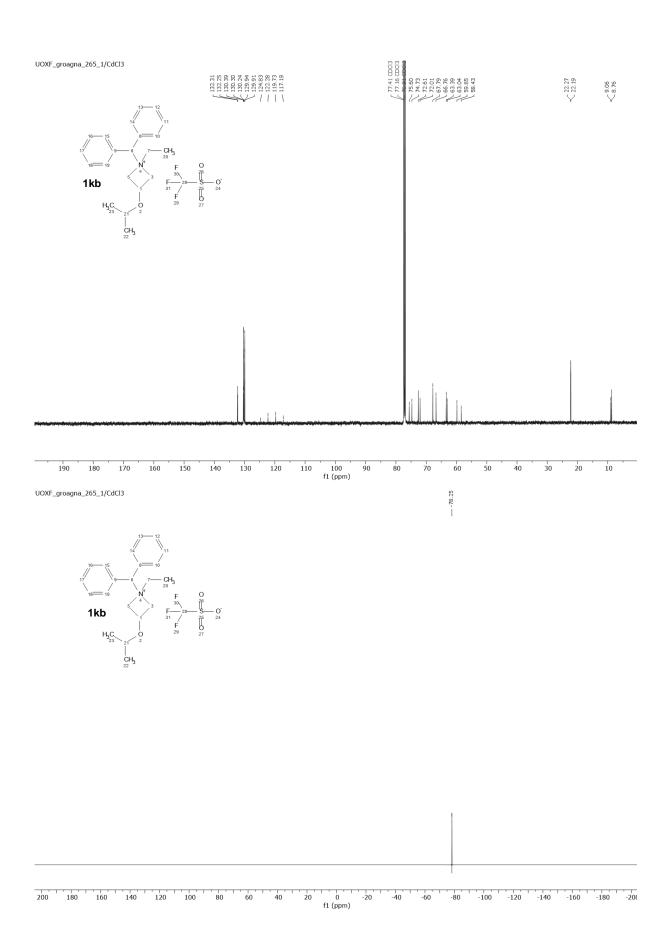


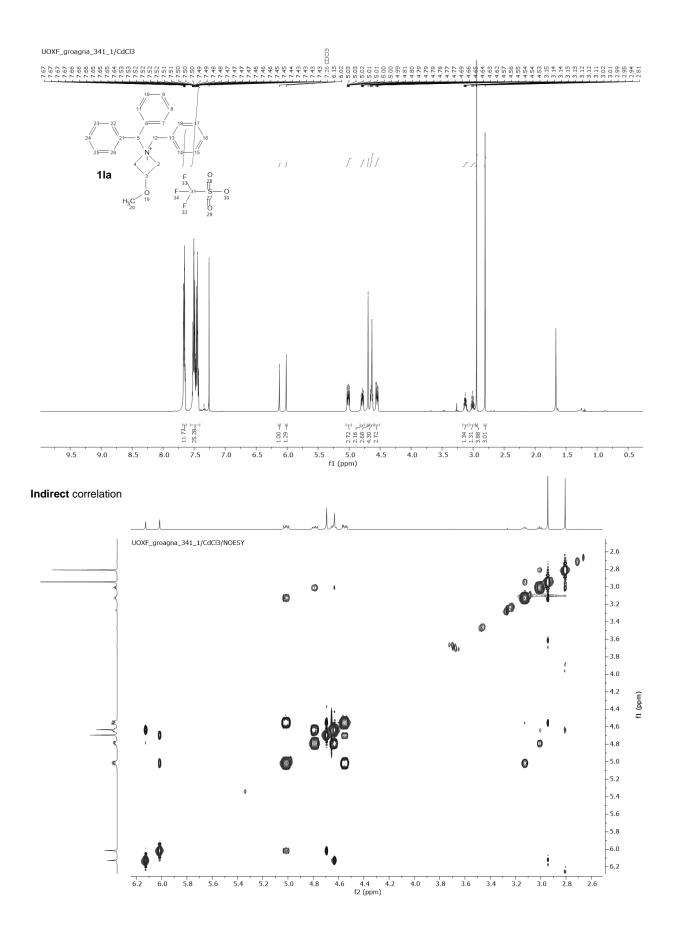


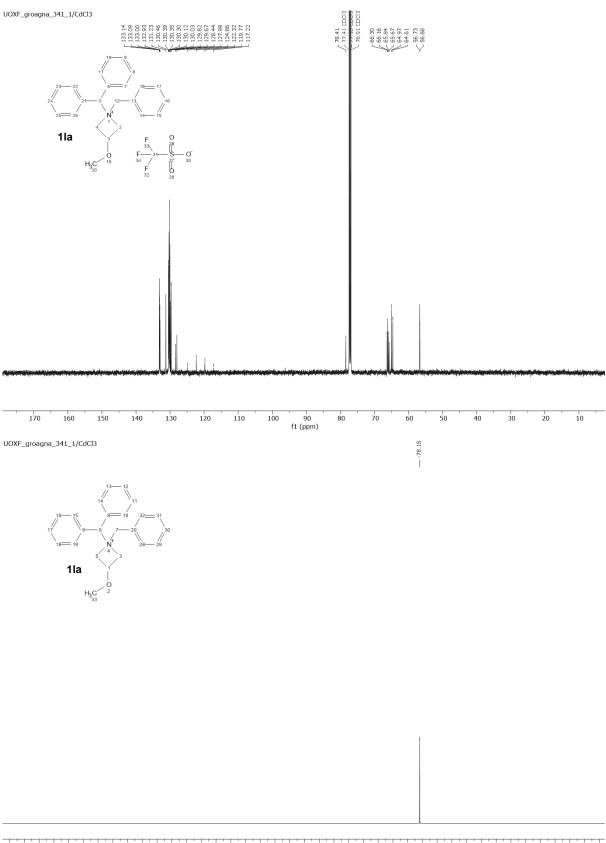




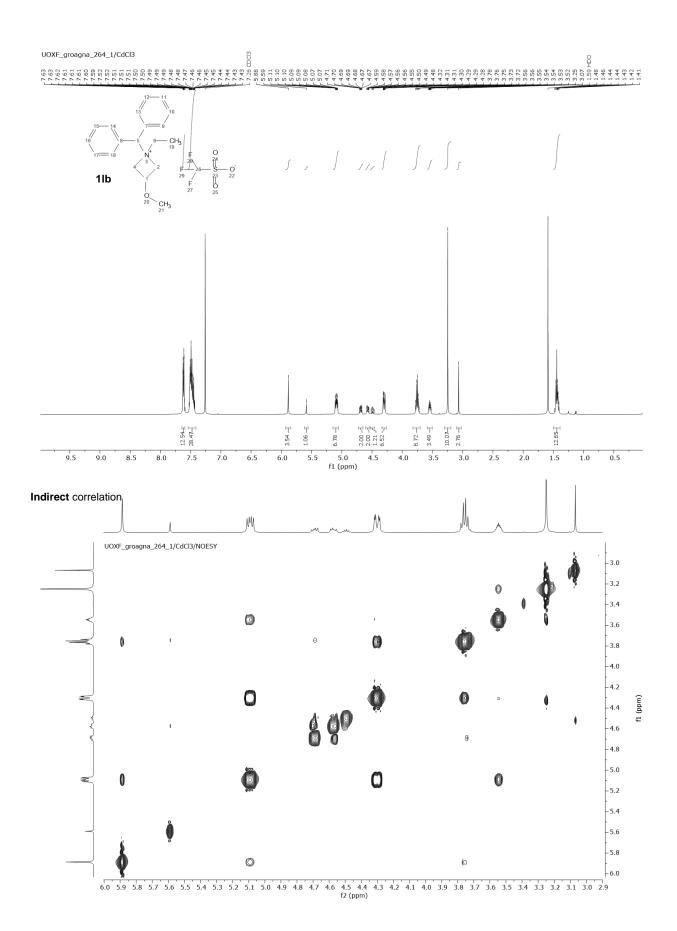


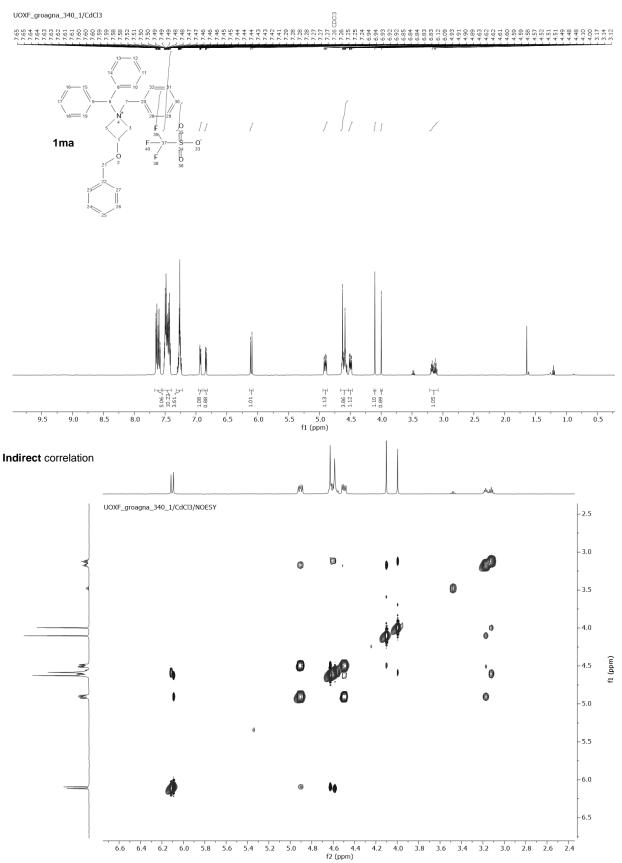


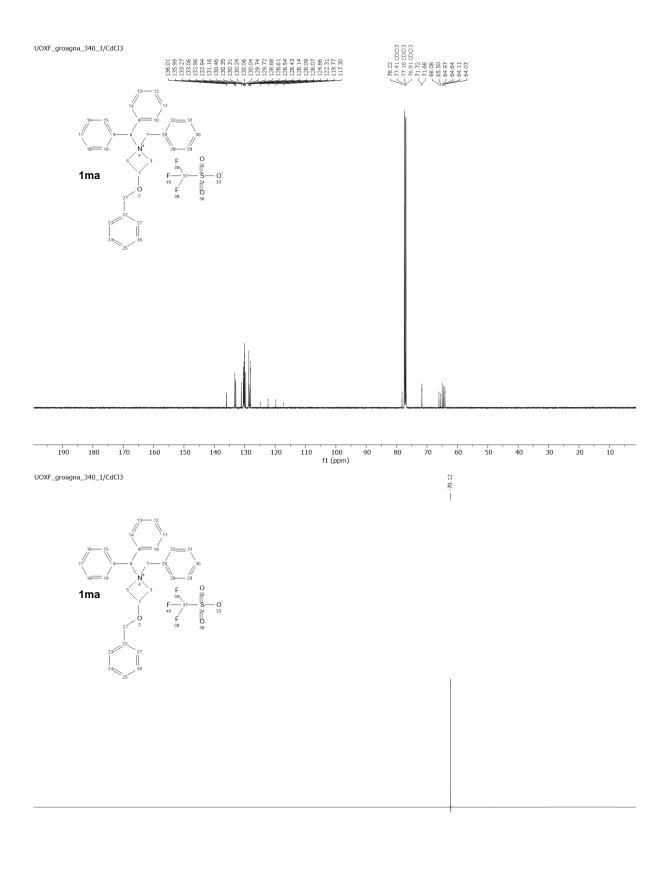


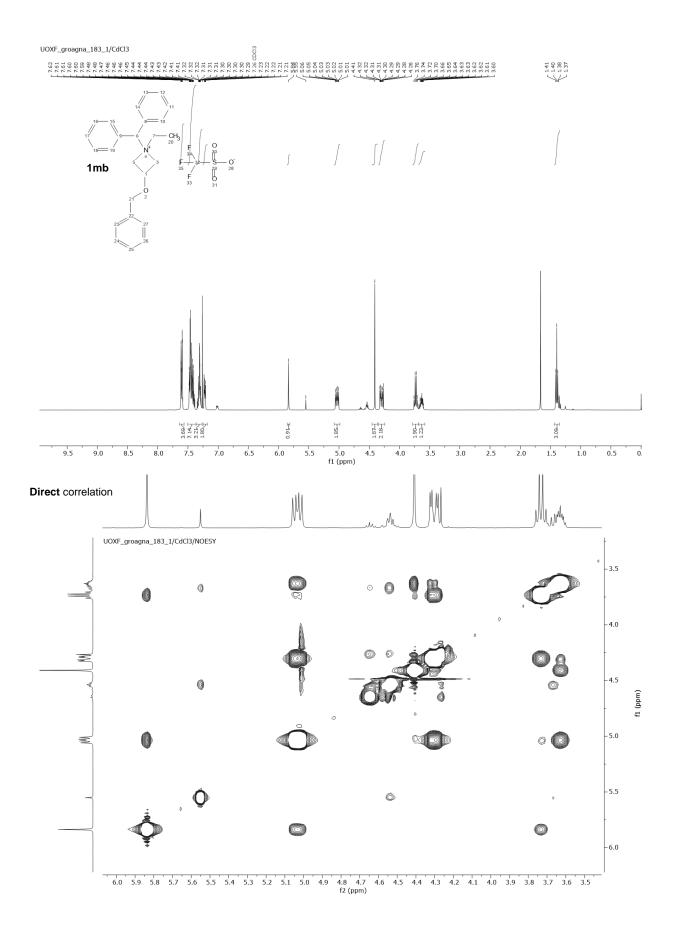


0 f1 (ppm) 200 180 40 20 -80 -180 -200 160 140 120 100 80 60 -20 -40 -60 -100 -120 -140 -160

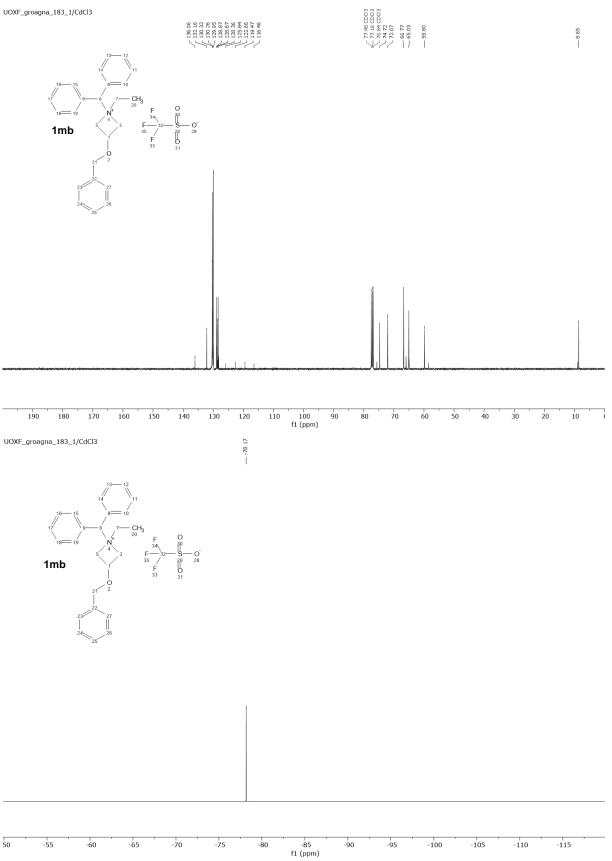


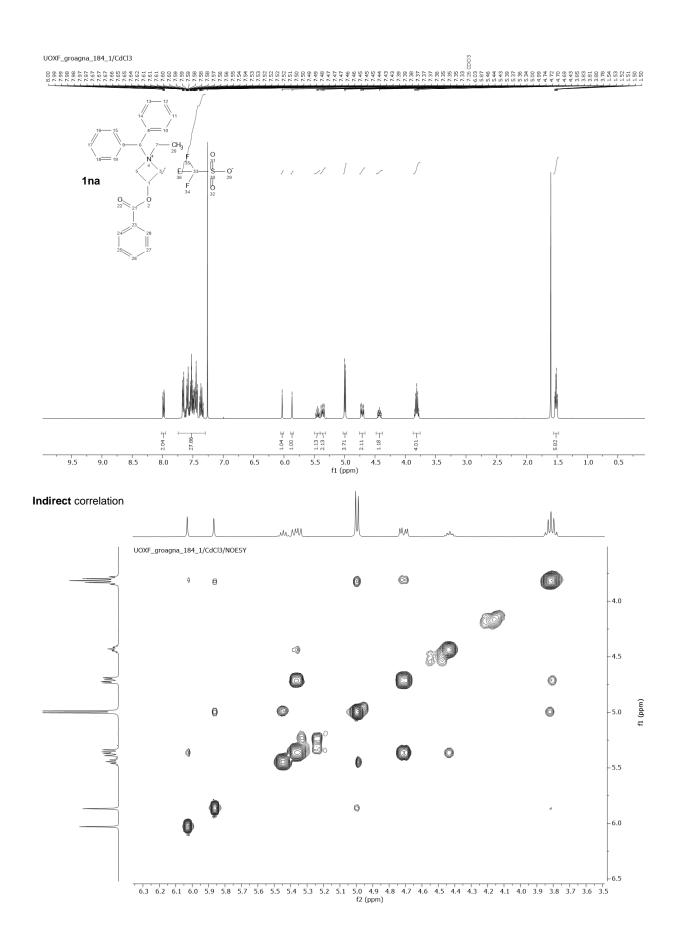

200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -20(f1 (ppm)

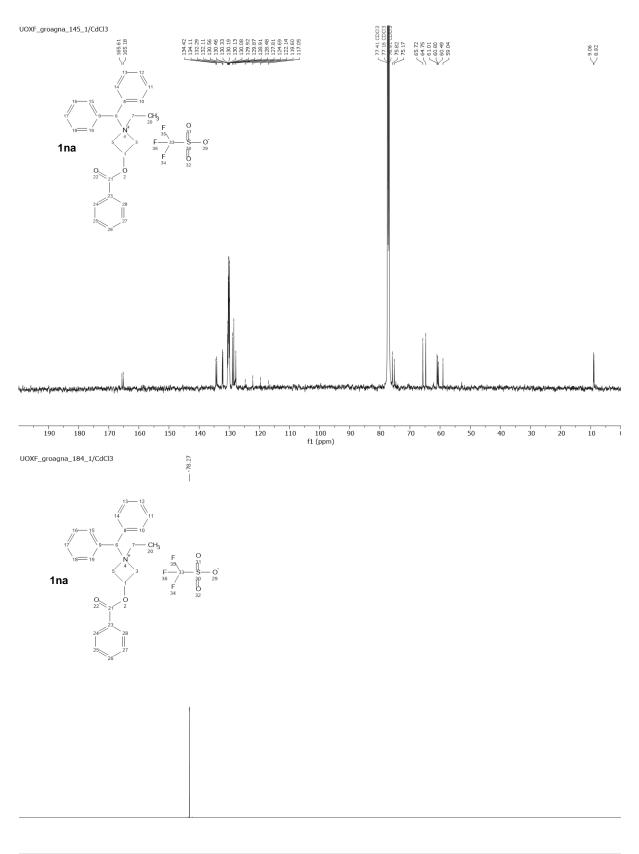


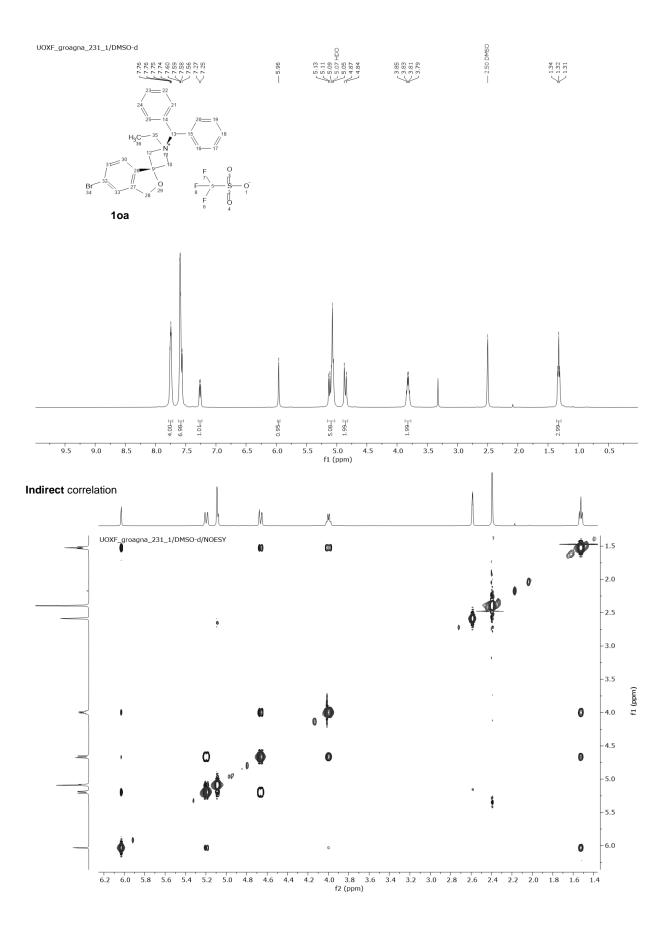


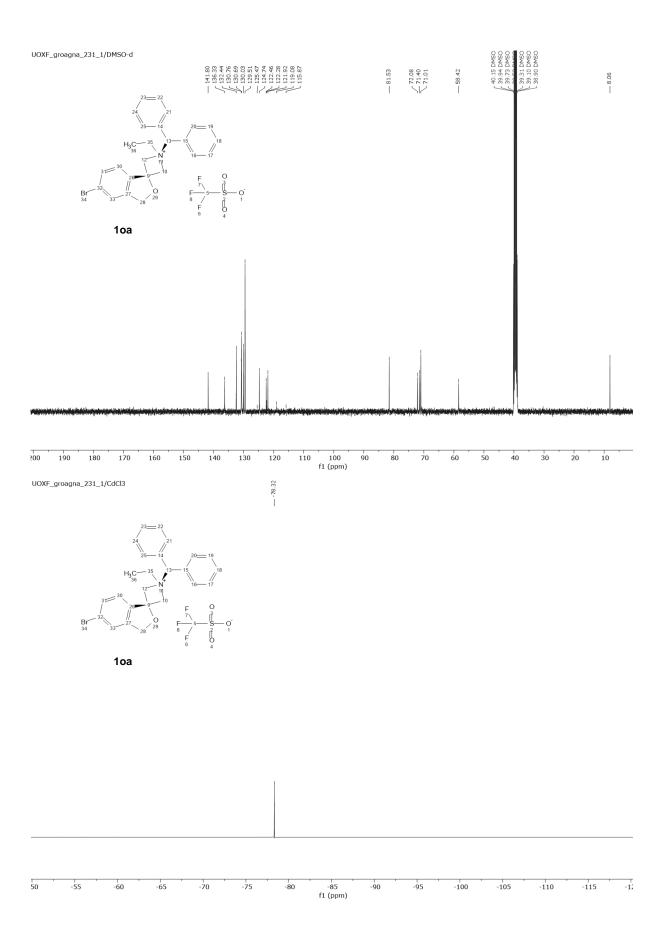
50 -55 -100 f1 (ppm) -60 -65 -70 -75 -80 -85 -90 -95 -110 -115 -145 -1 -105 -120 -125 -130 -135 -140

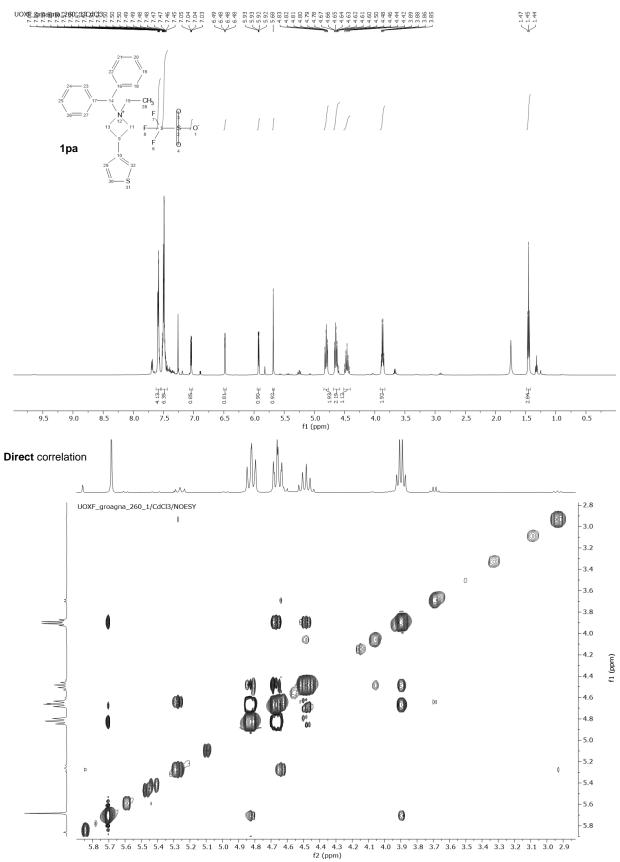


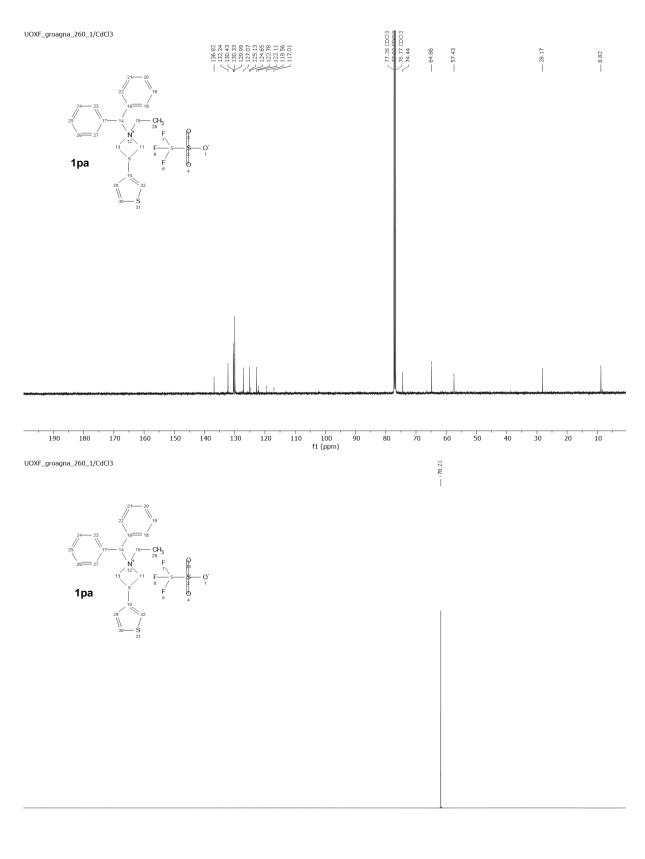


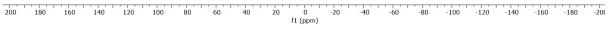

200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -20(f1 (ppm)

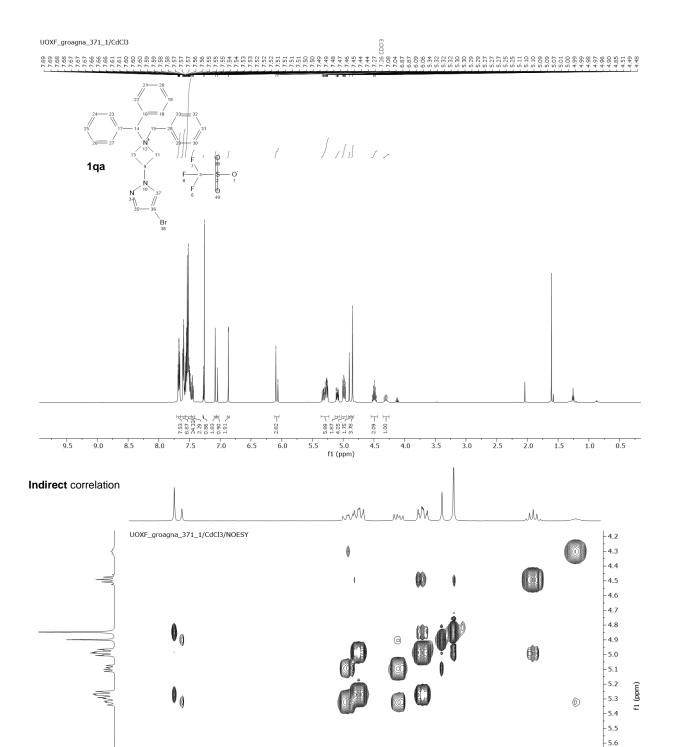









50 -100 f1 (ppm) -55 -145 -1 -60 -65 -70 -75 -80 -85 -90 -95 -105 -115 -120 -125 -130 -135 -140 -110



6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4

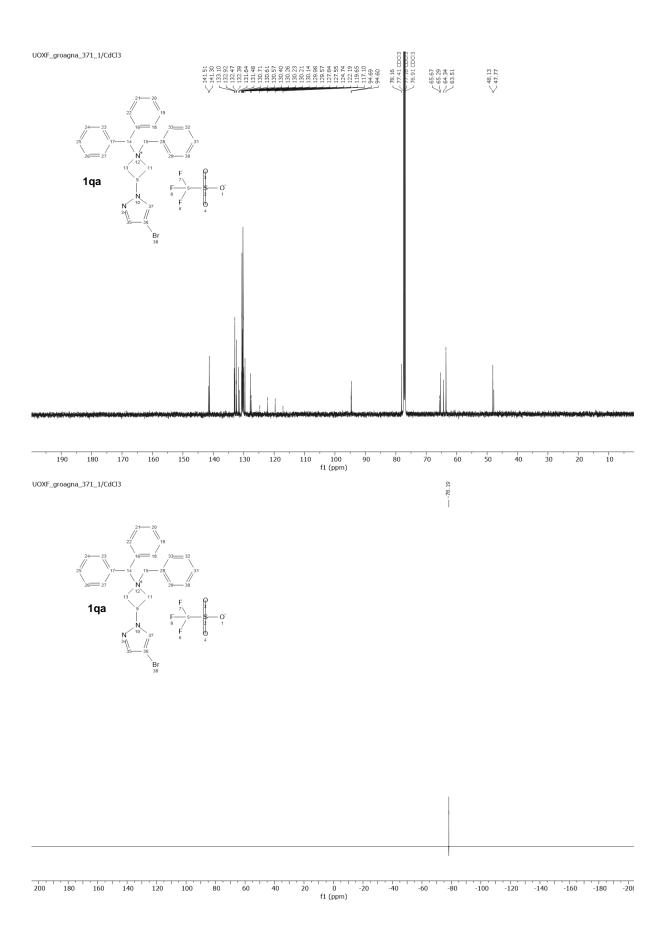
' o@c)

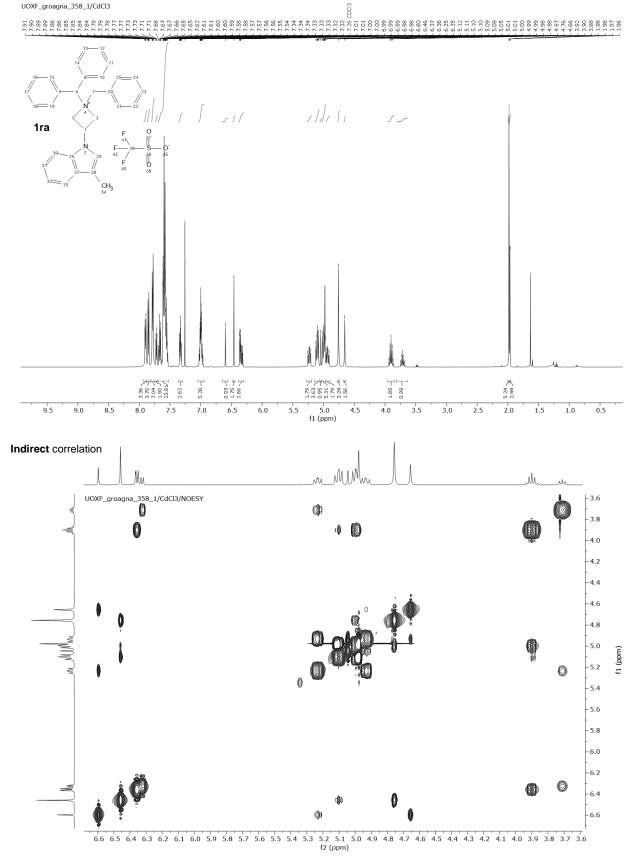
5.3 5.2 f2 (ppm)

5.1 5.0 4.9 4.8

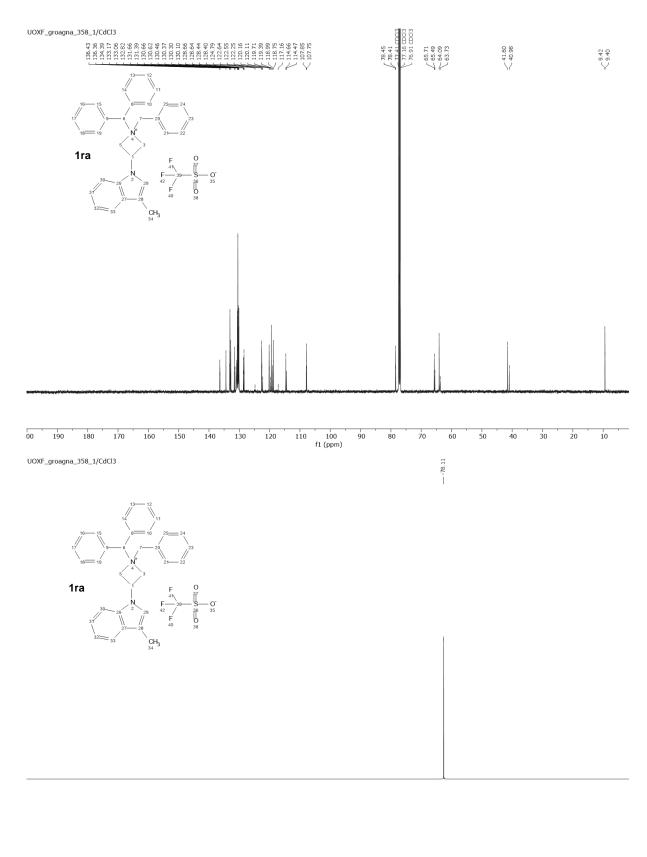
10

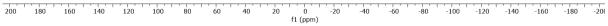
4.7

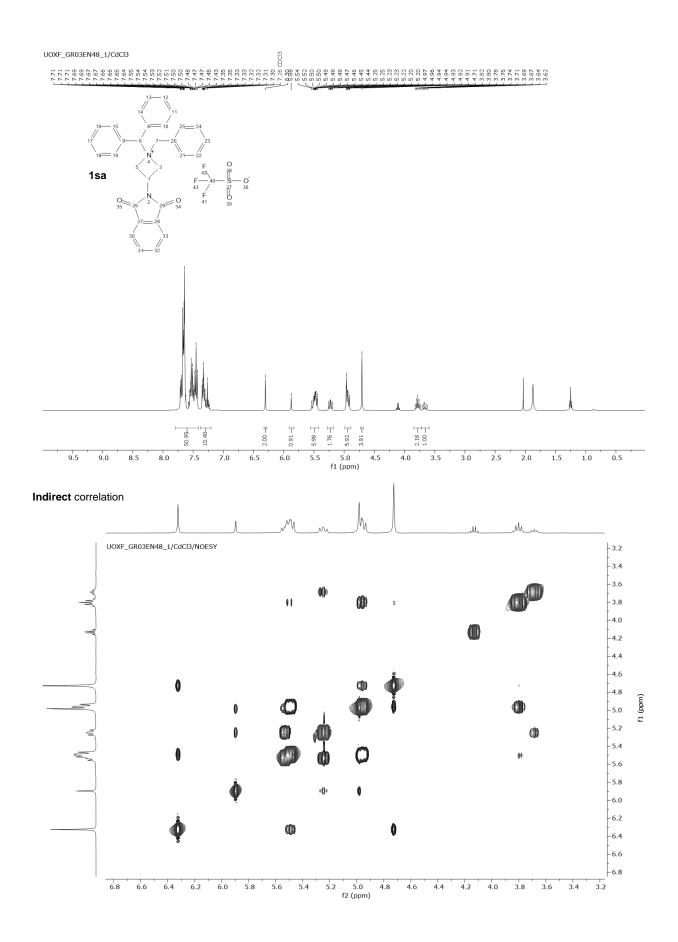

4.6

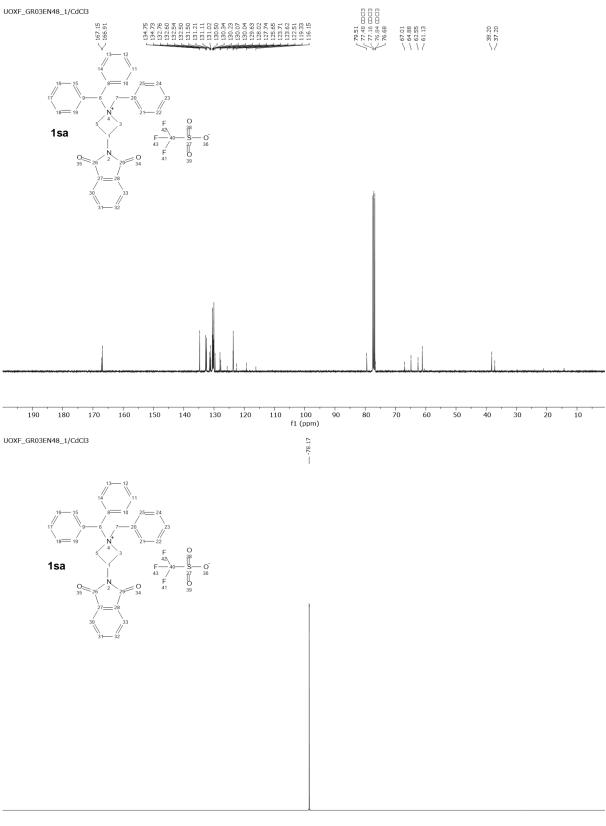

4.5

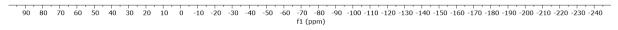
4.4 4.3 4.2

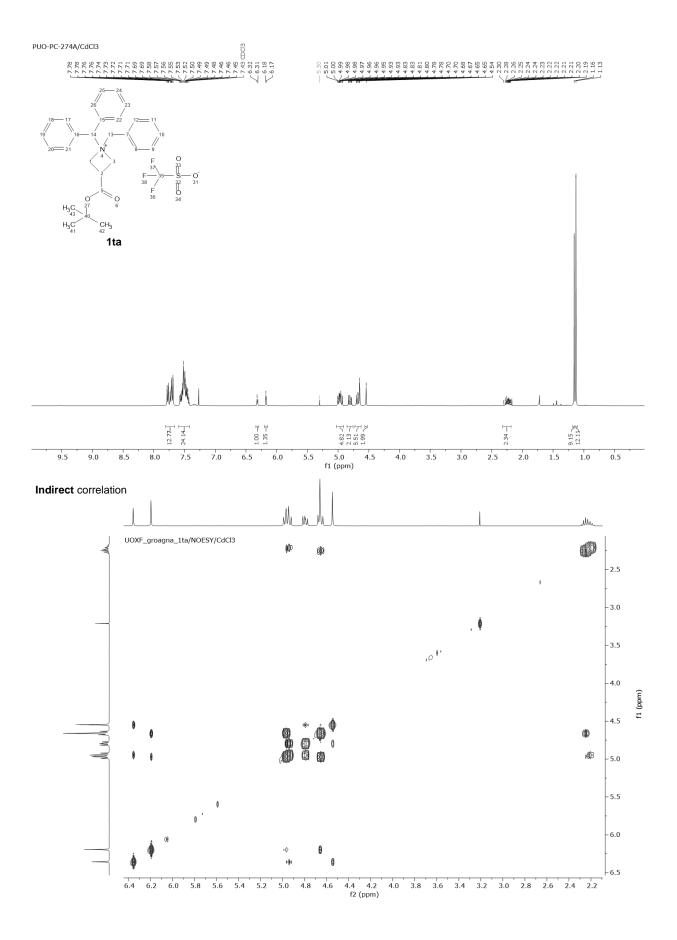

- 5.7 - 5.8 - 5.9 - 6.0

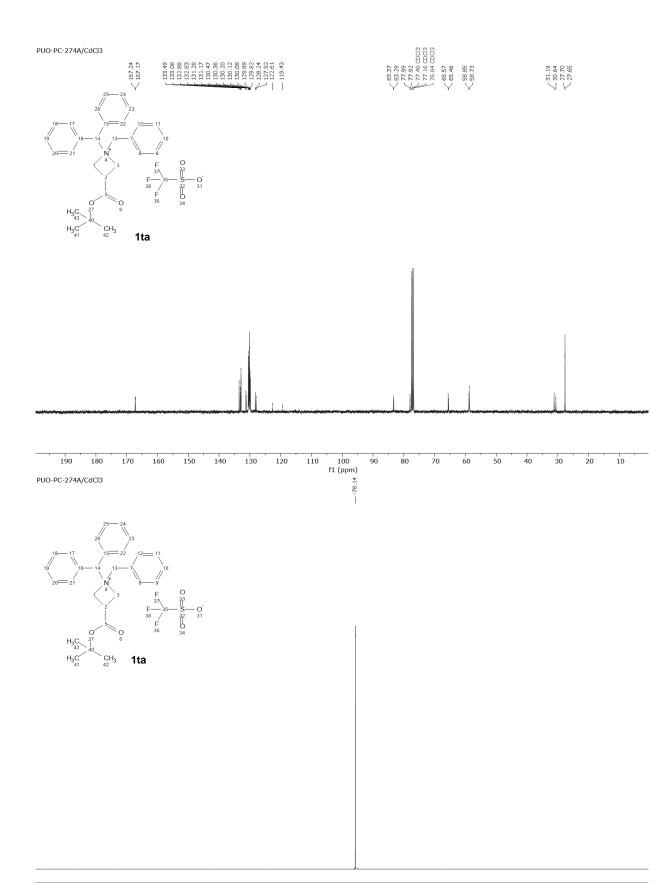

- 6.1 - 6.2 - 6.3 - 6.4

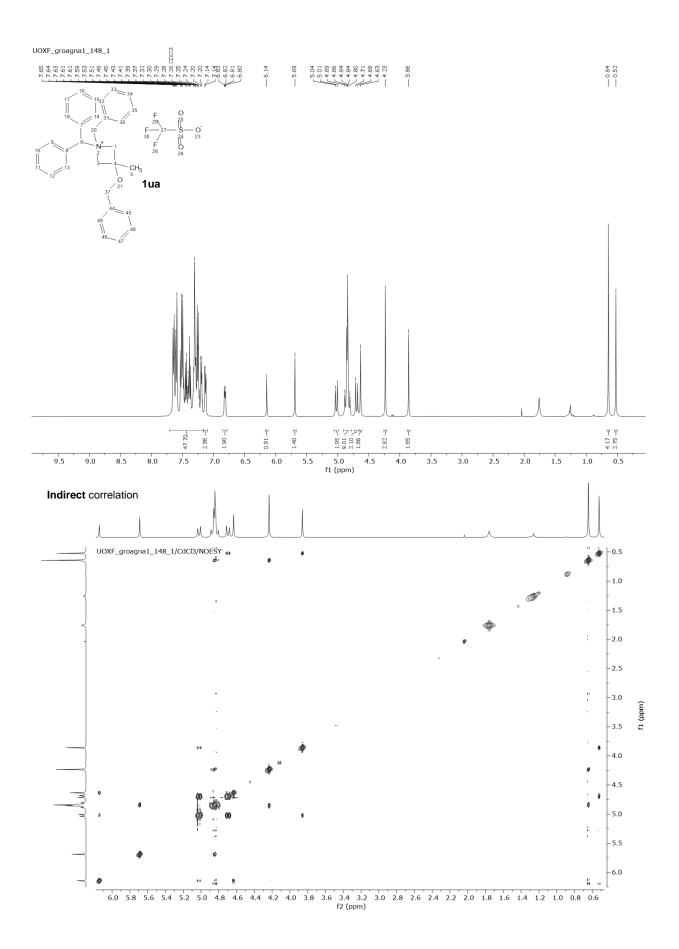


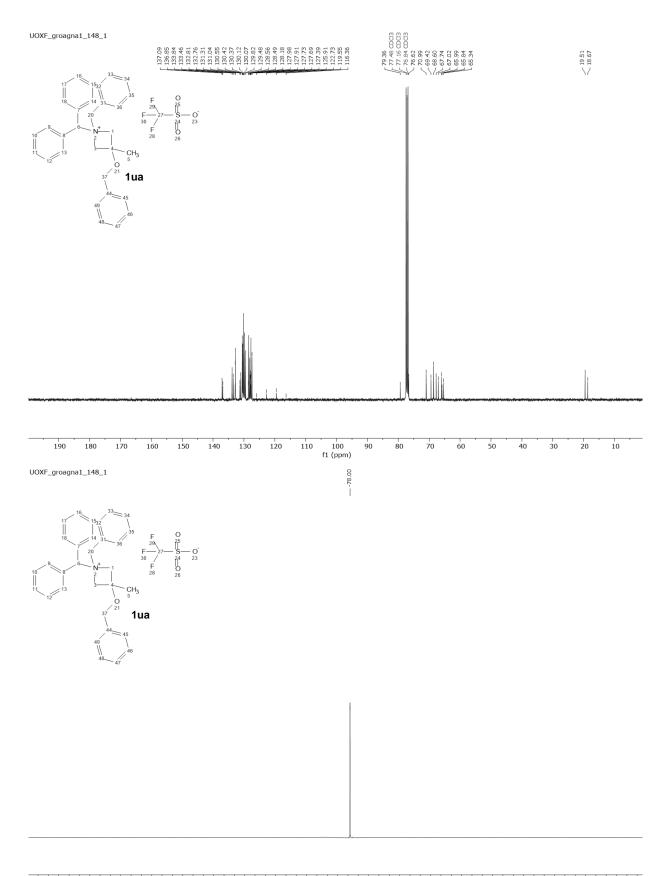

S256

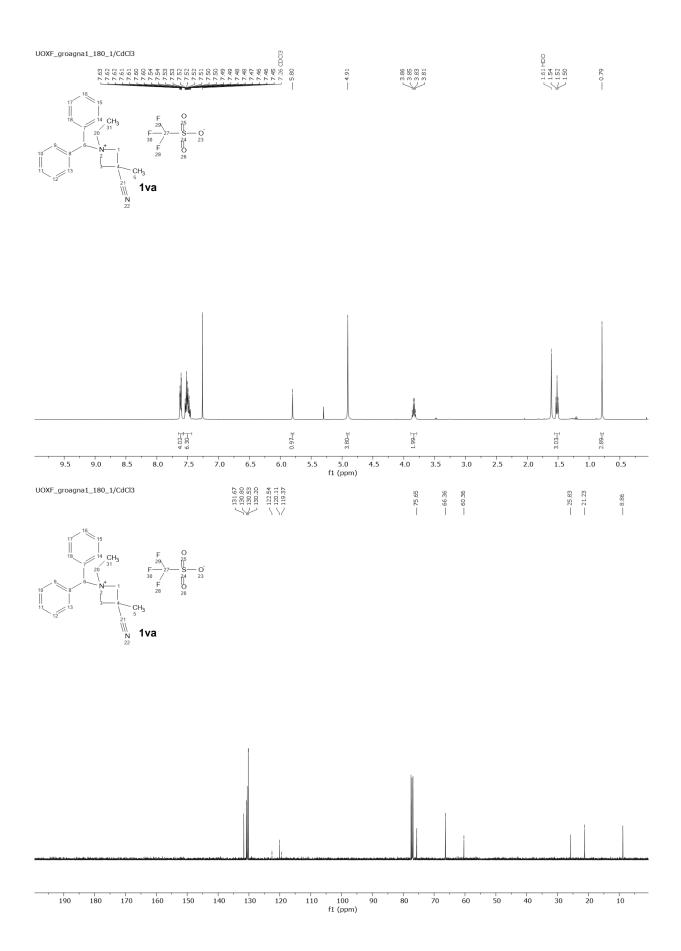




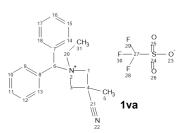


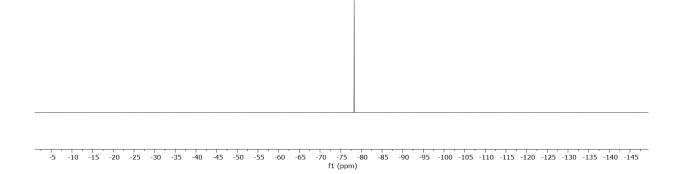


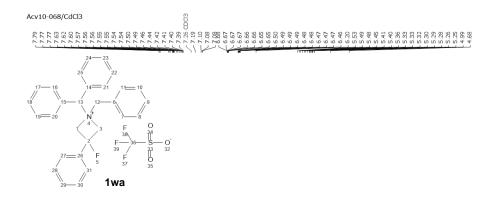


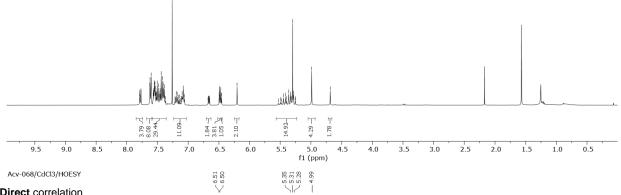


-5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 f1 (ppm)

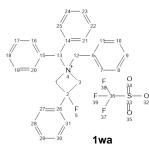


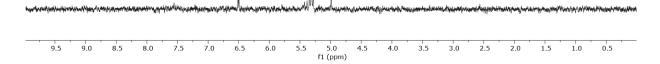


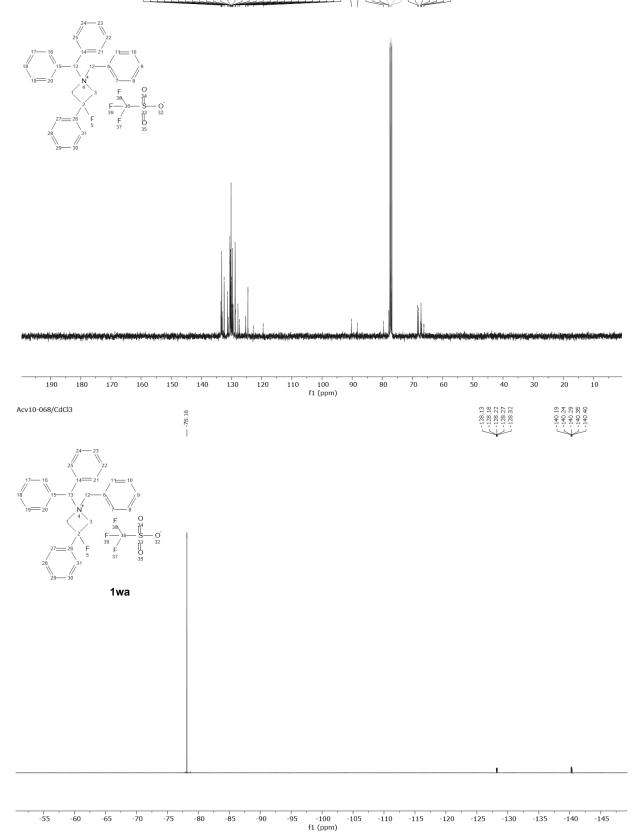

-5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 f1 (ppm)

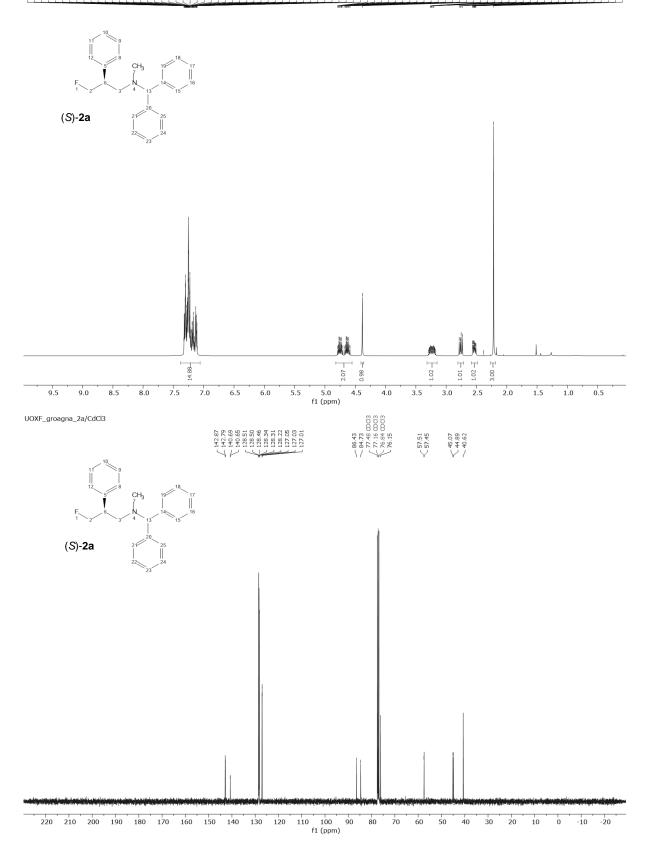


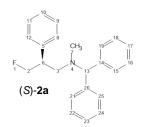
UOXF_groagna1_180_1/CdCl3



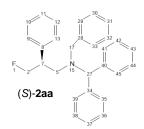


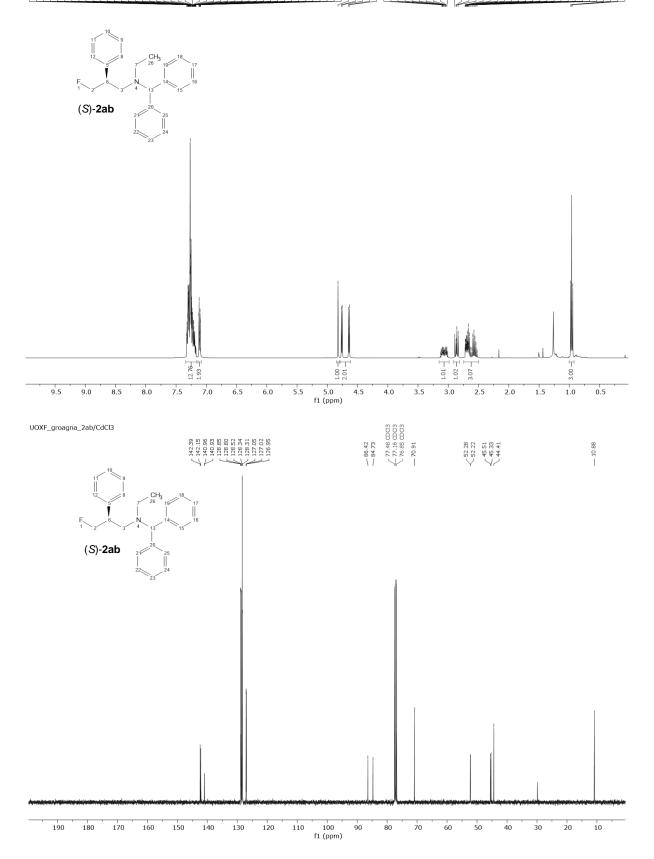

Direct correlation




133 54 133 55 133 55 133 55 133 55 133 55 133 55 133 55 133 55 133 55 133 55 133 55 133 55 130 55 130 55 130 55 130 55 135 55 155 55 155 55 155 55 155 55 155 55 15

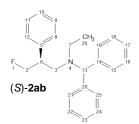
--222.08 --222.08 --222.14 --222.21 --222.20 --222.25 --222.25 --222.33 --222.33

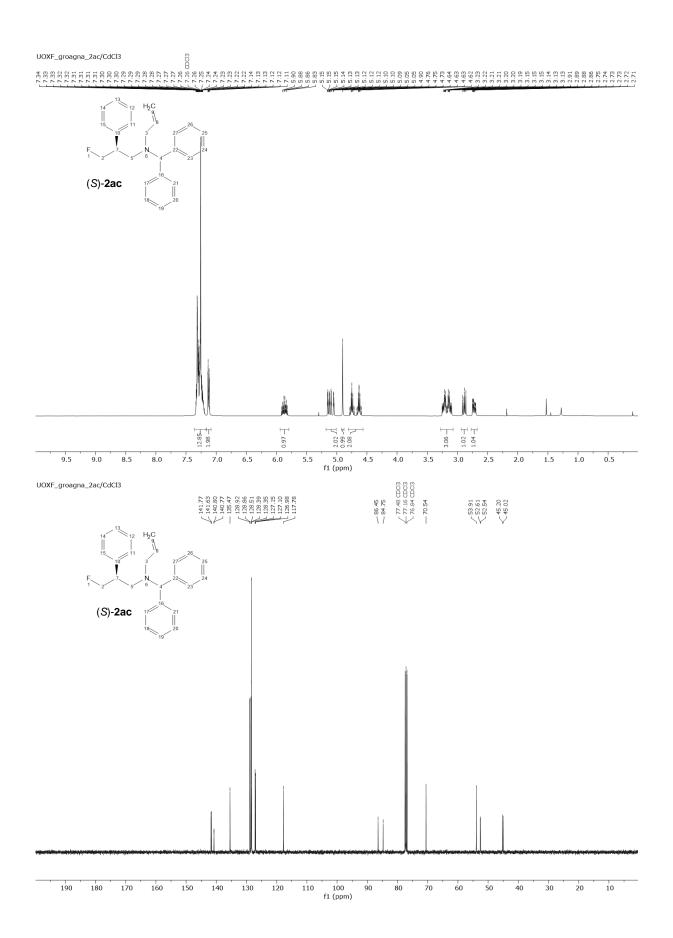

UOXF_groagna_2a/CdCl3



-220.91 -220.97 -220.97 -220.97 -221.04 -221.04 -221.04 -221.10 -221.115 -221.115 -221.115

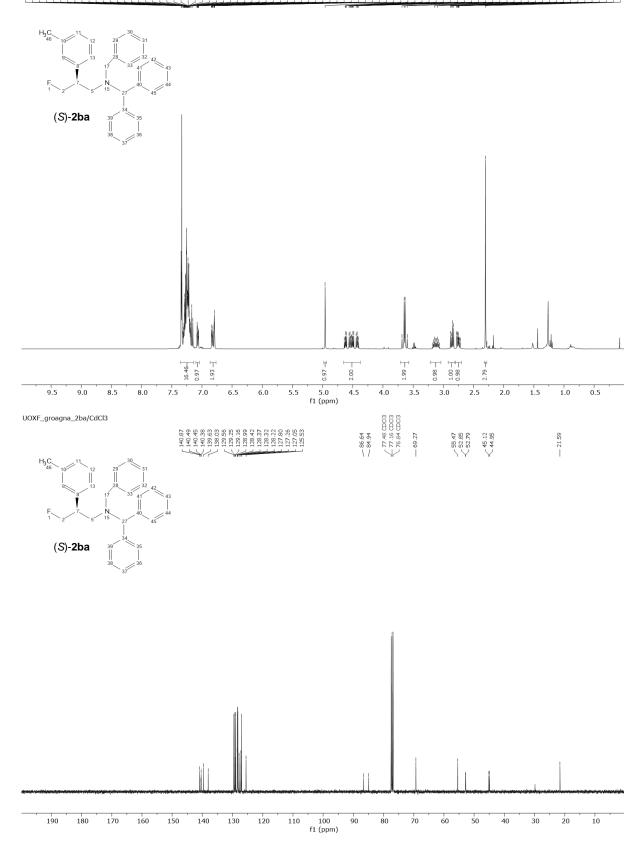
UOXF_groagna_2aa/CdCl3



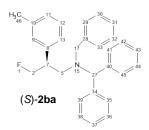


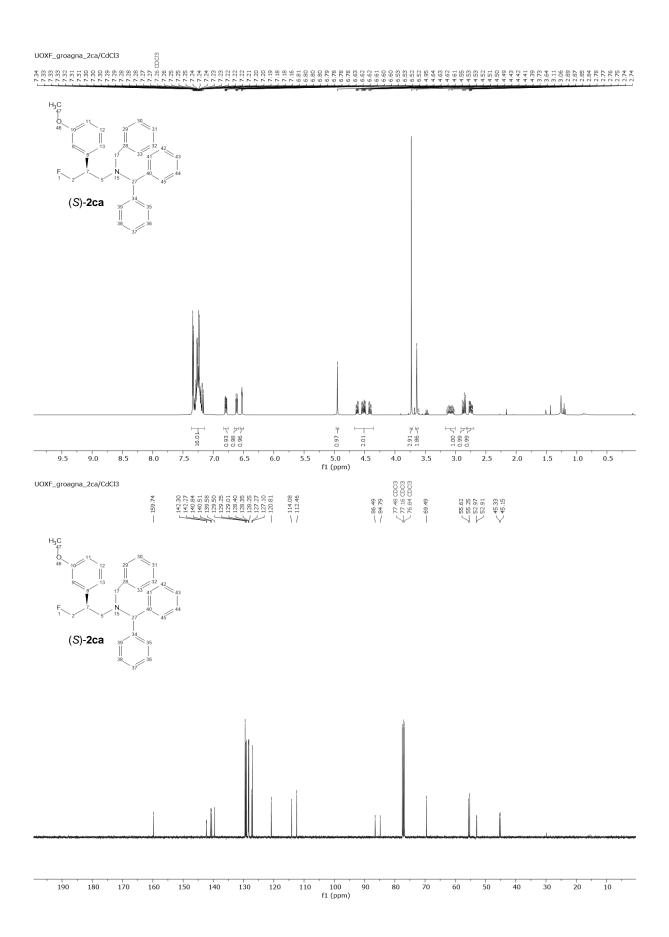
-222.67 -222.67 -222.68 -222.86 -222.86 -222.86 -222.86 -222.86 -222.92 -222.93 -222.93


UOXF_groagna_2ab/CdCl3

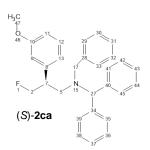


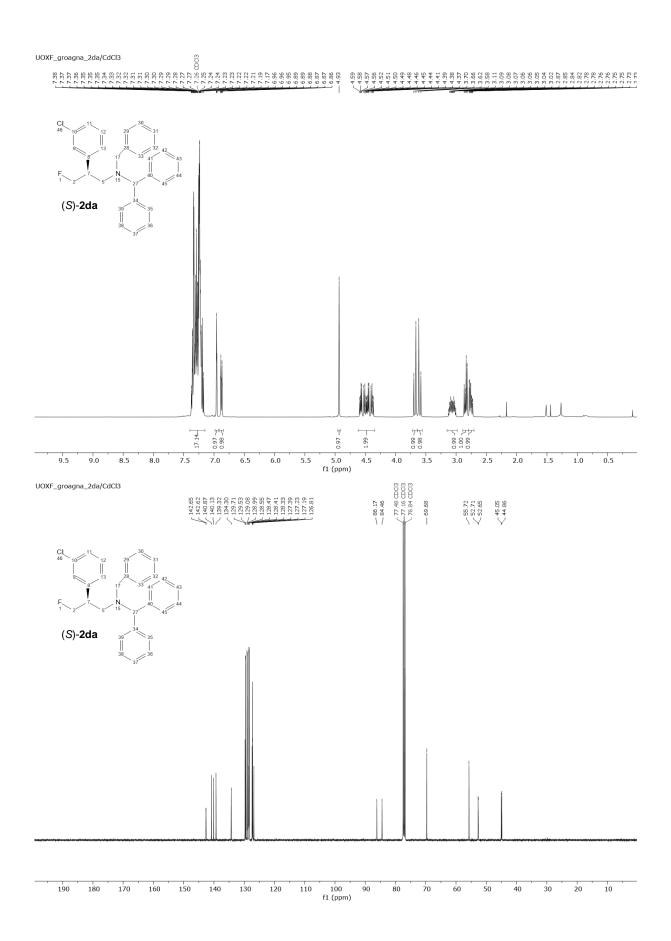
UOXF_groagna_2ac/CdCl3


-222.19 -222.25 -222.25 -222.31 -222.31 -222.33 -222.34 -222.34 -222.34 -222.34

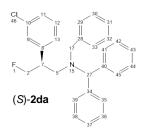


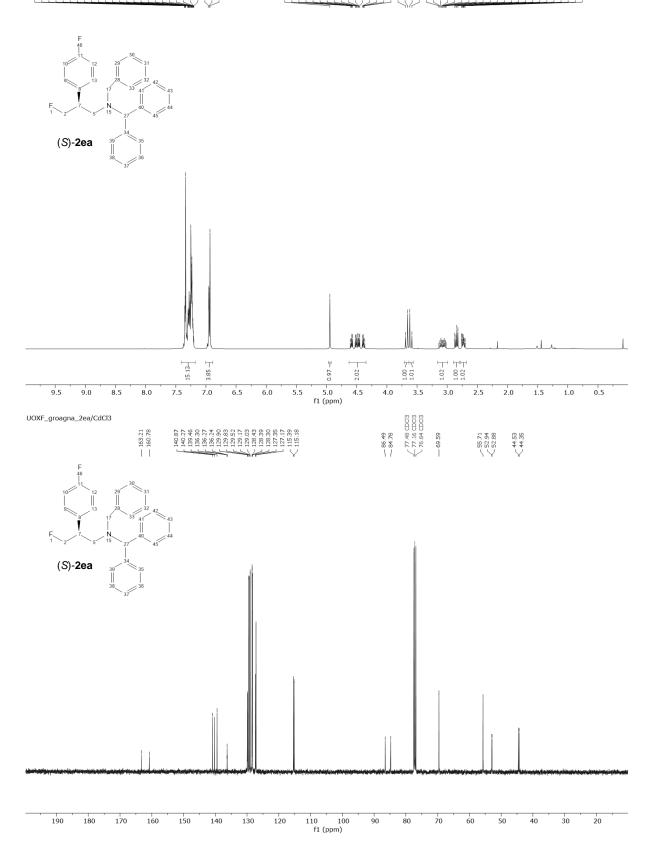
--220.51 --220.55 --220.57 --220.57 --220.64 --220.64 --220.69 --220.69 --220.76 --220.76 --220.77 --220.77 --220.77 --220.77 --220.77 --220.77 --220.77 --220.77 --220.77 --220.57 --2

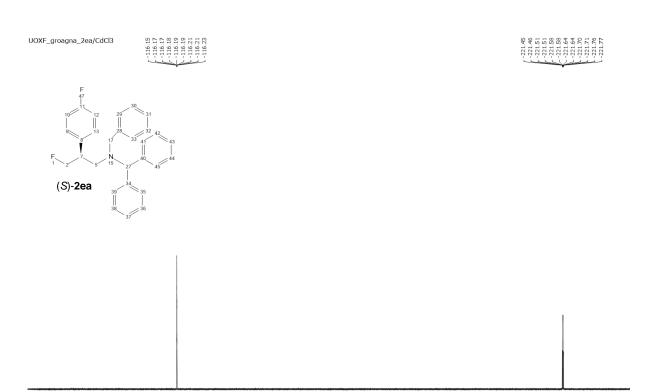

UOXF_groagna_2ba/CdCl3



-220.79 -220.84 -220.84 -220.91 -220.91 -220.91 -220.97 -221.03 -221.03

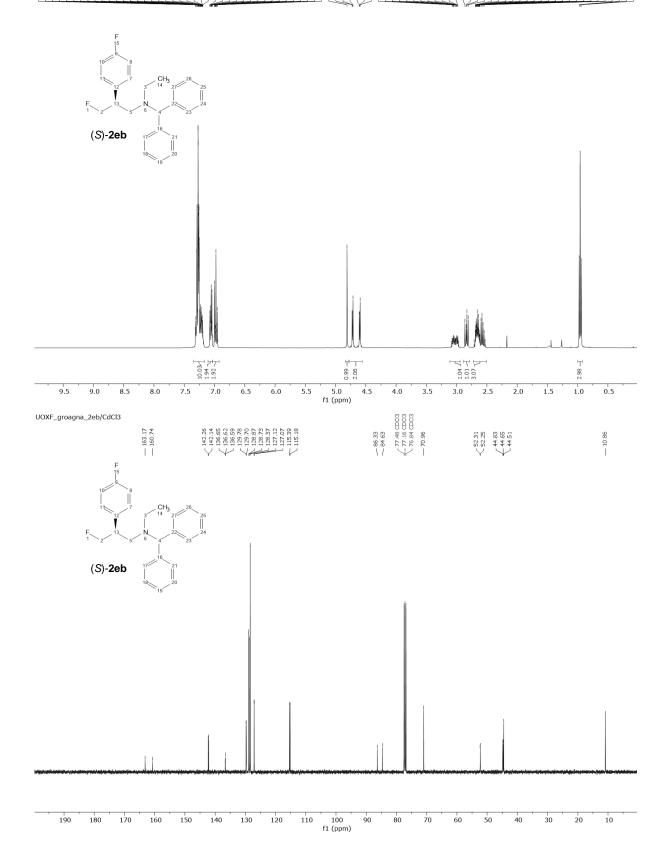

UOXF_groagna_2ca/CdCl3

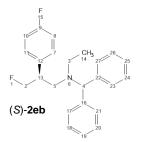




UOXF_groagna_2da/CdCl3

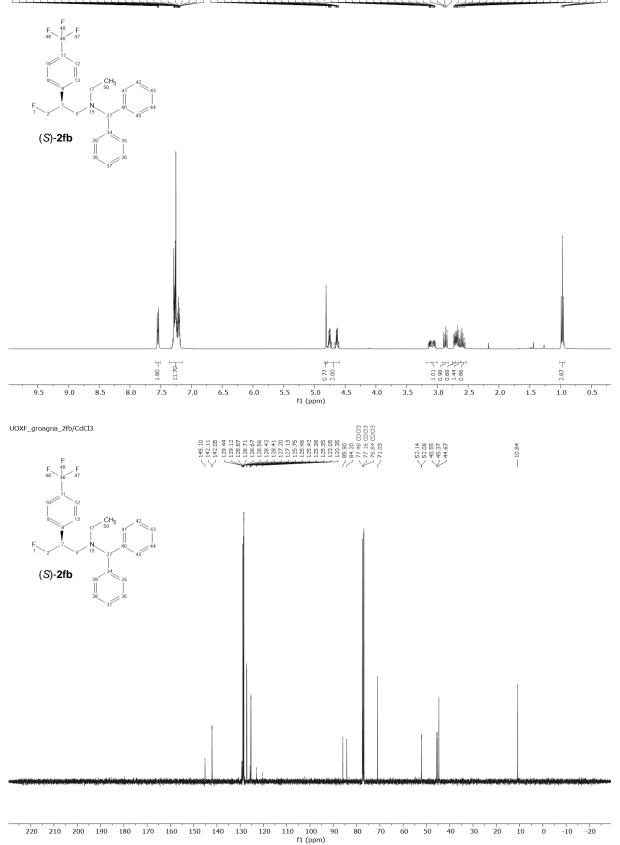
- -221.37 - -221.43 - -221.50 - -221.55 - -221.62

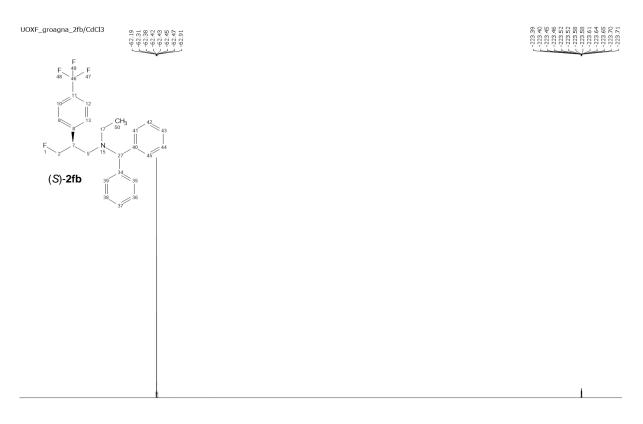


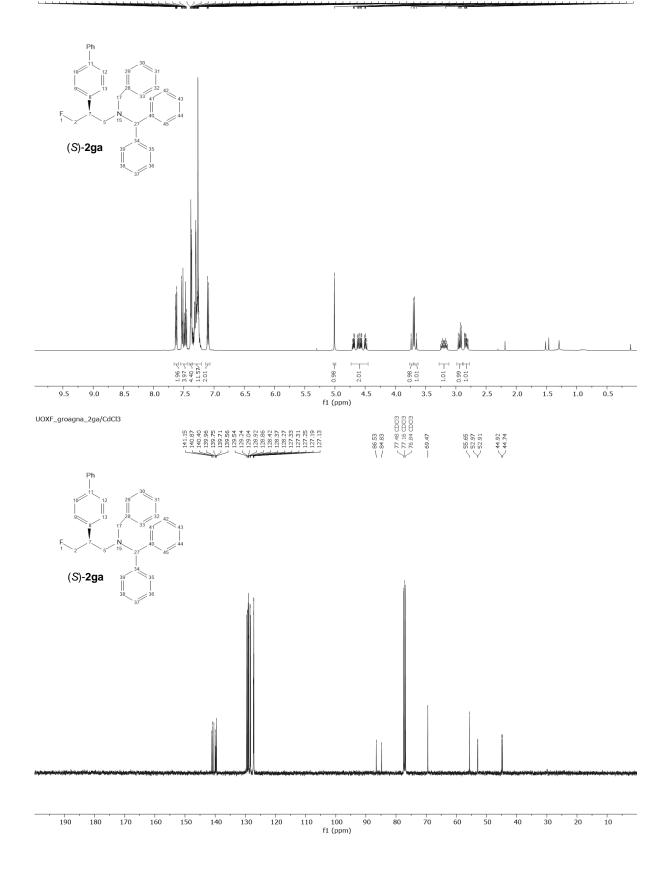

-80 -90 -160 f1 (ppm) -100 -110 -120 -130 -140 -150 -170 -180 -190 -200 -210 -220 -230

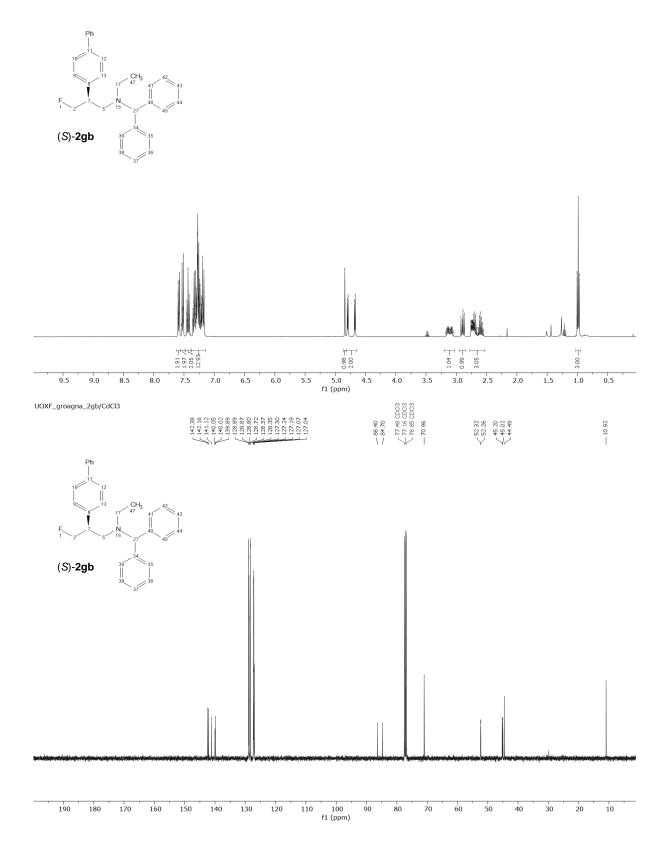




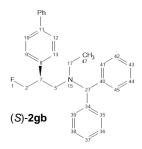

7-116.25 -116.26 -116.28 -116.28 -116.28 -116.30 -116.31 -116.31 -116.33 L-116.33 L-116.35 L-116.35 L-116.35

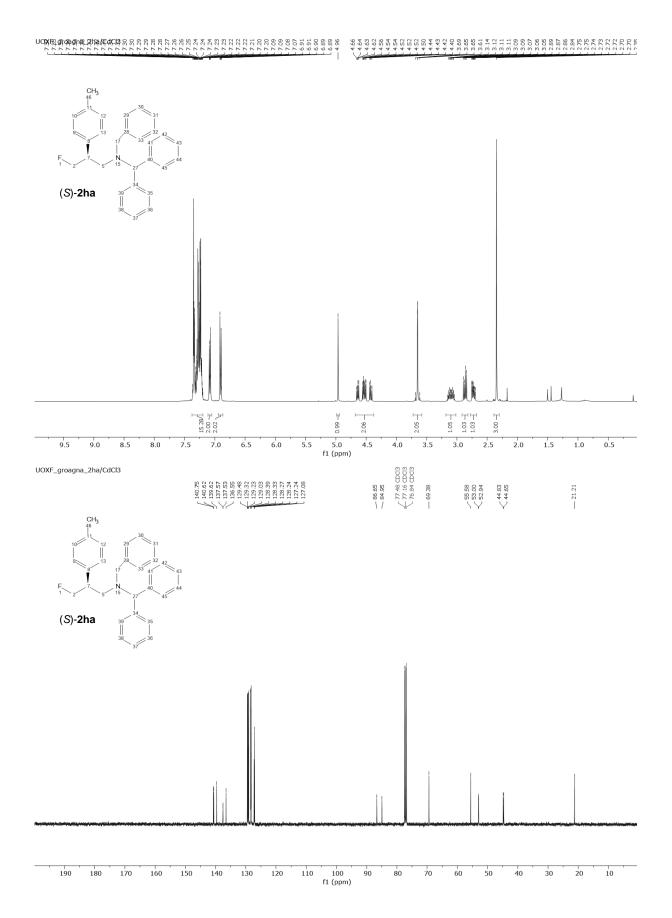

-223.15 -223.26 -223.22 -223.28 -223.28 -223.35 -223.37 -223.41 -223.41 -223.41 -223.43 -223.43 -223.43 -223.43 -223.43 -223.43 -223.43 -223.43 -223.43 -223.43 -223.43 -223.43 -223.43 -223.43 -223.43 -223.43 -223.53 -223.53 -223.53 -223.53 -223.53 -223.55 -223.5



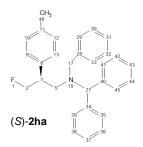


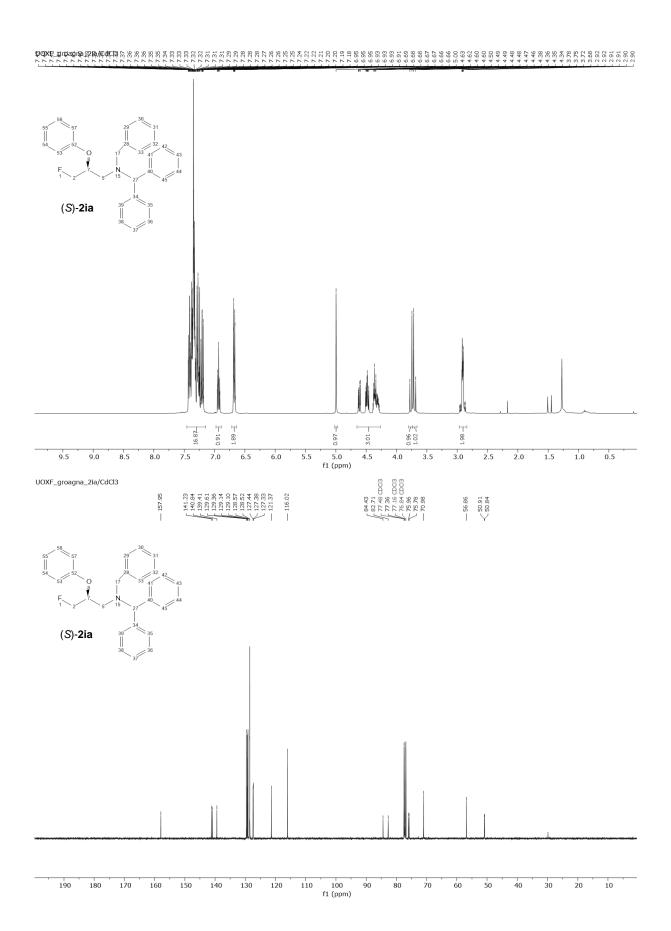
-220.88 -220.88 -220.94 -221.00 -221.01 -221.05 -221.06 -221.07 -221.13 -221.13


UOXF_groagna_2ga/CdCl3

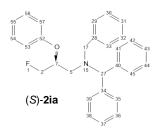


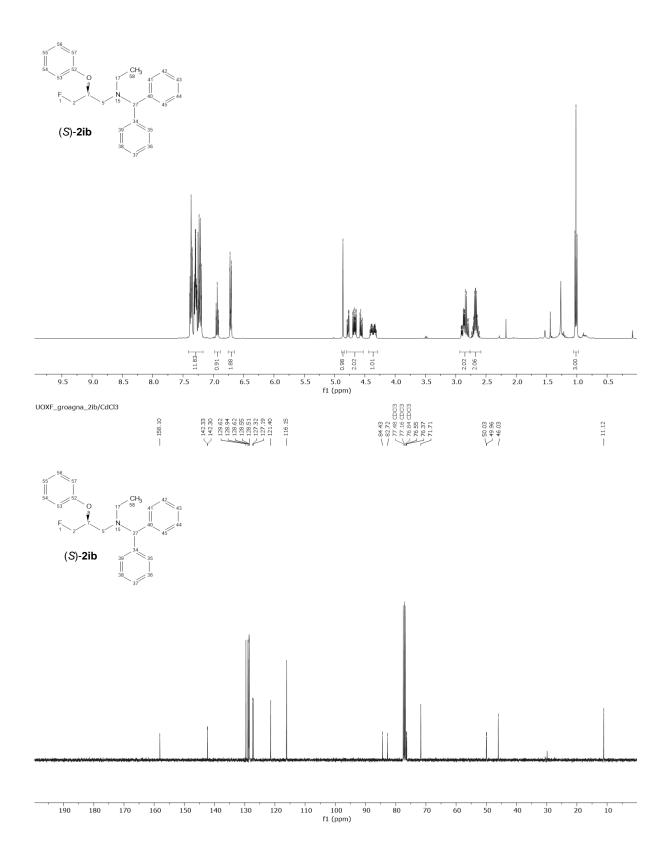
-222.68 -222.74 -222.74 -222.86 -222.86 -222.86 -222.86 -222.87 -222.99 -222.99


UOXF_groagna_2gb/CdCl3



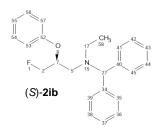
-220.83 -220.89 -220.89 -220.89 -220.96 -220.96 -221.01 -221.02 -221.02 -221.02 -221.02 -221.15

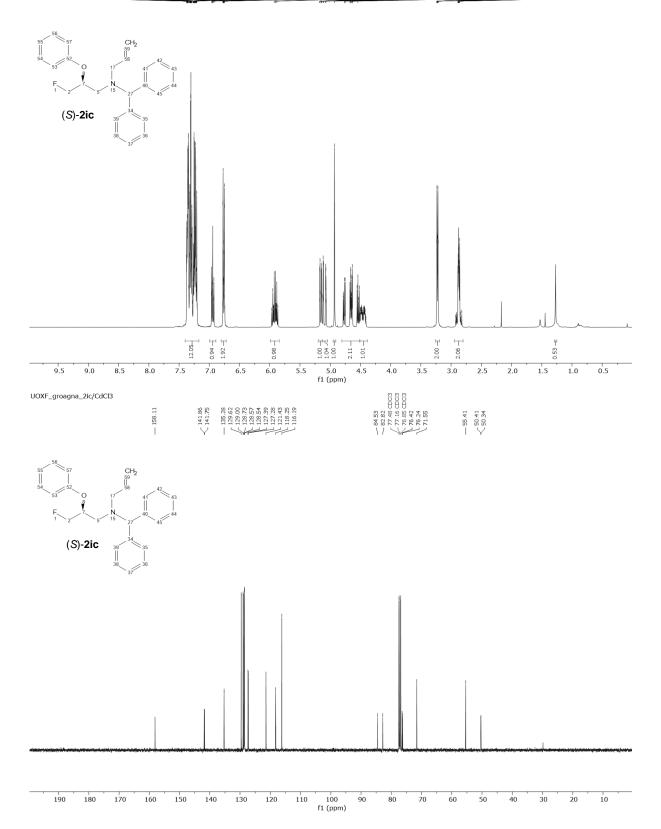

UOXF_groagna_2ha/CdCl3



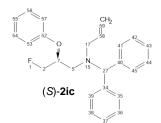
-229.21 -229.25 -229.25 -229.27 -229.34 -229.33 -229.33 -229.33 -229.35 -229.52 -229.52 -229.52 -229.52

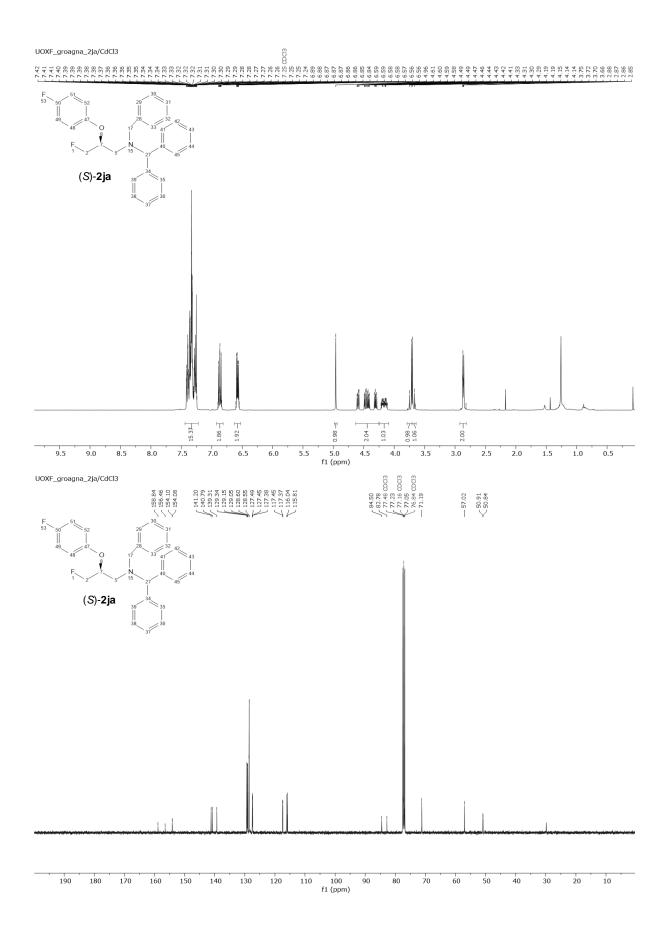
UOXF_groagna_2ia/CdCl3




-230.07 -230.08 -230.13 -230.14 -230.20 -230.26 -230.26 -230.33 -230.33 -230.33

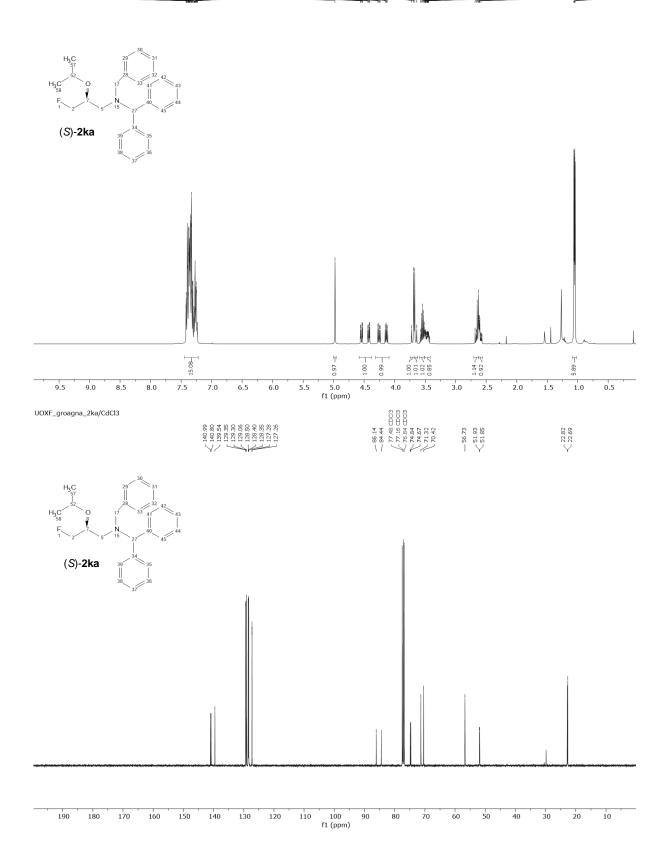
UOXF_groagna_2ib/CdCl3

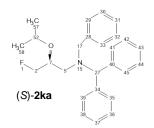

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 f1 (ppm)



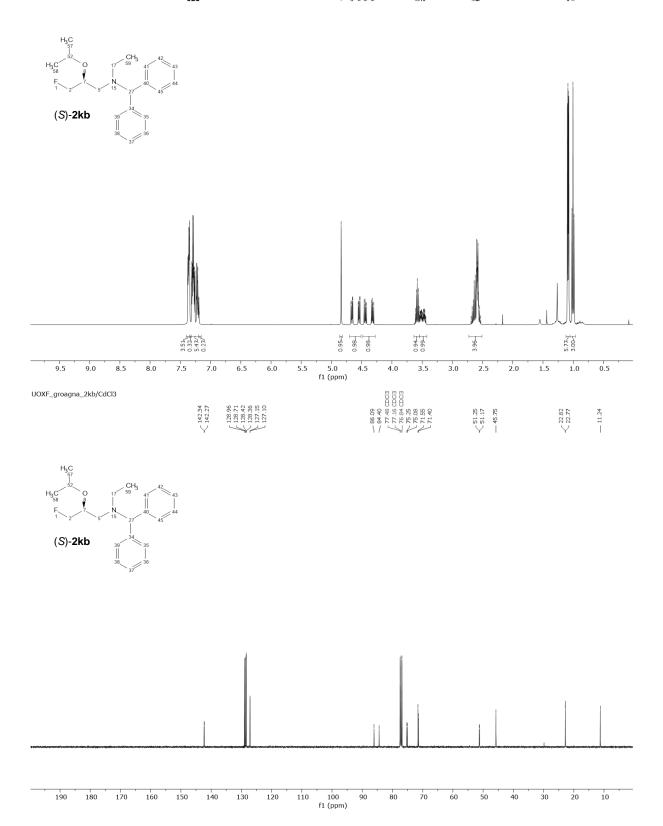
-229.59 -229.66 -229.65 -229.72 -229.77 -229.77 -229.78 -229.88 -229.88

UOXF_groagna_2ic/CdCl3



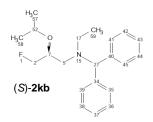

-229.05 -229.11 -229.18 -229.18 -229.23 -229.31

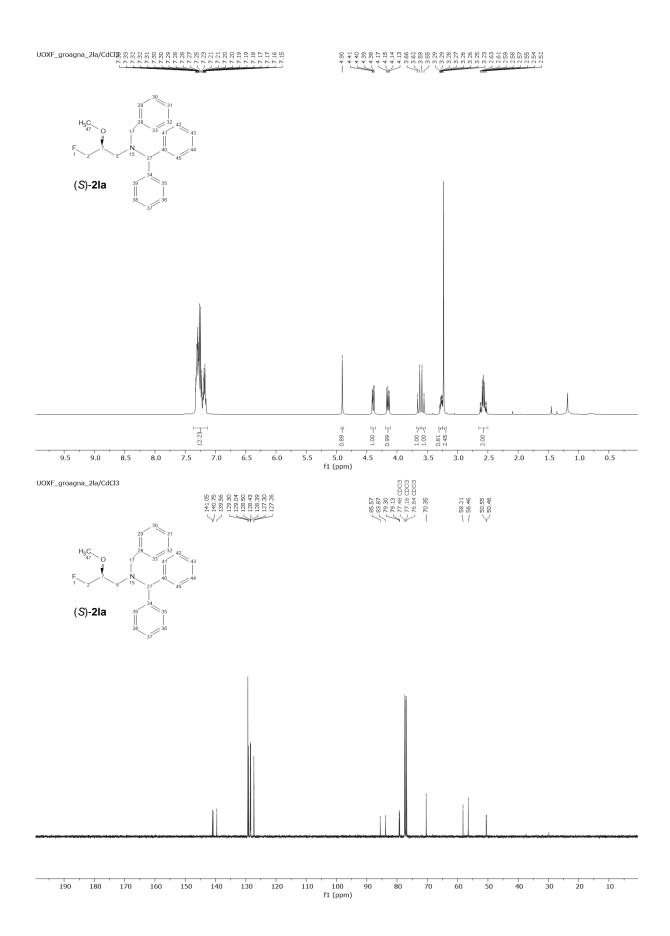
$\begin{array}{c} 50 & 51 & 52 & 29 & 30 & 31 \\ 1 & 1 & 1 & 1 & 1 \\ 49 & 48 & 47 & 0 & 17 & 333 & 41 & 43 \\ F_1 & 2 & 7 & 5 & 15 & 27 & 40 & 45 \\ F_1 & 2 & 7 & 5 & 15 & 27 & 40 & 45 \\ \end{array}$



UOXF_groagna_2ka/CdCl3

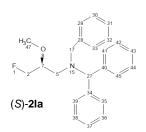
--227.70 --227.75 --227.75 --227.82 --227.83 --227.83 --227.83 --227.83 --227.95 --227.95 --227.95



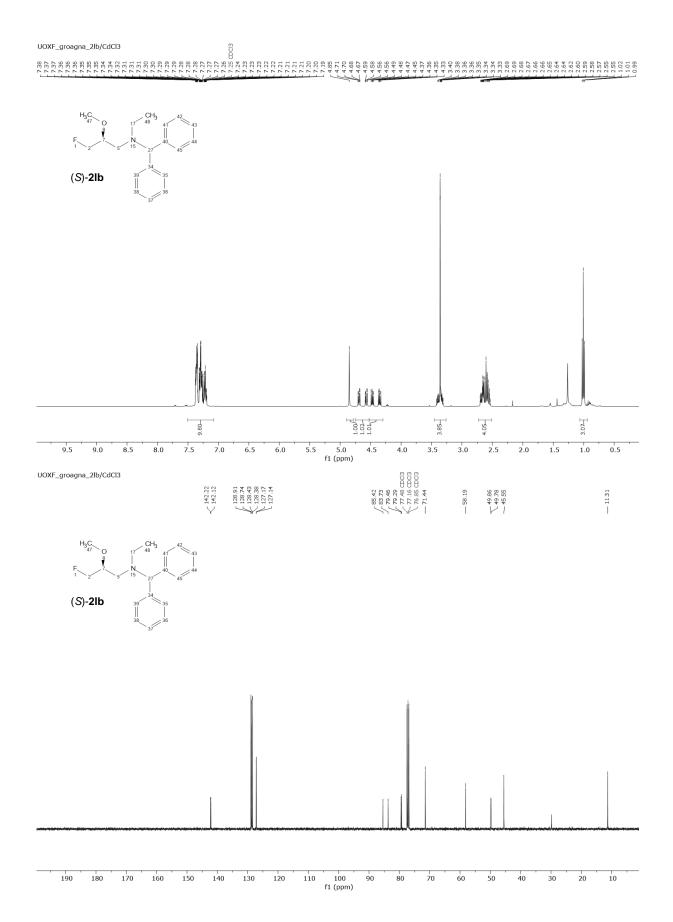


UOXF_groagna_2kb/CdCl3

r -228.92 -228.92 -229.00 -229.05 -229.12

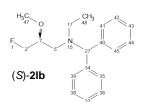


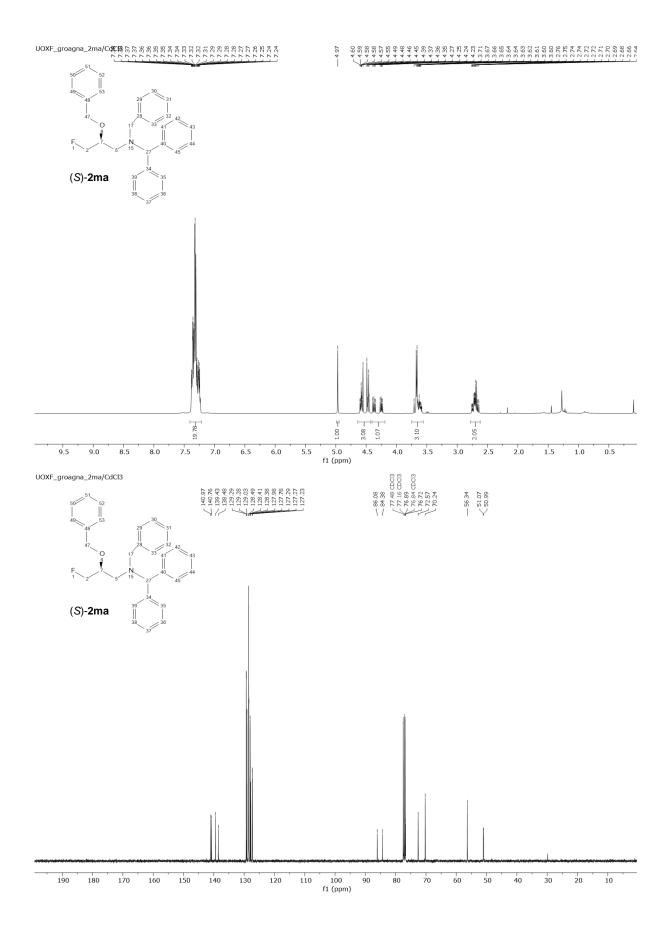
90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 f1 (ppm)



UOXF_groagna_2la/CdCl3

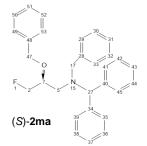
-227.75 -227.80 -227.80 -227.81 -227.88 -227.93 -227.93 -227.94 -228.00 -228.00

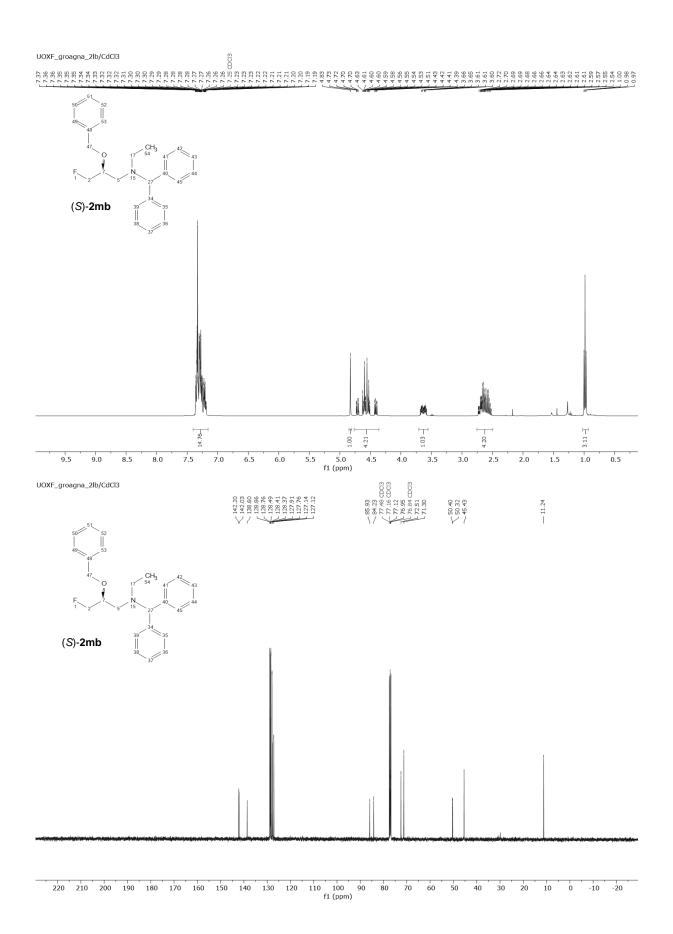

-80 -90 -130 -170 -180 f1 (ppm) -250 -100 -110 -120 -140 -150 -160 -190 -200 -210 -220 -230 -240 -260 -270



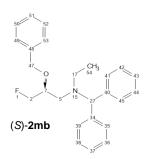
S310

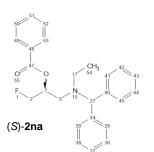
--228.93 --228.99 --228.99 --228.99 --229.05 --229.11 --229.11 --229.11 --229.11 --229.12 --229.13

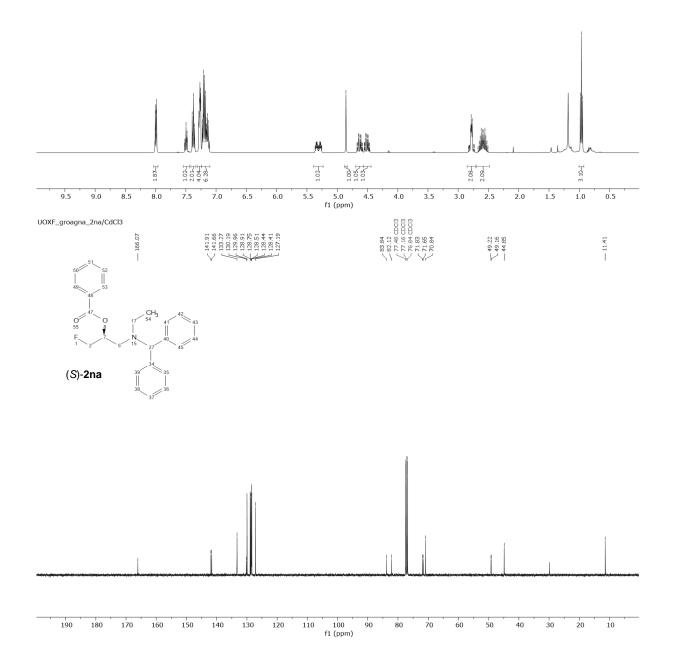

UOXF_groagna_2lb/CdCl3



-227.03 -227.08 -227.08 -227.08 -227.08 -227.15 -227.15 -227.21 -227.23 -227.23

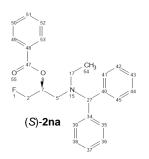

UOXF_groagna_2ma/CdCl3

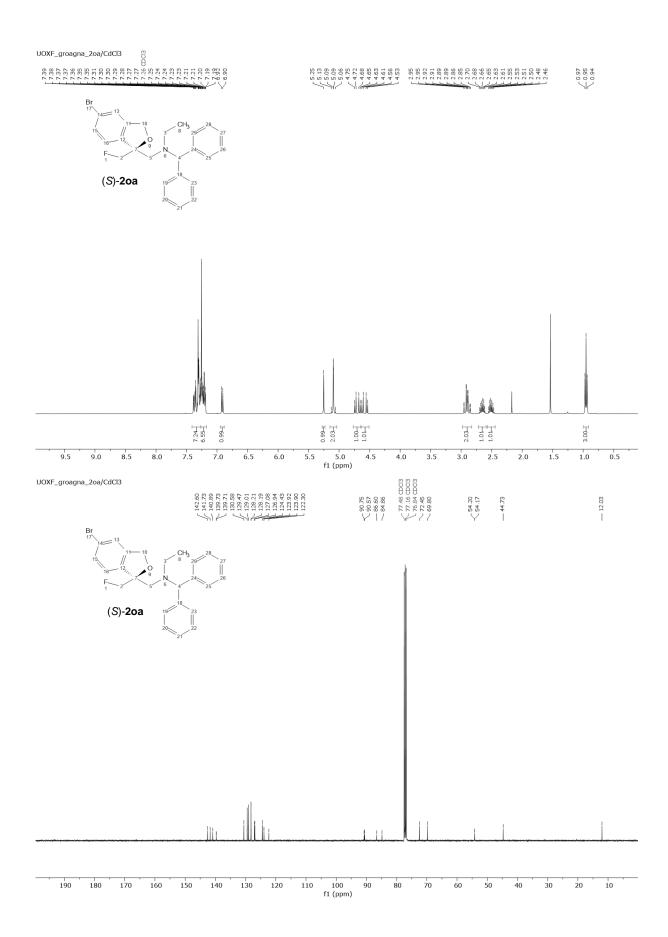




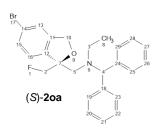
-228.25 -228.31 -228.33 -228.39 -228.39 -228.45 -228.45 -228.51 -228.51 -228.51 -228.51 -228.51 -228.51 -228.51 -228.51 -228.51 -228.51 -228.51 -228.51 -228.51 -228.51 -228.51 -228.51 -228.51 -228.52 -228.55 -228.5

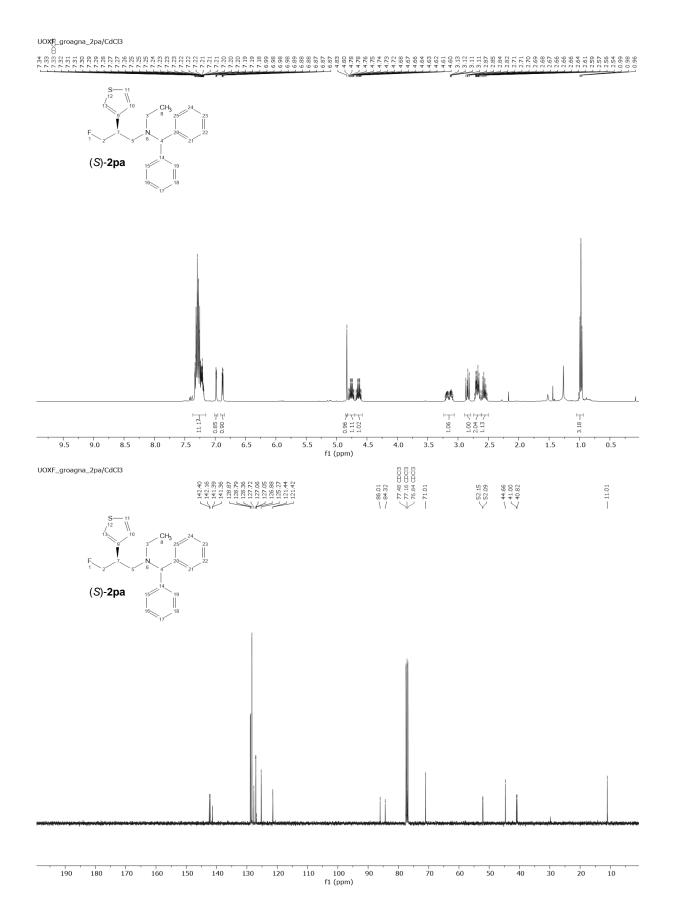
UOXF_groagna_2lb/CdCl3

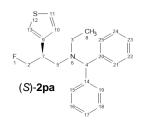


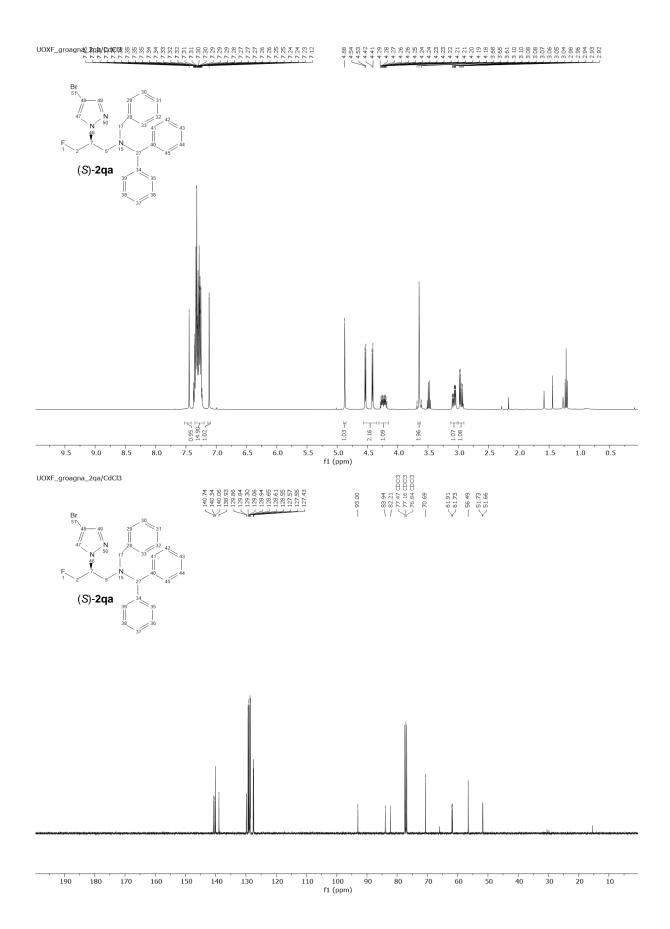


UOXF_groagna_2na/CdCl3

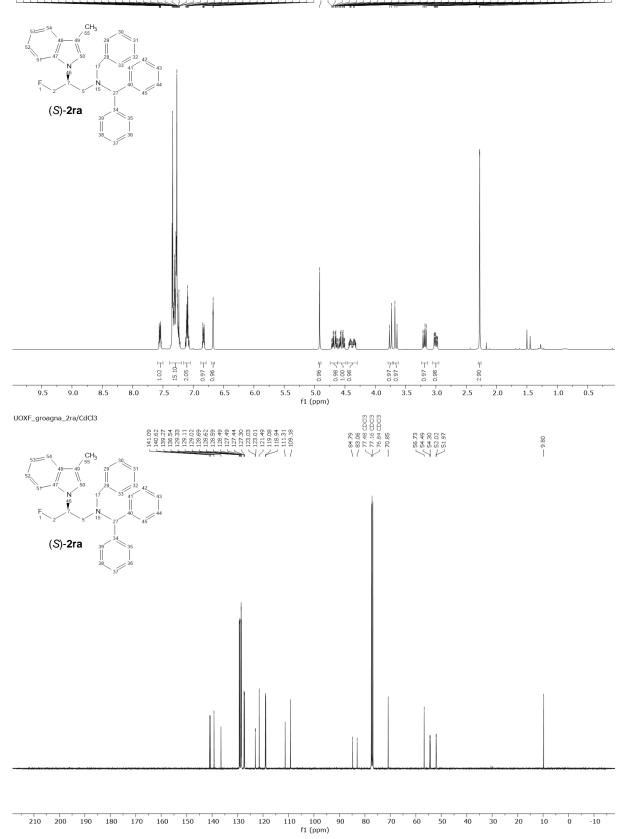



-80 -90 -130 -170 -180 f1 (ppm) -100 -110 -120 -140 -150 -160 -190 -200 -210 -220 -230 -240 -250 -260 -270


UOXF_groagna_2oa/CdCl3

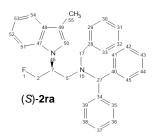

C -228.88 -228.89 -229.01 -229.02 -229.14 -229.15

UOXF_groagna_2pa/CdCl3

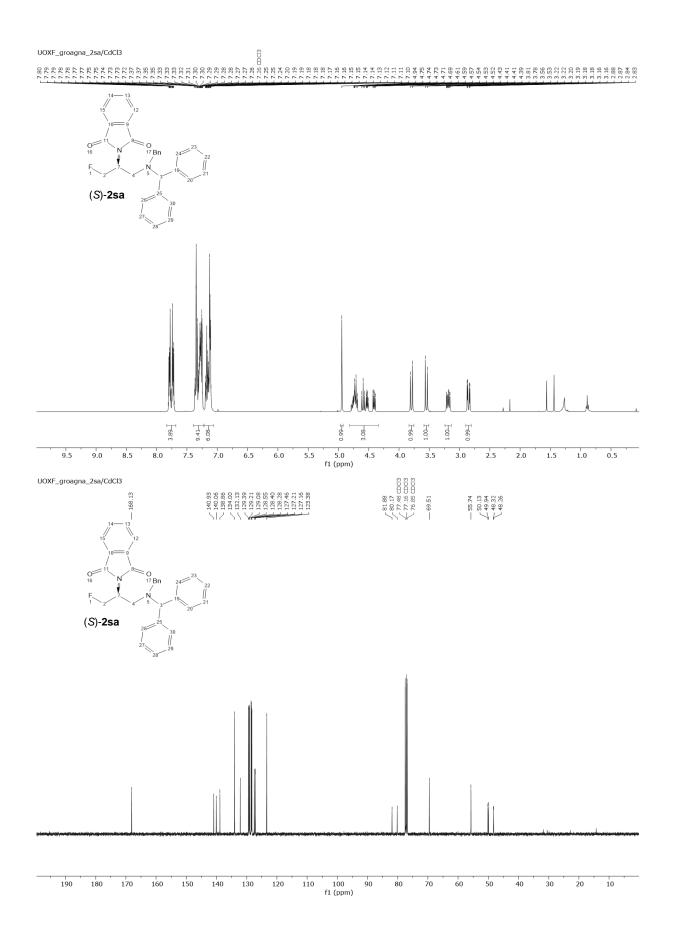

S322

-225.96 -225.97 -225.97 -226.09 -226.09 -226.14 -226.14 -226.14 -226.14 -226.14 -226.21 -226.21

UOXF_groagna_2qa/CdCl3

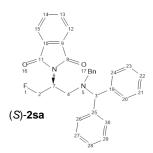


20	20	40	50	60	70	00	00	100	110	120	120	140	1 5 0	160	170	100	100	200	210	220	220	240	
-20	-30	-40	-30	-00	-70	-00	-90	-100	-110	-120	-130	-140	-130	-100	-170	-100	-190	-200	-210	-220	-230	-240	
f1 (ppm)																							
ri (ppii)																							
											-20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120	-20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130		-20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150	-20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160	-20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170	-20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180	-20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190	-20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200	-20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210	-20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220	-20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230	-20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 f1 (ppm)

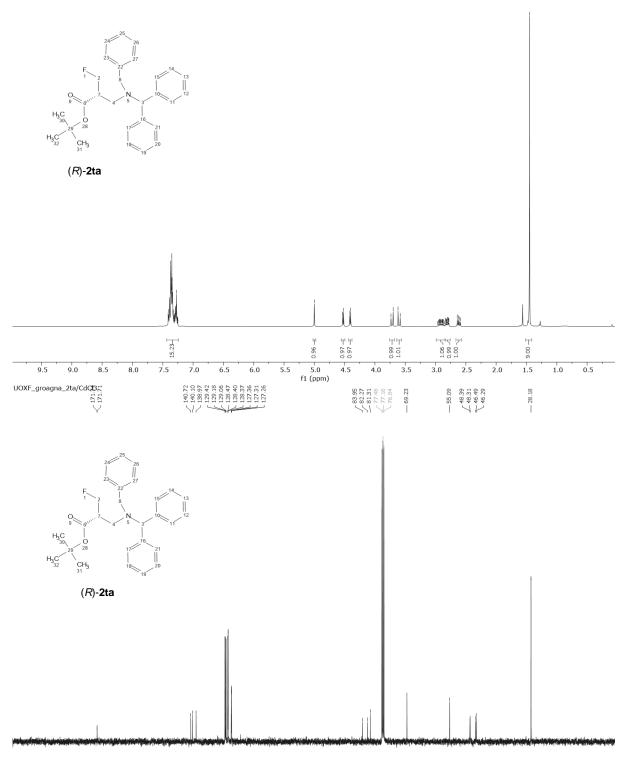


-225.58 -225.65 -225.71 -225.77 -225.83 -225.83

UOXF_groagna_2ra/CdCl3

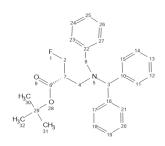


-80 -90 -150 -160 f1 (ppm) -24 -100 -110 -120 -130 -140 -170 -180 -190 -200 -210 -220 -230

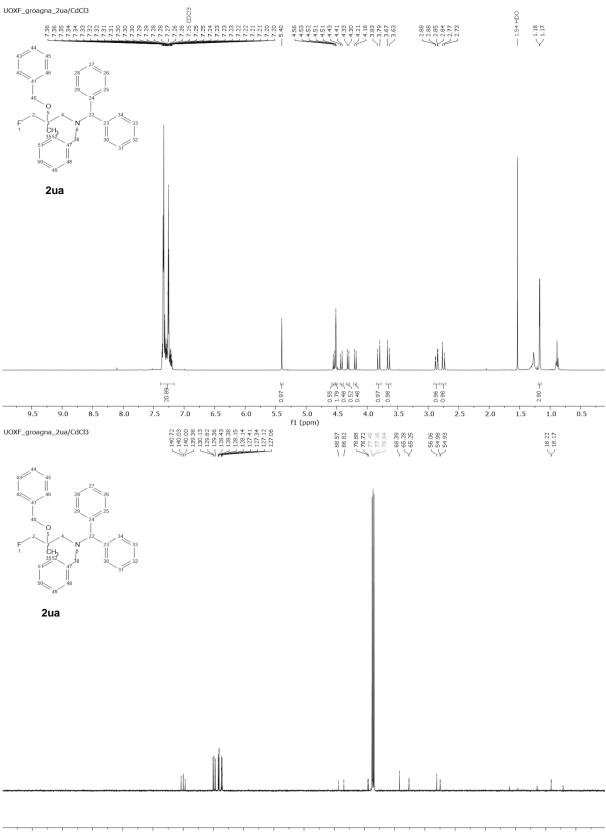


-222.96 -222.97 -223.00 -223.01 -223.01 -223.01 -223.11 -223.12 -223.13 -223.25 -223.25 -223.25

UOXF_groagna_2sa/CdCl3

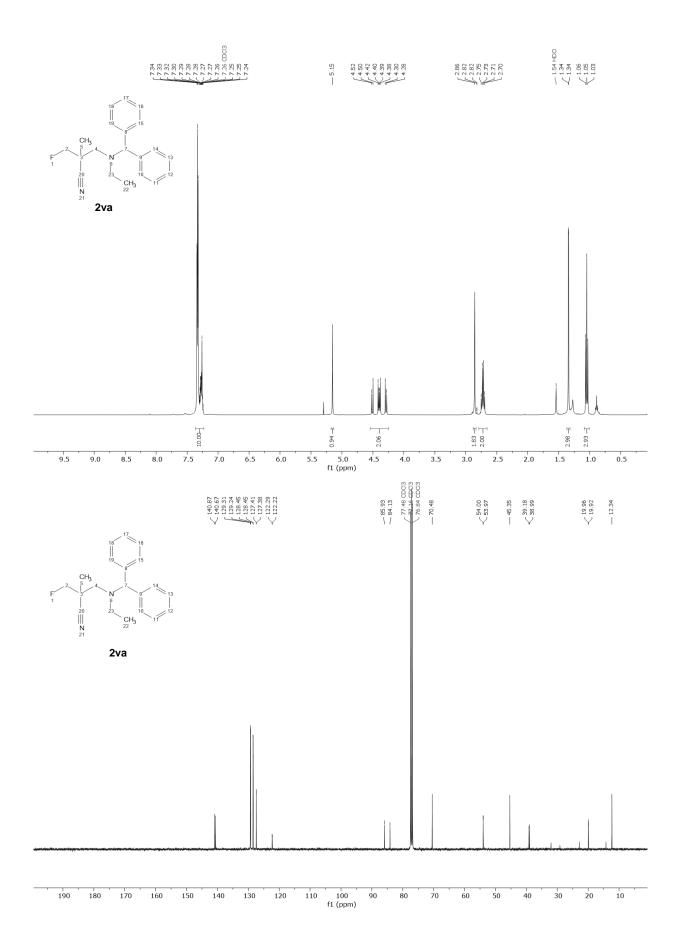

-80 -90 -160 f1 (ppm) -100 -110 -120 -130 -140 -150 -170 -180 -190 -200 -210 -220 -230 -240

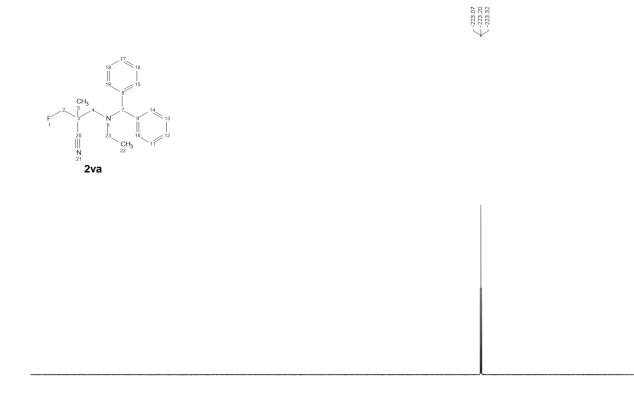
f1 (ppm)

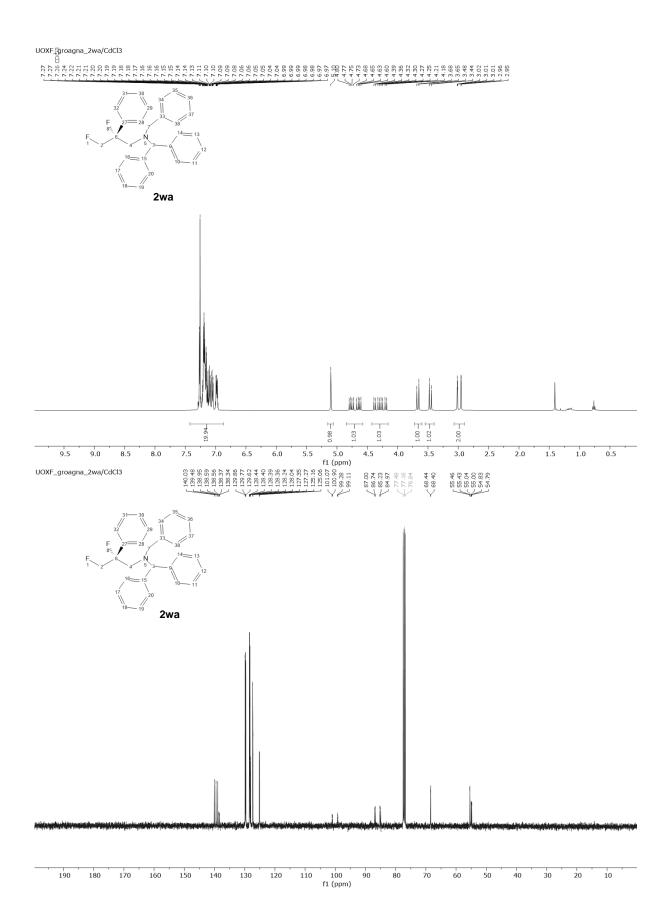

UOXF_groagna_2ta/CdCl3

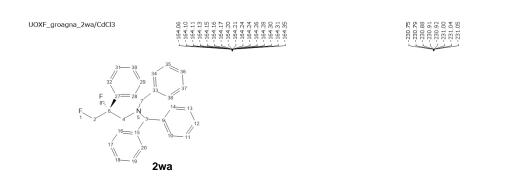
-222.30 -222.31 -222.33 -222.35 -222.35 -222.47 -222.47 -222.48 -222.48 -222.48 -222.55 -222.55

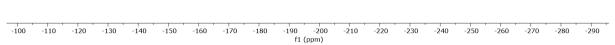
-155 -160 -165 -170 -175 -180 -185 -190 -195 -200 -205 -210 -215 -220 -225 -230 -235 -240 -245 -250 -255 -260 -265 -270 -275 -280 -285 -290 -295 -3 f1 (ppm)


f1 (ppm)

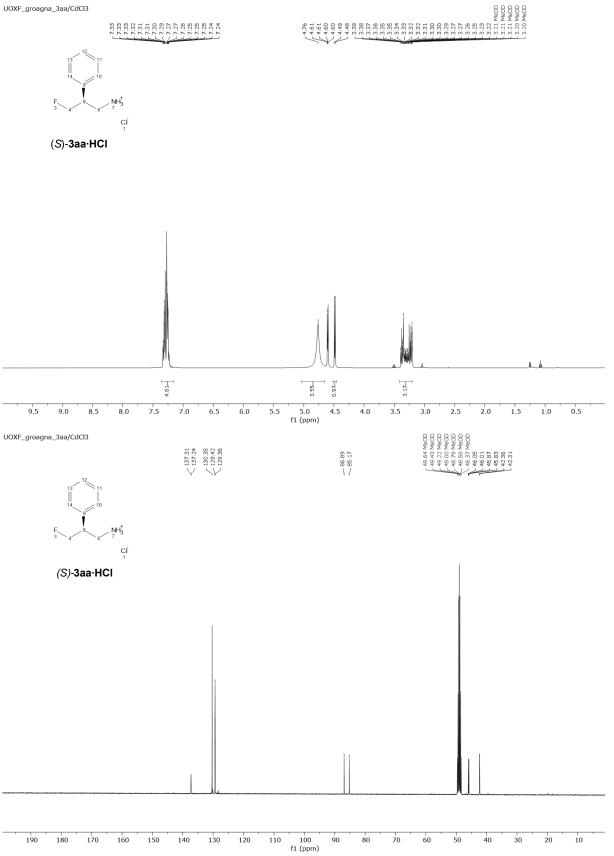

UOXF_groagna_2ua/CdCl3


-105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 -200 -205 -210 -215 -220 -225 -230 -235 -240 -245 f1 (ppm)

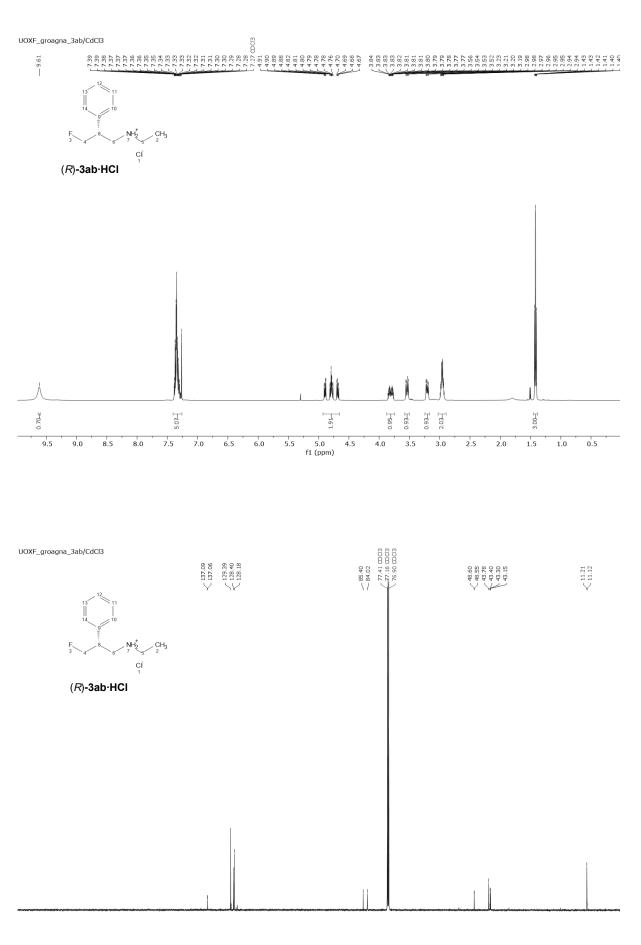

 $\bigwedge^{-226.87}_{-226.99}_{-227.12}$



	1 1	1 1		1 1			1 1												
-155	-160	-165	-170	-175	-180	-185	-190	-195	-200	-205	-210	-215	-220	-225	-230	-235	-240	-245	
100	100	105	170	1/5	100	105	100	100			210	210	220	220	200	200	210	215	
									f1 (ppm))									

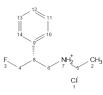


UOXF_groagna_3aa/CdCl3

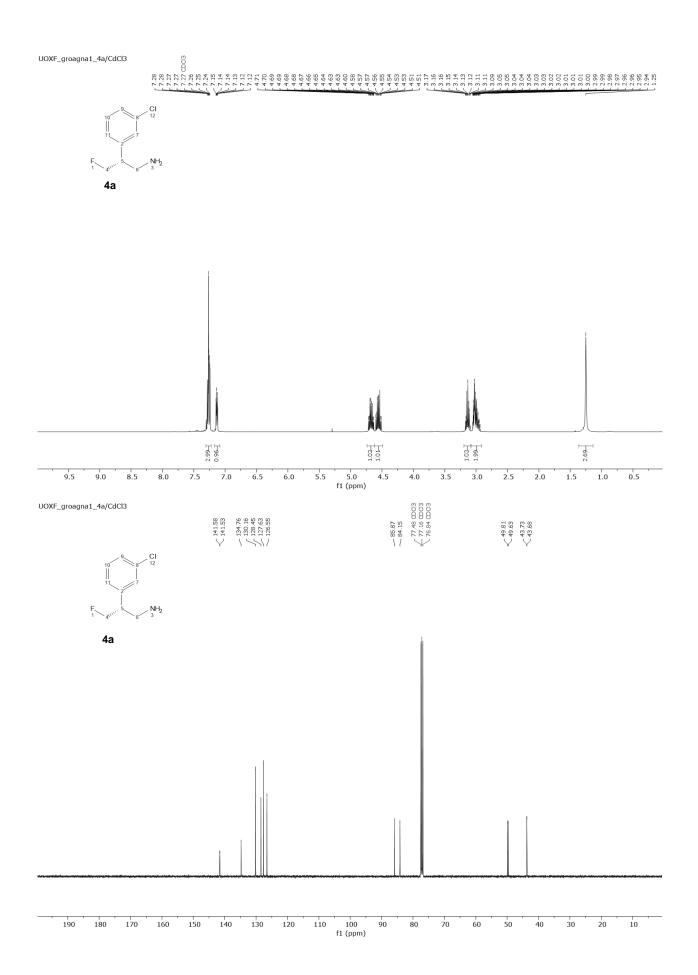

-221.05 -221.05 -221.10 -221.13 -221.14 -221.14 -221.14 -221.14 -221.15 -221.15 -221.15 -221.15 -221.15 -221.15 -221.15 -221.15 -221.15 -221.15 -221.15 -221.15 -221.15 -221.15 -221.15 -221.16 -221.27 -221.27 -221.27 -221.27 -221.27 -221.27 -221.27 -221.27 -221.27 -221.27 -221.27 -221.25 -221.2

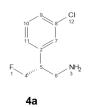
UOXF_groagna_3aa/CdCl3

(S)-3aa·HCI

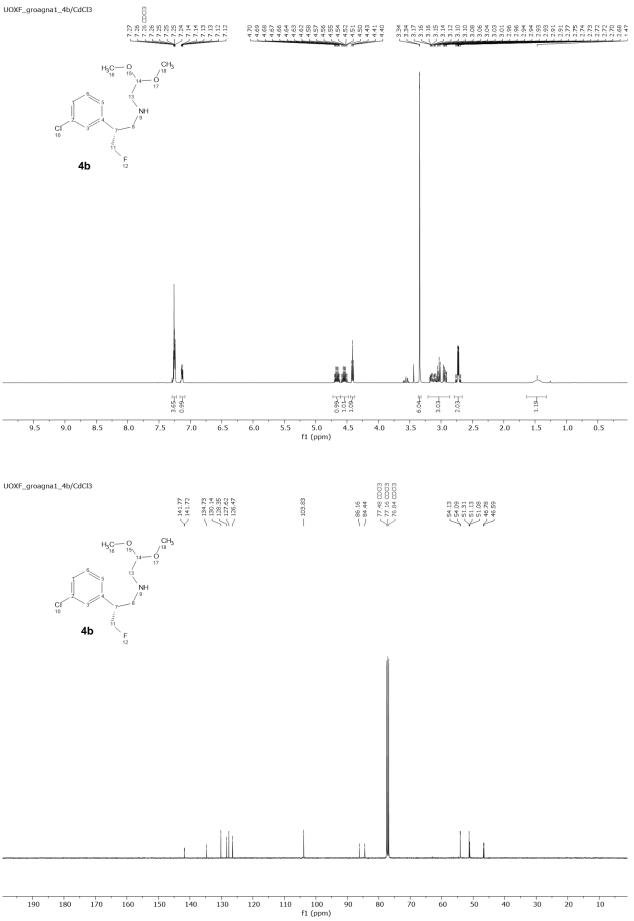

-80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 f1 (ppm)

f1 (ppm)

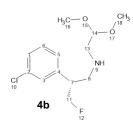

UOXF_groagna_3ab/CdCl3

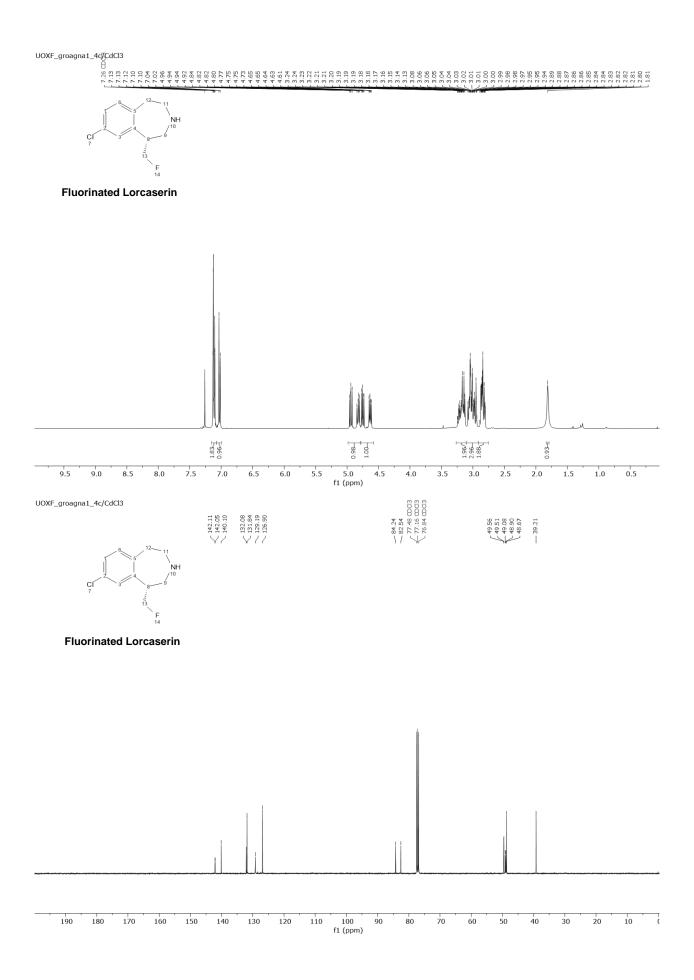

(R)-3ab·HCI

-2 -160 f1 (ppm) -80 -90 -100 -110 -120 -130 -140 -150 -170 -180 -190 -200 -210 -220 -230 -240


-222.05 -222.10 -222.17 -222.30

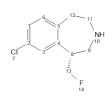
UOXF_groagna1_4a/CdCl3


50 -60 -70 -150 f1 (ppm) -240 -80 -90 -100 -110 -120 -130 -140 -160 -170 -180 -190 -200 -210 -220 -230



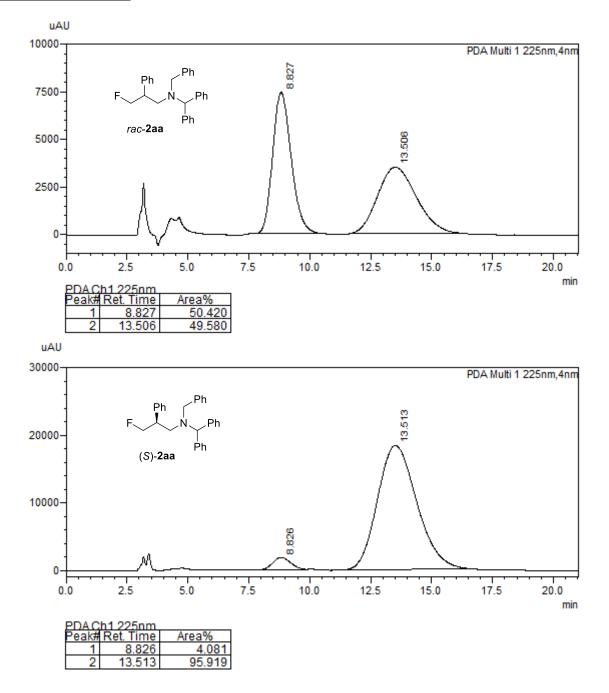
UOXF_groagna1_4b/CdCl3

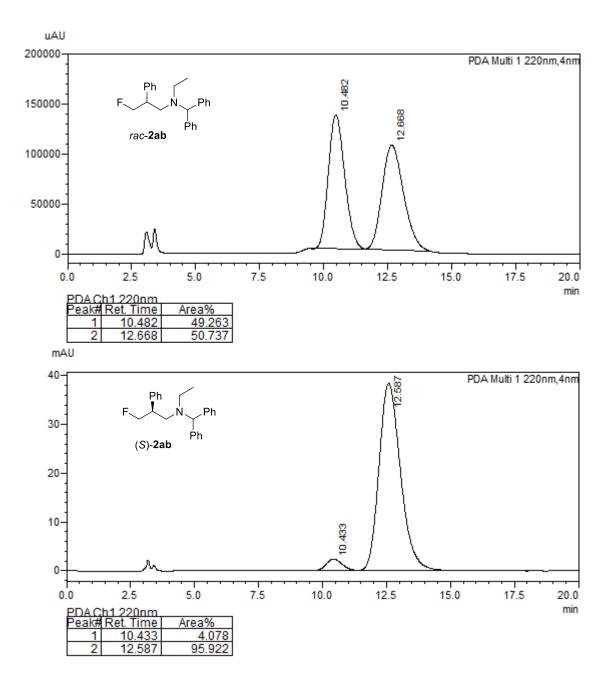
-221.87 -221.92 -221.99 -222.05 -222.12

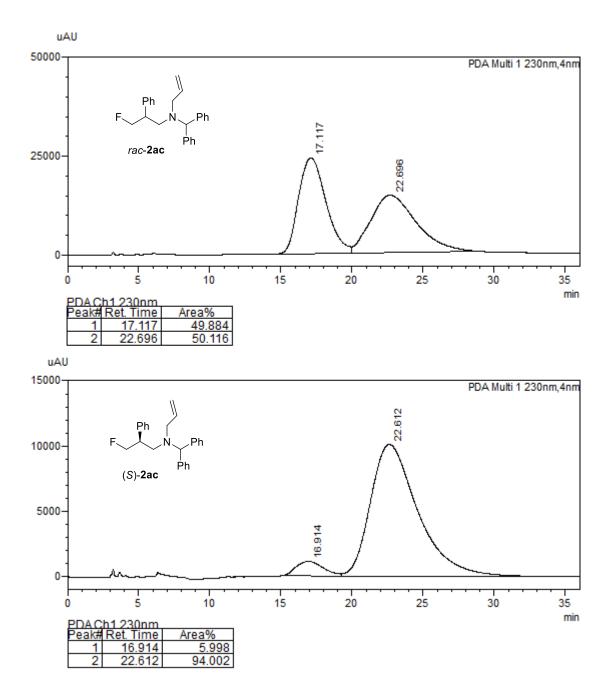


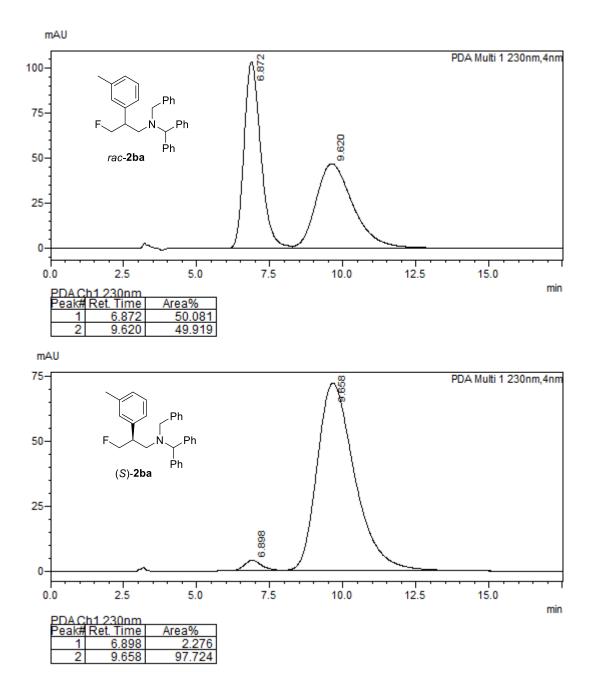
-60	-70	-80	-00	-100	-110	-120	-130	-140	-150	-160	-170	-180	-100	-200	-210	-220	-230	-240	
00	/0	00	90	100	110	120	150	140	150	100	170	100	190	200	210	220	250	240	
									f1 (ppm))									

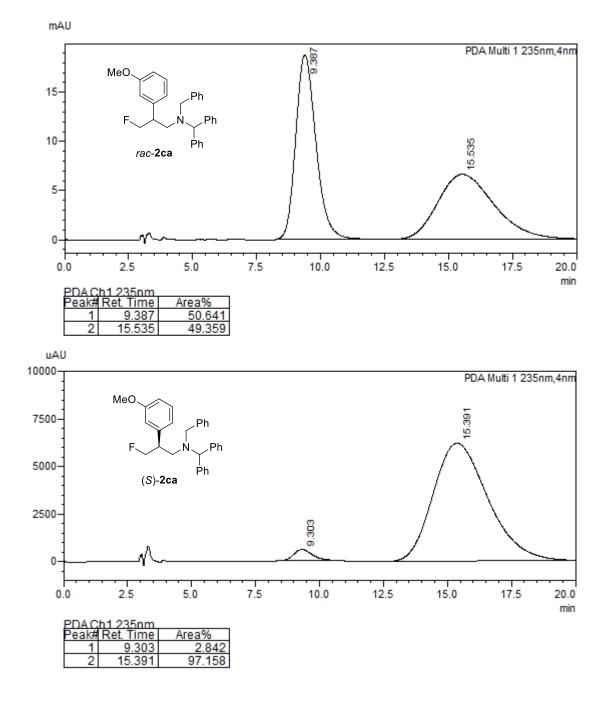
UOXF_groagna1_4c/CdCl3

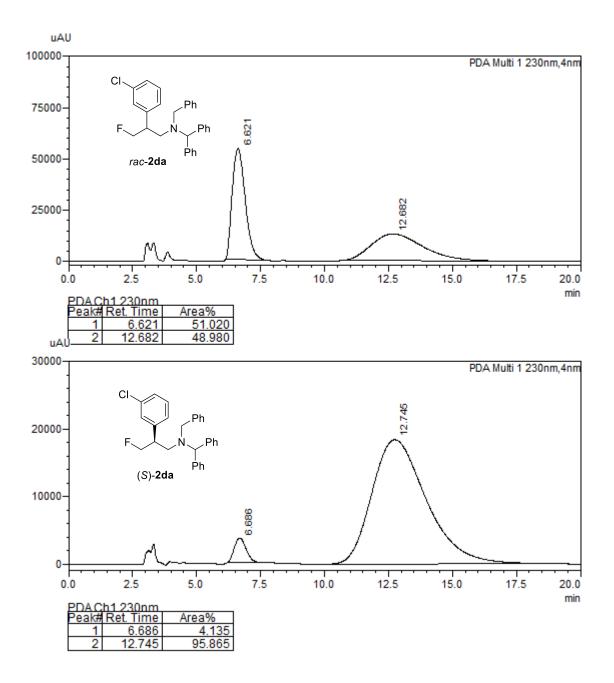


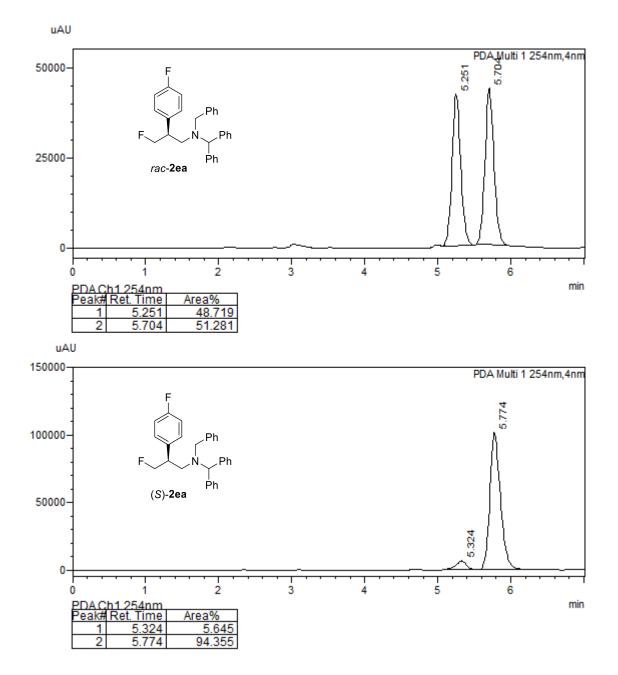

Fluorinated Lorcaserin

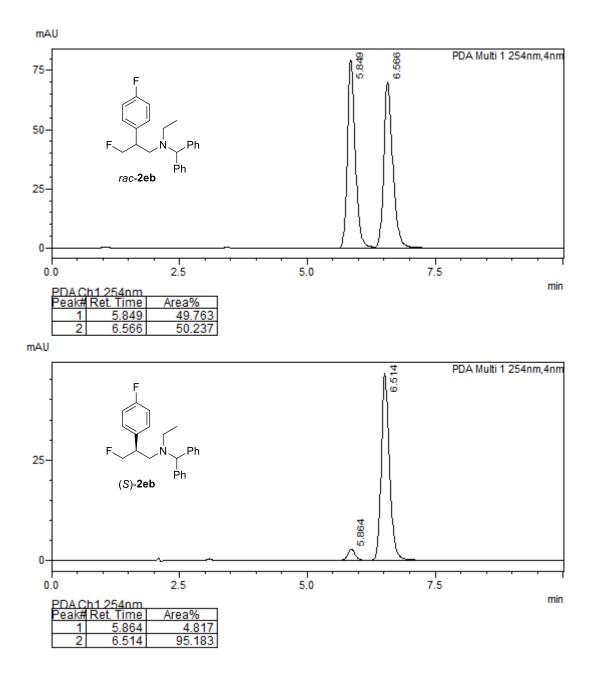

-60 -150 f1 (ppm) -70 -80 -90 -100 -110 -120 -130 -140 -160 -170 -180 -190 -200 -210 -220 -230 -240

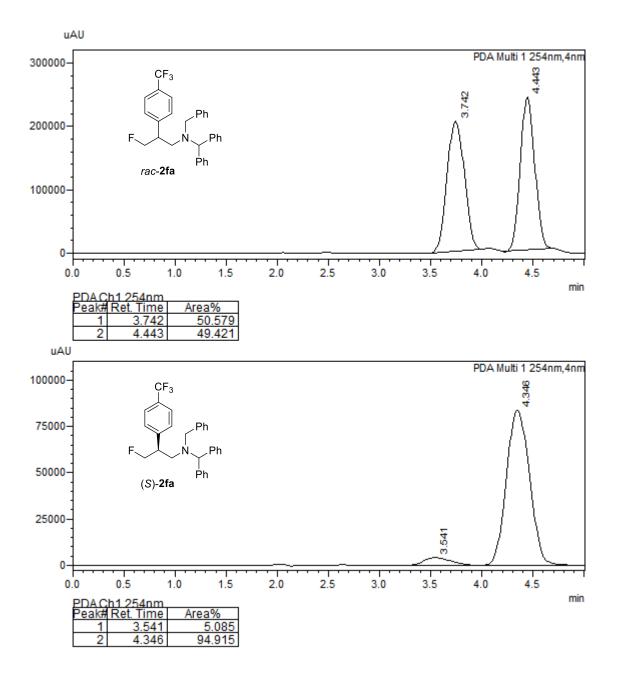

Copies of HPLC traces

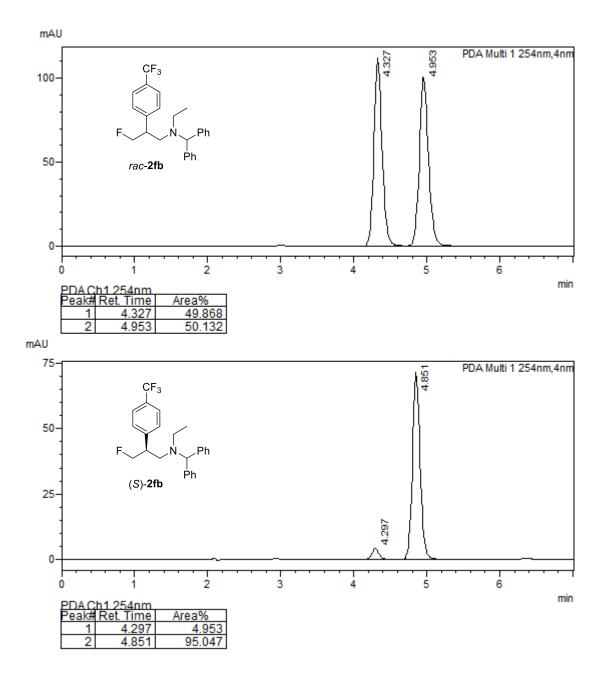


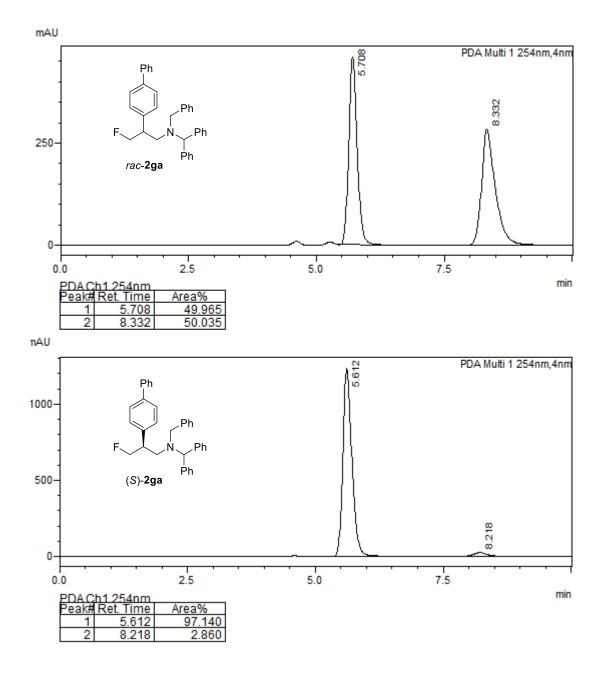

S346

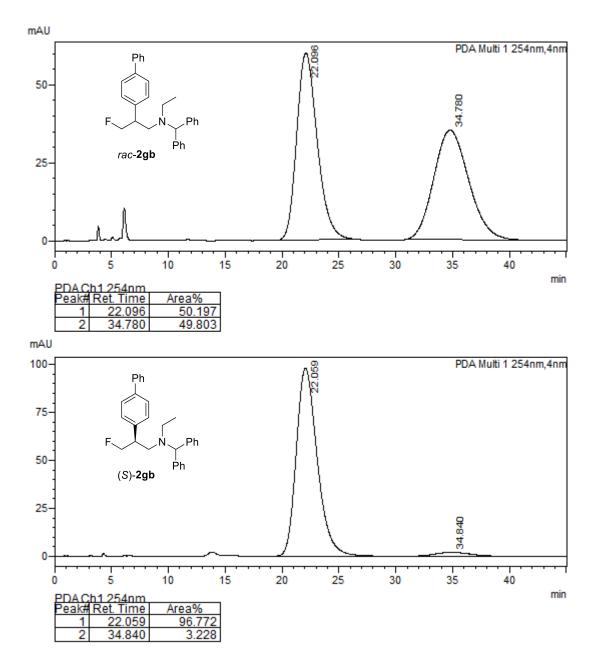


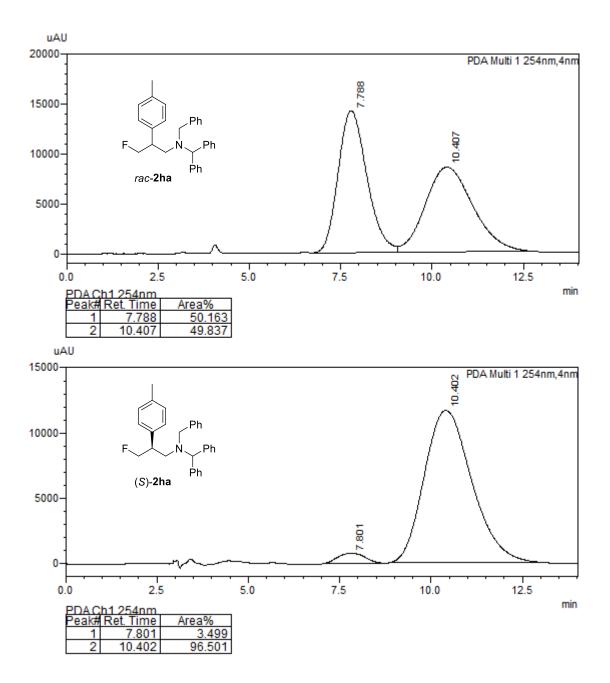


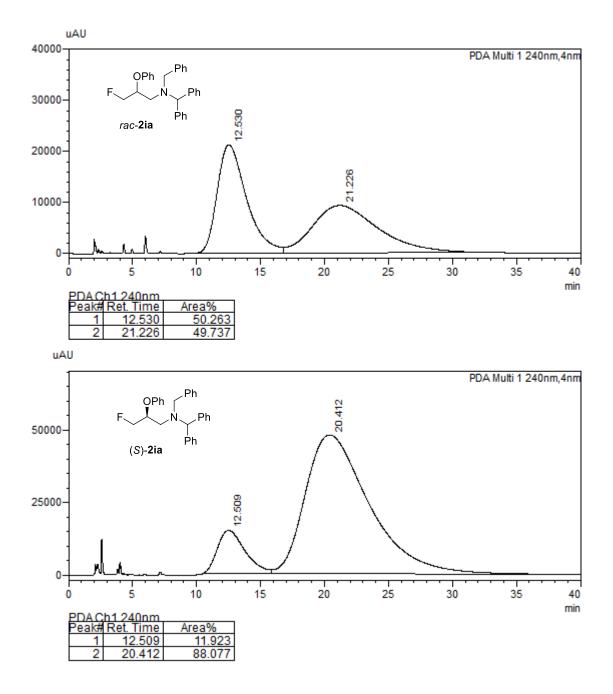


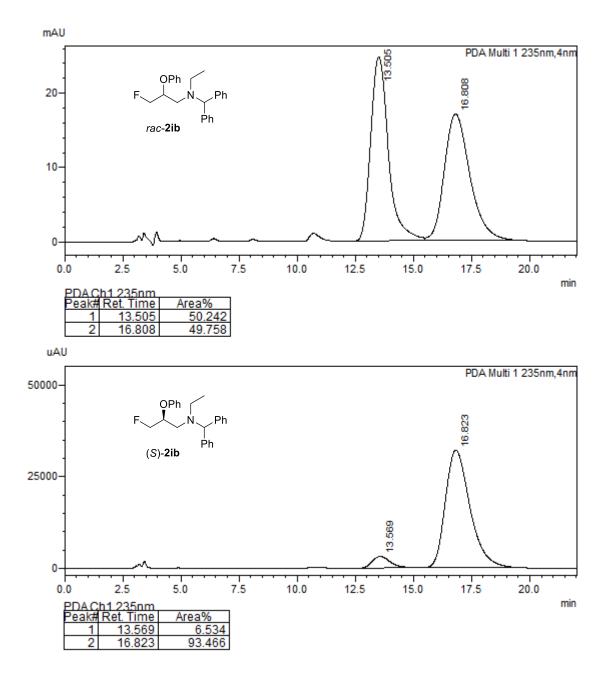


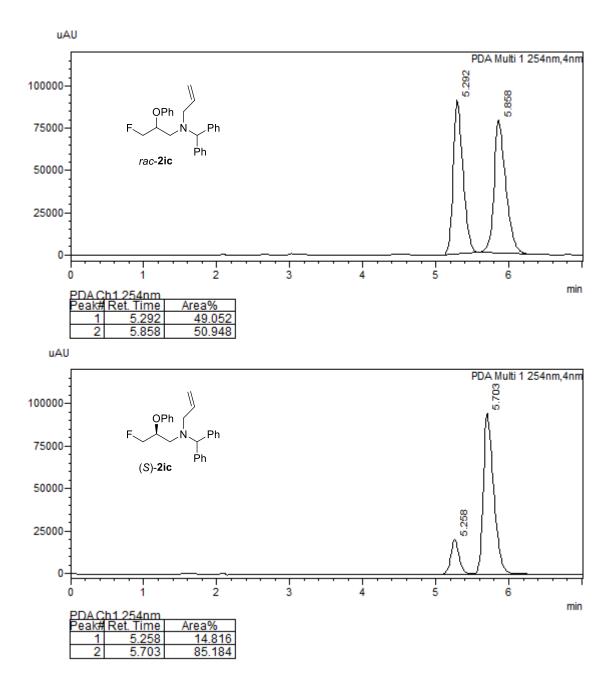


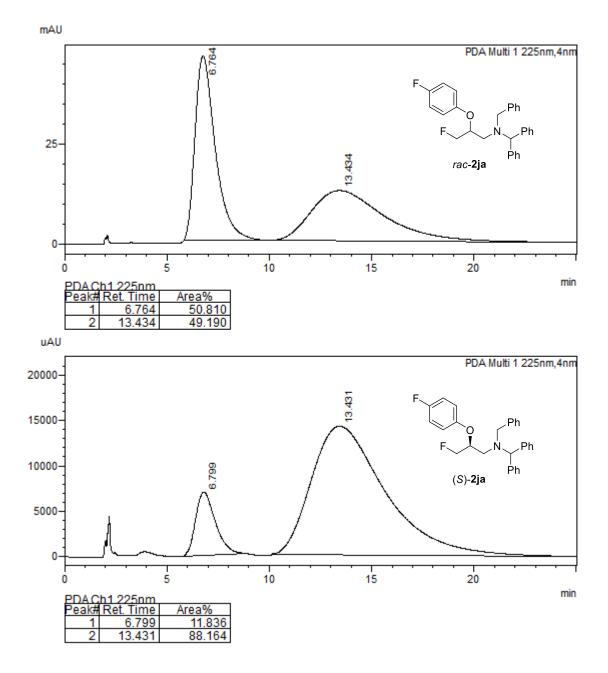


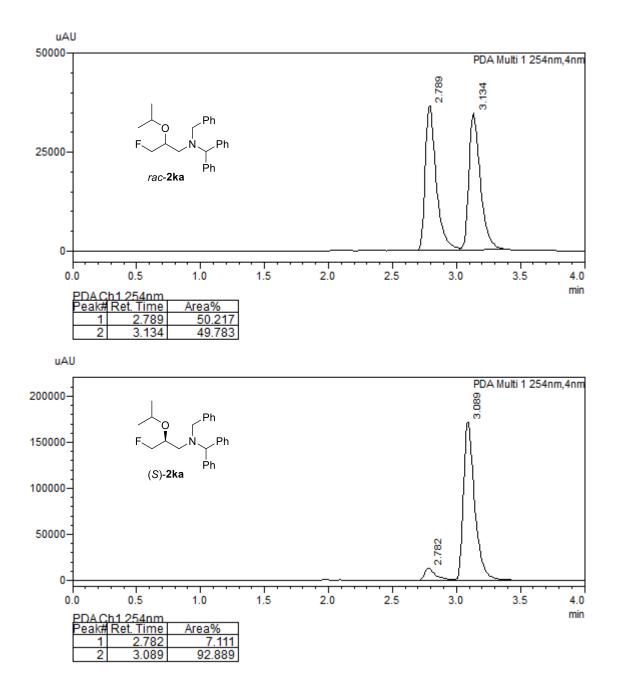


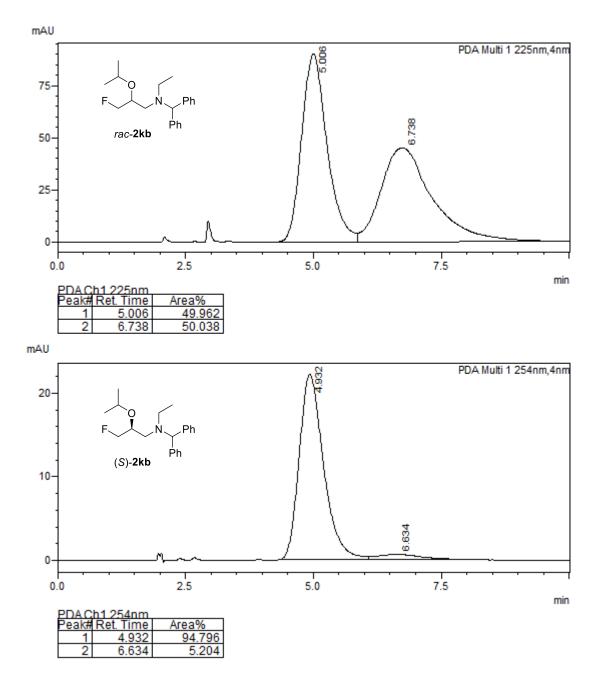


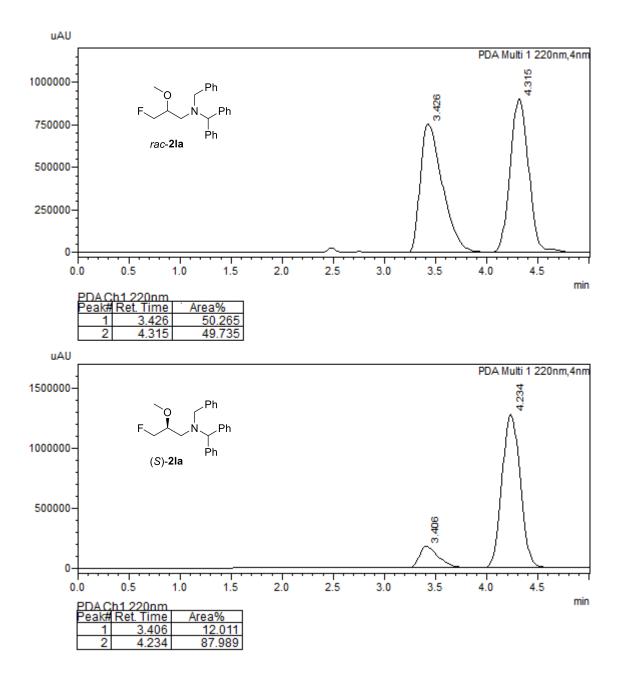


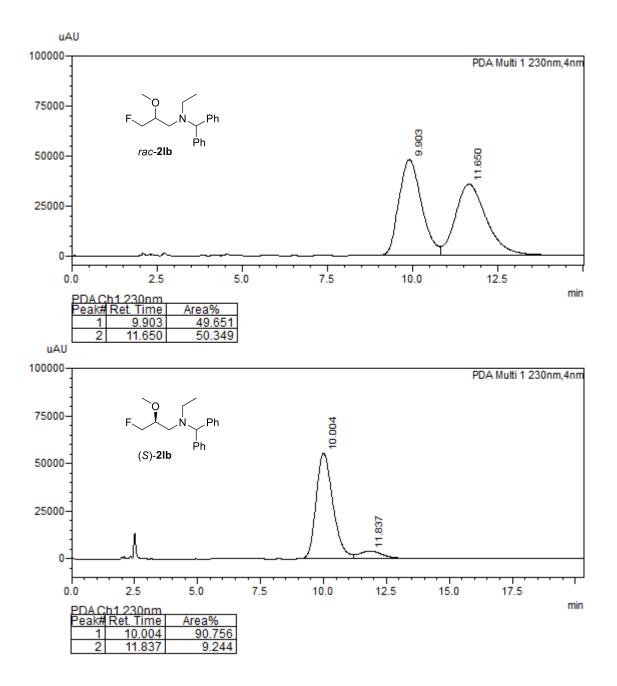


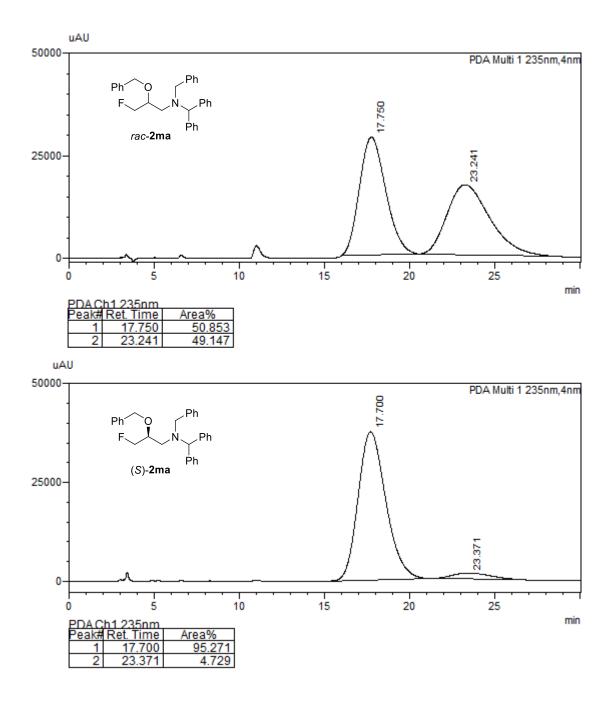


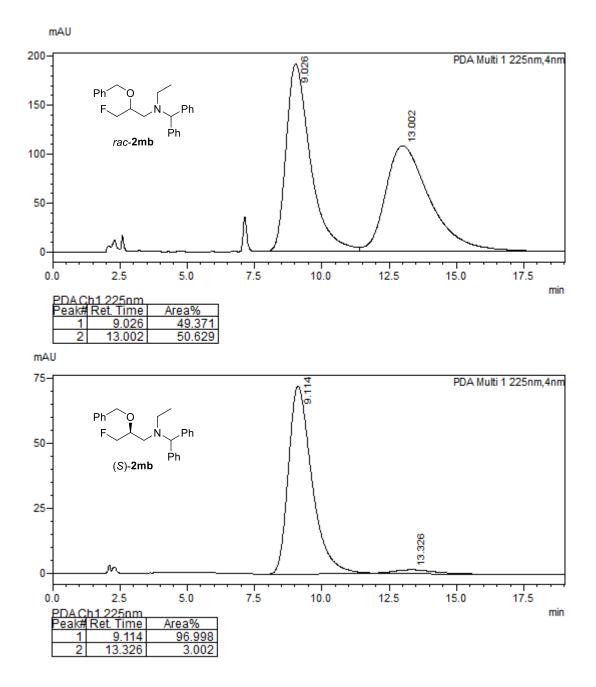


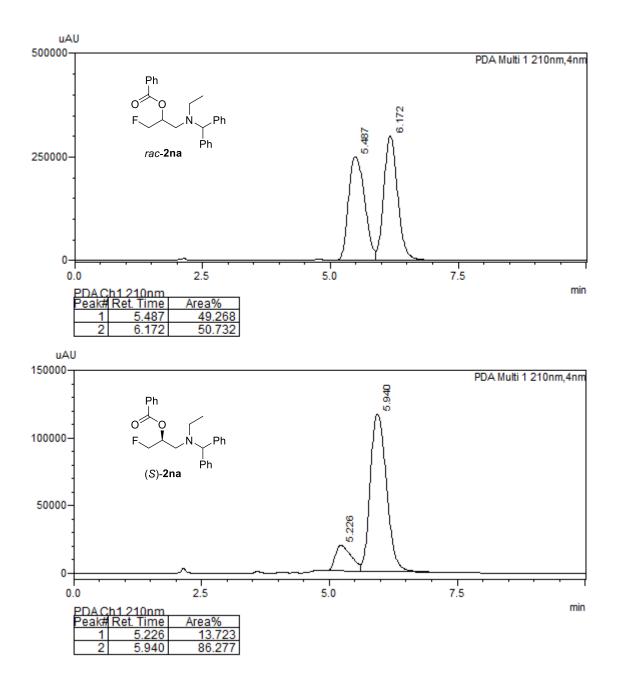


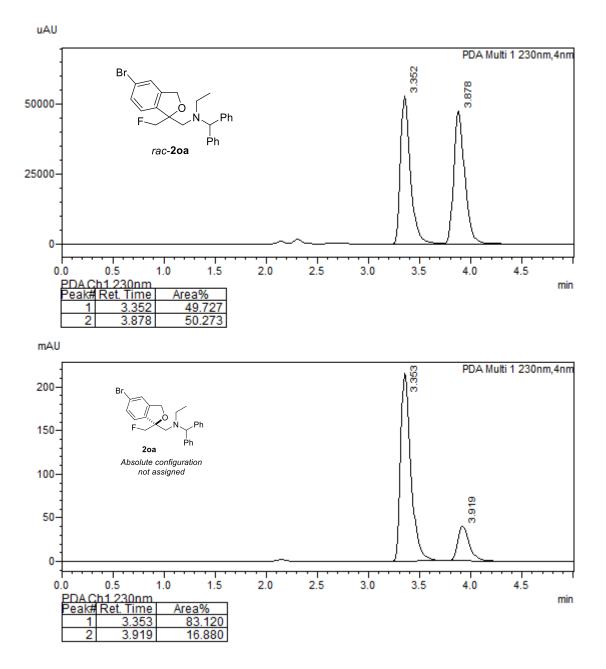


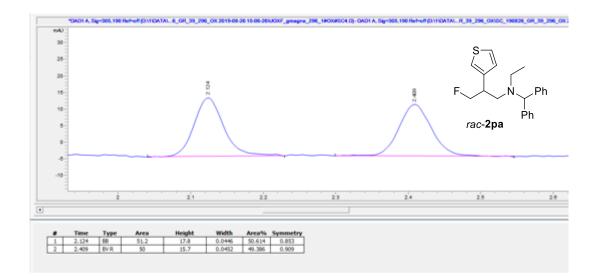


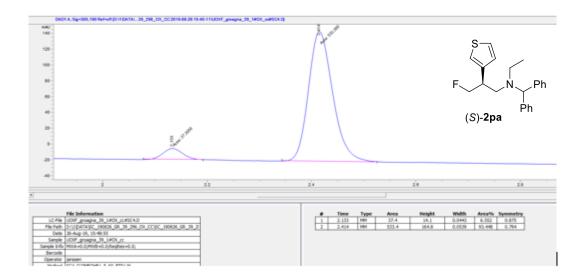


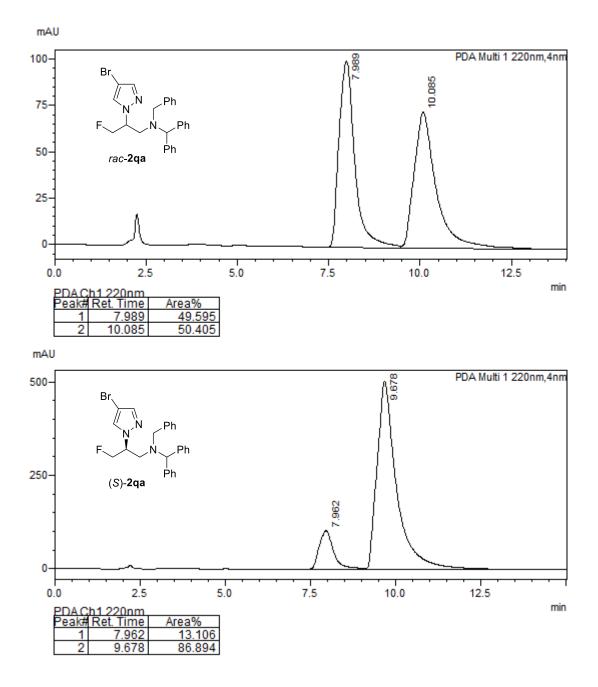


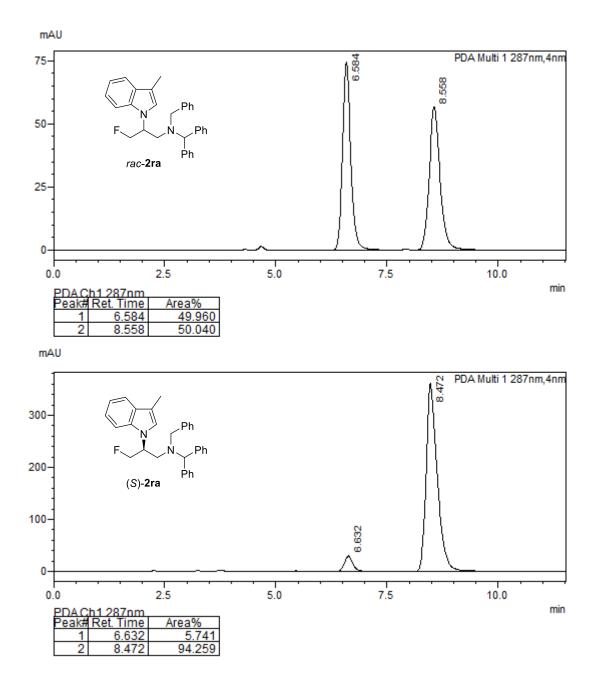


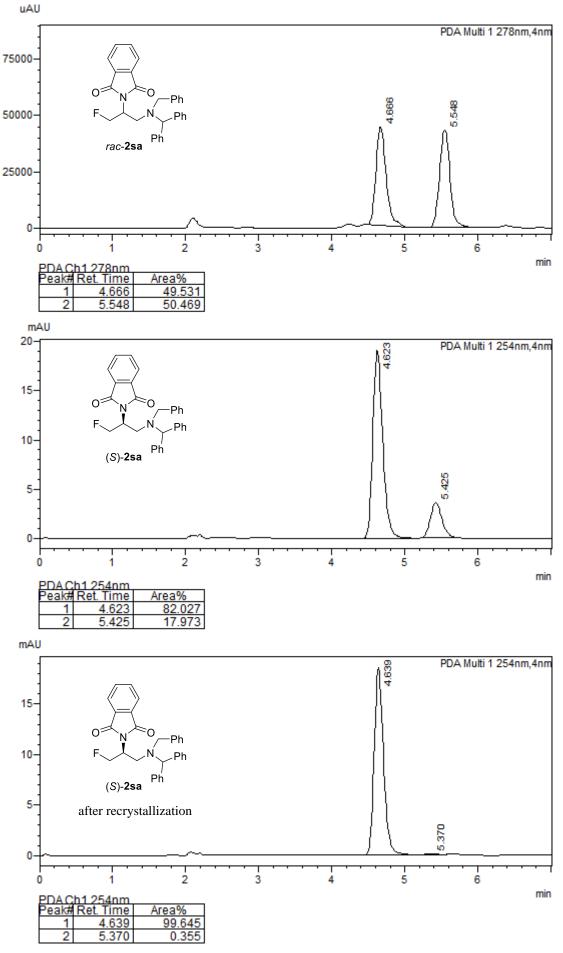




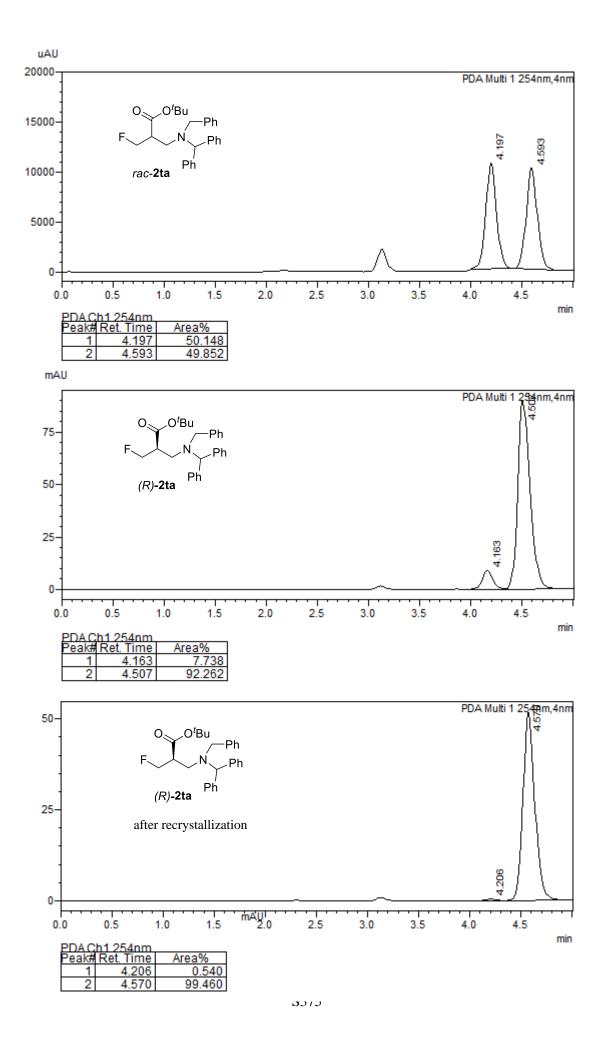


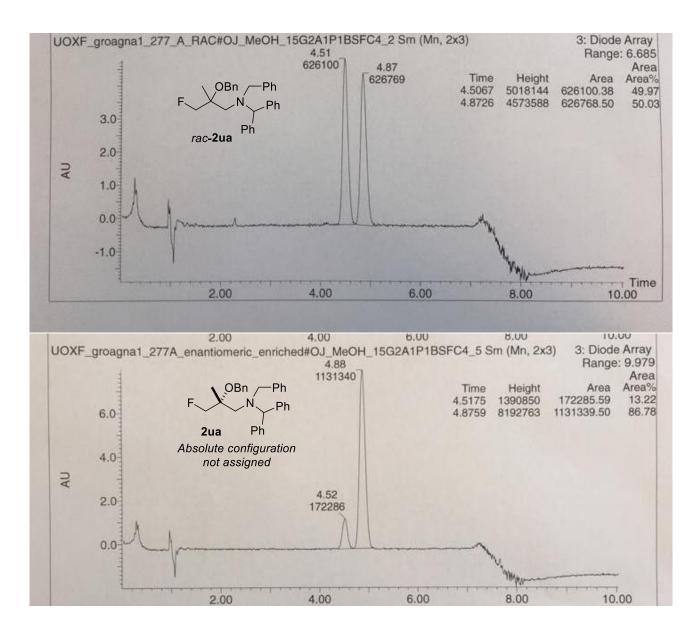


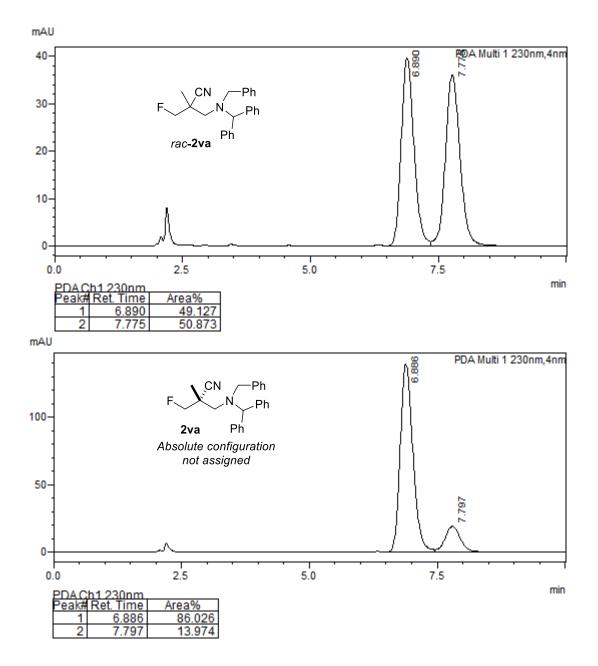

#	[min]	[min]	Area [mAU*s]	[mAU]	%
1	2.124 BB	0.0446	51.24637	17.79112	50.6135
2	2.409 BV	/R 0.0452	50.00393	15.66250	49.3865
Total	s :		101.25030	33.45362	

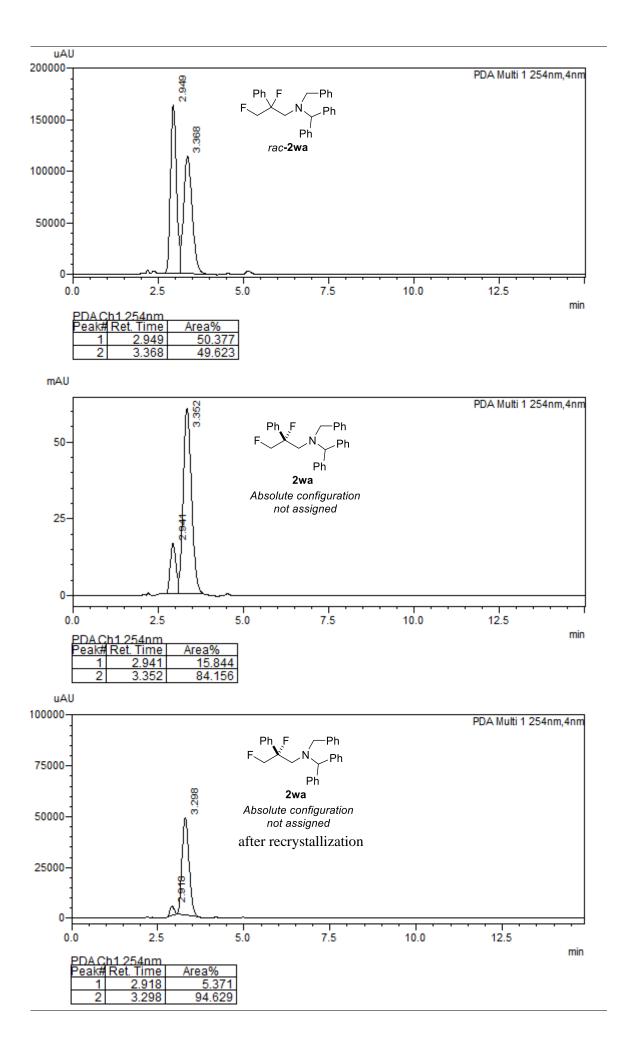


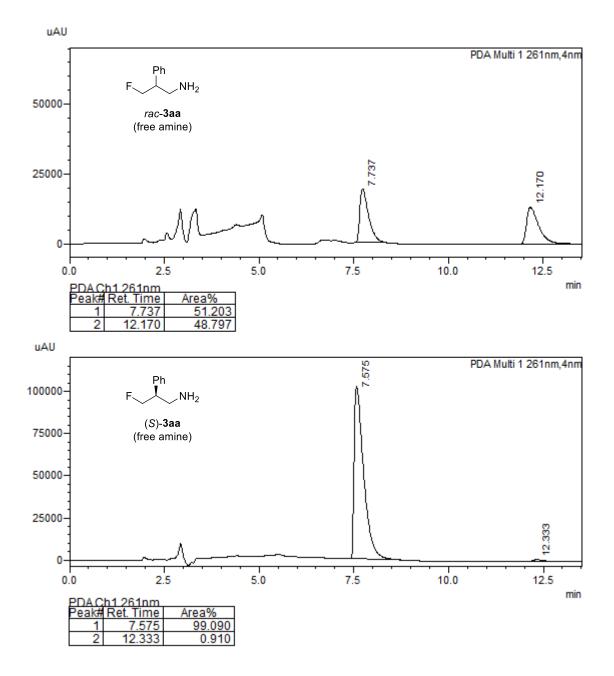
Signal 1: DAD1 A, Sig=305,190 Ref=off

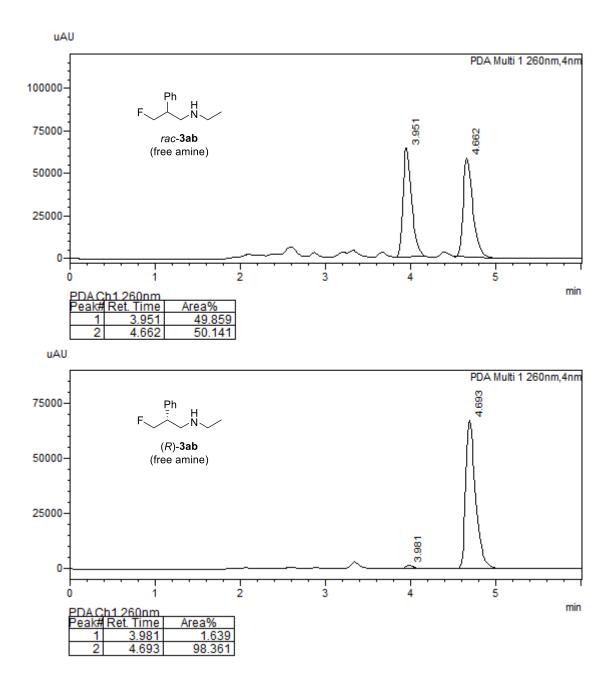

#	[min]		[min]		[mAU]	%
1	2.133	MM	0.0443	37.39555	14.07308	6.5516
2	2.414	MM	0.0539	533.38910	164.82869	93.4484
Total	s :			570.78465	178.90177	

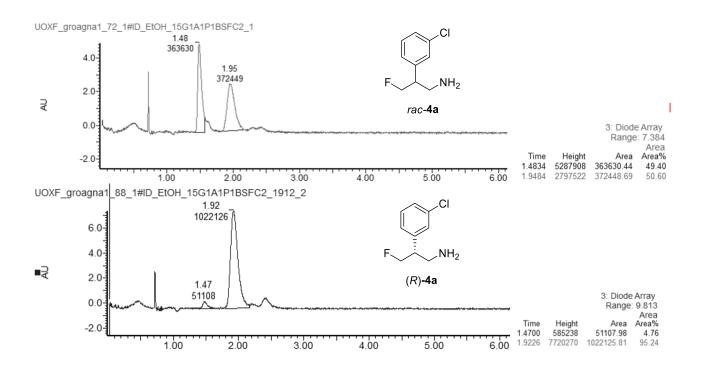


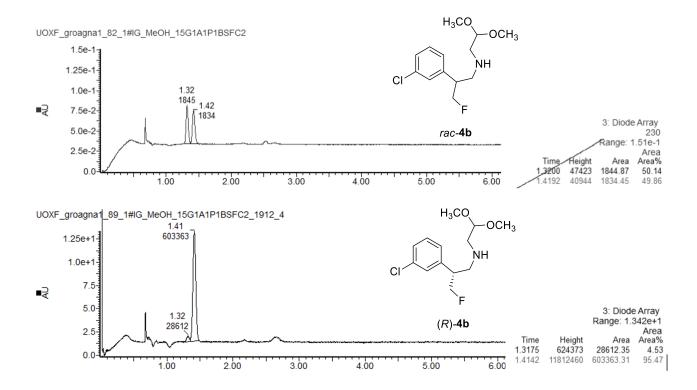


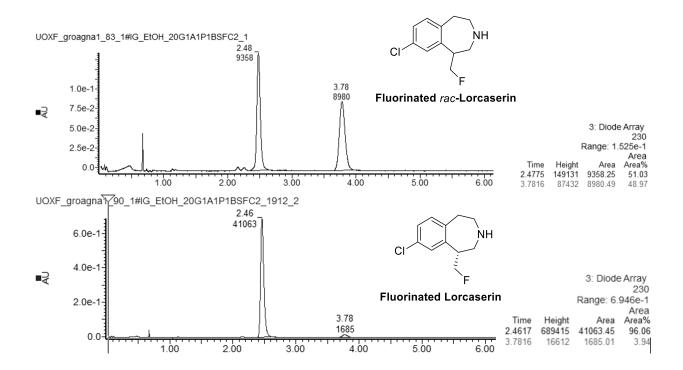



\$374









References

- Pupo, G.; Ibba, F.; Ascough, D. M. H.; Vicini, A. C.; Ricci, P.; Christensen, K.; Pfifer, L.; Morphy, J. R.; Brown, J. M.; Paton, R.; Gouverneur, V. Asymmetric Nucleophilic Fluorination under Hydrogen Bonding Phase-transfer Catalysis. *Science* 2018, *360*, 638.
- 2) Adams, R. W.; Holroyd, C. M.; Aguilar, J. A.; Nilsson, M.; Morris, G. A. "Perfecting" WATERGATE: Clean Proton NMR Spectra from Aqueous Solution. *Chem. Commun.* **2013**, *49*, 358
- a) Brynn Hibbert, D.; Thordarson, P. The Death of the Job Plot, Transparency, Open Science and Online Tools, Uncertainty Estimation Methods and Other Developments in Supramolecular Chemistry Data Analysis. *Chem. Commun.* 2016, *52*, 12792; b) Thordarson, P. Determining Association Constants from Titration Experiments in Supramolecular Chemistry. *Chem. Soc. Rev.* 2011, *40*, 1305.
- 4) Brak, K.; Jacobsen, E. N. Asymmetric Ion-Pairing Catalysis. Angew. Chem. Int. Ed. 2013, 52, 534.
- 5) Qian, D.; Chen. M.; Bissember, A. C.; Sun, J. Counterion-Induced Asymmetric Control in Ring-Opening of Azetidiniums: Facile Access to Chiral Amines. *Angew. Chem. Int. Ed.* **2018**, *57*, 3763.
- Parmar, D.; Henkel, L. Dib, J.; Rueping, M. Iron Catalysed Cross-couplings of Azetidines Application to the Formal Synthesis of a Pharmacologically Active Molecule. *Chem. Comm.* 2015, 51, 2111.
- Barré, B.; Gonnard, L.; Campagne, R.; Reymond, S.; Marin, J.; Ciapetti, P.; Brellier, M.; Guérinot A.; Cossy, J. Iron- and Cobalt-Catalyzed Arylation of Azetidines, Pyrrolidines, and Piperidines with Grignard Reagents. *Org. Lett.* 2014, *16*, 6160.
- Dequirez, G.; Bourotte, M.; Porras de Francisco, E.; Remuiñan, M. J.; Déprez, B.; Willand Microwave-Assisted Suzuki-Miyaura Cross Coupling using Nickel as Catalyst to Rapidly Access to 3-Arylazetidine. *ChemistrySelect* 2017, 2, 8841.
- Hillier, M. C.; Chen, C. –Y. A One-Pot Preparation of 1,3-Disubstituted Azetidines. J. Org. Chem. 2006, 71, 7885.
- 10) Berton, M.; Huck, L.; Alcazar, J. On-demand synthesis of organozinc halides under continuous flow conditions. *Nature Protoc.* **2018**, *13*, 324.
- 11) a) Nisato, D.; Frigerio, M. Synthèse de l-amino-3 azétidine. *J. Heterocycl. Chem.* 1985, 22, 961; b)
 Davies, S. G.; Fletcher, A. M.; Frost, A. B.; Roberts, P. M.; Thomson, J. E. Asymmetric Synthesis of Substituted *anti*-β-Fluorophenylalanines. *Org. Lett.* 2015, *17*, 2254.
- 12) Cosier, J.; Glazer. A. M. A nitrogen-gas-stream cryostat for general X-ray diffraction studies. *J. Appl. Cryst.* **1986**, *19*, 105.
- 13) Palatinus, L.; Chapuis, G. "SUPERFLIP a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. *J. Appl. Cryst.* **2007**, *40*, 786.
- 14) a) Parois, P.; Cooper, R. I.; Thompson, A. L. Crystal structures of increasingly large molecules: meeting the challenges with CRYSTALS software. *Chem. Cent. J.* 2015, 9, 30; b) Cooper, R. I.; Thompson, A. L.; Watkin, D. J. CRYSTALS Enhancements: Dealing with Hydrogen Atoms in Refinement. *J. Appl. Cryst.* 2010, 43, 1100.

- 15) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16. Gaussian Inc: Wallingford, CT **2016**.
- 16) Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. *Theor. Chem. Acc.* 2008, 120, 215.
- Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. *Phys. Chem. Chem. Phys.* 2005, 7, 3297.
- Rappoport, D.; Furche, F. Property-Optimized Gaussian Basis Sets for Molecular Response Calculations. J. Chem. Phys. 2010, 133, 134105.
- 19) Leininger, T.; Nicklass, A.; Küchle, W.; Stoll, H.; Dolg, M.; Bergner, A. The Accuracy of the Pseudopotential Approximation: Non-Frozen-Core Effects for Spectroscopic Constants of Alkali Fluorides XF (X = K, Rb, Cs). *Chem. Phys. Lett.* **1996**, 255, 274.
- 20) Wheeler, S. E.; Houk, K. N. Integration Grid Errors for Meta-GGA-Predicted Reaction Energies: Origin of Grid Errors for the M06 Suite of Functionals. *J. Chem. Theory Comput.* **2010**, *6*, 395.
- 21) Barone, V.; Cossi, M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. *J. Phys. Chem. A* **1998**, *102*, 1995.
- 22) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, Structures, and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model. *J. Comput. Chem.* **2003**, *24*, 669.
- 23) Takano, Y.; Houk, K. N. Benchmarking the Conductor-like Polarizable Continuum Model (CPCM) for Aqueous Solvation Free Energies of Neutral and Ionic Organic Molecules. *J. Chem. Theory Comput.* **2005**, *1*, 70.
- 24) Neese, F. The ORCA Program System. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73.
- 25) Neese, F. Software Update: The ORCA Program System, Version 4.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e1237.
- 26) Chai, J.-D.; Head-Gordon, M. Long-Range Corrected Hybrid Density Functionals with Damped Atom–Atom Dispersion Corrections. *Phys. Chem. Chem. Phys.* **2008**, *10*, 6615.

- 27) Lin, Y.-S.; Li, G.-D.; Mao, S.-P.; Chai, J.-D. Long-Range Corrected Hybrid Density Functionals with Improved Dispersion Corrections. *J. Chem. Theory Comput.* **2013**, *9*, 263.
- 28) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
- Zheng, J.; Xu, X.; Truhlar, D. G. Minimally Augmented Karlsruhe Basis Sets. *Theor. Chem. Acc.* 2011, 128, 295.
- 30) Paton Lab; Rodriguez-Guerra, J.; Chen, J. T.; Paton, R. S. Goodvibes 2019 DOI: 10.5281/zenodo.595246.
- 31) Grimme, S. Supramolecular Binding Thermodynamics by Dispersion-Corrected Density Functional Theory. *Chem. Eur. J.* **2012**, *18*, 9955.
- 32) Grimme, S.; Bannwarth, C.; Dohm, S.; Hansen, A.; Pisarek, J.; Pracht, P.; Seibert, J.; Neese, F. Fully Automated Quantum-Chemistry-Based Computation of Spin–Spin-Coupled Nuclear Magnetic Resonance Spectra. *Angew. Chem. Int. Ed.* 2017, *56*, 14763.
- 33) Jorgensen, W. L.; Tirado-Rives, J. The OPLS Potential Functions for Proteins. Energy Minimizations for Crystals of Cyclic Peptides and Crambin. *J. Am. Chem. Soc.* **1988**, *110*, 1657.
- 34) Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 118, 11225.
- 35) Bayly, C. I.; Cieplak, P.; Cornell, W. D.; Kollman, P. A. A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints for Deriving Atomic Charges: The RESP Model. J. Phys. Chem. 1993, 97, 10269.
- 36) Comell, W. D.; Cieplak, P.; Bayly, C. I.; Kollman, P. A. Application of RESP Charges To Calculate Conformational Energies, Hydrogen Bond Energies, and Free Energies of Solvation. J. Am. Chem. Soc. 1993, 115, 9620.
- 37) Schrodinger LLC. Schrodinger Release 2017-2. MS Jaguar: New York, NY 2017.
- 38) Case, D. A.; Cerutti, D. S.; Cheatham III, , T. E.; Darden, T.A.; Duke, R. E.; Giese, T. J.; Gohlke, H.; Goetz, A. W.; Greene, D.; Homeyer, N.; Izadi, S.; Kovalenko, A.; Lee, T.S.; LeGrand, S.; Li, P.; Lin, C.; Liu, J.; Luchko, T.; Luo, R.; Mermelstein, D.; Merz, K.M.; Monard, G. Nguyen, H.; Omelyan, I.; Onufriev, A.; Pan, F.; Qi, R.; Roe, D. R.; Roitberg, A.; Sagui, C.; Simmerling, C. L.; Botello-Smith W. M.; Swails, J. Walker, R. C.; Wang, J.; Wolf, R. M.; Wu, X.; Xiao, L.; York, D. M.; Kollman, P. A.; AMBER 2017. University of California: San Francisco 2017.
- 39) van der Spoel, D.; van Maaren, P. J.; Caleman, C. GROMACS Molecule & Liquid Database. *Bioinformatics* **2012**, *28*, 752.
- 40) Chen, S.; Yi, S.; Gao, W.; Zuo, C.; Hu, Z. Force Field Development for Organic Molecules: Modifying Dihedral and 1-n Pair Interaction Parameters. *J. Comput. Chem.* **2015**, *36*, 376.

- 41) Bussi, G.; Donadio, D.; Parrinello, M. Canonical Sampling through Velocity Rescaling. J. Chem. Phys. 2007, 126, 014101.
- 42) Parrinello, M.; Rahman, A. Crystal Structure and Pair Potentials: A Molecular Dynamics Study. *Phys. Rev. Lett.* **1980**, *45*, 1196.
- Parrinello, M.; Rahman, A. Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J. Appl. Phys. 1981, 52, 7182.
- 44) Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. LINCS: A Linear Constraint Solver for Molecular Simulations. *J. Comput. Chem.* **1997**, *18*, 1463.
- 45) Daura, X.; Gademann, K.; Jaun, B.; Seebach, D.; van Gunsteren, W. F.; Mark, A. E. Peptide Folding: When Simulation Meets Experiment. *Angew. Chem. Int. Ed.* **1999**, *38*, 236.
- 46) Kozuch, S.; Shaik, S. A Combined Kinetic-Quantum Mechanical Model for Assessment of Catalytic Cycles: Application to Cross-Coupling and Heck Reactions. *J. Am. Chem. Soc.* **2006**, *128*, 3355.
- 47) Kozuch, S.; Shaik, S. Kinetic-Quantum Chemical Model for Catalytic Cycles: The Haber-Bosch Process and the Effect of Reagent Concentration. *J. Phys. Chem. A* **2008**, *112*, 6032.
- 48) Kozuch, S.; Lee, S. E.; Shaik, S. Theoretical Analysis of the Catalytic Cycle of a Nickel Cross-Coupling Process: Application of the Energetic Span Model. *Organometallics* **2009**, *28*, 1303.
- 49) Kozuch, S.; Shaik, S. How to Conceptualize Catalytic Cycles? The Energetic Span Model. *Acc. Chem. Res.* 2011, 44, 101.
- 50) Kozuch, S. A Refinement of Everyday Thinking: The Energetic Span Model for Kinetic Assessment of Catalytic Cycles. *WIREs Comput. Mol .Sci.* **2012**, *2*, 795.
- 51) Bickelhaupt, F. M.; Houk, K. N. Analyzing Reaction Rates with the Distortion/Interaction-Activation Strain Model. *Angew. Chem. Int. Ed.* **2017**, *56*, 10070.