
Appendix

A Kinematics in ALE

To describe the motion of a continuum(solid, fluid), we start with two configurations, the deformed con-
figuration Bt, the reference configuration Bp. As shown in Fig 1, the deformed configuration Bt is the image
of Bp under the map χp. The points in Bp, Bt are denoted by Xp,x respectively. The displacement of
material particles from the reference to the deformed configuration is given by.

u(Xp, t) := x(X, t)−Xp (A.1)

Alternatively, the Eulerian description of the displacement is given by

u(x, t) := x−Xp(x, t) (A.2)

Where Xp(x, t) is the image of x under the map χ−1
p at time t.

Denoting the material time derivative by Dt, the material particle velocity v is related to the Eulerian
description of the displacement field as follows

v(x, t) := Dtu⇒ v =
∂u

∂t
+ (∇xu)v (A.3)

where ∇x is the gradient with respect to x over Bt. The above equation for the material time derivative
holds true for the Eulerian description of any vector quantity. It can be viewed as a property of the map χp

Additionally, for the ALE computation, we have the computational configuration Bc. The points in
Bc are denoted by Xc. As shown in Fig. A.1, the deformed configuration Bt is the image of Bc under the
map χc. In a finite element computation, the map χc can be interpreted as the motion of the mesh. The
displacement of the mesh gives us the relation between position of a particle in the computational domain
and its position in the deformed configuration.

x(Xc, t)−Xc =: um(Xc, t) (A.4)

The deformation gradient and the Jacobian determinant of the mesh motion are given by

Fm(Xc, t) :=
∂x(Xc, t)

∂Xc
= I + ∇Xc

um (A.5)

Jm(Xc, t) := detFm(Xc, t) (A.6)

where, ∇Xc
is the gradient with respect to Xc over Bc.

Now, we take the material time derivative of all the quantities in eq. A.4. The material time derivative
of x(Xc, t) is the ALE representation of material particle velocity.

Dtx(Xc, t) =: v̂(Xc, t) = v(x(Xc, t), t) (A.7)

We want to find the solution to an initial boundary value problem(or a boundary value problem) on the
deforming domain. However, since our finite element computation is performed on the computational domain
Bc instead of the deforming domain Bt, the primary unknown fields,for example, the stress tensor(σ) fluid



Figure A.1: Current configuration Bt is the common image of particle motion χp and mesh motion χc

velocity (v) and pressure (p) will be calculated as functions of the computational coordinates Xc instead of
the physical coordinates x, and time t.

p̂(Xc, t) = p(x, t) = p(x(Xc, t), t) (A.8)

v̂(Xc, t) = v(x, t) = v(x(Xc, t), t) (A.9)

σ̂(Xc, t) = σ(x, t) = σ(x(Xc, t), t) (A.10)

We will need to express the governing equations in continuum mechanics, that contain spatial gradients
and material time derivatives, in ALE coordinates. The following transformations use the deformation gradi-
ent defined in eq. A.5 and the Jacobian determinant defined in eq. A.6 to rewrite the spatial derivatives(that
commonly occur in mass and momentum balance laws) in the computational domain.

For a vector v:

∇xv = ∇Xc v̂F
−1
m (A.11)

∇x.v =
1

Jm
Tr
[
JmF

−1
m v̂

]
(A.12)

where, Tr is the trace operator on tensors.

For a scalar p:

∇xp = F−T
m ∇Xc p̂ (A.13)

For a tensor σ

∇x.σ =
1

Jm
∇Xc .

(
Jmσ̂F

−T
m

)
(A.14)



The material time derivative of velocity(the acceleration) estimated in the physical and computational
coordinates is given as follows.

a(x, t) := Dtv(x, t) =
∂v

∂t
+ (∇xv)v (A.15)

â(Xc, t) := Dtv̂(Xc, t) =
∂v̂

∂t
+ (∇Xc

v̂)F−1
m

(
v̂ − ∂um

∂t

)
(A.16)

The derivation of eq. A.16 is not immediately obvious. A detailed derivation is given by Donea et al. [3].
Further, any integral over the deformed domain can be transformed to an integral over the computational

domain using the Jacobian determinant defined in eq. A.6.

∫
Bt

f(x) dν =

∫
Bc

Jmf̂(Xc) dν̂ (A.17)

where ν and ν̂ are infinitesimal volumes is Bt and Bc respectively.
An integral over the boundary of the deformed domain can be transformed into an integral over the

boundary of the computational domain as follows∫
∂Bt

f(x).n da =

∫
∂Bc

f̂(Xc)JmF
−T
m n̂dâ (A.18)

where a and â are infinitesimal areas in ∂Bt and ∂Bc respectively and n̂ is a unit normal in the computational
domain.

B Particle tracking in ALE

To track fluid particles in the computational domain(in ALE), we want to find the fluid particle coordinates
(Xc) as a function of time. The material time derivative of Xc is the particle velocity observed from the
computational domain Bc is defined as:

DtXc =: Ẋc (B.1)

The material time derivative of the mesh displacement is obtained by a method similar to that in eq.
A.3. In this case we use the map χ−1

c oχp instead of the map χp in eq.A.3.

Dtum(Xc, t) =
∂um
∂t

+ (∇Xcum)Ẋc (B.2)

From the finite element computation in ALE, we know the fields v̂(Xc, t) and um(Xc, t). We want to
find Ẋc as a function of these known quantities. Using eq.s A.7, B.1 and B.2 in the material time derivative
of eq. A.4 and rearranging the terms, we get

v̂ − Ẋc =
∂um
∂t

+ (∇Xc
um)Ẋc (B.3)

(I + ∇Xc
x)Ẋc = v̂ − ∂um

∂t
(B.4)

We can use the definition of Fm from eq. A.5 to obtain the particle velocity as seen from the computa-
tional domain

Ẋc = F−1
m

(
v̂ − ∂um

∂t

)
(B.5)

Here, we present the initial value problem to calculate fluid particle trajectories in ALE framework. This
calculation is proposed as a post-processing step after the actual finite element computation. Therefore, it is



assumed that the material particle velocity v̂(Xc, t) and the mesh displacement um(Xc, t) (and subsequently
Fm and ∂um

∂t ) are known quantities in the computational domain.

find x(Xc, t) such that


x(Xc, t) = Xc + um(Xc, t)

Ẋc = F−1
m

(
v̂(Xc, t)− ∂um(Xc,t)

∂t

)
x(Xc, 0) = Xc + um(Xc, 0)

(B.6)

The above initial value problem can be solved using a forward Euler integration scheme to obtain fluid
particle position in the computational and deformed domains. The time integration scheme is implemented
as follows to calculate the position in the computational domain at time t+dt when the position at time t
is known.

Xc(t+ dt) = Xc(t) + dtFm(Xc(t), t)
−1

(
v̂(Xc(t), t)−

∂um(Xc(t), t)

∂t

)
(B.7)

The particle position in the deformed domain is simply a consequence of the first equation of the initial
value problem(eq. B.6). We can track fluid particles till the time they exit the computational domain.

There are two main reasons for choosing a forward Euler integration scheme over a backward Euler
integration scheme. Firstly, the ODE described in eq. B.6 does not necessarily have a fixed point. Secondly,
the values of the quantities on the right side of the ODE only exist within the computational domain, and
therefore the equation is not solvable using a backward Euler scheme at the timestep when a particle leaves
the computational domain.

C Initial conditions for problems

In all the intial-boundary value problems described below, the initial values and initial time-derivatives of
all variables are always set to zero. This is chosen for convenience since specifying a non-zero initial condition
for one variable would require the knowledge the corresponding initial values for all the other variables with
coupled physics. The parameter values used in Dirichlet boundary conditions, are ramped up from zero to
the specified values using step functions in Comsol multiphysics. These functions have continuous first and
second derivatives with respect to time. In the subsequent sections, we will use step1(t) in the equations to
indicate wherever these functions are used. The results for these simulations are shown after the effect of
the initial conditions are insignificant. We show the results after 20 cycles of the peristaltic wave, where the
variations in the velocity and pressure fields from cycle to cycle are less than 10−6% of peak value.

D Darcy-Brinkman Flow in ALE coordinates

We want to solve for the fluid velocity vf and pressure pf in a deforming domain Bt, representing the
PVS. The displacement field that defines the time-dependent deformation of the domain is denoted by um
(same as eq. A.4). The finite element calculations are done in the computational domain Bc, where we solve
for the velocity and pressure fields as a function of the computational coordinates Xc. These fields v̂f and
p̂f are defined according to equations A.9 and A.8 respectively.

The computations are done in an axisymmetric framework. The inner and outer radius of the compu-
tational domain are R1 & R2 respectively, where R2 = R1 + wd. The domain has a length La in the z
direction. See Table 1 for the list of parameters

We use a harmonic model for the mesh motion [1, 2].The governing equation for the mesh displacement,
um on Bc is given by

0 = ∇2um (D.1)



From here on in the document, since all the equations are presented in the computational coordinates,
the Xc subscript on the spatial derivatives (gradient, divergence and laplacian) is dropped.

The boundary of Bc (∂Bc =: Γc)is divided into four non-overlapping regions such that ΓD1
c ∪ΓD2

c ∪ΓN1
c ∪

ΓN2
c = Γc, and ΓD1

c ∩ ΓD2
c ∩ ΓN2

c ∩ ΓN2
c = ∅, where, ∅ is the empty set. The division of the boundary

is shown in Fig D.1. The mesh displacement on the boundaries should reflect the motion of the physical
domain. Here, the outer wall of the artery(ΓD1

c ) moves according to the sinusoidal wave described by eqn
D.2.

on ΓD1
c :

{
umr = b1 step1(t) sin

(
2π
λ (z + ct)

)
umz = 0

(D.2)

on ΓD2
c :

{
umr = 0

umz = 0
(D.3)

on ΓN1
c ∪ ΓN2

c : (∇Xc
um)n̂ = 0 (D.4)

Figure D.1: Computational Domain and boundaries for the Darcy-Brinkman flow problem ALE

The governing equation for the velocity (v̂f ) and pressure(p̂f ) fields are given by incompressible Darcy-
Brinkman’s flow. The Eulerian form of the governing equations for incompressible Darcy-Brinkman flow
are well known.

0 = ρf (af − b)−∇.σf +
ζµf
ks
vf (D.5)

σf = −p̂fI + 2µfSym(∇vf ) (D.6)

0 = ∇.vf = Tr[vf ] (D.7)



By converting all the derivatives to the computational coordinates(eqs A.11- A.18), we get the ALE
formulation.

0 = Jmρf (âf − b̂)−∇.
(
Jmσ̂fF

−T
m

)
+
Jmζµf
ks

v̂f (D.8)

σ̂f = −p̂fI + 2µfSym
(
∇v̂fF−1

m

)
(D.9)

0 = Tr
[
JmF

−1
m v̂f

]
(D.10)

Where âf is the acceleration of fluid particles defined according to eq. A.16 and I is the identity tensor.
The body force, b is zero for our problem.

We use a no-slip boundary condition at the arterial wall(ΓD1
c ) and the brain tissue(ΓD2

c ) boundaries of
the PVS. At the axial ends of the PVS, we assume that there is no applied traction.

on ΓD1
c ∪ ΓD2

c : v̂f =
∂um
∂t

(D.11)

on ΓN1
c ∪ ΓN2

c : Jmσ̂fF
−T
m n̂ = 0 (D.12)

The weak form of equations D.1, D.8 and D.10 are solved with the boundary conditions in equations D.2-
D.4, D.11 and D.12. We discretize the 2D(axisymmetric) geometry using Lagrange polynomials of second
order for um and v̂f , and Lagrange polynomials of first order for p̂f . We use a fully coupled time dependent
solver and a backward difference time integration scheme with a time step of 0.001s.

E Fluid Structure Interaction

We have two domains Bf and Bs, representing the PVS and the Brain tissue respectively. We want to
solve for the velocity(v̂f ) and pressure(p̂f ) fields in Bf . We continue to use the hat notation for these fields
because they are calculated in the computational domain that represents the un-deformed PVS. We use the
Darcy-Brinkman flow model for the fluid dynamics. The displacement of the computational domain is given
the field um. In Bs, we want to calculate the solid displacement us and solid velocity vs. Saint-Venant-
Kirchoff model is used for the solid elasticity.

For this problem, we use n̂f and n̂s to represent the outward normals to the boundaries of Bf and Bf
respectively.

Figure E.1: Computational Domains and boundaries for the Fluid-Structure interaction problem in section
4.1.4-4.1.6



The governing equations for um, v̂f and p̂f are given by equations D.1, and D.8-D.10. The boundary
conditions at the fluid-structure interface (Γfs) will be discussed at the end of this section. The boundary
conditions on the remaining boundaries of Bf are

onΓD1
f : umr =

{
b1 step1(t) sin

(
2π
λ (z + ct)

)
for pulsations

b(t) for vasodilation
(E.1)

umz = 0 (E.2)

on ΓD2
c ∪ ΓN1

c : (∇Xcum)n̂f = 0 (E.3)

The function b(t) for vasodilation starts with zero initial value and is shown in main Fig 4.

on ΓD1
f : v̂f =

∂um
∂t

(E.4)

on ΓD2
f : ˆvfz = 0 (E.5)

on ΓN1
f : Jmσ̂fF

−T
m n̂f = −RsQ1n̂f (E.6)

where, Q1 = ζf v̂f .
(
JmF

−T
m n̂f

)
(E.7)

Here, Q1 is the flow rate out of the PVS through the face ΓN1
f . Rs is the resistance of the subarachnoid

space, which is taken to be 1% the flow resistance of the PVS. Equation E.6 is a Robin boundary condition,
where the traction at a surface is proportional to the flow rate out of the surface. It serves as a lumped
model for the subarachnoid space.

For the domain Bs, the mesh motion is given by the solid displacement us. This is the Lagrangian
framework, used commonly in solid mechanics. The deformation gradient F s and the Jacobian determinant
Js are defined similar to those in eqs A.5 and A.6. The strain energy for the Saint-venant-Kirchoff elastic
model and the first Piola-Kirchoff stress are given by

Ws =
λs
2

(Tr[Es])2 + µsTr[E2
s] (E.8)

P s =
∂Ws

∂F s
(E.9)

Es :=
1

2

(
F Ts F s − I

)
(E.10)

here, Tr is the trace operator in tensors.

Since the mesh in the domain Bs follows the material particles, the material time derivatives in Bs are
equal to the partial derivatives. The governing equations for us,vs are given by,

vs =
∂us
∂t

(E.11)

0 = ρs

(
∂vs
∂t
− bs

)
−∇P s (E.12)

For our problem, the body forces bs are zero in Bs.

The boundary conditions on Γs − Γfs are as follows.



on ΓDs :

{
usr = 0

vsr = 0
(E.13)

on ΓDs ∩ ΓN2
s

{
usz = 0

vsz = 0
(E.14)

on ΓN1
s ∪ ΓN2

s : P sn̂s = 0 (E.15)

At the solid fluid interface, we enforce continuity of velocity and traction.

on Γfs : v̂f = vs (E.16)

on Γfs : 0 = Jmσ̂fF
−T
m n̂f + P sn̂s (E.17)

The weak form of equations D.1, D.8, D.10 on Bf and E.11 and E.12 on Bs are solved with the boundary
conditions in equations E.1-E.7 and E.13-E.17. We discretize the 2D(axisymmetric) geometry using Lagrange
polynomials of second order for um, v̂f ,us and vs and Lagrange polynomials of first order for p̂f , ps, qs and js.
We use a fully coupled time dependent solver and a backward difference time integration scheme with a time
step of 0.0001s for arterial pulsations and 0.0001s for functional hyperemia.

F Volume exchange fraction

We are interested in calculating the maximum fraction of the fluid in the PVS exchanged with the SAS.
To do this, we calculate the change of the fluid volume in the PVS at every time step, divide it by the initial
volume of fluid in the PVS, and find the maximum value of this ratio.

Initial volume of fluid in the PVS can be calculated in the undeformed configuration of the fluid domain
Bf . For an fluid volume fraction(porosity) of ζ, we have the initial volume of fluid Vi

Vi =

∫
Bf

ζdv̂ (F.1)

Since only the fluid leaves the PVS, the change in the fluid volume of the PVS is equal to the change
in the total volume of the PVS. The calculation of the initial and deformed volume of the PVS is straight
forward from A.17. The change in the PVS volume, δVt at any time t can be calculated over the undeformed
configuration of the fluid domain Bf .

δVt =

∫
Bf

(1− Jm(Xc, t))dv̂ (F.2)

From these two quantities, we can calculate the fraction of PVS fluid volume exchanged with the SAS
at any time t. The volume exchange fraction Qf is the maximum value of this quantity over the entire time
period of the simulation (0 < t < T ).

Qf = max
0<t<T

δVt
Vi

(F.3)
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