Dual Inhibitors of SARS-CoV-2 proteases: Pharmacophore and molecular dynamics based drug repositioning and phytochemical leads.

Kartik Mitra¹, Prasanth Ghanta², Sushank Acharya¹, Gayathri Chakrapani¹, Basavaraju Ramaiah² and Mukesh Doble^{1*}

¹Bio-engineering and drug design lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology -madras, Adayar, Chennai-600036.

² Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prashanthi nilayam, Puttaparthi – 515134.

*1 Mukesh Doble: mukeshd@iitm.ac.in

Supplementary files.

Table.1: Set-1 = reported SARs-CoV 3CL-proteases inhibitors with their binding scores and pharmacophoric similarity with respect to pharmacophore model -1 (Ph-1).

Name	Structure	IC 50	- ∆G _b (Kcal /mol)	Similarity / Ph-1
Amentoflavone	HO H	8.3±0.5	-9.4	0.690
luteolin	HO OH OH	20.2	-7.4	0.517
savinin		25	-7.7	0.422

Isatin derivative	1 C L S	13.5	-7.3	0.433
Synthetic		7.3±0.7	-6.9	0.387
48511	o for s	3.3±0.3	-7.4	0.404
DC060251		9.56±1.8	-8.4	0.535
DC060170		6.86±0.91	-8.8	0.561
MAC-5576		0.5	-6.8	0.343
Hexachlorophene		5	-6.1	0.283
Compound- 2N		5.5	-8.0	0.156

Compund -4		2.0	-8.7	0.628
Di - hydrotanshinone I	CH.	14.4	-8.1	0.637
Isatin derivative	Br S	0.98	-6.8	0.213

Table:2. Reported PLp inhibitors used for developing pharmacophore model -2 (Ph-2), along with their binding score and molecular similarity with Ph-2 model.

Name	Structure	IC 50	- ΔG _b (Kcal /mol)	Similarity / Ph-1	Ref
Bavachinin	H ₁ CO, CO, CO, OH	38.4 ± 2.4	-7.9	0.591	
Neobavaisoflavone	HO CON	18.3 ± 1.1	-7.8	0.567	(Kim et
Isobavachalcone	HO, CO OH	7.3 ± 0.8	-8.2	0.691	al., 2014)
Methylbavachalcone	H ₀ CO, COH	10.1 ± 1.2	-8.6	0.658	

Psoralidin	HO TO	4.2 ± 1.0	-8.3	0.601	
corylifol A	HO CO COH	32.3 ± 3.2	-8.4	0.640	
Tormentin- B	$\overset{HO_{-}Of_{1}}{\underset{HO^{-}}{\overset{OH_{1}}}{\overset{OH_{1}}{\overset{OH_{1}}{\overset{OH_{1}}}{\overset{OH_{1}}{\overset{OH_{1}}}{\overset{OH_{1}}}{\overset{OH_{1}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	6.1 ± 0.02	-8.7	0.684	(Cho et al., 2013)
N-trans-feruloyloctopamine	H,CO, C,	26.6±0.5	-7.1	0.503	
papyriflavonol A		3.7±1.6	-8.3	0.642	(Song et al., 2014)
broussochalcone B	HO CH O	11.6±0.7	-8.5	0.655	(Kim et al., 2014)
Tanshinone-I		11.5 ± 1.5	-8.3	0.651	(Park et al., 2012)
hirsutenone	но страна но страна но страна но страна но страна на	4.1±0.3	-7.7	0.513	
Curcumin	MeOOH HOLOH	5.7±0.3	-7.3	0.550	

xanthoangelol E	HOOC MEO	1.2±0.5	-7.7	0.539	(Park et
xanthoangelol F	Moto Con	5.6±0.5	-8.0	0.634	al., 2016)
Compound -6	Contraction of the	2.6±0.1	-8.7	0.713	(Báez-Sa ntos et al., 2014)
Compound -5g		0.67±0.1	-9.3	0.763	

Figure : 1

Fig.1:. H-bond analysis of complexes throughout the trajectory, a.) 3CLp complexes , b.) PLp complexes.In case of 3CLp Lopinavir was showing very high variation in H-bonds due to its unstable binding.

Figure : 2

Fig:2. MM/PBSA - Energy Decomposition analysis of PLp complexes.

Fig:3.a.) The plot indicates the relationship between vanderwaal volume of reported 3CLp inhibitors and their binding energy (R=0.90). The dotted line indicates the active site pocket volume of $3CLp = 572.4 \text{ A}^3$ as cut-off; **b.)** The plot indicates the relationship between total polar surface of reported PLp inhibitors and their binding energy (R=0.81). Coloured points indicate binding energies estimated from MD simulation and black points indicate binding energies estimated form docking.

Figure : 4

Fig:4. Interaction plot of 3CLp complexes after 30ns simulation a.)Lopinavir, b.)Tipranavir, c.)Nelfinavir, d.)Licochalcone-D and e.) Wedelolactone.

Figure. 5:

Fig:5. Interaction plot of PLp complexes after 30ns simulation a.)Lopinavir , b.)Tipranavir , c.)Nelfinavir, d.)Licochalcone-D and e.) Wedelolactone.