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Swedish schizophrenia cohort  

Our primary study sample included existing methylome-wide sequencing data from 759 

schizophrenia cases and 738 controls,1 which is a subset of individuals from a large-scale 

schizophrenia association study sample in Sweden.2 A demographical overview is presented in 

Table S1. Cases with schizophrenia were identified via the Swedish Hospital Discharge 

Register. Population controls, who had never received a discharge diagnosis of schizophrenia, 

were selected at random from the national population registers and then group matched to the 

cases on age, gender and county of residence. All procedures were approved by ethical 

committees in Sweden and in the USA, and all subjects provided written informed consent (or 

legal guardian consent and subject assent).  

Data processing and quality control 

We performed thorough quality control of samples, reads, and CpG3.  

The existing study sample included 1,459 individuals with methylation data available. Using 

genotype information from previous GWAS studies and sequence variants called from the 

methylation data we searched for potential sample swaps. For 11 individuals the two data types 

did not match and it could not be determined if the sample swap had occurred in the methylation 

data or in the genotype data. Therefore, these individuals were excluded from further analysis. 

This left a sample of 1,448 subjects for statistical analysis. 

Akin to filtering rare SNPs (SNPs with low minor allele frequency), we excluded rarely 

methylated sites. As these sites are unmethylated in most individuals they may create false 

positive MWAS findings due to low power or statistical problems associated with analyzing 

sparse data. This left 18,793,496 CpGs for MWAS, which corresponds to 67.3%% of all 

common CpGs in the human genome. Each methylation profile was sequenced with an average 

of 67.6 million (SD=26.2 million) reads per sample. Methylation scores were calculated by 

estimating the number of fragments covering the CpG using a non-parametric estimate of the 



fragment size distribution4. These scores provide a relative measure of the amount of 

methylation for each individual at that specific locus. The average CpG score4 across the 

methylation profiles was 2.57 (SD=1.07) with an average nonCpG-to-CpG score ratio5 of 0.02 

(SD=0.008). Thus, the average signal at the tested CpGs is sufficiently strong and the 

background noise level is low. 

Determining the significance of the cumulative MWAS signal by resampling 

To study the significance of the combined MWAS signals from associated methylation sites, 

we used the ‘ramwas7riskScoreCV’ function in RaMWAS. This function uses elastic-nets6-8 as 

implemented in the R Glmnet package to predict case-control status. Elastic-nets are akin to 

multiple regression analysis but are suitable for our scenario where the number of predictors 

is much larger than the number of observations. Elastic nets were fitted by setting the alpha 

parameter to zero (i.e., ridge regression that retains all predictive sites in the model). To avoid 

over-fitting, k-fold cross-validation is used9. That is, the sample was randomly partitioned into 

k=10 equal sized subsamples. Of the k subsamples, k−1 are used as a “training” set to fit the 

elastic net and obtain weights for each CpG. The weights are then used to estimate 

schizophrneia disease status from the methylation data in the remaining “test” set. By 

alternating the subjects used in the training and test set, estimates are obtained for all 

subjects in the study. RaMWAS repeats the entire cycle of CpG selection through MWAS 

followed by estimation of weights using elastic-nets for each of the k-folds. Because both the 

selection of CpG sites and estimation of their weights is repeated for every fold and not 

affected by the participants in the test set, we obtain unbiased predictions of the disease 

status for each subject. By testing whether these predictions are significantly correlated with 

actual schizophrenia status, we performed an “in sample replication” of the cumulative MWAS 

signal.  

 



Gene Ontology 

We collected level 5 Gene Ontology (GO) terms using Bioconductor package GO.db (version 

3.7.0) and extracted their gene annotation associations (http://geneontology.org/gene-

associations/goa_human.gaf.gz file date: 2018-07-24 09:10). To prevent biased estimation of 

term enrichment, genes of a single gene family that were highly concentrated (i.e. tandemly 

arrayed genes) in terms of genomic location (e.g. immunoglobulins, olfactory receptors) were 

condensed into broader gene clusters such that each cluster had minimum interval of 50 kb to 

the next nearest family member. The assembled level 5 GO database was then use for 

enrichment analysis. These analyses used circular permutations that properly control the Type I 

error in the presence of correlated sites. Furthermore, as the permutations are performed on a 

CpG level they also properly account for gene size, as genes with more CpGs are more likely to 

be among the top results in the permutations. 

Specifically, we first mapped the top MWAS CpGs to genes (Ensembl gene annotations 

GRCh37, release 91: ftp://ftp.ensembl.org/pub/grch37/release-91/) using the Bioconductor 

GRanges package. CpGs were allowed to map to multiple independent genes if their genomic 

position overlapped multiple unique gene annotations. After mapping, we performed 100,000 

circular permutations at the CpG level. For each permutation, a two by two table was created by 

cross classifying whether or not the genes were among the top MWAS findings versus whether 

or not the gene was in the tested GO term. Each gene was counted only once when creating 

this table (thus, if there were three CpGs in the gene, this was counted as 1 and not as 3). 

Cramér's V (sometimes referred to as Cramér's phi) was used as the test statistic to measure 

whether genes from the GO term were overrepresented among the top MWAS genes. P values 

were calculated as the proportion of permutations that yielded a value equal to or greater than 

that of Cramér's V observed in the empirical data. To correct for multiple testing we controlled 

the family-wise error rate at the 0.05 level. For this purpose we performed 100,000 permutations 



and determined the threshold that resulted in one or more significant GO terms in 5% of the 

100,000 permutations. As the distribution of the permutation test statistics can vary somewhat 

across terms, they were standardized prior to correcting for multiple testing. In addition to 

controlling the family wise error rate we calculated the false discovery rate. For a more liberal 

threshold, we report enriched terms (P value < 0.01) all containing at least three overlapping 

genes at false discovery rate of 0.25 (q value ≤ 0.25). 

Finally, one challenge for enrichment analysis in databases of biological pathways is that 

many pathways share a large number of common gene members. Therefore we used the 

Louvain Method for community detection10 as implemented in igraph11 to cluster significantly 

enriched terms based on the gene members in which they share, to help visualize 

nested/correlated GO terms. 

Identification of CpGs with concordance between blood-brain 

Overlapping CpGs from the analyses between the MBD-seq MWAS and Montano/Hannon2 

were queried using BECon12 (https://redgar598.shinyapps.io/BECon/) to obtain mean 

correlations between blood and brain for each site. CpGs with a modest correlation between 

blood and brain (r ≥ |0.2|) were annotated to identify the genes used in our Gene Ontology 

analyses that were implicated by at least one blood-brain concordant CpG. The number of 

blood-brain concordant loci is reported per GO term in Table S3a-b. Note, as the BECon tool 

was developed using 450K array data, it was infeasible to search for blood-brain concordant 

CpGs only within the MBD-seq dataset. 

Three array-based large-scale methylation datasets for schizophrenia 
 
Three array-based methylation datasets for schizophrenia were generated using the Infinium 

Human Methylation450 BeadChip (Illumina). The datasets are: 

[Montano] A study by Montano et al. 13 included DNA from blood from 689 schizophrenia cases 

and 645 controls. These samples originated from three multisite consortia: the Consortium on 



the Genetics of Endophenotypes in Schizophrenia14, the Project Among African-American to 

Explore Risks for Schizophrenia15, and the Multiplex Multigenerational Family Study of 

Schizophrenia16. A demographical overview is presented in Table S1. Diagnostic assessment 

was performed using Diagnostic Interview for Genetic Studies along with medical records and 

schizophrenia diagnosis were set according to the Diagnostic and Statistical Manual for Mental 

Disorders 4th edition (DSM-IV) criteria. Written informed consent was obtained from all 

participants. The study was approved by relevant institutional review boards in the USA.  

[Hannon-1] This methylation dataset, presented in a study by Hannon et al.,17 included DNA 

from blood from 353 schizophrenia cases and 322 controls. These samples originated from the 

University College of London case-control cohort.18 A demographical overview is presented in 

Table S1. Diagnostic assessment was performed with the clinical International Classification of 

Disease 10th edition (ICD-10) diagnosis for schizophrenia. In addition, research diagnostic 

criteria diagnosis were confirmed using interviews with the Schedule for Affective Disorders and 

Schizophrenia – Lifetime version (SADA-L).19 All participants gave informed consent. The study 

was approved by both local and multiregional ethical committees in the UK. 

[Hannon-2] Also this methylation dataset was originally presented by Hannon et al.17 The 

sample included methylation profiles from blood from 414 schizophrenia cases and 433 controls 

from the Aberdeen case-control sample.20 A demographical overview is presented in Table S1. 

Diagnostic assessments for schizophrenia were performed with ICD-10 and met criteria for 

DSM-IV. All participants gave informed consent. The study was approved by both local and 

multiregional ethical committees in the UK. 

 

 
 

  
  



Table S1. Demographic overview of the study samples 
 

Study 
Sample 

Cases Controls Race 
N Age a Sex b N Age a Sex b 

MBD-seq MWAS dataset 

Primary 744 53.1 11.55 55.1 704 55.0 11.64 54.6 Caucasian - collected in Sweden. 
Array datasets 

Montano c 689 37.7 - 69.2 645 39.5 - 42.3 African American (37.4%/65.0% for 
cases/controls) & non-African American - 
collected in the US. 

Hannon-1 d 353 43.7 14.63 72.0 322 36.8 14.65 44.1 Caucasian - collected in the UK. 
Hannon-2 e 414 44.2 14.10 68.4 433 44.9 12.16 73.7 Mixed races, cases are matched with 

controls - collected in Scotland. 
a Mean and standard deviations are given. b Percentage males. c Information obtained from eTable 1 in 
Montano et al. 13 Standard deviation of age was not reported in the original publication. d Information 
calculated from data available in Gene Expression Omnibus accession number GEO:GSE80417. Missing 
age information for 2/18 cases/controls. e Information calculated from data available in Gene Expression 
Omnibus accession number GEO:GSE84727. Missing age information for 154/28 cases/controls.  



Table S2. Enrichment testing of overlapping biological features 
 

Tested genomic feature Background 
Odds 
Ratio P 

Gene Rest of the genome (all genes excluded) 1.15 <0.00001 
Exon Rest of the genes 0.88 0.9999 
Intron Rest of the genes 1.08 <0.00001 
3’ UTR Rest of the genes 0.95 0.9992 
5’ UTR Rest of the genes 0.99 0.9129 
8 kb upstream of transcription start 
site (potential promoter) 

Rest of the genome (all 8kb upstream 
excluded) 1.18 <0.00001 

CG island in Dnase cluster Rest of the DNase clusters 0.87 0.9994 
CG island not in Dnase cluster Rest of the DNase clusters 0.86 1.0000 
CG island in gene Rest of the genes 0.77 1.0000 
CG island not in gene Rest of the genes 0.75 1.0000 
CG island shore in gene (2kb) Rest of the genes 0.94 0.9993 
CG island shore not in gene (2kb) Rest of the genes 0.97 0.9654 
Dnase cluster in gene Rest of the genes 1.01 0.6393 
Dnase cluster not in gene Rest of the genes 1.04 0.4017 
Enhancer in conserved Rest of the conserved regions 1.24 0.1164 
ncRNA Rest of the genome (all ncRNA excluded) 1.12 <0.00001 
Repeat Rest of the genome (all Repeat excluded) 1.26 <0.00001 
Splice site in conserved Rest of the conserved regions 1.10 0.2415 
Splice site in gene Rest of the genes 0.96 0.9063 
TFBS in conserved Rest of the conserved regions 1.01 0.2595 
TFBS in gene Rest of the genes 0.88 1.0000 
TFBS not in conserved Rest of the conserved regions 1.01 0.5830 
TFBS not in gene Rest of the conserved regions 0.88 1.0000 
Conserved in gene Rest of the genes 0.97 0.9905 
Conserved not in gene Rest of the genes 0.92 0.9765 

 
 
Table S3. Enriched Gene Ontology terms 
Please see separate excel file. Enriched level 5 Gene Ontology terms for a) the MBD-seq MWAS results 
of suggestive significance (P < 1e-5), b) the overlap between the top 5% MBD-seq and top 1% Montano 
MWAS findings, and c) the overlap between the top 5% of MBD-seq and top 5% of Hannon-2 MWAS 
findings. To correct for multiple testing we controlled the family-wise error rate at the 0.05 level and for 
a more liberal threshold, we report enriched terms (P value < 0.01) all containing at least three 
overlapping genes at false discovery rate of 0.25 (q value ≤ 0.25). "Blood/Brain Concord." shows genes 
implicated by at least one CpG with modest or better inter-individual correlation (r ≥ |0.2|) between 
blood and brain that are part of the GO term enrichment. 
 



Table S4. Comparison between cell-type-corrected MWAS and previous results  
Please see separate excel file. Sites in the cell-type-corrected MWAS with P values < 1.00 x 10-5 with 
corresponding results from the previous analysis. Please note, due to improved alignment algorithms 
and differences in analysis strategy1 not all sites in the cell-type-corrected MWAS have corresponding 
information in the previous analysis.  



Figure S1. Scree test 

 
 
Scree test showing the percent variance explained (y-axis) by the first 40 principal components 
(PCs; x-axis) observed in the MBD-seq dataset after controlling for relevant covariates 
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Figure S2. Distribution of lambdas 

 
Lambdas from 100 MWAS of permuted case-control status vs. the lambda observed in the 
original MBD-seq dataset 
 
  

1 10 30 50 70 90

0.9

1

1.1

1.2

●

●
●
●●

●

●

●

●

●

●

●

●●
●

●

●
●●

●
●

●
●

●

●

●
●●●

●

●

●

●●
●●
●

●

●●
●

●
●

●

●●
●

●
●●

●
●

●
●
●
●

●

●

●
●●

●

●

●
●
●
●
●
●●
●

●

●●●

●

●
●●●

●●●●

●

●

●

●

●●
●
●
●
●
●
●
●

●

●●

Permutation number

La
m

bd
a

Observed lambda: 1.11
Permutation (median/mean): 1 / 1
Permutation (95% CI): 0.98 − 1.02

●



Figure S3. Cluster plot of significantly enriched Gene Ontology terms  

 
 
The associated loci included 388 genes that were enriched (P < 0.01, q < 0.25, minimum 3 gene 
overlap) for six Gene Ontology (GO) terms that segregated into three clusters (see Table S3 for 
full statistics).     



Figure S4. Cumulative MWAS signal 
 

 
 
The correlation (y-axis) between the methylation-predicted case-control status and actual 
disease status is shown for the number of MWAS top markers (x-axis) included in the 
prediction. The cumulative effect (correlation) detected by this approach steadily increases 
with the inclusion of additional markers and reaches a plateau at ~100,000 markers. Thus, the 
steady increase shows that different associated sites contribute (partly) unique information. 
However, this should not be interpreted as if all included markers have an independent 
(uncorrelated) effect, or any effect at all, but rather that the majority of independent effects 
are represented among the top 100,000 markers. The observation of many markers with effects 
is in agreement with an observed lambda slightly above 1 that could not be explained by 
statistical artifacts as the permuted MWAS lambdas showed that the test statistic followed the 
theoretical null distribution. 
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