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Supplementary Methods 
 

Multi-type branching process equations 

Taking into account the assumptions described in the Quick guide from the manuscript, the 

expected number of cells at any time after treatment initiation was derived in previous 

publications (see Chakrabarti and Michor 2017 and its supplementary material)  and is given 

by: 

           
                           

 
                                                                                      

 
                       

 
                                        

 
    

 

 

                  
 
 

                  

 

 
 
(S1) 

where     denotes the original sensitive cell type and         denotes the N different 
resistant cell types. Birth, death and mutation rates are denoted by        and    respectively 
and the initial number of sensitive and resistant cells is represented by N0 and Ni. Since the 
mutation rate constant is always much less than 1 (    ), the sum over the mutation rates 

of all N-resistant types    
 
    can be removed from the equation.  

 
To model cross resistance to drugs, each of the resistant cell types are allowed to gain 
additional mutations and become resistant to more than one compound. A resistant type i cell 
can thus further mutate to form a type ia cell with probability uia. The first order birth and 
death rates of the ia cell are given by bia and dia. Thus, the time evolution equations of the 
expected number of cells in each clone are given by: 
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Probability of developing resistance 

The probability that there exists at least one resistant cell of any type (       ) at time T 

after treatment initiation was also derived in previous works (Foo and Michor 2010) and is 

given by: 
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The expressions above cannot be solved analytically for time-dependent growth and death 

rates, and therefore has to be solved numerically.  

 

Net growth, birth and death rate estimation from data 

In order to estimate the net growth rate of the cells, an exponential growth model based in 

the following ordinary differential equation (ODE) is defined: 

  

  
       

 

(S5) 

where N is the number of viable cells,    is the first order net growth rate parameter and 

  represents the different drug concentrations analyzed in the experiment. This model implies 

that each concentration has its own net growth rate associated. The analytical solution of this 

equation is: 

              (S6) 

 

where    is the number of viable cells at time 0.  

In order to estimate the death rate from apoptosis assay data where the number of death cells 

is counted over time and different drug concentrations, the following ODE was defined: 
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where    is the total number of death cells and    is the first order death rate parameter for 

the different drug concentrations tested. As the equation for   has been already defined, the 

following analytical solution for    can be obtained: 
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As the value of    is already known from the previous exercise and the values for    and    

over time and different drug concentrations can be obtained from the dataset, the different     

parameters can be easily obtained using a least square minimization. Finally, as the net growth 

rate parameter    is the difference between cell proliferation and death, the birth rates    for 

the different drug concentrations can be obtained from the values of    and    as         

   . 
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Non-linear concentration-response curves 

Many drug concentration-effect relationships are described by nonlinear sigmoid models, 

which are characterized by a sigmoidal or “S” shape. The four-parameter logistic equation (or 

Hill equation) is one of the most common approaches to describe single-agent concentration-

response curves of this type (Ritz et al. 2015). In this work, the responses being analyzed are 

the birth and death rates of sensitive and resistant cell lines. This model is defined by: 
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where E is the first order rate constant obtained at concentration C, Emax is the maximum effect 

of the drug on the birth rate, E0 is the intrinsic birth rate when no drug is present, EC50 is the 

inflection point of the curve and represents the concentration corresponding to 50% of the 

maximum effect and h is the shape parameter linked to the steepness of the curve. The five-

parameter logistic model is an extension of this equation for fitting asymmetrical data (Ritz et 

al. 2015) as it adds an asymmetry factor parameter defined as f in the previous equation: 
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These models can be generalized to any measure of drug exposure (e.g., dose, plasma 

concentration, or area under the concentration vs time curve). 

Apart from these two examples, ACESO incorporates other nonlinear dose-response models 

like the three and four-parameter Gompertz model, Weibull models, etc. for parameter 

estimation in order to characterize the effects of the drugs on the growth and death rates of 

cells. A simple linear model can also be fitted to the data. 

 

Non-parametric models to estimate the effect of drug combination data 

To estimate the regression surface of the in-vitro drug combination data, nonparametric fitting 

methods like Generalized Additive Models (GAMs) (Hastie 2017) or locally weighted 

scatterplot smoothing (loess) regression (Cleveland et al. 1991) were used. GAMs are a 

nonparametric extension of generalized linear models (GLMs) (McCullagh & Nelder 1989). 

Here, a general nonparametric function (e.g. cubic splines) that relates the predicted drug 

effect values to the drug concentrations is defined (Troconiz et al. 1994). Loess is a particular 

implementation of local polynomial smoothing which fits simple models to localized subsets of 

the data. As nonparametric methods, GAMs and loess regression are data-driven rather than 

model-driven; that is, they allow the data to determine the shape of the response curves. 

Thus, these models are used to describe the relation between drug concentrations and the 

growth and death rates of cancer cells without assuming the data must fit some distribution 

shape.  Although these methods are very flexible, they are not biologically interpretable and 

considerably increase the computation time needed for the simulations. Even so, they are a 
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very powerful exploratory tool which often shows relatively complex relations between a 

dependent variable and more than one independent variable without being limited by the 

shapes available in a parametric model.  

This approach allowed us to incorporate drug combination data into our evolutionary 

framework and explore the effect of multidrug dosing schedules in the evolution of cancer 

cells.  

 

Assessing drug synergy/antagonism 

In order to quantify the degree of synergy/antagonism between two compounds, the typical 

approach is to compare their measured combination effect to a null reference model of no 

interaction, i.e. the expected response assuming no interaction between the two compounds.  

If the combination response is greater than what is expected by the reference model, the 

combination is classified as synergistic, while antagonism is defined when the combination 

produces less than the expected effect.  

There are several well-known conventional approaches that define different null models to 

assess drug synergy/antagonism. The Loewe Additivity model (Loewe 1953) is one of the most 

commonly used models to quantify a zero-interactive state for the combination of two drugs. 

This model is based on the assumption that a drug cannot interact with itself and defines 

synergy/antagonism as a combined inhibitory effect that is greater/lower than the sum of the 

individual effects of the drugs. The general equation of this model is:   

  

  
 

  

  
     

where da and db are the dose (or concentrations) of drug A and B in the combination that 

produce an effect EAB and DA and DB  represent the single doses of drug A and B necessary to 

reach the same effect EAB. Isobole analysis (Tallarida 2006; Cokol et al. 2011)  and the Greco 

model (Greco et al. 1990) are methods derived from this equation.  

Loewe additive model response at any combined concentration is calculated from the 

sigmoidal fits of the single-agent response curves. In order to obtain the concentrations of 

each drug given as a single agent that elicits an effect EAB, an inverse hill equation (h-1) with 

parameters obtained from the individual dose-response curves using a common baseline value 

(effect when there is no drug concentration) is employed: 

  

  
        

 
  

  
        

     

 

  
                   

     
    

        
         (and equivalent for   

        ) 

Classical Loewe additivity model assumes that the drugs in the combination have equal 

individual baseline and maximum effects. However, this method can be extended to account 
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for different drug maximal responses (Van der Borght et al. 2017). We refer to this extended 

method as Generalized Loewe additivity model.  

Highest Single Agent (HSA), also known as Gaddum's non-interaction model (Gaddum 1985), is 

another popular model which defines a “independent action” of the drugs when the predicted 

effect of a combination is  that of the one most effective drug alone. The HSA zero interaction 

model predicts the combined effect EAB for two single agents with effects EA and EB as: 

 EAB= max(EA,EB)   (or min(EA,EB) if the monotherapy curves are decreasing) 

where EA and EB are measured on the monotherapy dose–response curve of drug A and B 

respectively. According to this model, any combined effect stronger than the effect of a single 

drug is called ‘synergism’ and a weaker effect ‘antagonism’. 

ACESO is limited to two interacting drugs for now. Calculating the effect of each treatment on 

the birth or death rate of the different cell population is a very complex task when more than 

two drugs are taken into account because of the difficulty in discerning the effect of each drug 

plus the synergistic/antagonistic interaction between them. 

 

Ideal datasets 

Cell viability and death in vitro assays are required for both sensitive and resistance cells lines 

used in the model to determine the growth and death rates for each cell with and without the 

presence of drugs. One example of viability assay to determine the proliferation rates of 

various cell types is the MTS assay. Here, the number of viable cells is measured over time 

which is then used to identify the proliferation rate of an exponentially growing population by 

performing a linear regression on log-transformed data over time. In order to automatically 

estimate these rates with ACESO, the ideal cell viability dataset should have the following 

columns in the text file: 

Mandatory columns: 

• Time: time point. 

• Viable.cells: cell count data. 

• CONC: drug concentration 

 

Optional columns: 

• Replicate: Technical replicate. If missing the program assumes that there is only 1 

replicate. 

• Cell.line: Name of the cell line. If missing the function introduces the name ‘Cell line 1’. 

• Type: numerical column specifying the cell type (0: sensitive cells, 1: resistant cell to 

drug A, etc.). If missing the program assumes Type=0, that is, a sensitive cell. 

• … : other column names where additional information can be saved: drug 

concentration units, time units, sample id…  
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We show an example in the following table (with a black box highlighting the mandatory 

columns): 

Time Viable.cells CONC Cell.line Replicate Type … 

0 2751 0 PC-9  1 0  

0 2853 0 PC-9  2 0  

0 2902 0 PC-9  3 0  

48 5000 0 PC-9  1 0  

48 4863 0 PC-9  2 0  

48 5126 0 PC-9  3 0  

48 4601 0.5 PC-9  1 0  

48 4488 0.5 PC-9  2 0  

48 4712 0.5 PC-9  3 0  

60 4885 1 PC-9  1 0  

… … … … … … … 

 

 

In the case where the effects of two drugs are analyzed, an additional column CONC2 need to 

be added, indicating the concentrations of the second drug: 

 

Time Viable.cells CONC CON2 Cell.line Replicate Type … 

0 2751 0 0 PC-9  1 0  

0 2853 0 0 PC-9  2 0  

0 2902 0 0 PC-9  3 0  

48 5000 0 0 PC-9  1 0  

48 4863 0 0 PC-9  2 0  

48 5126 0 0 PC-9  3 0  

48 4601 0.5 0 PC-9  1 0  

48 4488 0.5 0 PC-9  2 0  

48 4712 0.5 0 PC-9  3 0  

48 4885 0 0.5 PC-9  1 0  

48 4702 0 0.5 PC-9 2 0  

48 4992 0 0.5 PC-9 3 0  

… … … … … … … … 
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The death rates of the different cell types can also be parameterized using apoptosis assays 

such as Annexin V/propidium iodide (PI) fluorescence-activated cell sorting (FACS) assays, 

where cells with positive Annexin V staining are considered to be dead cells. An ideal apoptosis 

assay dataset should have the following information saved in different columns: 

Mandatory columns: 

• Time: time point 

• Death cell counts/fraction: fraction of dead cells or the total count of dead cells. 

• CONC: drug concentration 

• CONC2: In the case where the effects of two drugs are analyzed, an additional column 

need to be added, indicating the concentrations of the second drug. 

 

Optional columns: 

• Replicate: Technical replicate. If missing the program assumes that there is only 1 

replicate. 

• Cell.line: Name of the cell line. If missing the function introduces the name ‘Cell line 1’. 

• Type: numerical column specifying the cell type (0: sensitive cells, 1: resistant cell to 

drug A, etc.). If missing the program assumes Type=0, that is, a sensitive cell. 

• … : other column names where additional information can be saved: drug 

concentration units, time units, sample id…  
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Additional results: optimum dosing strategies for TNBC 

Alpelisib and lapatinib combination treatment 

We considered combination therapy using neratinib and lapatinib (Fig. S4). We found that 

lapatinib had almost no effect on type-0 cells and there was no synergy between the two 

drugs. Therefore, the selection of the best therapy was mainly based on the dosing strategy 

selected for alpelisib. The effect of lapatinib on type-2 cells was also very small leading less 

than 10% difference between dosing schedules. For all the drug combinations we investigated, 

schedules including once-weekly pulses with resting periods and no maintenance dosing 

resulted in the highest expected number of tumor cells after treatment. Increasing the weekly 

pulse frequency to twice weekly or three times a week did not improve the results for most 

drug combinations, but for alpelisib and lapatinib, combining a continuous daily dosing of 300 

mg alpelisib with a three-times a week high dose pulse of 3500 mg of lapatinib with four drug 

holidays (regimen 7) gave slightly better results. This observation may be due to the high 

lapatinib concentrations necessary to exert a substantial change in type-2 cell birth rate values 

(Supplementary Figure S1). 

Dactolisib and trametinib combination treatment 

We then investigated the effects of dactolisib and trametinib combination treatment. When 

investigating the growth rates of cells in response to these drugs, we found that trametinib 

was unable to affect large changes of trametinib-sensitive cell growth rates (Supplementary 

Fig. S5). Nevertheless, due to synergy effects, a more than 30% improvement on growth 

inhibition was achieved when we selected the most advantageous dosing regimen for type-0 

cells (Fig. S5 regimen 8/9). However, this improvement was based on a difference of less than 

1000 cells, which is negligible relative to the size of the entire tumor. For dactolisib, which is 

administered bi-daily (BID), a high-dose pulse of 800 mg BID with a continuous dosing of 200 

mg BID probed to be slightly more powerful than the daily dosing of 300 mg BID for dactolisib-

sensitive cells (3.4% improvement) but up to 26.2% more effective in the killing of type-0 cells, 

apart from using less drug amounts. Even thought, when comparing the total number of cells, 

the different dosing schedules looked similar (<5% difference) because there were 

predominantly type-2 cells left after one month of treatment period. Therefore, the best 

predicted schedules were either 8 or 9 based on a 4.8% improvement from the worst schedule 

(regimen 4). However, the total amounts of drugs used in regimen 4 were much lower 

compared to the rest of the schedules and, due to the small differences found between them, 

we hypothesize that this treatment strategy could cause similar tumor shrinkage with less 

adverse effects for the patients and costs for the hospital. 

Dactolisib and lapatinib combination treatment 

When investigating the combination of dactolisib and lapatinib, we found that they had 

antagonistic effects when applied to the BT-20 cell line. Due to this effect, decreasing the dose 

levels of one of the drugs improved the killing of type-0 cells but not the elimination of 

resistant cells. 
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Supplementary Tables 
 
 
Supplementary Table S1. Pharmacokinetic models and parameter estimates used for the 
simulations of the treatment effects. 
 

Drug Model Source Parameters MTD 
Alpelisib 1 compartment 

model with 1-order 
absorption 

De Buck et al. 2014 CL=11.5 L/h; V=118 L; 
KA=0.784 h-1; 
ALAG=0.489h 

· 400 mg QD 
· 300mg QD in 
combination with 
other drugs 

Neratinib 1 compartment 
model with 1-order 

absorption 

PK curve estimator 
 using data from 
Keyvanjah et al. 

2017 

CL=157.18 L/h; 
V=2402.7 L; KA=0.603 h-

1; ALAG=2.349h 

240mg QD 

Dactolisib 2 compartment 
model with 1-order 

absorption 

PK curve estimator 
using data from 

Wise-Draper et al. 
2017 

CL=178.9 L/h; V=1906 L; 
KA=0.4 h-1; CLd=548 L/h; 

Vp=26457 L 

1600mg QD / 
30mg BID 

Trametinib 2 compartment 
model with 1-order 

absorption 

Ouellet et al. 2016 CL=4.91 L/h; V=214 L; 
KA=2.05 h-1; Vp=568 L;  

CLd=60 L/h 

2 mg QD 

Lapatinib 1 compartment 
model with 1-order 

absorption 

Siegel-Lakhai et al. 
2007 
Stein et al. 2018 

CL=28.9 L/h; V=1000 L; 
KA=0.95 h-1; 
ALAG=0.25h 

1500 mg QD 

Selumetinib 2 compartment 
model with 

sequential 0 and 1-
order absorption 

Patel et al. 2017 KA=3.7 h-1; 
D1=0.622nmol/h; 
CL=13.5 L/h; V=32.6L; 
Vp=55L; CLd=8.2L/h; 
ALAG=0.319h 

· 100 mg BID 
· 75mg BID in 
combination with 
other drugs 

CL: total drug clearance, V: apparent volume of distribution from the central compartment, KA: first-order absorption rate 
constant, ALAG: lag time associated with the absorption of the drug, CLd: distribution clearance, Vp: volume of distribution from 
the peripheral compartment, D1: duration of the 0-order absorption, MTD: Maximally Tolerated Dose. 
References: 

· De Buck, et al. 2014. “Population Pharmacokinetics and Pharmacodynamics of BYL719, a Phosphoinositide 3-Kinase Antagonist, 

in Adult Patients with Advanced Solid Malignancies.” British Journal of Clinical Pharmacology. 

· Keyvanjah, Kiana, et al. 2017. “Pharmacokinetics of Neratinib during Coadministration with Lansoprazole in Healthy Subjects.” 

British Journal of Clinical Pharmacology. 

· Ouellet, et al. 2016. “Population Pharmacokinetics and Exposure–response of Trametinib, a MEK Inhibitor, in Patients with 

BRAF V600 Mutation-Positive Melanoma.” Cancer Chemotherapy and Pharmacology. 
Patel, et al. 2017. “Population Pharmacokinetics of Selumetinib and Its Metabolite N-Desmethyl-Selumetinib in Adult Patients 
With Advanced Solid Tumors and Children With Low-Grade Gliomas.” CPT: Pharmacometrics & Systems Pharmacology. 

· Siegel-Lakhai, et al. 2007. “Phase I Pharmacokinetic Study of the Safety and Tolerability of Lapatinib (GW572016) in Combination 

with Oxaliplatin/Fluorouracil/Leucovorin (FOLFOX4) in Patients with Solid Tumors.”  Clinical Cancer Research.  
· Stein, et al. 2018. “Mathematical Modeling Identifies Optimum Lapatinib Dosing Schedules for the Treatment of Glioblastoma 

Patients.” PLoS Computational Biology. 
· Wise-Draper, et al. 2017. “A Phase Ib Study of the Dual PI3K/mTOR Inhibitor Dactolisib (BEZ235) Combined with Everolimus in 

Patients with Advanced Solid Malignancies.” Targeted Oncology. 
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Supplementary Figures

Figure S1. Model fitting results for some of the drug combination studies, where the surface from type-0 (sensitive
to both drugs) cell birth rates is characterized with a Generalized Additive Model (GAM) and the birth rates from
resistant cell types are described with different non-linear models included in ACESO (exponential, Weibull,
log-logistic. . . ). The specific model equation and parameter values for each curve are summarized in Table 1.
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Figure S2. Assessing drug synergy/antagonism. Concentration combination matrices that represent the difference
between the measured effect on the birth rates of sensitive cells and the effect obtained under the Loewe additivity
model. Yellow indicates synergy, green indicates antagonism and grey means no interaction.

Figure S3. Assessing drug synergy/antagonism. Concentration combination matrices that represent the difference
between the measured effect on the birth rates of sensitive cells and the effect obtained under the Highest Single
Agent (HSA) model. Yellow indicates synergy, green indicates antagonism and grey means no interaction.
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Figure S4. Effects of alpelisib and lapatinib combination on the total number of the different cancer cell types (type
0: sensitive to both drugs, type 1: alpelisib-sensitive cells, type 2: lapatinib-sensitive cells, total: the sum of type 0,
type 1 and type 2 cells). A) Different dosing schedules explored (QD: once a day, QW: once a week, QOD: every
other day, r.m.: remaining of the week). B) Comparison of the outcomes of the different dosing schedules. The best
regimen (least expected number of cancer cells at 30 days) has the highest bar, while the worst regimen has zero
height.)

Figure S5. Effects of dactolisib and trametinib combination on the total number of the different cancer cell types
(type 0: sensitive to both drugs, type 1: dactolisib-sensitive cells, type 2: trametinib-sensitive cells, total: the sum of
type 0, type 1 and type 2 cells). A) Different dosing schedules explored (QD: once a day, QW: once a week, QOD:
every other day, r.m.: remaining of the week). B) Comparison of the outcomes of the different dosing schedules.
The best regimen (least expected number of cancer cells at 30 days) has the highest bar, while the worst regimen
has zero height.)
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Figure S6. Schematic representation and ordinary differential equations of different pharmacokinetic models. Ac,
Ad and Ap represents the amount of drug in the central, depot and peripheral compartments respectively; CL is the
apparent total clearance; V , Vp, are the apparent volumes of distribution of the central and peripheral compartments
respectively; CLd is the distribution clearance between the central and peripheral compartments; ka is the first-order
absorption rate constant; F is the bioavailability and Cp represents the drug concentration in plasma.
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Demo 1: Two type branching process
As a simple example that demonstrates the necessary steps for an analysis of a single schedule, we consider
the two-type birth-death process shown in Figure 1. This model is extensively used in investigating the
dynamics of tumor cells in response to treatment, where a population initially sensitive to therapy will gain
resistance via mutation and expand at a different rate. In this example, we evaluate erlotinib treatment and
how erlotinib-sensitive (Type 0 cells, blue in the figure) and erlotinib-resistant (Type 1 cell, green) cell birth
and death rates are defined using PC-9 cell viability and apoptosis assay data, how the pharmacokinetics of
erlotinib can be defined to evaluate its effect of the growth kinetics of each cell type and finally, how the
evolution of these cells over time can be calculated using ACESO package.

ACESO is very flexible when defining functions and allows use of other packages for estimation throughout,
but the general workflow for the process is used in the analysis and summarized by the following diagram:

Load libraries:
library(ACESO)
#> Warning: replacing previous import 'drc::gaussian' by 'stats::gaussian'
#> when loading 'ACESO'
#> Warning: replacing previous import 'drc::getInitial' by 'stats::getInitial'
#> when loading 'ACESO'
library(mrgsolve)
#> Warning: package 'mrgsolve' was built under R version 3.5.3
#>
#> Attaching package: 'mrgsolve'
#> The following object is masked from 'package:stats':
#>
#> filter
library(ggplot2)
#> Warning: package 'ggplot2' was built under R version 3.5.3

Read cell proliferation file:

Use read.cellcount.data function to create a data.frame with the info about cell proliferation under different
drug concentrations.

Mandatory columns for in the .csv file:

• Viable.cells: cell count data
• Time: time point
• CONC: drug concentration

Optional columns:

• Replicate: Technical replicate. If missing the program assumes that there is only 1 replicate.
• Cell.line: Name of the cell line. If missing the function introduces the name ‘Cell line 1’.
• Type: numerical column specifiying the cell type (0: sensitive cells, 1: resistant cell to drug A, etc.). If

missing the program assumes Type=0.
growth_data=read.cellcount.data(system.file("extdata", "cell_viability_assay.txt",

package = "ACESO"), sep=";")
head(growth_data)
#> Sample.ID Cell.line Viable.cells Time Replicate CONC Type
#> 1 pc-9 par dmso 48hrs-1 PC-9 0.38 48 1 0 0
#> 2 pc-9 par dmso 48hrs-2 PC-9 0.39 48 2 0 0
#> 3 pc-9 par dmso 48hrs-3 PC-9 0.33 48 3 0 0
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Figure 1: Two type branching process.

Figure 2: Typical Workflow (single-drug).
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#> 4 pc-9 par E1 48hrs-1 PC-9 0.29 48 1 1 0
#> 5 pc-9 par E1 48hrs-2 PC-9 0.29 48 2 1 0
#> 6 pc-9 par E1 48hrs-3 PC-9 0.31 48 3 1 0
#> Type2 Cell_Count_0 Control
#> 1 sensitive 0.062 0.38
#> 2 sensitive 0.066 0.39
#> 3 sensitive 0.065 0.33
#> 4 sensitive 0.062 0.38
#> 5 sensitive 0.066 0.39
#> 6 sensitive 0.065 0.33

Two new columns are created:

• Cell_Count_0: cell count at time 0.
• Control: cell count when there is no drug concentration

#Exploraty plot: viable cells over time
library(ggplot2)
ggplot(data=growth_data,aes(x=Time,y=Viable.cells,col=factor(CONC)))+geom_point()+

geom_smooth(se=F,method="lm")+facet_wrap(~Type)+
scale_y_continuous(trans="log")+ylab("Viable cells (log scale)")+
scale_colour_discrete(name="Dose (µM)")
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Read cell death file:

Call read.celldeath.file to create a data.frame with the info about the total count of dead cells under
different drug concentrations.
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Necessary columns to be in the .csv file:

• Time: time point
• column.name: name of the column where the fraction of dead cells or the total count of dead cells is

stored.
• CONC: drug concentration

cell_death=read.celldeath.file(system.file("extdata", "apoptosis_assay.txt", package = "ACESO"),
column.name="Apoptotic.fraction",sep=";")

head(cell_death)
#> Cell.line Time Apoptotic.cells Apoptotic.fraction Replicate CONC Type
#> 1: PC-9 0 0.03047486 9.25 1 0 0
#> 2: PC-9 0 0.02750485 8.99 2 0 0
#> 3: PC-9 0 0.02210822 7.71 3 0 0
#> 4: PC-9 0 0.02186835 9.25 1 1 0
#> 5: PC-9 0 0.01987907 8.99 2 1 0
#> 6: PC-9 0 0.02304976 7.71 3 1 0
#> Type2 Apoptosis_time0
#> 1: sensitive 9.25
#> 2: sensitive 8.99
#> 3: sensitive 7.71
#> 4: sensitive 9.25
#> 5: sensitive 8.99
#> 6: sensitive 7.71

Exploratory plot:
library(dplyr)
#> Warning: package 'dplyr' was built under R version 3.5.3
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
my_sum <- cell_death %>%

group_by(CONC,Time,Type2) %>%
summarise(

n=n(),
mean=mean(Apoptotic.fraction),
sd=sd(Apoptotic.fraction)

)

ggplot(cell_death[cell_death$Time!=0,])+
geom_bar(data=my_sum[my_sum$Time!=0,],

aes(x=as.factor(Time), y=mean,fill=as.factor(CONC),color=as.factor(CONC)),
stat="identity", alpha=0.7, position=position_dodge(0.9)) +

geom_jitter(aes(x=as.factor(Time), y=Apoptotic.fraction,color=as.factor(CONC)), size=0.9,
position=position_dodge(0.9))+

facet_wrap(~factor(Type2,levels=c("sensitive","resistant")))+
xlab("Time (hours)")+ylab("Fraction of death cells")+
geom_errorbar(data=my_sum[my_sum$Time!=0,],

aes(x=as.factor(Time), ymin=mean-sd, ymax=mean+sd,color=as.factor(CONC)),
width=.2, position=position_dodge(0.9))+
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theme_bw()+scale_color_brewer(name="Erlotinib concentration (µM)",palette="Spectral")+
scale_fill_brewer(name="Erlotinib concentration (µM)",palette="Spectral")+
theme(text = element_text(size=14))+theme(legend.position="top")
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Calculate net growth rate from cell proliferation data:

In order to calculate the net growth of each cell type, we perform a linear regression on log-transformed
viable cells over time as we assume an exponentially growing population of cells. In this exercise, we decided
not to use the data corresponding to time = 0 to calculate those rates.

(NOTE: Why not use data at time = 0? Also, I had to multiple cell count by 10 to get the Net_growth
given. Did I do something wrong?) :
growth_data<-net_growth_rate(growth_data,time0_data = F)
head(growth_data) #See the values in Net_growth column
#> Sample.ID Cell.line Viable.cells Time Replicate CONC Type
#> 1 pc-9 par dmso 48hrs-1 PC-9 0.38 48 1 0 0
#> 2 pc-9 par dmso 48hrs-2 PC-9 0.39 48 2 0 0
#> 3 pc-9 par dmso 48hrs-3 PC-9 0.33 48 3 0 0
#> 4 pc-9 par E1 48hrs-1 PC-9 0.29 48 1 1 0
#> 5 pc-9 par E1 48hrs-2 PC-9 0.29 48 2 1 0
#> 6 pc-9 par E1 48hrs-3 PC-9 0.31 48 3 1 0
#> Type2 Cell_Count_0 Control Net_growth Death_rate Birth_rate
#> 1 sensitive 0.062 0.38 0.028216265 NA NA
#> 2 sensitive 0.066 0.39 0.028216265 NA NA
#> 3 sensitive 0.065 0.33 0.028216265 NA NA
#> 4 sensitive 0.062 0.38 -0.002930305 NA NA
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#> 5 sensitive 0.066 0.39 -0.002930305 NA NA
#> 6 sensitive 0.065 0.33 -0.002930305 NA NA

Calculate death rate:

Use the data from cell apoptosis assays and the data where the net growth rate parameters have been
calculated to compute the death rate parameter. Call calculate_death_rate for this purpose. You must
also specify the column name where the apoptotic cell count or the apoptotic cell fraction is stored, and
finally specify if this column stores a fraction or the total counts by setting the argument ‘Apoptotic.fraction’
to TRUE or FALSE.
all.data=calculate_death_rate(net_growth_data=growth_data,cell_death_data =cell_death,

column.name = "Apoptotic.fraction",Apoptotic.fraction = T)

Plot the resulting death and birth rates for each cell type:
ggplot(all.data,aes(x=CONC,y=Death_rate))+geom_point()+scale_y_continuous(limits = c(0, 0.05))+

facet_wrap(~Type)+ylab("Death rates (1/h)")+xlab("Drug concentration (µM)")
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ggplot(all.data,aes(x=CONC,y=Birth_rate))+geom_point()+facet_wrap(~Type)+
ylab("Birth rates (1/h)")+xlab("Drug concentration (µM)")
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Fit the curves
Call Multiple.best.singlefit function to fit the concentration-response curves. In this example we only
have data from one cell.line (PC-9), but this function is able to fit multiple cell lines.

To perform this task easily and faster, we included the flexible and built-in model functions of the drc R
package. drc was developed to provide nonlinear model fitting for dose-response analysis and it already
includes the most common function to fit this type of curves. To see all the different built-in functions
included in the package write: drc::getMeanFunctions(). Multiple.best.singlefit tries all the different
models of drc library and selects the best one for you based on AIC or BIC (by default AIC is used).
#Fit birth rates
BR.fit=Multiple.best.singlefit(all.data,resp="Birth_rate")
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BR.fit
#> [[1]]
#>
#> A 'drc' model.
#>
#> Call:
#> drc::drm(formula = Birth_rate ~ CONC, data = data, fct = LL.4(), type = "continuous")
#>
#> Coefficients:
#> b:(Intercept) c:(Intercept) d:(Intercept) e:(Intercept)
#> 3.511693 0.001603 0.036148 0.532265
#>
#>
#> [[2]]
#>
#> A 'drc' model.
#>
#> Call:
#> drc::drm(formula = Birth_rate ~ CONC, data = data, fct = LL.3(), type = "continuous")
#>
#> Coefficients:
#> b:(Intercept) d:(Intercept) e:(Intercept)
#> 3.21881 0.02738 32.51748
#Fit death rates
DR.fit=Multiple.best.singlefit(all.data,resp="Death_rate")
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DR.fit
#> [[1]]
#>
#> A 'drc' model.
#>
#> Call:
#> drc::drm(formula = Death_rate ~ CONC, data = data, fct = LL.4(), type = "continuous")
#>
#> Coefficients:
#> b:(Intercept) c:(Intercept) d:(Intercept) e:(Intercept)
#> -9.275915 0.007891 0.009986 10.738019
#>
#>
#> [[2]]
#>
#> A 'drc' model.
#>
#> Call:
#> drc::drm(formula = Death_rate ~ CONC, data = data, fct = LL.4(), type = "continuous")
#>
#> Coefficients:
#> b:(Intercept) c:(Intercept) d:(Intercept) e:(Intercept)
#> -9.911489 0.002367 0.005946 9.621362

If the user wants to check all the models that has been compared for a particular cell type, best.singlefit
can be used. Here we are going to check all the models tested for the birth rates of the resistant cell line
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(Type=1):
best.singlefit(all.data[all.data$Type==1,],resp="Birth_rate",compare=T)
#> logLik IC Res var
#> LL.3 255.27078 -502.54155 7.417511e-07
#> W1.3 255.21138 -502.42276 7.437119e-07
#> L.4 255.49166 -500.98332 7.524197e-07
#> LN.3 254.31487 -500.62974 7.739432e-07
#> W1.4 255.17471 -500.34941 7.630939e-07
#> LL.4 255.15445 -500.30890 7.637812e-07
#> LN.4 255.10483 -500.20966 7.654674e-07
#> L.5 255.35926 -498.71851 7.757820e-07
#> LL.5 255.29987 -498.59974 7.778322e-07
#> L.3 248.80093 -489.60186 9.888696e-07
#> EXD.2 247.58061 -489.16122 1.019705e-06
#> G.3 248.54696 -489.09393 1.000095e-06
#> EXD.3 244.83190 -481.66379 1.179639e-06
#> W2.4 237.84867 -465.69734 1.648181e-06
#> G.4 230.43400 -450.86799 2.291515e-06
#> LL.2 99.72256 -193.44512 7.284960e-04
#> G.2 99.72256 -193.44512 7.284960e-04
#> W1.2 -26.43647 58.87294 1.984019e-01
#Some error messages might appear because not all the models tested are able to fit the data. Ignore them.

If the user does not want to use the best model selected by Multiple.best.singlefit function, Multi-
ple.singlefit can be used which allows to fit the data with the model selected by the user in the fct
argument. In this example, a 4 parameter log-logistic function (called LL.4) is selected to fit the birth rate vs
concentration curve of resistant cells (Type=1):
B1.fit=Multiple.singlefit(all.data[all.data$Type==1,],fct=drc::LL.4(),resp="Birth_rate")
#> Warning in sqrt(diag(varMat)): Se han producido NaNs
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drc package only includes non-linear functions to fit the concentration-response curves. Thus, to select a
simple linear function to fit the data, linear.model = T must be specified.
B1.fit=Multiple.singlefit(all.data[all.data$Type==1,],resp="Birth_rate",linear.model = T)
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Pharmacokinetics
Now we need to define the pharmacokinetics (PK) of the drug. To this end, we use the PK model developed
by Lu et al. 2016 (https://doi.org/10.1016/j.clpt.2006.04.007) and the mrgsolve package to simulate the
chosen model.

We select a 1 compartment model with extravascular administration. Read the model:
model_library(list=T)
#> ACESO internal library of PK models:
#> [1] "1cmt_2depot" "1cmt_ev" "1cmt_iv" "2cmt_2depot" "2cmt_ev"
#> [6] "2cmt_iv" "3cmt_ev" "3cmt_iv"

cmt1_ev <- mread("1cmt_ev", model_library()) %>% Req(CP)
#> Building 1cmt_ev ...
#> done.
see(cmt1_ev)
#>
#> Model file: 1cmt_ev.cpp
#> $PARAM @annotated
#> TVCL : 2 : Clearance (volume/time)
#> TVV : 20 : Central volume (volume)
#> TVKA : 1 : Absorption rate constant (1/time)
#> F: 1 : bioavailability
#> ALAG : 0 : Lag time (time)
#>
#> $CMT @annotated
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#> EV : Extravascular compartment
#> CENT : Central compartment
#>
#> $MAIN
#> double CL = exp(log(TVCL) + ETA_CL);
#> double V = exp(log(TVV) + ETA_V);
#> double KA = exp(log(TVKA) + ETA_KA);
#>
#> ALAG_EV = ALAG;
#> F_EV = F;
#>
#> $OMEGA @labels ETA_CL ETA_V ETA_KA
#> 0 0 0
#>
#> $GLOBAL
#> #define CP (CENT/V)
#>
#> $PKMODEL ncmt = 1, depot = TRUE
#>
#> $CAPTURE @annotated
#> CP : Plasma concentration (mass/volume)

The model has different parameters with default values:
param(cmt1_ev)
#>
#> Model parameters (N=5):
#> name value . name value
#> ALAG 0 | TVKA 1
#> F 1 | TVV 20
#> TVCL 2 | . .

• TVCL: Typical value for the clearance (volume/time)
• TVV: Typical value for the volumen of distribution
• TVKA: Typical value for the first order absorption rate constant.
• F: Bioavailability
• ALAG: Lag time

Change parameter values to the ones defined in the original publication:
newpar <- list('TVCL' = 3.95, #L/h

'TVV' = 233, #L
'TVKA' = 0.95) #h-1

Define the dosing event: #A dose of 150mg
e1 <- ev(amt = 150, ii = 0, addl = 0, time=0)
# amt: amount
# ii: dosing interval
# addl: additional doses
# time: time when the dose is given.

Simulate the model with easy.mrgsim function (simplified version of mrgsim function in mrgsolve package)
easy.mrgsim(model=cmt1_ev,dosing_schedule=e1,delta=0.1,tend=48,parameters = newpar) %>% plot
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Now we are going to simulate a continuous daily dosing of 150mg for a month. For this we will change the
dosing event but also de parameter values to have them in day units instead of hours:
e2 <- ev(amt = 150, ii = 1, addl = 30, time=0) #150 mg every day for 30 days
easy.mrgsim(model=cmt1_ev,dosing_schedule=e2,delta=0.1,tend=30,

parameters = list(TVCL=3.95*24,TVV=233,TVKA=0.95*24)) %>% plot(scales=list(cex=1.5))
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To change the concentration units from mg/L to microM use the scale argument:
easy.mrgsim(model=cmt1_ev,dosing_schedule=e2,delta=0.1,tend=30,

parameters = list(TVCL=3.95*24,TVV=233,TVKA=0.95*24),scale=1000/429.9) %>%
plot(scales=list(cex=1.5))
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To simulate more complex dosing regimens, there is a vignette available in ACESO.

If the user is happy with the simulated pk model, then we need to define a pk function to be used during the
simulation:
pk=pk.function(model=cmt1_ev,dosing_schedule=e2,tend=30,

parameters = list(TVCL=3.95*24,TVV=233,TVKA=0.95*24),scale=1000/429.9)

If the user doesn’t want to use mrgsolve to define the pk model, he/she can define his/her own function.

For example,
pk2=function(t, Cp0,k, time_interval,time_first_dose=0){

n = floor((t-time_first_dose)/time_interval) + 1
Cp<-Cp0*(1-exp(-k*n*time_interval))*

exp(-k*((t-time_first_dose)-(n-1)*time_interval))/(1-exp(-k*time_interval))
return(Cp)

}

Additionally, a csv with pharmacokinetic data can be uploaded to fit a curve selecting one of the pk models
from the model library. Use Estimate.PK function for this purpose (see the help function for an example).
For complex pk models or data, we recommend the use of NONMEM, MONOLIX or other parameter
estimation software.

Define sensitive and resistant cells

We need to define the sensitive (Type 0) and resistant cells (Type 1) to perfom the simulations.

To define cell types the following arguments are needed:

• N0: initial cell population.
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• birth_rate: birth rate function. It can be a numeric value, a user defined function or the result of a
model fitting function. If the user provides a numeric value, it is assumed that the birth rate remains
constant during the simulation.

• death_rate death rate function. It can be a numeric value, a user defined function or the result of a
model fitting function.If the user provides a numeric value, it is assumed that the death rate remains
constant during the simulation.

• scale: scaling parameter.
• pk.function: name of the pharmacokinetic function that will affect to the rates of the cells.

For the resistant cell types, an additional argument is needed: * mutation_rate: Numeric or function
specifying the mutation rates for the cell type defined.

We will use the previously fitted functions for the birth rates and constant values for the death rates as the
variation of death rate values for the different drug concentrations is very low. We assume the population
begins with 10ˆ6 sensitive cells and no resistant cells.
Type0 <-define.Type0.cells(N0=10^6,birth_rate = 'BR.fit[[1]]',death_rate= 0.0085,scale=24,

pk.function = 'pk')
#The function returns a S4 object with all the information gathered together.
Type0
#> An object of class "Type-0"
#> Slot "N0":
#> [1] 1e+06
#>
#> Slot "b0":
#> function (t, model = BR.fit[[1]], scale = 24)
#> {
#> CONC1 = pk(t)
#> BR_predict = dr.function(model, CONC = CONC1)
#> BR_predict = BR_predict * scale
#> return(BR_predict)
#> }
#> <environment: 0x0000000013ea4df8>
#>
#> Slot "d0":
#> function (t, scale = 24)
#> {
#> DR_predict = 0.0085 * scale
#> return(DR_predict)
#> }
#> <environment: 0x0000000013ea4df8>
#For resistant cells and additional argument is needed: mutation_rate
Type1 <-define.Typei.cells(Ni=0,birth_rate = 'B1.fit[[1]]',death_rate = 0.0035, mutation_rate=10^-8,

scale=24, pk.function = 'pk')

To see how the birth rate of the cells change over time due to the pharmacokinetics of the drug:
plot(seq(0,30,0.1),Type0@b0(seq(0,30,0.1)),type='l',xlab='Time',ylab='b0')
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plot(seq(0,30,0.1),Type1@bi(seq(0,30,0.1)),type='l',xlab='Time',ylab='b1')
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### Calculate the expected number of sensitive cells over time: In order to calculate the expected number
of sensitive cells over time use EN_type0_cells function with the following arguments: * t: time (numeric).
* type_0: Type-0 S4 object with the information of the sensitive cell population. * ui: mutation rate of the
resistant population (numeric). * int.function: integration function to use in R. Options are “integrate” from
base R or “pracma”which uses functions from the pracma package. “pracma” is more robust but slower than
“integrate”.

EN_type0_cells(t=10,type_0=Type0,ui=c(Type1@ui))
#> [1] 207930.3
EN_type0_cells(t=10,type_0=Type0,ui=c(Type1@ui),int.function="pracma")

#> [1] 207929.9

This function gave us the number of sensitive cells at 10 days. To do this for a vector of times:
sapply(seq(0,30,1),function(i){ EN_type0_cells(t=i,type_0=Type0,ui=c(Type1@ui))})
#> [1] 1000000.000 902266.121 771239.069 655917.861 557087.012
#> [6] 472888.704 401307.921 340511.375 288899.951 245098.237
#> [11] 207930.310 176394.121 149639.894 126940.950 107685.518
#> [16] 91355.035 77493.000 65738.039 55764.549 47305.509
#> [21] 40129.032 34041.142 28877.331 24496.842 20780.813
#> [26] 17628.285 14954.009 12685.643 10761.250 9128.720
#> [31] 7744.195

Calculate the number of resistant cells and probability of resistance

In order to calculate the expected number of resistant cells, use En_resistant_cells_i function with the
following arguments:

• N: the total number of the resistant cell types.
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• t: time
• type_0: Type-0 S4 object
• type_i: list with all the Type-i S4 objects
• approximation: logical argument indicating if an approximation of the numerical integration method

must be used or not. Default to TRUE for faster computation.
En_resistant_cells(N=1,t=10,type_0=Type0,type_i=list(Type1))

To do this for a vector of different times:
sapply(c(0,2,4,8),function(i){En_resistant_cells(N=1,t=i,type_0=Type0,type_i=list(Type1))})

To calculate the probability of resistance use Prob_resistance function with the following arguments:

• t: time of production of a resistant cell clone
• type_0: Type-0 S4 object
• type_i: list with all the Type-i S4 objects
• N: number of resistant cell clones

#Prob_resistance(t=10,type_0=Type0,type_i=list(Type1),N=1)
#Not executed because it is a very time consuming function:
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Demo 2: Three type branching process
Let us consider the three-type birth-death process shown in Figure 1. This model is extensively used in
investigating the dynamics of tumor cells in response to treatment, where a population initially sensitive
to therapy will gain resistance via mutation and expand at a different rate. In this example, the sensitive
cell type (type 0, blue) is sensitive to both drugs A and B and proliferates and dies with rate b0 and d0
respectively. Type 0 cells are able to mutate to give two different cell types, type 1 (green) and 2 (orange)
which will be resistant to one of the drugs.

Load libraries:

library(ACESO)
#> Warning: replacing previous import 'drc::gaussian' by 'stats::gaussian'
#> when loading 'ACESO'
#> Warning: replacing previous import 'drc::getInitial' by 'stats::getInitial'
#> when loading 'ACESO'
library(ggplot2)
#> Warning: package 'ggplot2' was built under R version 3.6.2

Data

In the current evaluation cell viability data resulting from the exposure of BT-20 triple-negative breast cancer
cell line to different concentration values of two small molecule kinase inhibitors (alpelisib and trametinib)
is analyzed. The data was obtained from the HMS LINCS database (https://lincs.hms.harvard.edu/).

data(Alpelisib_Trametinib_combination)
head(Alpelisib_Trametinib_combination)
#> Cell.line Drug.Name CONC CONC.units Drug2.Name CONC2 CONC2.units
#> 1 BT-20 Alpelisib 0 uM Trametinib 0.0000 uM
#> 2 BT-20 Alpelisib 0 uM Trametinib 0.0000 uM
#> 3 BT-20 Alpelisib 0 uM Trametinib 0.0000 uM
#> 4 BT-20 Alpelisib 0 uM Trametinib 0.1235 uM
#> 5 BT-20 Alpelisib 0 uM Trametinib 0.1235 uM
#> 6 BT-20 Alpelisib 0 uM Trametinib 0.1235 uM
#> Replicate Cell_Count_0 Viable.cells Control Time Type
#> 1 1 2751 4757 4757 72 0
#> 2 2 2751 4996 4996 72 0
#> 3 3 2751 4650 4650 72 0
#> 4 1 2751 5070 4757 72 0
#> 5 2 2751 4667 4996 72 0
#> 6 3 2751 2609 4650 72 0

DrugA=as.character(Alpelisib_Trametinib_combination$Drug.Name[1])
DrugB=as.character(Alpelisib_Trametinib_combination$Drug2.Name[1])
print(c(DrugA,DrugB))
#> [1] "Alpelisib" "Trametinib"

Exploratory analysis of the data:

ggplot(data=Alpelisib_Trametinib_combination,aes(x=(CONC),y=Viable.cells,col=factor(CONC2)))+
geom_point(size=1.5)+
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Figure 1: Three type branching process.

xlab(paste0("[",DrugA,"] (µM)"))+scale_colour_discrete(name=paste0("[",DrugB,"] (µM)"))+
theme_classic()+theme(text = element_text(size=14))
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BT-20 cells sensitive to both drugs were defined as type 0 cells, whereas cells resistant to trametinib and
alpelisib were defined as type 1 and type 2 cells respectively.
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Dynamics of sensitive cells:

Calculate net growth rate

Calculate the net growth rates of the BT-20 cell type for every concentration of the two drugs. Use the
net_growth_rate function for this purpose, where an exponential growth function is assumed to calculate
those rates.

growth_data<-net_growth_rate(Alpelisib_Trametinib_combination)
head(growth_data)
#> Cell.line Drug.Name CONC CONC.units Drug2.Name CONC2 CONC2.units
#> 1 BT-20 Alpelisib 0 uM Trametinib 0.0000 uM
#> 2 BT-20 Alpelisib 0 uM Trametinib 0.0000 uM
#> 3 BT-20 Alpelisib 0 uM Trametinib 0.0000 uM
#> 4 BT-20 Alpelisib 0 uM Trametinib 0.1235 uM
#> 5 BT-20 Alpelisib 0 uM Trametinib 0.1235 uM
#> 6 BT-20 Alpelisib 0 uM Trametinib 0.1235 uM
#> Replicate Cell_Count_0 Viable.cells Control Time Type Net_growth
#> 1 1 2751 4757 4757 72 0 0.007727910
#> 2 2 2751 4996 4996 72 0 0.007727910
#> 3 3 2751 4650 4650 72 0 0.007727910
#> 4 1 2751 5070 4757 72 0 0.005032087
#> 5 2 2751 4667 4996 72 0 0.005032087
#> 6 3 2751 2609 4650 72 0 0.005032087
#> Death_rate Birth_rate
#> 1 NA NA
#> 2 NA NA
#> 3 NA NA
#> 4 NA NA
#> 5 NA NA
#> 6 NA NA

Plot the results:

ggplot(data=growth_data,aes(x=(CONC),y=Net_growth,col=factor(CONC2)))+geom_point()+
geom_line(linetype="dashed")+
theme(text = element_text(size=14))+xlab(paste0("[",DrugA,"] (µM)"))+
scale_colour_discrete(name=paste0("[",DrugB,"] (µM)"))+
theme_classic()+ylab("Net growth (1/h)")+theme(text = element_text(size=14))
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Calculate birth and death rates

As in the LINCS database there is no information regarding apoptosis assays available to estimate the death
rate of type 0 cells (d0) and assuming that these targeted therapies do not induce cell death per se, a different
d0 value was defined for each combination of the drugs, which was equal to the minimum value needed to
ensure that all the birth rates of type 0 cells (b0) were positive regardless of the treatment conditions:

d0=vector("list", length = length(unique(growth_data$Cell.line)))
names(d0)=unique(as.character(growth_data$Cell.line))
d0[[1]]=-min(growth_data$Net_growth)
d0
#> $`BT-20`
#> [1] 0.02876796

We use the net_growth_rate function again, not only to calculate the net growth rate parameter of the
cells but also the birth and death rates. To this end, we introduce the newly calculated d0 value:

growth_data<-net_growth_rate(growth_data,death_rate = d0)
ggplot(data=growth_data,aes(x=(CONC),y=Birth_rate,col=factor(CONC2)))+

geom_point()+geom_line(linetype="dashed")+
theme(text = element_text(size=14))+xlab(paste0("[",DrugA,"] (µM)"))+
scale_colour_discrete(paste0("[",DrugB,"] (µM)"))+
theme_classic()+ylab("Birth rate of \n sensitive cells, b0 (1/h)")+
theme(text = element_text(size=14))
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Another plot type to analyze the response surface of the data:

#We are going to remove the columns that are not necessary for the analysis of the data in this example:
GD=growth_data[,c('Cell.line','CONC','CONC2','Net_growth','Type','Birth_rate','Death_rate')]
GD=unique(GD)

Use responseMap function to reorganize the data to easily plot the surface of the birth rate values versus
both drug concentrations:

rmap <- responseMap(Birth_rate~CONC+CONC2,GD,logscale=T,interpolate=FALSE)
DifferenceSurface.plot(rmap,zcenter=max(growth_data$Birth_rate)/2,

xl=paste0("[",DrugA,"] (µM)"),
yl=paste0("[",DrugB,"] (µM)"),
zl="Birth rate of \n sensitive cells, b0 (1/h)",
mid="yellow",low="hotpink1",high="darkturquoise")
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Use responseMap again and plot.ResponseSurface to make a contour plot of the data. For this plot a
interpolation of the data is needed (see logscale=T in the responseMap function):

rmap <- responseMap(Birth_rate~CONC+CONC2,GD,logscale=T)

ResponseSurface.plot(rmap,xl=paste0("[",DrugA,"] (µM)"),
yl=paste0("[",DrugB,"] (µM)"),
zl="Birth rate of \n sensitive cells, b0 (1/h)",
palette=c("hotpink1","yellow","darkturquoise"))
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Sensitive cell model fitting

Birth rate parameters were fitted non-parametrically using a Generalized Additive Model (GAM) to generate
the predicted surface required for the simulation of the evolutionary process:

gam.model=Multiple.resp.surface.fit(GD, title=", GAM",Drug1.name=paste0("[",DrugA,"] (µM)"),
Drug2.name=paste0("[",DrugB,"] (µM)"))
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Dynamics of resistant cells:

In the HMS LINCS database there is no information about resistant cell lines for these drugs, even so, we
created the data to evaluate the dynamics of Type 1 (resistant to trametinib) and Type 2 (resistant to
alpelisib) cells to show a more complete example of the analysis that can be conducted using ACESO.

Let’s start analyzing the dynamics of alpelisib-sensitive/trametinib-resistant cell type (Type 1).

data(Alpelisib_sensitive)
head(Alpelisib_sensitive)

#> Cell.line Time CONC Net_growth Type Birth_rate Death_rate
#> 1 BT-20 72 0.00 0.008277157 1 0.02327716 0.015
#> 2 BT-20 72 0.04 0.008515068 1 0.02351507 0.015
#> 3 BT-20 72 0.12 0.008136471 1 0.02313647 0.015
#> 4 BT-20 72 0.37 0.006474282 1 0.02147428 0.015
#> 5 BT-20 72 1.11 0.005192139 1 0.02019214 0.015
#> 6 BT-20 72 3.33 0.001349469 1 0.01634947 0.015
ggplot(data=Alpelisib_sensitive,aes(x=CONC,y=Birth_rate))+geom_point()+theme_bw()
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Fit the birth rates with the Multiple.best.singlefit function:

#Some error messages might appear because not all the models tested are able to fit the data. Ignore them.
B1=Multiple.best.singlefit(data=Alpelisib_sensitive,resp='Birth_rate')
#> Error in optim(startVec, opfct, hessian = TRUE, method = optMethod, control = list(maxit = maxIt, :
#> non-finite finite-difference value [2]
#> Error in optim(startVec, opfct, hessian = TRUE, method = optMethod, control = list(maxit = maxIt, :
#> non-finite finite-difference value [2]
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BT−20: Type 1

B1
#> [[1]]
#>
#> A 'drc' model.
#>
#> Call:
#> drc::drm(formula = Birth_rate ~ CONC, data = data, fct = EXD.3(), type = "continuous")
#>
#> Coefficients:
#> c:(Intercept) d:(Intercept) e:(Intercept)
#> 0.01262 0.02334 3.04795

The best function is a expontenial decay model (named EXD.3) with an upper limit of 0.023 1/h, a lower
limit of 0.0126 1/h and a steepness of decay of 3.047 µM.

Now, we will repeat this process for the trametinib-sensitive/alpelisib-resistant cell type (Type 2).

data(Trametinib_sensitive)
head(Trametinib_sensitive)

#> Cell.line Time CONC2 Net_growth Type Birth_rate Death_rate
#> 1 BT-20 72 0.0000 0.0025759700 2 0.01224264 0.009666667
#> 4 BT-20 72 0.1235 0.0016773624 2 0.01134403 0.009666667
#> 7 BT-20 72 0.3704 0.0018112090 2 0.01147788 0.009666667
#> 10 BT-20 72 1.1111 0.0011172200 2 0.01078389 0.009666667
#> 13 BT-20 72 3.3333 0.0011305640 2 0.01079723 0.009666667
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#> 16 BT-20 72 10.0000 0.0007132301 2 0.01037990 0.009666667
ggplot(data=Trametinib_sensitive,aes(x=CONC2,y=Birth_rate))+geom_point()+theme_bw()
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Fit the birth rates with the Multiple.best.singlefit function:

B2=Multiple.best.singlefit(data=Trametinib_sensitive,resp='Birth_rate',conc = "CONC2")
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BT−20: Type 2

B2
#> [[1]]
#>
#> A 'drc' model.
#>
#> Call:
#> drc::drm(formula = Birth_rate ~ CONC, data = data, fct = LL.4(), type = "continuous")
#>
#> Coefficients:
#> b:(Intercept) c:(Intercept) d:(Intercept) e:(Intercept)
#> 0.42935 0.00988 0.01224 0.70025

If the user wants to check all the models that have been compared for a particupar cell type, best.singlefit
can be used. With the following code, we check all the models tested for the birth rates of the alpelisib-
resistant cell line (Type=2):

best.singlefit(Trametinib_sensitive,resp="Birth_rate",conc = "CONC2",compare=T)
#> logLik IC Res var
#> LL.4 44.442283 -78.88457 6.470941e-08
#> W1.4 43.723470 -77.44694 8.222925e-08
#> LL.5 44.667096 -77.33419 1.200750e-07
#> LN.4 43.635385 -77.27077 8.467942e-08
#> EXD.3 41.791340 -75.58268 1.043854e-07
#> W2.4 41.829850 -73.65970 1.545809e-07
#> G.4 41.124185 -72.24837 1.955741e-07

46



#> L.4 39.324403 -68.64881 3.563334e-07
#> L.5 40.070275 -68.14055 5.557896e-07
#> EXD.2 29.570619 -53.14124 4.600778e-06
#> LN.3 26.409182 -44.81836 1.759685e-05
#> LL.3 26.408345 -44.81669 1.760176e-05
#> L.3 25.076814 -42.15363 2.743563e-05
#> W1.3 23.823770 -39.64754 4.165928e-05
#> G.3 22.513184 -37.02637 6.448199e-05
#> G.2 20.689405 -35.37881 8.882163e-05
#> W1.2 -3.065792 12.13158 2.440258e-01
#> LL.2 -3.065872 12.13174 2.440323e-01

Define drug pharmacokinetic model:

The pharmacokinetic model defined for alpelisib is based on the model from De Buck et al. 2014, whereas
for trametinib we used the model defined in Ouellet et al. 2016.

library(mrgsolve)
#>
#> Attaching package: 'mrgsolve'
#> The following object is masked from 'package:stats':
#>
#> filter
#Alpelisib
cmt1_oral<- mread("1cmt_ev", model_library())
#> Building 1cmt_ev ...
#> done.
#Trametinib:
cmt2_oral<- mread("2cmt_ev", model_library())
#> Building 2cmt_ev ... done.
see(cmt2_oral)
#>
#> Model file: 2cmt_ev.cpp
#> $PARAM @annotated
#> TVCL : 2 : Clearance (volume/time)
#> TVV : 20 : Central volume (volume)
#> TVKA : 1 : Absorption rate constant (1/time)
#> Q : 2 : Inter-compartmental clearance (volume/time)
#> Vp : 10 : Peripheral volume of distribution (volume)
#> F: 1 : bioavailability
#> ALAG : 0 : Lag time (time)
#>
#> $CMT @annotated
#> EV : Extravascular compartment
#> CENT : Central compartment
#> PERIPH : Peripheral compartment
#>
#> $MAIN
#> double CL = exp(log(TVCL) + ETA_CL);
#> double V2 = exp(log(TVV) + ETA_V);
#> double KA = exp(log(TVKA) + ETA_KA);
#> double V3 = exp(log(Vp) + ETA_Vp);
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#>
#> ALAG_EV = ALAG;
#> F_EV = F;
#>
#> $OMEGA @labels ETA_CL ETA_V ETA_KA ETA_Vp
#> 0 0 0 0
#>
#> $GLOBAL
#> #define CP (CENT/V2)
#>
#> $PKMODEL ncmt = 2, depot = TRUE
#>
#> $CAPTURE @annotated
#> CP : Plasma concentration (mass/volume)

Simulate the drug concentration profile for trametinib when a 2mg dose is given every day for a month:

e2 <- ev(amt = 2, time=0, ii=1, addl=30)
easy.mrgsim(model=cmt2_oral,dosing_schedule=e2,delta=0.1,tend=30,parameters = list(TVCL=4.91*24,TVV=214,TVKA=2.05*24,Vp=568,Q=60*24),scale=1000/615.4,Req="CP") %>%

plot(scales=list(cex=1.5))
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Define all the cell types:

Now we need to use define.Type0.cells and define.Typei.cells functions to define all the cell types that
we have in our problem.
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To define cell types the following arguments are needed:

• N0: initial cell population.
• birth_rate: birth rate function. It can be a numeric value, a user defined function or the result of a

model fitting function. If the user provides a numeric value, it is assumed that the birth rate remains
constant during the simulation.

• death_rate death rate function. It can be a numeric value, a user defined function or the result of a
model fitting function.If the user provides a numeric value, it is assumed that the death rate remains
constant during the simulation.

• scale: scaling parameter.
• pk.function: name of the pharmacokinetic function that will affect to the rates of the cells.

For the resistant cell types, an additional argument is needed:

• mutation_rate: Numeric or function specifying the mutation rates for the cell type defined.

To start with our simulations, we will define a initial number of 10ˆ6 sensitive cells and 1000 resistant cells
of each type. The mutation rate is equal to 10ˆ-7.

Type0 <-define.Type0.cells(N0=10^6,birth_rate = 'gam.model[[1]]',death_rate= 0.03,scale=24,
pk.function = c('pk1','pk2'))

Type1 <-define.Typei.cells(Ni=1000,birth_rate = 'B1[[1]]',death_rate = 0.015,mutation_rate=10^-7,
scale=24,pk.function='pk1')

Type2 <-define.Typei.cells(Ni=1000,birth_rate = 'B2[[1]]',death_rate = 0.01,mutation_rate=10^-7,
scale=24,pk.function='pk2')

Calculate the number of sensitive and resistant cells over time:

First define the dosing schedules for each drug:

#Alpelisib: 300mg/day
e1 <- ev(amt = 300, ii = 1, addl = 60, time=0)
pk1=pk.function(model=cmt1_oral,dosing_schedule=e1,tend=50,parameters = list(TVCL=11.5*24,TVV=118,TVKA=0.784*24,ALAG=0.489/24),scale=1000/441.47)
#> Warning in regularize.values(x, y, ties, missing(ties)): collapsing to
#> unique 'x' values

#Trametinib: 2mg/day
e2 <- ev(amt = 2, time=0, ii=1, addl=60)
pk2=pk.function(model=cmt2_oral,dosing_schedule=e2,tend=50,parameters = list(TVCL=4.91*24,TVV=214,TVKA=2.05*24,Vp=568,Q=60*24),scale=1000/615.4)
#> Warning in regularize.values(x, y, ties, missing(ties)): collapsing to
#> unique 'x' values

Calculate the number of sensitive cells after a week of treatment (7 days):

EN_type0_cells(t=7,type_0=Type0,ui=c(Type1@ui,Type2@ui))
#> [1] 315800.1

Remember the meaning of each argument: * t: time. * type_0: Type-0 S4 object with the information of
the sensitive cell population. * ui: mutation rates of the resistant population.
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En_resistant_cells(N=2,t=7,type_0=Type0,type_i=list(Type1,Type2))
#> t=7
#> [1,] 1631.969
#> [2,] 1376.529

• N: the total number of the resistant cell types. 2 in this example.
• t: time
• type_0: Type-0 S4 object
• type_i: list with all the Type-i S4 objects
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Demo 3: Complex dosing schedules
We are going to simulate complex dosing schedules using mrgsolve and ACESO packages.
#' Load libraries
library(ACESO)
#> Warning: replacing previous import 'drc::gaussian' by 'stats::gaussian'
#> when loading 'ACESO'
#> Warning: replacing previous import 'drc::getInitial' by 'stats::getInitial'
#> when loading 'ACESO'
library(mrgsolve)
#> Warning: package 'mrgsolve' was built under R version 3.5.3
#>
#> Attaching package: 'mrgsolve'
#> The following object is masked from 'package:stats':
#>
#> filter
#install mrgsolve from github: devtools::install_github("metrumresearchgroup/mrgsolve")

Pharmacokinetic model
We are going to simulate a one compartment model with intravenous administration.

Read the model from the model libraries included in ACESO:
model_library(list=T)
#> ACESO internal library of PK models:
#> [1] "1cmt_2depot" "1cmt_ev" "1cmt_iv" "2cmt_2depot" "2cmt_ev"
#> [6] "2cmt_iv" "3cmt_ev" "3cmt_iv"

cmt1_iv <- mread("1cmt_iv", model_library()) %>% Req(CP)
#> Building 1cmt_iv ...
#> done.
#See the code of the model
see(cmt1_iv)
#>
#> Model file: 1cmt_iv.cpp
#> $PARAM @annotated
#> TVCL : 1 : Clearance (volume/time)
#> TVV : 20 : Central volume (volume)
#>
#> $CMT @annotated
#> CENT : Central compartment
#>
#> $MAIN
#> double CL = exp(log(TVCL) + ETA_CL);
#> double V = exp(log(TVV) + ETA_V);
#>
#>
#> $OMEGA @labels ETA_CL ETA_V
#> 0 0
#>
#>
#> $GLOBAL
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#> #define CP (CENT/V)
#>
#> $PKMODEL ncmt = 1, depot = FALSE
#>
#> $CAPTURE @annotated
#> CP : Plasma concentration (mass/volume)

See the parameters of the model with the default values:
param(cmt1_iv)
#>
#> Model parameters (N=2):
#> name value . name value
#> TVCL 1 | TVV 20

We are going to change the default parameter values for TVCL (typical value for the CLearance) and TVV
(Typical value for the Volume of distribution):
newpar <- list('TVCL' = 171.4, #L/h

'TVV' = 153.5)
cmt1_iv<-param(cmt1_iv,newpar)

param(cmt1_iv)
#>
#> Model parameters (N=2):
#> name value . name value
#> TVCL 171 | TVV 154

Event objects in mrgsolve
First dosing schedule: 150mg dose at time 0, once every day in a week
e1 <- ev(amt = 150, ii = 1, addl = 6, time=0)
e1
#> Events:
#> time cmt amt evid ii addl
#> 1 0 1 150 1 1 6

• amt: amount of administered dose
• ii: time interval between doses
• addl: additional doses
• time: time of first dose
• cmt: compartment number (in which compartment a dosing is ocurring)
• evid: type of record (1: defines the record as a dose event)

Simulate

Simulate the model with easy.mrgsim function (extended version of mrgsim function in mrgsolve package)

• model: model name
• dosing_schedule: event object where the dosing schedule is specified
• tend: final time
• delta: the increment of time to simulate a sequence from 0 to tend.

easy.mrgsim(model=cmt1_iv,dosing_schedule=e1,delta=0.1,tend=7) %>% plot
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1 week of holiday between each treatment period:
e2 <- seq(e1, wait = 7, e1, wait = 7)
e2
#> Events:
#> time cmt amt evid ii addl
#> 1 0 1 150 1 1 6
#> 2 14 1 150 1 1 6
easy.mrgsim(model=cmt1_iv,dosing_schedule=e2,delta=0.1,tend=7*4) %>% plot
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A alternating dosing sequence: 150 mg daily for a week, then 50 mg daily for a week etc.
e3 <- ev(amt = 50, ii = 1, addl = 6)
e4 <- seq(e1, e3, e1)
e4
#> Events:
#> time cmt amt evid ii addl
#> 1 0 1 150 1 1 6
#> 2 7 1 50 1 1 6
#> 3 14 1 150 1 1 6
easy.mrgsim(model=cmt1_iv,dosing_schedule=e4,delta=0.1,tend=7*3) %>% plot
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A cycle of 3 weeks on, one week off for two months
e5 <- ev(amt = 150, ii = 1, addl = (3*7)-1)
e6 <- seq(e5, wait = 7, e5)
easy.mrgsim(model=cmt1_iv,dosing_schedule=e6,delta=0.1,tend=7*4*2) %>% plot
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Load + maintenance doses
#High dose: 1600mg once every week
load<- ev(amt = 1600, ii = 7, addl = 0, time=0)
#Low dose: 50mg once every day, after the high dose
maintenance<- ev(amt = 50, ii = 1, addl = 5,time=1)
easy.mrgsim(model=cmt1_iv,dosing_schedule=load+maintenance,delta=0.1,tend=7) %>% plot
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Repeat this for one month period
load_maint <- ev_rep(load+maintenance, n=4)
head(load_maint)
#> time cmt amt evid ii addl ID
#> 1 0 1 1600 1 7 0 1
#> 2 1 1 50 1 1 5 1
#> 3 7 1 1600 1 7 0 1
#> 4 8 1 50 1 1 5 1
#> 5 14 1 1600 1 7 0 1
#> 6 15 1 50 1 1 5 1
easy.mrgsim(model=cmt1_iv,data=load_maint,delta=0.1,tend=7*4) %>% plot
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Simulate several individuals

To simulate different individuals we need to introduce variability into the pk parameters. To this end,
a variance-covariance matrix needs to be defined. Let’s simulate 5 individuals, with 0.1 variance for the
clearance (CL) and 0.2 variance for the volume of distribution (V).
Nindividuals=5
easy.mrgsim(model=cmt1_iv,dosing_schedule=load+maintenance,delta=0.1,tend=7,

variability = dmat(0.1, 0.2),nid=Nindividuals) %>% plot
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Plot with ggplot2

You prefer plotting with ggplot2? Just save the results as a data.frame
pk<-as.data.frame(easy.mrgsim(model=cmt1_iv,dosing_schedule=load+maintenance,delta=0.1,tend=7,

variability = dmat(0.1, 0.2),nid=Nindividuals) )
head(pk)
#> ID time CP
#> 1 1 0.0 0.000000
#> 2 1 0.0 22.184275
#> 3 1 0.1 16.285083
#> 4 1 0.2 11.954590
#> 5 1 0.3 8.775653
#> 6 1 0.4 6.442051

library(ggplot2)
#> Warning: package 'ggplot2' was built under R version 3.5.3
ggplot(data=pk,aes(x=time,y=CP,col=as.factor(ID)))+geom_line(size=1.3)
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IV infusion
For drug administration by infusion, or any zero-order input models, the rate of drug administration may be
defined using the rate argument.
inf <- ev(amt = 150, time=0, rate=48)
easy.mrgsim(model=cmt1_iv,dosing_schedule =inf,delta=0.1,tend=7*2) %>% plot
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Oral administration
Now we are going to simulate a one compartment model with extravascular administration. We first select a
model from the model libraries already included in ACESO instead of writing all the code by ourselves:
model_library(list=T)
#> ACESO internal library of PK models:
#> [1] "1cmt_2depot" "1cmt_ev" "1cmt_iv" "2cmt_2depot" "2cmt_ev"
#> [6] "2cmt_iv" "3cmt_ev" "3cmt_iv"

cmt1_oral <- mread("1cmt_ev", model_library()) %>% Req(CP)
#> Building 1cmt_ev ...
#> done.

oral1 <- ev(amt = 150, time=0)

easy.mrgsim(model=cmt1_oral,dosing_schedule=oral1,delta=0.1,tend=7) %>% plot
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oral2 <- ev(amt = 150, ii=1, addl=6, time=0)

easy.mrgsim(model=cmt1_oral,dosing_schedule=oral2,delta=0.1,tend=7*3) %>% plot
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Introduce a lag time of 2 days
#See the parameters of the model
param(cmt1_oral)
#>
#> Model parameters (N=5):
#> name value . name value
#> ALAG 0 | TVKA 1
#> F 1 | TVV 20
#> TVCL 2 | . .
#The parameter associated with the lag time is ALAG
easy.mrgsim(model=cmt1_oral,dosing_schedule=oral1,delta=0.1,tend=7*3,parameters=list(ALAG=2)) %>% plot
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Demo 4: Synergy assesment
In order to quantify the degree of synergy/antagonism between two compounds, the typical approach is to
compare their measured combination effect to a null reference model of no interaction, i.e. the expected
response assuming no interaction between the two compounds. If the combination response is greater than
what is expected by the reference model, the combination is classified as synergistic, while antagonism is
defined when the combination produces less than the expected effect.

There are several well-known conventional approaches that define different null models to assess drug
synergy/antagonism. In this example, we will compare the drug-concentration dependent birth rates that can
be obtained from the analysis of cell vialibility and apoptosis assay data, to the birth rates obtained under
two common no-interaction models: Loewe additivity and Highest Single Agent.

Load libraries:
library(ACESO)
#> Warning: replacing previous import 'drc::gaussian' by 'stats::gaussian'
#> when loading 'ACESO'
#> Warning: replacing previous import 'drc::getInitial' by 'stats::getInitial'
#> when loading 'ACESO'

Data
In the current evaluation, cell viability data resulting from the exposure of BT-20 triple-negative breast
cancer cell line to the combination of different concentrations of two small molecule kinase inhibitors
(dactolisib and trametinib) is analyzed. The data was obtained from the HMS LINCS database (https:
//lincs.hms.harvard.edu/). The objective of this vignette is to analyze the possible synergism that arises
from the combination of the drugs. The birth and death rate have been already calculated using this data
and functions from ACESO package.
data(Dactolisib_Trametinib_rates)
head(GD)
#> Cell.line CONC CONC2 Net_growth Type Birth_rate Death_rate
#> 1 BT-20 0 0.0000 0.007727910 0 0.02872791 0.021
#> 4 BT-20 0 0.1235 0.005032087 0 0.02603209 0.021
#> 7 BT-20 0 0.3704 0.005433627 0 0.02643363 0.021
#> 10 BT-20 0 1.1111 0.003351660 0 0.02435166 0.021
#> 13 BT-20 0 3.3333 0.003391692 0 0.02439169 0.021
#> 16 BT-20 0 10.0000 0.002139690 0 0.02313969 0.021
#> Drug.Name Drug2.Name
#> 1 Dactolisib Trametinib
#> 4 Dactolisib Trametinib
#> 7 Dactolisib Trametinib
#> 10 Dactolisib Trametinib
#> 13 Dactolisib Trametinib
#> 16 Dactolisib Trametinib

DrugA=as.character(GD$Drug.Name[1])
DrugB=as.character(GD$Drug2.Name[1])
print(c(DrugA,DrugB))
#> [1] "Dactolisib" "Trametinib"

Use responseMap function to plot the surface of the birth rate values versus both drug concentrations:
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rmap <- responseMap(Birth_rate~CONC+CONC2,GD,logscale=T,interpolate=FALSE)
DifferenceSurface.plot(rmap,zcenter=max(GD$Birth_rate)/2,

xl=" [Dactoloisib] (µM)",
yl="[Trametinib] (µM)",
zl="Birth rate of \n sensitive cells, b0 (1/h)",
mid="yellow",low="hotpink1",high="darkturquoise")
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Use responseMap again and plot.ResponseSurface to make a contour plot of the data. For this plot a
interpolation of the data is needed (see logscale=T in the responseMap function):
rmap <- responseMap(Birth_rate~CONC+CONC2,GD,logscale=T)

ResponseSurface.plot(rmap,xl=" [Dactoloisib] (µM)",
yl="[Trametinib] (µM)",
zl="Birth rate of \n sensitive cells, b0 (1/h)",
palette=c("hotpink1","yellow","darkturquoise"))
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Loewe additivity
Loewe additivity model defines synergy/antagonism as a combined inhibitory effect that is greater/lower
than the sum of the individual effects of the drugs. The null reference model in this case is the sum of the
individual effect of each drug, which is calculated from the sigmoidal fits of the single-agent response curves.
To automatically perform this task the Loewe function can be used:
GD=Loewe(data=GD,resp = 'Birth_rate')

A new column called ‘loewe_addivity’ is created. Now we plot the response surface of the data using the
newly created column to compare it with the previous response surface for the birth rates of sensitive cell
population.
rmap_loewe <- responseMap(loewe_additivity~CONC+CONC2,GD,logscale=T)

ResponseSurface.plot(rmap_loewe,xl=" [Dactoloisib] (µM)",
yl="[Trametinib] (µM)",
zl="Birth rate of \n sensitive cells, b0 (1/h)",
palette=c("hotpink1","yellow","darkturquoise"))

67



0.1

1.0

10.0

0.003 0.010 0.030 0.100 0.300
 [Dactoloisib] (µM)

[T
ra

m
et

in
ib

] (
µM

)

0.015

0.020

0.025

Birth rate of 
 sensitive cells, b0 (1/h)

For a proper comparison of the surfaces, we calculate the difference between them and plot the results in a
colored pairwise matrix. The score showed in this matrices reflects the difference between the measurement
and the surface obtained under the no interaction models in a way that values less than zero (blue) represent
antagonism and values greater that zero (yellow) represent synergism.
GD$diffLoewe=(GD$loewe_additivity-GD$Birth_rate)

p=SynergyMatrix.plot(GD,resp="diffLoewe")
p+ggplot2::labs(x="Dactolisib concentration (µM)", y="Trametinib concentration (µM)")
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Highest Single Agent (HSA)
Now, we are going to repeat the process using the Highest Single Agent (HSA) model. HSA, also known as
Gaddum’s non-interaction model, is another popular model which defines a independent action of the drugs
when the predicted effect of a combination is that of the one most effective drug alone. To calculate the null
surface of the HSA model, use HSA function:
GD=HSA(GD,resp = 'Birth_rate')

GD$diffHSA=(GD$HSA_response-GD$Birth_rate)

p2=SynergyMatrix.plot(GD,resp="diffHSA")
p2+ggplot2::labs(x="Dactolisib concentration (µM)", y="Trametinib concentration (µM)")
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