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Supplementary Note 1: Graphene transport quality measurement

Two-probe resistance of one of the graphene stacks was measured at 10 K (Supplementary Fig. 1). The intrinsic
doping at 0V is observed to be 1.4× 1011 electrons per cm2, a typical value for encapsulated graphene devices,
implying no unusual doping from the substrate. The bottom h-BN was 20 nm thick and the top h-BN was 4 nm.
After multiple steps of electron beam lithography there was polymer residue on top of the stack. Polymer residue
on top of thin top h-BN explain the broad Dirac peak compared to standard encapsulated graphene devices. How-
ever, the clearly formed Dirac peak indicates that it is possible to do transport measurements in this system, even
more promising with the possibility of using thicker top h-BN in the range of 8-16 nm.

Supplementary Figure 1. Backgate voltage dependent resistance for the graphene encapsultated by
h-BN. Data recorded at 10 K.



Supplementary Note 2: Soliton conductivity in bilayer graphene

To understand the local conductivity profile near the domain walls of small-angle twisted bilayer graphene (TBG),
we employ a simplified tight-binding Hamiltonian for 1D soliton geometry. Each graphene layer has a nearest-
neighbor bonding length of 1.42 Å and we consider only nearest-neighbor in-plane coupling of strength 2.7 eV.
Longer range in-plane couplings would give a more accurate picture of graphene’s low-energy electronic structure
by capturing e.g. particle-hole asymmetry and trigonal warping. The interlayer coupling is captured using just the
radially symmetric part, V0, of an interlayer coupling functional obtained from a DFT study1:

V0(rrr) = λ0e−ξ0 r̄2
cos(κ0r̄) (1)

with λ0 = 0.3155 eV, ξ = 1.7543, κ0 = 2.001, and r̄≡ r/a for r the in-plane distance between orbitals and a = 2.46
Å the lattice parameter of graphene. As this function depends on only r, the interlayer distance between layers
plays no role in our simple model.

The soliton between an AB and BA stacking domain is known to be a shear deformation, with the atomic displace-
ments parallel to the soliton line. In TBG, the soliton lines occur perpendicular to the nearest-neighbor bonding
directions of the graphene unit cell. We define the graphene unit cell with primitive vectors aaa1 = a(1,0) and
aaa2 =

a
2(1,
√

3), again with a = 2.46 Å. To create a periodic 1D soliton that agrees with those in TBG, the atomic
displacements must therefore be in the ŷ direction. This is most easily implemented by constructing a rectangular
shaped supercell, with the cell defined by vectors max̂ and a

√
3ŷ. This is effectively an m×2 supercell of graphene,

but with an updated boundary condition to ensure uniformity in the ŷ direction (up to a 60◦ rotation). To keep
our system periodic, we must introduce two solitons: one transforms the bilayer from an AB to BA stacking, and
then the second moves it back. The two layers begin in AB alignment with the top layer at a relative displacement
of (aaa1 + aaa2)/3 to the bottom. We will perform a shear deformation by adding and then removing an additional
uuu0 = (0,−a/

√
3) displacement (the nearest-neighbor bonding distance, in the −ŷ direction), This additional

displacement is evenly split between the two layers.

For the first soliton, centered at x0 with a width w, this additional atomic displacement uuu is defined by a linear
ramping function s(x):

uuu(rrr) = uuu0s(x), s(x) =


0 x≤ x0−w/2
x−(x0−w/2)

w x0−w/2≤ x≤ x0 +w/2
1 x0 +w/2≤ x

(2)

with the second soliton "undoing" the transformation with an inverse function. Both soliton widths are chosen
to be w = 10 nm, and have centers defined by x0 = ma/4 and x0 = 3ma/4. From this geometry, the electronic
tight-binding hamiltonian is constructed, and a uniform kkk-sampling of the rectangular supercell’s Brillouin zone is
performed, providing the eigenpairs {εnkkk,ψnkkk} for band n.

A formula for optical conductivity that depends on only these eigenpairs can be derived from linear-response
theory2, 3:

σ(ω)µν =
igs}
4π2

∫
d2kkk ∑

m,n

fn− fm

εm− εn

M∗µMν

}(ω + iη)− (εm− εn)
(3)

where the gs = 2 accounts for the spin degeneracy in graphene, the kkk index is assumed for each band variable, the f j

are the Fermi occupation numbers for ε j, and

Mµ = 〈ψmkkk| jjjµ |ψnkkk〉 (4)



for jµ the current operator in the µ̂ direction. In our discrete tight-binding model, the current operator can be
represented by way of a commutator, jjj = e

i} [H,rrr], which means the matrix elements Mi depend only on H and dif-
ferences in position, ∆rrr, between orbitals. The variable η is a dampening rate defined by the electronic relaxation
time, but here we use it as a tunable parameter to smooth the response function due to the discrete nature of our
eigenvalue sampling in energy.

But we are more interested in a local conductivity. We can consider the local contributions to σ by defining the
total conductivity over an area A in terms of local contributions, e.g.

σ =
1
A

∫
A

drrrσrrr. (5)

Inspection of Eq. 3 reveals that a natural definition of σrrr is possible by expanding the eigenfunctions into local
projections, |ψnkkk〉= ∑A |ψnkkk(rrr)〉. Since we are dealing with a discrete tight-binding model, it will be more natural
to represent the integral over A with a discrete sum over finite-sized regions, Ai. We define Pi as the projection
operator onto atomic orbitals in the region Ai, e.g. Pi | j〉= 1 if orbital j is in Ai, and 0 otherwise. Then our local jjj
matrix elements are:

Mµ(i) = 〈ψmkkk| jjjµPi |ψnkkk〉 (6)

This allows us to reexamine the conductivity formula in terms of the local contributions of the eigenvectors. By
defining

Σµν(ω, i, j) =
igs}
4π2

∫
d2kkk ∑

m,n

fn− fm

εm− εn

M∗µ( j)Mν(i)
}(ω + iη)− (εm− εn)

(7)

one can obtain the local conductivity through

σ(ω)µν = ∑
i j

Σµν(ω, i, j)≡ 1
A ∑

i
Aiσi (8)

giving

σi(ω) = ∑
j

A
Ai

Σ(ω, i, j). (9)

The results for the local conductivity (in units of e2/}) are shown in Supplementary Fig. 2. A clear peak in the
conductivity of the soliton regions (domain-walls, or DW) is visible near ω = 0.2 eV, and is accompanied by a
negative imaginary component. The conductivity at center of the AB shows a much smaller feature, possibly due
to its proximity to the two 10 nm wide solitons in our 36.9 nm wide periodic geometry. In a system with near
infinite AB domains, this feature should be absent. At ω = 0.22 eV, the conductivity at the AB domain is roughly
0.5 e2/}, which is twice the conductivity of monolayer graphene. The solitons (DW) show a large enhancement
of the conductivity in this frequency range, with a value of roughly 1.1 e2/} at their center.



Supplementary Figure 2. Frequency dependence of the real and imaginary parts of the local
conductivity in the bilayer graphene soliton model. a, Real part of the local conductivity, in units of e2/},
given by the color bar. The dashed white-line indicates the frequency where the cross-section is taken. b,
Cross-section of a, with the domain-wall (DW) and AB stacking area indicated by the red and blue lines,
respectively. c, d, Same as (a, b), but for the imaginary part of the local conductivity. e, f, Spatial dependence of
the real and imaginary parts of the local conductivity. The supercell is defined by m = 400 (984 Å in width) and a
soliton width of 10 nm. The conductivity was calculated over 500 uniformly sampled kkk points, a Fermi energy of
50 meV (no vertical displacement field) to match the intrinsic doping of the experimental devices. The damping
rate is taken to be η = 0.01, to ensure sufficient smoothness in the frequency-dependent curves.



Supplementary Note 3: Dispersion relation and nano-FTIR spectrum

In this note we perform a quantitative analysis of the dispersion relation and calculate the absorption spectrum
of a heterostructure that consists of h-BN and TBG. We explore these features in the AB regime and along the
domain wall (DW) of the Moire pattern (shown in Fig. 1b in the main text). The TBG is placed between two
h-BN thin slabs of thickness d ' 25 nm and ` ' 4 nm. We are interested in the frequency range ω = [1370
cm−1,1650 cm−1] where optical phonon modes in h-BN are supported. Our TBG samples are designed with
twisted angles with θ < 0.1o where the length of the DWs is estimated about 140 nm (we use the rule for the length
α/sin(θ), where α = 0.246 nm). Our measurements are taken far away of the AA spot of TBG and we assume that
140 nm is a sufficient distance to avoid electronic contributions from the AA spots. Subsequently, the dispersion
relation at DW and AB is assumed to be similar with the dispersion observed in bilayer graphene with a single
DW, along and far away of the DW, respectively. Hence, in our theoretical modeling the TBG conductivity for
the AB and DW is considered the same with the conductivity in at the AB and DW a bilayer graphene with a
structural soliton. In addition, we neglect the thinner h-BN layer. More specifically, in our model we assume a
heterostructure that consist of three regions along the z direction and infinitely extended along the x− y plane.
The three layers are considered as: air at z > 0 ( j = 0), h-BN at 0 > z >−d ( j = 1), and SiO2 at z <−d ( j = 2).
The dielectric functions of the air is considered ε0 = 1 and of the SiO2 is ε2 = εs = 3.9. For the h-BN we read
an anisotropic and frequency dependent dielectric tensor with in- and out of plane components (εx(ω),εz(ω)),
respectively, that follows the Lorentz model:

ε(ω) = ε∞

(
1−

ω2
LO−ω2

TO

ω2−ω2
TO + iωΓ

)
. (10)

The modeling parameters used are shown in Supplementary Table 14.

ωTO (cm−1) ωLO(cm−1) Γ(cm−1) ε∞

εx (in-plane) 1366 1610 7 4.87
εz (out-plane) 760 825 3 2.95

Supplementary Table 1. Modeling parameters for the dielectric function of h-BN.

Supplementary Fig. 3 shows the h-BN dielectric function.

Supplementary Figure 3. The dielectric function of h-BN. The peaks indicate phonon resonances.

The TBG is located at z = 0 and is treated as a surface current Js = σxxEx, where σxx is the space and frequency de-



pendent x−component of the optical conductivity tensor for graphene bilayer; the spatial dependence appears due
to the structural soliton formation. The complex conductivity is calculated by the tight-binding model described
in Supplementary Note 2 and shown in Supplementary Fig. 2. The intra-band electronic transitions dominate at
small frequencies and therefore, the imaginary part of the conductivity is positive. In this frequency range, trans-
verse magnetic (TM) plasmons are supported and hybridize with optical phonons in h-BN5, 6. On the other hand,
in the frequencies that our experiments are performed the inter-band electronic transitions dominate the optical
properties. This is a crucial point in this study since the imaginary part of the conductivity becomes negative and
only transverse electric (TE) polarized plasmons are supported7. However, in s-SNOM experiments the TE polar-
ized modes are very weak and can be neglected5. Hence, for the remaining TM polarization the negative Im(σ)
makes the environment optical denser while the positive Re(σ) introduces dissipation. We observe in Fig. 2 that
along the soliton line the dissipation is enhanced and the medium becomes optical denser affecting significantly
the phonon modes. The phonon resonance becomes weak and, more specifically, along the DW the phonons be-
come even weaker than in AB regime. Moreover, the presence of graphene bilayer weakly affects the dispersion
relation and thus, the wavelength of the phonon polariton modes is slightly changed.

In order to understand qualitatively how the presence of TBG affects the phonon polariton propagating modes we
employ Fresnel’s equations to calculate the total complex reflectivity of the air/h-BN/TBG/SiO2 heterostructure.
We follow similar formulation used in Ref.5. We consider TM polarized waves with the magnetic and electric
fields H(x,z) = (0,Hy,0) and E(x,z) = (Ex,0,Ez), respectively; the fields are invariant along the y direction.
Assuming electromagnetic waves that propagate along the x-direction we get for the in-plane fields Hy(x,z) =
h(z)eiqx and Ex(x,z) = ex(z)eiqx, where h and ex are the associate field amplitude functions and q is the wavenumber
along the x-direction. In each of the four layers of the heterostructure, the amplitude field for the magnetic field
can be written as the sum of two counter-propagating waves as:

h j(z) = A je−iκ jz +B jeiκ jz, (11)

where the subscript j denotes the layer and κ j is the the out-plane wavenumber given by

κ j =

√
ε

j
x

ε
j

z

√
ε

j
z k2

0−q2. (12)

Accordingly, the amplitude function of the electric field is written:

e j
x(z) =−

η0κ j

ε
j

x k0

(
A je−iκ jz−B jeiκ jz

)
, (13)

where k0 = ω/c and η0 =
√

µ0/ε0 are the wavenumber and the impedance in free space, respectively. Similarly to
Ref.4 the reflection coefficients ri j at the i/ j interface are defined as

ri j =
Q j−Qi +Si j

Q j +Qi +Si j
, (14)

where

Q j =
ε

j
x

k j
, (ε j

x is the in-plane permittivity of the jth layer), (15)

Si j =
η0

k0
σi j, (σi j is the conductivity along the i/ j interface). (16)

Since the TBG is placed at the interface between air and h-BN, the only nonzero conductivity terms are the σ01 =
σ10 = σxx. The total complex reflectivity is calculated as:

rp =
r01 + r12(1− r01− r10)e2ik1d

1− r10r12e2ik1d . (17)
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Supplementary Figure 4. The false-color indicates the absolute value of the reflection coefficient rp which
determines the dispersion relation. The maxima of |rp| denote phonon polariton modes in the h-BN/TBG
heterostructure. Left: The conductivity of TBG is set to zero. Middle: Dispersion relation in AB regime of TBG.
Right: Dispersion relation along the TBG DW. In each image, the black dashed lines show the first phonon
polariton propagating mode while the white dashed lines are the far field modes corresponding to the light line.

In the absence of any dissipation, i.e. for an ideal system, the dispersion relation q(ω) can be determined by the
poles of Eq. 17 where the rp diverges. However, our heterostrucure includes dissipation, hence rp never diverges
at any real ω and q4, 5. Here, the dispersion relation is visualized from the absolute value of rp and the propagat-
ing phonon modes are graphically determined from the maxima of |rp|. In Supplementary Fig. 4 we show the
dispersion relation (false color) and outline the propagating modes (dashed lines). In particular, the false color
shows the calculated |rp|, the white dashed lines indicate the light lines (far field propagating modes), and the
dashed black lines represent phonon modes (near field propagating modes). We present three different cases: In
the left and for sake of comparison, we show the dispersion of a system without considering TBG (σxx = 0). The
middle and right images show the dispersion of the heterostructure including the TBG. Specifically, the middle
plot represents the AB regime (σxx = σAB), whereas, the right image is the dispersion along the DW (σxx = σDW).
We observe that the phonon modes becomes very weak due to the presence of TBG. Essentially, the phonon
modes disappear quickly as the wavenumber (or the frequency) increases. It is worth noting that along the DW
the phonon amplitude is weaker than that in AB regime. This is expected due to the steep increase of the dissipa-
tion along the DW for ω > 1400 cm−1.

Supplementary Figure 5. Near-field spectra calculated for AB/BA domain (blue solid line) and along the
domain wall (red solid line).

The wavenumber of the mode in AB regime (dashed black line in the middle graph of Supplementary Fig. 4)
is used to calculate the phonon wavelength shown with dashed line in Fig. 2g. A qualitative correspondence
between the s-SNOM near field signal (Supplementary Fig. 5)) can be performed by calculating the maxima of



the |rp|2 along the modes8 (black dashed lines in middle and right images of Supplementary Fig. 4). These results
are presented in Supplementary Fig. 5), where indeed we observe that along the DW the scattering field is weaker
than the field along the AB regime. It is known that this approach introduce a blue shift of 40cm−19, 10. However,
Fresnel’s equations capture the overall behavior and thus, this model is sufficient to explore and understand the
underlying phenomenon. A more accurate description requires modeling that includes the tip-sample coupling.
These simulations can be perform with numerical methods such as FDTD or by using approaches as the rod
model that is introduced in Ref. 10.



Supplementary Note 4: FDTD simulations

Simulation setup

FDTD simulations are performed in Lumerical FDTD Solutions. The gaussian conductivity profile is imple-
mented step-wise with steps of 2 nm (see below for more details). For the simulation of the profile of polaritons,
the mesh size was set to 1 nm, and the tip was emulated with a vertically polarized Hertzian dipole placed at the
interface between the top h-BN and air combined with electric field monitors at different heights just above the
Hertzian dipole. The field emitted by the dipole is coupled to polaritons, which are reflected by any nearby dis-
continuity, and the reflection is measurable using field monitors in the simulations. The simulation is repeated
for each tip position, and the real part of the z component of the electric field on the monitors is recorded for all
wavelengths and used to generate the dispersion maps as function of wavelength and tip position.

FDTD Simulations shown in Fig. 2c are performed with a different setup designed to emulate the influence of
the SNOM tip on the observed local spectrum of the sample.The simulation region has a size of 4µm× 4µm
and PML (perfectly matched layer) boundary conditions. The tip is simulated as a platinum pyramid suspended
above the heterostructure. The tip is approximated with base of 20 nm, opening angle of 12 degrees, height 2.4
microns. A Broadband Fixed Angle Source Technique (BFAST) plane wave is incident on the tip and the sample
and propagates at an angle of 60 degrees from the normal, and emulates the light incident from the spectrum. The
power absorbed by the sample is then calculate placing a power field monitor between the tip and the sample.
Simulations shows a clear red-shift of the spectrum due to the perturbation of the fields by the tip. A similar effect
was also observed in literature for h-BN nanoresonators.

Constitutive equations of the materials

h-BN is modelled with a Lorentz model (Eq. 10) while TBG is modelled with 2D rectangles (boundary condi-
tions). The TBG conductivity model is defined as follows. Away from the domain walls, the used conductivity is
the one computed for the AB TBG case. The domain wall is computed using a spatially varying gaussian conduc-
tivity profile defined so that the conductivity is the one computed for the domain wall at the center of the gaussian,
σDW, and it gradually averages to the one for the AB TBG case, AB. This is done using the formula:

σTOT = pσDW +(1− p)σAB (18)

where p is a normalized gaussian with standard deviation of 8 nm.

Background removal

As simulated, the dispersion maps have a significant background since the monitor captures part of the field
emitted by the dipole and its image reflected by the sample. The background can be simulated at a location far
from any discontinuity and subtracted frequency-by-frequency from the map to remove the background. The
simulation can be repeated using the edge of the sample as a discontinuity, revealing a different reflection phase.
Supplementary Fig. 6 shows an example of background removal.



Supplementary Figure 6. Removal of background in FDTD simulations. a, Raw simulation results. b,
Simulation results after subtracting the background

Higher order harmonic demodulation

Demodulation scheme is commonly used in the experiment and simulation. It will effectively reduce the far-field
background. However, in the FDTD simulation, we have the monitor very close to the tip and sample and simu-
late the near-field effect without far-field scattering. Therefore the simulated spectrum is almost same regardless
of the position where it is measured. As shown in Supplementary Fig.7, we performed additional simulations
using the demodulation scheme to reconstruct the optical harmonics of the system. The results are very similar to
the Fig.2c of the manuscript validating our assumption, especially at the resonance. When sampled right at the tip
position in the simulation setup a demodulation scheme will not provide much benefit.

Supplementary Figure 7. Higher order harmonic demodulation. Near-field amplitude signal s(ω)
simulated with a z-position demodulation scheme.



Post-processing of the polariton field profile

The electric field profile is obtained from the simulated maps taking a single frequency and plotting as a function
of the tip position. Because the simulation considers an infinitely small point as the source, an additional smooth-
ing is performed on the profile to emulate the tip size. Best fits are obtained using a window average with size 10
nm, which is in good agreement with the resolution of the tip.

Ideal FDTD simulations and reflection phase theory

The phase of the reflection coefficient due to the presence of the domain wall is not a trivial quantity, and instead
it depends on multiple parameters of the studied physical system. The origin of this phase, however, can be ex-
plained in the context of Maxwell’s equations, and therefore can be captured by an FDTD simulation. For better
clarity and simplicity, we consider here a simplified and ideal model of the polariton propagating on the van der
Waals heterostructure and incident on the DW discontinuity.

This formalism is valid when the polariton wavelength is significantly larger than the van der Waals total thick-
ness and models the entire stack as a 2D conductivity σ that is the sum of the conductivity of each layer. Next,
both FDTD simulations or analytical models based on the transmission line (TL) formalism can be used to predict
the propagation of polaritons and the reflection on loads of different types11.

According to the TL formalism, in the high confinement limit the polariton propagating across the heterostructure
of arbitrary width W can be modelled as a transmission line with characteristic impedance Z0 equal to11:

Z0 =
1

2W Im(σ)k0neff
(19)

where k0 is the free space wavelength and neff is the polarition effective index. The high confinement limit is valid
for neff� 1 which is the case here. Under that limit, the characteristic impedance presented in Ref. 11 simplifies
to the expression above, and is valid regardless of the specific origin of the conductivity (i.e. can model both
plasmon and phonon polaritons or a combination of the two as in this case).

The TL model is explained as a combination of a capacitive shunt term and an inductive series term. The capacti-
tive term models the electric field associated to the polariton, and the inductive represents the stack conductivity.
The inductive part is given by the inductance per unit length, which reads:

`=
neffk0Z0

ω
=

1
2WωIm(σ)

(20)

This equation implies that any variation in the conductivity σ can always be modelled as a series element in the
transmission line. This is equivalent to condition (ii) as defined in Ref. 11. This is the case also for complex
conductivities since all functions in the model are analytic functions, and hence can be immediately generalized
to the complex case. The value of the series element is the difference of the nominal conductivity σAB and the
actual conductivity at the discontinuity σDW. The reflection coefficient of a series element according to the TL
formalism and assuming that the discontinuity acts as a small local perturbation of the conductivity, is:

Γ ∝ (σDW−σAB)L (21)

where Γ is the complex reflection coefficient and L is the effective width of the discontinuity (here approximately
10 nm). As expected, if the complex conductivities σDW and σAB were the same, then the reflection coefficient
would vanish, since the discontinuity would not actually exist. Because the previous equation holds for complex
values, the phase of the reflection coefficient is determined by the phase of the difference of the conductivities.



To verify this, we performed ideal FDTD simulations creating different types of arbitrary discontinuities. Supple-
mentary Fig. 8 shows the predicted standing waves for each type of discontinuity. Increasing or decreasing the
imaginary part of the conductivity creates reflection phases at about 180 degrees from each other as expected. If
a real part (that is optical losses) is added without changing the imaginary part, then the phase difference is about
90 degrees, confirming the model.

Due to the dependence of the reflection coefficient on the difference of the conductivity, the reflection phase can
vary across a wide range, including the experimentally observed phase shift and according to the measurement
wavelength.

Supplementary Figure 8. FDTD Simulation of standing waves for different types of discontinuities.
These simulations have been obtained with an ideal model of the polariton propagation. The discontinuity is
placed at the origin of the position axis and the wave is travelling toward the right. a, Discontinuity having lower
imaginary conductivity with respect to the rest of the stack and no real component. b, Discontinuity having same
imaginary conductivity with respect to the rest of the stack and an additional real component. c, Discontinuity
having higher imaginary conductivity with respect to the rest of the stack and no real component



Supplementary Note 5: Nano-imaging moiré superlattices with thick top h-BN

Since we directly use phonon-polariton in h-BN to image the moiré superlattices in TBG, we can have relatively
thick h-BN on top to encapsulate the graphene layers without compromising the imaging contrast of the moiré
pattern. As shown in Supplementary Fig. 9a, we test on the thick top h-BN region where the thickness is mea-
sured to be ∼ 16 nm. We can clearly map the moiré superlattices with the near-field amplitude at ω = 1550cm−1

(Supplementary Fig. 9b).

Supplementary Figure 9. Topography and near-field imaging with thick top h-BN. a, AFM profile of the
sample region with 16 nm top h-BN. Inset: AFM height mapping of the sample. Blue dashed line indicates the
profile location. Scale bar: 5µm. b, Near-field images of the normalized near-field scattering amplitude s(ω)
revealing the domain walls in TBG with 16 nm h-BN taken at ω = 1550cm−1. Scale bar: 1µm
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