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Anxiety and Stress Alter Decision-Making Dynamics and 
Causal Amygdala-Dorsolateral Prefrontal Cortex Circuits  

During Emotion Regulation in Children  
 

Supplementary Information 
 

Supplementary Methods 

 

Drift diffusion modeling (DDM) of latent behavioral dynamics 

Wiener distribution to characterize the drift diffusion process 

The emotion evaluation process is characterized as a drift diffusion process, which posits that 

evidence accumulates over time resulting in a decision when a decision threshold is reached. 

(Figure 3A). The evaluations of an individual i on trial t with stimulus type k (neutral vs aversive) 

and instructions p (view vs reappraise) are denoted as 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, where 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1 if the evaluations are 

rated as 1 or 2 (positive) and 𝑥𝑥𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝 = −1 if the evaluations are rated as 3 or 4 (negative). The 

response time of an individual is similarly denoted as 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 . The choice coded response time is 

represented as 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. The drift diffusion model implemented here assumes that 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 

𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 are samples from random variables 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖, 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖, and 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 respectively, and that 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 is 

distributed according to a Wiener distribution (1, 2). The Wiener distribution thus describes the 

probability density function for 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖, or in other words, the joint pdf for the random variables 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 

and 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖, and is described by the following equations1.  
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1 These equations assume a diffusion coefficient s set to 1 as implemented in the JAGS Wiener package. Further 
details can be obtained from Vandekerckhove, Tuerlinckx, & Lee (2011), and Wabersich & Vandekerckhove (2014). 
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The Wiener distribution is a four-parameter distribution that describes the first passage time of the 

diffusion process, that is, the distribution of times taken for the diffusion process to first hit the 

positive (𝑥𝑥 = 1) and negative (𝑥𝑥 = −1) decision boundaries. The key model parameters are 

described below. 

 

Model parameters 

𝛼𝛼𝑖𝑖𝑖𝑖 is the decision threshold for individual i on trials with instruction p and represents the distance 

between the positive and negative decision boundaries. The decision threshold is commonly 

interpreted as a top down strategy, and we make the standard assumption of allowing the decision 

threshold for an individual to vary by instruction p (whether or not an individual is asked to 

reappraise) but not by stimulus type k (neutral versus negative images). A uniform prior ranging 

from (0.1,10) was placed on the decision threshold for each instruction, representing uninformative 

(flat) priors over a range that is based on prior theoretical and empirical results. 

 

𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖 is the initial bias for individual i represents the starting bias, or the starting point of the 

diffusion process between the two decision boundaries. For this task, the initial bias is assumed to 

reflect the initial reaction gained during the stimulus viewing period prior to the start of the 

decision period, and is thus allowed to vary by instruction p and type of stimulus k. A uniform 

prior over the entire plausible range (0,1) was placed on the initial bias for the aversive and neutral 

conditions. In addition, the initial bias for the reappraisal trials is constrained to lie between that 

for the neutral and aversive conditions. 

 

𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖 is the drift rate for individual i represents the speed of evidence accumulation. High positive 

values indicate strong evidence accumulation towards positive evaluations and high negative 

values indicate strong evidence accumulation towards negative evaluations. Values closer to zero 

in any direction indicate relative ambiguity between positive and negative evaluations. The drift 

rate captures the key component of the decision process during the decision window and is allowed 

to vary by instruction p and type of stimulus k. An unconstrained prior N(0,1) was placed on the 

drift rates. 
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𝜏𝜏𝑖𝑖 is the non-decision time for individual i represents the time taken by non-cognitive processes, 

such as motor response and perceptual processes. Since the non-decision time reflects non-

cognitive processes, for each individual it is assumed to be fixed across both instruction and 

stimulus type. A uniform prior ranging from 0 to the shortest possible reaction time for each 

individual was placed on the non-decision time. 

 

Model Fitting 

The drift diffusion model DDM was implemented within a Bayesian inference framework (Figure 

S3) using JAGS for MCMC sampling. The sampling was checked for convergence (Figure S4 

demonstrates the convergences of 3 chains for a single parameter). The DDM produces posterior 

predictive reaction time and choice data based on the posterior distribution of parameters (Figure 

S5 demonstrates the fit of the DDM model for a single participants’ choice-coded reaction times).  

 

Participants 

 

Participants were recruited from a larger, longitudinal project testing the effectiveness of health 

and wellness methods in a suburban public-school district serving approximately 4,200 

kindergarten through eighth grade students across eight schools in Northern California. Students 

in the district are predominantly Hispanic/Latinx (79%), African American (10%), Pacific Islander 

(9%) and other (2%). From this larger project, the present study recruited children in a narrow age 

range of 10 to 11 (fifth graders) to reduce age-related variability as brain regions involved in 

emotion regulation develop at variable rates in childhood (3). Parents and children provided 

written informed consent and assent, respectively, prior to participating in the study. All children 

were right-handed, medication-free, and met standard safety screening protocols for MRI. Subjects 

were scanned at the Richard M. Lucas Center for Imaging at Stanford University. Stanford 

University’s Institutional Review Board approved all procedures. 

 

fMRI data acquisition  

 

Task-based functional data were acquired on a 3T GE scanner using a T2* weighted gradient echo-

spiral in-out pulse sequence (TR = 2000ms, TE = 30ms, flip angle=80°, FOV=22cm, 3.4375 x 
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3.4375 x 4.5 mm3 resolution; interleaved). A total of 31 axial slices were acquired, 4mm in 

thickness, and covering the whole brain. A T1-weighted, 166 slice high-resolution structural image 

was acquired (slice thickness 1mm; in-plane resolution: 256 x 256, voxel size x voxel size 0.9375 

x 0.9375 mm2) to facilitate registering each participant's data to standard space. Stimuli were 

presented using E-Prime and displayed using an LCD projector and a back-projection screen in 

the scanner suite. Participants responded to the rating scale using a 4-button box. 

 

fMRI experimental design and emotion regulation task 

 

Images were either neutral or aversive (meant to elicit a strong emotional reaction). Aversive and 

neutral images were selected from the International Affective Picture System (4) based on 

established norms for emotional valence and arousal dimensions.  Selected aversive images were 

high-arousal whereas neutral images were low-arousal. Each image was shown only once for a 

given participant, and trials were counterbalanced across participants. Participants were coached 

in reappraisal strategies and practiced reappraising images that were not part of the fMRI task until 

the experimenter determined that they understood task instructions. 

 

fMRI data preprocessing 

 

Images were pre-processed and analyzed using SPM12. The preprocessing pipeline included 

realignment, slice-timing correction, volume repair, coregistration to subjects’ T1 and 

normalization to a 2mm MNI152 template, and smoothing using a 6mm full-width half-maximum 

Gaussian kernel to decrease spatial noise. Volumes with greater than 0.2 mm scan to scan 

displacement along linear or rotational axes were deweighted, as well as volumes with greater than 

5% change in global signal. The first three volumes of each time-series were discarded to allow 

for signal equilibrium.  

 

Head motion 

 

Scan-to-scan displacement was calculated based on parameters from realignment procedure. 

Subjects whose mean scan-to-scan displacement exceeded 1mm in either run were excluded from 
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analysis. After volume repair, subjects for whom more than 15% of volumes were repaired were 

also excluded from analysis. Subjects who did not comply with the task (did not make button 

presses) in more than 50% of the trials were also excluded from the analysis.  

 

General linear model analysis 

 

Task-related brain activation was assessed using a general linear model (GLM) implemented in 

SPM12. At the individual subject level, brain responses to each task condition (neutral, aversive, 

or reappraisal) was modeled using boxcar functions convolved with a canonical hemodynamic 

response function and a temporal derivative to account for voxelwise latency differences in 

hemodynamic response. Six head movement parameters generated from the realignment procedure 

were included to regress out effects of head movement on brain response. High-pass filtering using 

a cutoff of 1/128 Hz was applied. Serial correlations were accounted for by modeling the fMRI 

time series as a first-order autoregressive process (AR(1)) in the GLM framework. Stimulus-

motion correlations across the two runs were significantly less than 0.2 mm on average (ps < 

0.001), indicating that the inclusion of six head motion parameters in the GLM would not prevent 

us from detecting brain effects.  

 

Contrast images for aversive vs neutral, reappraisal vs neutral, and reappraisal vs aversive 

conditions, generated at the individual level, were submitted to second-level, one-sample t-tests to 

examine changes in brain activity associated with emotion processing and regulation. Of note, as 

emotion regulation processes were best defined by the Reappraisal vs Aversive contrast, all brain 

and brain-behavioral analyses were conducted using the Reappraisal vs Aversive contrast. 

 

In addition, although the Reappraisal vs Aversive contrast was our main focus, we chose not to 

use this contrast for ROI identification due to potential biases introduced by using the same 

contrast for selection (i.e., identification of brain regions of interests) and selective analysis (i.e., 

the subsequent MDS analysis using the selected brain regions). To alleviate such biases, we 

conducted an omnibus F-test to identify brain regions showing significant responses in either 

Reappraisal vs Neutral or Aversive vs Neutral contrast (Figure 5A and S2), and then identified 

activation peaks in bilateral amygdala and DLPFC regions (Figure 5B) to construct 6mm sphere 
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ROIs for subsequent causal analyses. Importantly, our DLPFC peaks identified from the omnibus 

F-test are consistent with those from previous meta-analysis of fMRI studies of emotion regulation 

(Figure 5C) (5-9). Additional prefrontal cortical regions were identified and used as control 

regions to probe specificity of our amygdala-DLPFC findings (Table S5). 

 

To correct for multiple comparisons, and protect against detection of false activation clusters, we 

used Monte Carlo simulations to determine the cluster threshold at a false-positive cluster detection 

rate of p < 0.01. We generated random images, smoothed them with a 6mm FWHM smoothing 

kernel, used a whole brain mask excluding white matter, set a voxel-wise threshold of p < 0.005 

and computed cluster sizes across 10,000 iterations (10). The minimum cluster size to control for 

false activation clusters and achieve the desired overall significance level (cluster-wise, p < 0.01) 

was determined to be 87 resampled voxels (or 696 mm3). These thresholds are consistent with 

those previously reported in studies of emotion regulation in children and adults (11-14).  

 

Computational modeling of dynamic causal interactions between amygdala and DLPFC  

 

Multivariate dynamical systems (MDS) is a state-space model for estimating context-dependent 

causal interactions between multiple brain regions from fMRI data while accounting for variations 

in hemodynamic responses in these regions (16). MDS has been validated using extensive 

simulations (16-18) and has been successfully applied to our previous studies (19-21).  

 

MDS consists of a state equation to model the latent “neuronal–like” states of the dynamic network 

and an observation equation to model BOLD-fMRI signals as a linear convolution of latent neural 

dynamics and HRF responses. The state equation in MDS is a multivariate linear difference 

equation or a first order multivariate auto regressive (MVAR) model that represents the time 

evolution of latent signals in M brain regions. 

 

𝒔𝒔(𝑡𝑡) =   ∑ 𝑣𝑣𝑗𝑗(𝑡𝑡)𝐶𝐶𝑗𝑗
𝐽𝐽
𝑗𝑗=1 𝒔𝒔(𝑡𝑡 − 1) + 𝒘𝒘(𝑡𝑡)                                (1) 

 

The model for the observed BOLD responses is a linear convolution model  
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𝒙𝒙𝑚𝑚(𝑡𝑡) = [𝒔𝒔𝑚𝑚(𝑡𝑡) 𝒔𝒔𝑚𝑚(𝑡𝑡 − 1) … . 𝒔𝒔𝑚𝑚(𝑡𝑡 − 𝐿𝐿 + 1)]′       (2) 

𝑦𝑦𝑚𝑚(𝑡𝑡) = 𝑏𝑏𝑚𝑚𝛷𝛷𝒙𝒙𝑚𝑚(𝑡𝑡) + 𝒆𝒆𝑚𝑚(𝑡𝑡)          (3) 

 

In Equation (1), 𝒔𝒔(𝑡𝑡) is a 𝑀𝑀 × 1 vector of latent signals at time t of M regions, 𝐶𝐶𝑗𝑗 is an 𝑀𝑀 × 𝑀𝑀 

connection matrix ensued by modulatory input 𝑣𝑣𝑗𝑗(𝑡𝑡), and J is the number of modulatory inputs. 

The non-diagonal elements of 𝐶𝐶𝑗𝑗 represent the coupling of brain regions in the presence of 𝑣𝑣𝑗𝑗(𝑡𝑡). 

𝐶𝐶𝑗𝑗(𝑚𝑚,𝑛𝑛) denotes the strength of causal connection from n-th region to m-th region for j-th type 

stimulus. Therefore, latent signals s(t) in M regions at time t is a bilinear function of modulatory 

inputs 𝑣𝑣𝑗𝑗(𝑡𝑡) and its previous state s(t-1). 𝒘𝒘(𝑡𝑡) is an 𝑀𝑀 × 1 state noise vector whose distribution is 

assumed to be Gaussian distributed with covariance matrix Q( 𝒘𝒘(𝑡𝑡) ∼ 𝑁𝑁(0,𝑄𝑄)). Additionally, 

state noise vectors at time instances 1,2,….,T ( 𝒘𝒘(1),𝒘𝒘(2) …𝒘𝒘(𝑇𝑇) ) are assumed to be identical 

and independently distributed (iid). The latent dynamics modeled in equations (1) and (2) give rise 

to observed fMRI time series represented by Equation (3). 

 

The fMRI-BOLD time series in region m were modeled as a linear convolution of HRF and latent 

signal 𝒔𝒔𝑚𝑚(𝑡𝑡) in that region. To represent this linear convolution model as an inner product of two 

vectors, the past L values of  𝒔𝒔𝑚𝑚(𝑡𝑡)  are stored as a 𝐿𝐿 × 1 vector 𝒙𝒙𝑚𝑚(𝑡𝑡) in equation (2).  

 

Equation (3) represents the linear convolution between the embedded latent signal 𝒙𝒙𝑚𝑚(𝑡𝑡) and the 

basis vectors for HRF. Specifically, 𝑦𝑦𝑚𝑚(𝑡𝑡) is the observed BOLD signal at time t of m-th region. 

Φ is a 𝑝𝑝 × 𝐿𝐿  matrix whose rows contain bases for HRF. Here, we use the canonical HRF and its 

time derivative as bases, as is common in most fMRI studies. 𝑏𝑏𝑚𝑚 is a 1 × 𝑝𝑝 coefficient vector 

representing the weights for each basis function in explaining the observed BOLD signal 𝑦𝑦𝑚𝑚(𝑡𝑡). 

Therefore, the HRF in m-th region is represented by the product 𝑏𝑏𝑚𝑚Φ. The BOLD response in this 

region is obtained by convolving  HRF (𝑏𝑏𝑚𝑚Φ) with the L past values of the region’s latent signal 

(𝒙𝒙𝑚𝑚(𝑡𝑡)) and is represented mathematically by the vector inner product 𝑏𝑏𝑚𝑚Φ 𝒙𝒙𝑚𝑚(𝑡𝑡). Uncorrelated 

observation noise  𝒆𝒆𝑚𝑚(𝑡𝑡) with zero mean and variance 𝜎𝜎𝑚𝑚2  is then added to generate the observed 

signal 𝑦𝑦𝑚𝑚(𝑡𝑡). 𝒆𝒆𝑚𝑚(𝑡𝑡) is also assumed to be uncorrelated with 𝒘𝒘(𝜏𝜏), at all t and 𝜏𝜏.  
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Equations (1-3) together represent a state-space model for estimating the causal interactions in 

latent signals based on observed multivariate fMRI time series. Crucially, MDS also takes into 

account variations in HRF as well as the influences of modulatory stimuli in estimating causal 

interactions between the brain regions.  

 

Estimating causal interactions between M regions specified in the model is equivalent to estimating 

the parameters 𝐶𝐶𝑗𝑗 , 𝑗𝑗 = 1,2. . 𝐽𝐽. In order to estimate 𝐶𝐶𝑗𝑗’s, we need to first estimate the other unknown 

parameters  Q, {𝑏𝑏𝑚𝑚}𝑚𝑚=1
𝑀𝑀  and {𝜎𝜎𝑚𝑚2 }𝑚𝑚=1

𝑀𝑀  and the latent signal {𝒔𝒔𝑠𝑠(𝑡𝑡)}𝑡𝑡=1𝑇𝑇  based on the observations 

{𝑦𝑦𝑚𝑚𝑠𝑠 (𝑡𝑡)}𝑚𝑚=1,𝑠𝑠=1
𝑀𝑀,𝑆𝑆 , 𝑡𝑡 = 1,2. .𝑇𝑇, where T is the total number of time samples and S is the number of 

subjects. A variational Bayes approach (VB) was used for estimating the posterior probabilities of 

the unknown parameters of the MDS model given fMRI time series observations for S number of 

subjects (16). 

 

Prior to applying MDS, the fMRI time-series for each region m and subject s,  𝑦𝑦𝑚𝑚𝑠𝑠 (𝑡𝑡), was linearly 

de-trended, its temporal mean removed and normalized by its standard deviation. For all regions, 

time-series (1st eigenvector) were extracted from preprocessed fMRI data using MarsBar toolbox 

in SPM12. Spherical ROIs were defined as the sets of voxels contained in 6 mm spheres centered 

on the MNI coordinates of each ROI. MDS was applied to estimate causal interactions between 

the amygdala and DLPFC for neutral, aversive, and reappraisal conditions. Only two brain regions 

– amygdala and DLPFC within the same hemisphere – were entered into MDS each time to 

estimate their causal interactions. For each directed causal connection (e.g., right amygdala to right 

DLPFC), the difference in causal connection magnitude between reappraisal and aversive 

conditions were calculated for each subject, which were further fed into a one sample t-test to 

assess statistical significance. Moreover, we examined whether the difference in causal connection 

between the reappraisal and aversive condition was associated with anxiety and stress reactivity 

severity or behavioural reappraisal ability using Pearson correlations. False Discovery Rate (FDR) 

correction was employed to correct for multiple comparisons. Results with FDR corrected p < 0.05 

were considered significant.  
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Supplementary Results and Discussion  
 

Latent behavioral dynamics are associated with self-reports of ability to reappraise emotion  

 

Hierarchical linear regressions with reappraisal success as the dependent variable and changes in 

initial bias, drift rate, and decision threshold under Reappraisal vs. Aversive conditions as the 

independent variables revealed an excellent model fit (adjusted R2 = 0.78, F(3, 41) = 53.64, p < 

0.001). The R2 increased by 0.639 (F(1, 41) = 129.05, p < 0.001) when adding drift rate to the 

model containing initial bias and decision threshold. In contrast, R2 increased by only 0.005 (F(1, 

41) = 1.07, p = 0.31) when adding initial bias to the model containing drift rate and decision 

threshold, and by 0.018 (F(1, 41) = 3.69, p = 0.06) when adding decision threshold to the model 

containing drift rate and initial bias. Change in drift rate from the Aversive to Reappraisal 

conditions was the only independent variable that contributed unique variance and thus emerged 

as the dominant predictor (t(41) = 11.36, β = 0.99, p < 0.001).  

 

DDM revealed that emotion regulation in children is characterized by an increase in initial bias 

and higher drift rate. However, hierarchical linear regression revealed that children’s reappraisal 

behavioral ratings were primarily driven by higher drift rates associated with their ability to 

regulate evaluation of their emotional reactivity to negative stimuli rather than initial bias (Figure 

S1). This result suggests that success in emotion regulation is primarily related to an evaluative 

decision-making process, rather than reaction suppression during initial viewing. In other words, 

the regulation of immediate emotional reactions captured by the bias parameter, which 

characterizes the positive or negative bias induced during the initial viewing of the aversive 

images, is not described by the overt reappraisal score, which measures mainly the ability to 

regulate an evaluation during the post-viewing response period.  

 

Correlation between anxiety and stress  

 

In the current sample (n = 45), anxiety and stress measures were correlated, with t(43) = 5.93, r = 

0.67, and p < 0.001. We performed additional analyses to differentiate the roles of anxiety and 

stress in their relation to amygdala → DLPFC causal interaction during emotion regulation 
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(Reappraisal vs Aversive condition). Specifically, (i) residualized anxiety was derived by 

regressing stress out from anxiety and (ii) residualized stress was derived by regressing anxiety 

out from stress. The strength of causal influence from the right amygdala to right DLPFC was not 

correlated with residualized anxiety (t(42) = 1.54, r = 0.23, p = 0.13) or residualized stress (t(42) 

= 1.06, r = 0.16, p = 0.30). Formal structural equation modelling revealed a significant relationship 

between the strength of right amygdala → DLPFC causal interactions and a latent factor 

underlying anxiety and stress (Figure 6D; CFI = 1, TLI = 1, RMSEA = 0.00). These results suggest 

that shared variance between anxiety and stress reactivity drives bottom-up amygdala → DLPFC 

signaling during emotion regulation. 

 

Brain activity during emotion regulation 

 

Compared with neutral stimuli, aversive stimuli during passive viewing elicited greater activations 

in bilateral amygdala, right DLPFC, as well as bilateral anterior insula, bilateral DMPFC, right 

VLPFC, right caudate, and bilateral occipital cortices (Figure S2A and Table S1). Compared with 

neutral stimuli, aversive stimuli during Reappraisal elicited greater activations in bilateral 

amygdala, bilateral DLPFC, bilateral DMPFC, bilateral VLPFC, right SPL, and bilateral occipital 

cortices (Figure S2B and Table S2). Compared with aversive stimuli during passive viewing, 

aversive stimuli during Reappraisal elicited greater activations in left DLPFC, bilateral DMPFC, 

bilateral VLPFC, left angular gyrus, right supramarginal gyrus, left precuneus, bilateral posterior 

cingulate cortex, bilateral middle temporal gyrus, and bilateral occipital cortices (Figure S2C and 

Table S3). These findings were consistent with the notion that reappraisal modulates affective 

responding via recruitment of a frontoparietal network (5-8, 22). Moreover, we did not identify 

decreases in amygdala activation under the Reappraisal vs Aversive contrast. While decreases in 

amygdala activation (a proxy of successful down-regulation of negative affect) are often identified 

in adult studies using reappraisal to down regulate negative affect, developmental studies find that 

the ability to regulate emotion improves with age (22). Our failure to identify decreases in 

amygdala activation in children (10-11 years-old) during emotion regulation is consistent with 

findings in previous developmental studies which included children of similar age (13, 14, 23). 

Additionally, participants were asked to reappraise aversive images by telling themselves a story 
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to make the pictures seem less negative, or more positive, which may have confounded down- and 

up-regulation strategies affecting amygdala activity.   

 

Amygdala and PFC responses during emotion regulation are not correlated with anxiety and 

stress 

 

Anxiety and stress were not correlated with activation levels in amygdala or any of the PFC ROIs, 

including anterior insula (MNI: 34, 24, 0; -36, 20, -6), DMPFC (MNI: 8, 28, 46; -6, 24, 42), VLPFC 

(MNI: 52, 24, 4; -50, 22, 12), and DLPFC (MNI: 40, 8, 38; -42, 12, 44), during emotion regulation 

(Reappraisal vs Aversive).  

 

Strong causal effects from amygdala to DLPFC and the reverse 

 

We found strong causal effects from amygdala to DLPFC and the reverse in both hemispheres 

under Neutral, Aversive, and Reappraisal conditions (Figure S6). However, the strength of 

DLPFC → amygdala signalling was not correlated with anxiety or stress. It is possible that the 

DLPFC action on the amygdala to moderate the effects of anxiety and stress may require multiple 

brain regions.  

 

Right lateralization of causal amygdala→DLPFC circuits associated with anxiety and stress 

provides an actionable target 

 

Stress and anxiety measures were associated with right hemisphere connectivity, consistent with 

neuroimaging findings of right lateralized anxiety related signals (25-27). Control analyses 

revealed that the effects were specific to right hemisphere amygdala-DLPFC as the left hemisphere 

did not show the same effects. Present results are consistent with neuropsychological and frontal-

cortical models of emotion which suggest that unpleasant, withdrawal-related emotions depend on 

the right hemisphere and pleasant, approach-related emotions are dependent on the left hemisphere 

(28-30). As anxiety is characterized by unpleasant valence and high arousal, greater right 

hemisphere engagement is predicted but a novel aspect of our findings is the right lateralization of 

causal amygdala→DLPFC circuits associated with anxiety and stress. These models and 
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neuroimaging evidence are relevant to advancing our understanding of the neurobiological 

mechanisms by which both anxiety and stress impact cortical function.  

 

Our identification of a specific right lateralized amygdala-PFC circuit associated with children’s 

emotion regulation provides a novel target for probing early stress etiology and for facilitating 

early interventions to prevent the development of long-term psychopathology. Indeed, rTMS is 

now being widely harnessed for the treatment of anxiety in adults by targeting the right DLPFC as 

one key mechanism of intervention (31). Convergent on this approach, our findings suggest that 

amygdala-DLPFC interactions may represent a vulnerable functional circuit for early interventions 

of treating children at risk for psychopathology. Furthermore, our results demonstrated right 

hemisphere amygdala-DLPFC causal dysfunction across multiple sources of stress and anxiety 

which may have transdiagnostic implications. Taken together with the wealth of literature on 

TMS/tDCS effects on affective circuits via the DLPFC, these findings suggest an actionable circuit 

for transdiagnostic targeting of developmental psychopathology.  
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Supplementary Figures  
 
 
Figure S1. Relationship between drift rate and reappraisal ability. Individual reappraisal 
scores were significantly correlated with changes in drift rate between the Reappraisal and 
Aversive conditions. 
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Figure S2. The effects of Reappraisal and Aversive emotion processing on brain activity. (A) 
Compared with neutral stimuli, aversive stimuli during passive viewing elicited greater activations 
in bilateral amygdala, right DLPFC, as well as bilateral anterior insula, bilateral DMPFC, right 
VLPFC, right caudate, and bilateral occipital cortices. (B) Compared with neutral stimuli, aversive 
stimuli during Reappraisal elicited greater activations in bilateral amygdala, bilateral DLPFC, 
bilateral DMPFC, bilateral VLPFC, right SPL, and bilateral occipital cortices. (C) Compared with 
aversive stimuli during passive viewing, aversive stimuli during Reappraisal elicited greater 
activations in left DLPFC, bilateral DMPFC, bilateral VLPFC, left angular gyrus, right 
supramarginal gyrus, left precuneus, bilateral posterior cingulate cortex, bilateral middle temporal 
gyrus, and bilateral occipital cortices. 
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Figure S3. Graphical representation of the drift diffusion model (DDM). Graphical 
representation of the DDM with nodes capturing the relationship between model parameters 
(unshaded) and observed data (shaded). The model for emotion evaluation was implemented 
within a Bayesian inference framework using JAGS  (32) to implement Markov chain Monte Carlo 
sampling. This allowed us to obtain the full posterior distribution for all parameters of the model, 
conditional on the observed data. The mean values of these posterior distributions were used in 
further analysis. The absolute model fit was validated by comparing the posterior predictive values 
generated by the model, given the inferred posterior parameter values, for both the emotion 
evaluations and response times under the three different conditions to the observed data. The 
posterior samples were checked for convergence using a convergence statistic (33). Inference 
about the posterior distribution of parameters requires specification of prior distributions. 
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Figure S4. MCMC sampling showing convergence of chains. An example of the MCMC 
sampling for 1000 retained samples for one parameter, obtained after discarding 1000 burn-in 
samples. This shows the convergence of the chains, showing that the parameter is being samples 
from stationary distributions. 
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Figure S5. DDM fits to choice coded reaction time. An example of the posterior predictive 
distribution of choice coded reaction times produced by the generative model for a single 
participant. The black line shows the model generated posterior predictive samples that 
approximate the observed behavior for this participant as shown by the gray bars. 
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Figure S6. Causal signaling from amygdala to DLPFC and reverse. Causal signaling from 
amygdala to DLPFC/IFJ and the reverse within in each hemisphere under Neutral, Aversive, and 
Reappraisal conditions. DLPFC: dorsolateral prefrontal cortex; IFJ: inferior frontal junction.             
*: p < 0.05; **: p < 0.01; ***: p < 0.001. 
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Supplementary Tables  
 
 
Table S1. Participant characteristics 
 
Characteristic Mean ± SD 
Gender (male/female) 56% / 44%  
Hispanic/Latinx 80% 
Non-Hispanic/Latinx 4% 
Ethnicity not reported 16% 
Age 10.76 ± 0.52 
RSQ Involuntary Stress Response 0.55 ± 0.37 
BASC-SR Anxiety (T Score) 52.2 ± 8.95 
MPI Global IQ Score 99.63 ± 11.56 

RSQ: Response to Stress Questionnaire; BASC-SR: Behavioral Assessment System for Children, 
Self-Report; MPI: Mental Processing Index from the Kaufman Assessment Battery for Children, 
Second Edition.  
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Table S2. Brain activations of Aversive vs. Neutral contrast (height threshold p < 0.005, 
extent threshold k = 87 voxels). 
 

Region Hemisphere Cluster size 
(#Voxels) Peak T-value 

MNI coordinates 
x y z 

Occipital pole/LOC R  2,985 6.81 28 -94 6 
 L 2,913 6.57 -26 -90 4 
Temporal pole L  199 5.17 -32 10 -22 
Amygdala L   3.59 -22 -6 -14 
 R 161 4.87 26 -6 -14 
DLPFC (MFG) R  544 4.57 52 18 32 
Insula  R 343 4.45 34 24 -2 
VLPFC (IFG) R  3.96 46 28 10 
DMPFC R 167 4.00 6 56 42 
 R 175 3.97 6 26 48 
 L  3.42 -6 24 44 
Caudate R 131 3.87 16 6 18 
OFC/Insula L 178 3.86 -36 24 -8 

DLPFC: dorsolateral prefrontal cortex; DMPFC: dorsomedial prefrontal cortex; IFG: inferior 
frontal gyrus; LOC: Lateral occipital cortex; MFG: middle frontal gyrus; OFC: orbitofrontal 
cortex; VLPFC: ventrolateral prefrontal cortex. 
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Table S3. Brain activations of Reappraisal vs. Neutral contrast (height threshold p < 0.005, 
extent threshold k = 87 voxels). 
 

Region Hemisphere Cluster size 
(#Voxels) Peak T-value 

MNI coordinates 
x y z 

LOC/Occipital pole L 5,404 9.31 -44 -80 4 
 R 5,735 8.78 50 -70 0 

DLPFC (MFG) R 2,386 6.75 40 8 38 
OFC/Insula R  6.00 42 28 -12 
VLPFC (IFG)  R  5.59 58 26 18 
Amygdala R  4.69 22 -6 -14 
DMPFC L 3,314 6.59 -4 52 38 
 R  6.26 6 50 40 
VLPFC (IFG)/ 
DLPFC (MFG) L 5,923 5.80 -48 26 20 

Amygdala L  5.44 -24 -6 -16 
SPL R 103 4.57 32 -54 54 

DLPFC: dorsolateral prefrontal cortex; DMPFC: dorsomedial prefrontal cortex; IFG: inferior 
frontal gyrus; LOC: lateral occipital cortex; MFG: middle frontal gyrus; OFC: orbitofrontal cortex; 
SPL: superior parietal lobule; VLPFC: ventrolateral prefrontal cortex. 
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Table S4. Brain activations of Reappraisal vs. Aversive contrast (height threshold p < 0.005, 
extent threshold k = 87 voxels). 
 

Region Hemisphere Cluster size 
(#Voxels) Peak T-value 

MNI coordinates 
x y z 

Angular gyrus L 1,970 5.02 -58 -56 26 
MTG L  4.67 -64 -44 6 
VLPFC (IFG) L 378 4.34 -48 22 22 
MTG/STG R 403 4.31 68 -32 0 
LOC L 133 4.30 56 -62 36 
DLPFC (MFG) L 395 4.13 -42 12 46 
OFG L 169 4.08 -22 -82 -10 
Precuneus  L 332 3.93 -4 -40 46 
PCC L  3.90 -6 -44 28 
 R  3.29 8 -44 32 
VLPFC (IFG) R 103 3.92 58 22 2 
 R  3.43 58 26 14 
LOC R 123 3.83 36 -86 2 
DMPFC L 193 3.82 -6 66 22 
 L  3.52 -16 64 24 
 R  3.01 2 60 8 
postCG/SMG R 136 3.63 50 -28 50 
DMPFC L 130 3.60 -6 54 44 
 R  3.34 6 48 44 
 R  3.04 4 40 50 

DLPFC: dorsolateral prefrontal cortex; DMPFC: dorsomedial prefrontal cortex; IFG: inferior 
frontal gyrus; LOC: Lateral occipital cortex; MFG: middle frontal gyrus; MTG: middle temporal 
gyrus; OFC: orbitofrontal cortex; PCC: posterior cingulate cortex; postCG: postcentral gyrus; 
SMG: supramarginal gyrus; STG: superior temporal gyrus; VLPFC: ventrolateral prefrontal 
cortex. 
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Table S5. Brain activations of Reappraisal vs Neutral or Aversive vs Neutral contrast (height 
threshold p < 0.005, extent threshold k = 87 voxels). 
 

DLPFC: dorsolateral prefrontal cortex; DMPFC: dorsomedial prefrontal cortex; IFG: inferior 
frontal gyrus; LOC: lateral occipital cortex; MFG: middle frontal gyrus; preCG: precentral gyrus; 
SMG: supramarginal gyrus; VLPFC: ventrolateral prefrontal cortex. 
  

Region Hemisphere Cluster size 
(#Voxels) Peak F-value 

MNI coordinates 
x y z 

LOC L 5922 40.11 -44 -80 4 
 R 4552 38.87 50 -70 2 
Precuneus L 2435 15.45 -6 -66 24 
 R  12.96 12 -68 24 
DMPFC L 1863 19.12 -4 50 40 
 R  13.96 6 50 42 
 L  12.23 -6 24 42 
 R  11.13 8 28 46 
VLPFC (IFG) L 1785 14.73 -50 22 12 
 L  14.44 -48 24 20 
DLPFC (MFG) L  11.58 -42 12 44 
Insula L  10.12 -36 20 -6 
Amygdala L  9.84 -24 -6 -14 
DLPFC (MFG) R 1112 17.94 40 8 38 
 R  14.11 48 14 34 
DLPFC (MFG) R  10.30 46 20 24 
preCG L 792 15.82 -2 -36 50 
Lingual gyrus L 336 14.73 -12 -70 -8 
Caudate L 351 12.66 -14 8 20 
 R 123 11.00 14 6 18 
Insula R 280 9.52 34 24 0 
SMG R 181 12.09 56 -42 24 
Amygdala R 106 11.18 22 -6 -14 
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Table S6. MNI coordinates of amygdala and prefrontal ROIs identified using the omnibus 
F-test (height threshold p < 0.005, extent threshold k = 87 voxels). 
 

Region Hemisphere MNI coordinates 
x y z 

Amygdala R 22 -6 -14 
 L -24 -6 -14 
DLPFC/IFJ R 40 8 38 
 L -42 12 44 
DMPFC R 8 28 46 
 L -6 24 42 
VLPFC R 52 24 4 
 L -50 22 12 
Insula R 34 24 0 
 L -36 20 -6 

DLPFC: dorsolateral prefrontal cortex; DMPFC: dorsomedial prefrontal cortex; IFJ: inferior 
frontal junction; VLPFC: ventrolateral prefrontal cortex; L: left; R: right. 
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