
Supplementary Information 

Supplementary Note 

The magnitude of R1 PRE is determined by the dipole-dipole interaction between the 

spins of the unpaired electrons and of a nucleus as described by the 

Solomon−Bloembergen (SB) equations 1,2: 
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where µ0 is the permeability of vacuum (4π × 10-7 m kg s-2 A-2), γ is the nuclear 

gyromagnetic ratio (γF =25.166 × 10-7, γH =26.752 × 10-7), g is the electron Landé g-factor 

(-2.0023193), µB is the magnetic moment of the free electron (−9.284764 × 10−24 J/T), s 

is the electron spin quantum number (s = 3/2, 1, 1/2, 1/2 for Co2+, Ni2+,  Cu2+, and MTSL, 

respectively), r is the distance between the electron and the nucleus, and ω is the 

nuclear Larmor frequency (4π × 470 × 106 rad/s for 19F and 4π × 500 × 106 rad/s for 1H in 

the instrument we use). 

𝜏𝑐 = (𝜏𝑟−1 + 𝜏𝑠−1)−1                 3 

where τr is the isotropic protein rotation correlation time and τs is electron relaxation 

time. The τs value used for PRE calculation is 3 ps, 132 ps, 4 ns, 100 ns for Co2+, Ni2+,  

Cu2+, and MTSL, respectively 3-6. For a protein with hydrodynamic radius R, τr can be 

estimated using Stoke’s law: 
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where k is the Boltzmann constant (1.3806 × 10-23 m2 kg s-2 K-1) and T is the absolute 

temperature. For a ∼300 kDa protein/detergent particle with hydrodynamic radius of 59 

Å, as the case for GltPh, we estimate τr to be 213 ns.  

 

To take into an account the local motion, we expand the SB equation using the model-

free approach as previously described 7-9: 
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τt = (τr−1 + τs−1 + τi−1)−1                  7 

τi is the internal correlation time of the 19F label and S2 is the order parameter. For TET 

label, we use τi of 20 ps and S2 of 0.1 measured previously for the methionine side chain 

10,11 as an approximation.   

 

To estimate the effect of the chemical exchange on the paramagnetic R1 relaxation, we 

consider a spin in chemical exchange between a state A with strong PRE and a state B 

with weak PRE: 
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The time evolution of the longitudinal magnetizations for the two states, 𝑀𝑍,𝐴and 𝑀𝑍,𝐵 

is described by the modified McConnell equations  12, which are provided below for 

clarity: 
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where M0
Z,A and M0

Z,B are the magnetizations at time 0 for states A and B, respectively, 

and R*1,A and R*1,B are the intrinsic relaxation rates of the spins in these states. For an 

inversion recovery experiment, under the initial condition 𝑀𝑍,𝐴(𝑡 = 0) = −𝑀𝑍,𝐴
0  and 

𝑀𝑍,𝐵(𝑡 = 0) = −𝑀𝑍,𝐵
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where 
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,fA and fB are equilibrium fractions of states A and B. R1,A and R1,B are relaxation rates of 

the fast and slow phase of the longitudinal relaxation curve in the presence of the 

chemical exchange, respectively, 12,13. They depend on the equilibrium fractions of states 

A and B, on the transition rate kBA, and on the intrinsic relaxation rates of the spin, R*1,A 

and R*1,B: 
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The intrinsic relaxation rates R*
1,A and R*

1,B, are measured separately in the presence of 

the blocker, and the values of  fA and fB are obtained by integrating deconvoluted peaks 

in 1D 19F-NMR spectra. Therefore, fitting R1,B relaxation curves for spin B to equation 12 

requires optimization of only two parameters: kBA and 𝑀𝑍
0.   

 

Notably, if exchange is very slow, (i.e., 𝑘𝑒𝑥 ≪ 𝑅1,𝐴
∗ ), 𝑀𝑍,𝐴𝐵

0 ≈ 0 and 𝑀𝑍,𝐵𝐴
0 ≈ 0 the R1 

relaxation becomes mono-exponential: 
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i.e. spins in states A and B relax with rate 𝑅1,𝐴 and 𝑅1,𝐵, respectively.  

In the case of the fast exchange, (i.e., 𝑘𝑒𝑥 ≫ 𝑅1,𝐴
∗ − 𝑅1,𝐵

∗ ) 14, 𝑀𝑍,𝐴𝐴
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states A and B relax with the same rate 𝑅1,𝐵, and  
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Supplementary Fig. 1. 19F-NMR spectra of TET-labeled GltPh variants bound to 

different ligand. (a), dHis/M385C-TET, (b), K290A/dHis/M385C-TET, (c), 

RSMR/dHis/M385C-TET.   Experimental conditions from top to bottom are: 200 mM Na+ 

and 10 µM L-asp, 0.6 M Na+ only, 200 mM Na+ and 1 mM TBOA and 200 mM Na+ and 1.2 

eq. TMA, respectively. All spectra were recorded at 293K. The spectra were 

deconvoluted into Lorentzian peaks S1, S2 and S3. Raw data are black, fits are magenta 

and deconvoluted peaks are blue.   



 7 

Supplementary Table 1. R1 relaxation rates and conformational exchange rates for 
GltPh variants. 
 S1 S2 S3 S2/S3 
dHis/M385C-TET a 

R1,ref, Asp (s-1) 2.9 ± 0.09 3.0 ± 0.08 2.9 ± 0.14  

R1,Ni, Asp (s-1)  8.3 ± 0.4 3.8 ± 0.27 3.9 ± 0.3  

PREAsp (s-1) 5.4 ± 0.4 0.7 ± 0.3 1.0 ± 0.3  

fref,Asp (%) 29.8 ± 1.4 44 ± 3.5 26.2 ± 5.0  
fNi,Asp (%) 59.9 ± 4.5 22.1 ± 3 17.9 ± 1.8  
R1,ref, TMA (s-1) 3.0 ± 0.19 3.0 ± 0.14 3.0 ± 0.16  
R1,Ni, TMA (s-1)  9.0 ± 0.4 3.6 ± 0.4 3.5 ± 0.3  
PRETMA (s-1) 6.0 ± 0.4 0.6 ± 0.4 0.5 ± 0.4  
fref,TMA (%) 27.9 ± 1.5 49.6 ± 2.8 22.5 ± 2.1  
fNi,TMA (%) 54.4 ± 1.0 32.5 ± 1.0 13.0 ± 1.1  
K290A/dHis/M385C-TET a 

R1,ref, Asp (s-1) 3.0 ± 0.11 2.9 ± 0.14 2.8 ± 0.11  

R1,Ni, Asp (s-1)  7.3 ± 0.49 5.2 ± 0.45 4.9 ± 0.30  

PREAsp (s-1) 4.3 ± 0.51 2.3 ± 0.47 2.1 ± 0.32  

fref,Asp (%) 63.3 ± 3.8 12.2 ± 0.8 24.6 ± 2.9  
fNi, Asp (%) 76.2 ± 2.7 13.4 ± 2.6 10.5 ± 2.1  
R1,ref, TMA (s-1) 3.0 ± 0.13 3.0 ± 0.21 2.9 ± 0.19  
R1,Ni, TMA (s-1)  8.9 ± 0.2 3.6 ± 0.2 3.5 ± 0.3  
PRETMA (s-1) 5.9 ± 0.3 0.6 ± 0.3 0.6 ± 0.4  
fref,TMA (%) 56.4 ± 0.4 16.2 ± 1.8 27.5 ± 1.4  
fNi, TMA (%) 77.0 ± 1.9 13.2 ± 2.3 9.8 ± 0.4  
kex, R1,Ni, Asp (s-1) #  5.4 ± 2.1$ 3.0 ± 1.2$  

kforward, R1,Ni (s-1) #  4.6 ± 0.5 2.7 ± 0.3  

kreverse, R1,Ni (s-1) #  0.75 ± 0.35 0.34 ± 0.04  

kex, EXSY, Asp (s-1)  1.74 (1.73) 0.79 (1.74) 0.93 (1.13)† 
kforward, EXSY (s-1)  1.35 (1.37) 0.67 (1.49) 0.53 (0.69)† 
kreverse, EXSY (s-1)  0.36 (0.36) 0.55 (0.14) 0.41 (0.44)† 
kex, EXSY, TMA (s-1)    1.23 (1.63)‡ 
kCB, EXSY (s-1)    0.41(0.60)‡ 
kBC, EXSY (s-1)    0.82 (1.03)‡ 
RSMR/dHis/M385C-TET a 
R1,ref, Asp (s-1) 3.0 ± 0.07 3.0 ± 0.17 2.9 ± 0.08  
R1,Ni, Asp (s-1)  8.1 ± 0.4 5.4 ± 0.4 4.5 ± 0.6  
PREAsp (s-1) 5.1 ± 0.4 2.4 ± 0.4 1.5 ± 0.7  
fref,Asp (%) 67.3 ± 2.6 22.7 ± 2.2 10.0 ± 0.7  
fNi, Asp (%) 83.7 ± 0.9 11.5 ± 0.8 4.9 ± 0.1  
kex, R1,Ni Asp (s-1) #  7.1 ± 2.6$ 1.9 ± 1.6$  
kforward, R1,Ni (s-1) #  6.2 ± 2.6 1.8 ± 1.6  
kreverse, R1,Ni (s-1) #  0.9 ± 0.4 0.1 ± 0.1  
kex, EXSY, Asp (s-1)  5.5 (4.58)   
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kforward, EXSY (s-1)  1.7 (1.62)   
kreverse, EXSY (s-1)  3.8 (2.96)   
kex, STD, Asp (s-1)   0.77 (0.44)  
Kforward, STD (s-1)   0.67 (0.38)  
kreverse, STD (s-1)   0.10 (0.05)  
dHis/A381C-TET b 

 S1 S2 S3 S0 
R1,ref, TMA (s-1) 2.3 ± 0.08 

(2.5 ± 0.1) 
2.6 ± 0.03 
(2.5 ± 0.1) 

2.9 ± 0.1 
(2.7 ± 0.1) 

2.5 ± 0.3 
(3.3 ± 0.4) 

R1,Ni, TMA,fast (s-1)  97.5 ± 5.4 
(123.1 ± 14) 

  124.7 ± 32.0 
(133.3 ± 
28.5) 

R1,Ni, TMA,slow (s-1)  2.8 ± 0.5  
(3.3 ± 0.2) 

3.3 + 0.23 
(5.4 ± 0.8) 

4.5 + 0.5 
(4.7 + 0.2) 

2.2 ± 1.7 
(5.0 ± 1.4) 

PRETMA (s-1) 95.2 (120.6) 0.7 (2.8) 1.6 (2.0) 122.2 (130) 
fref,TMA (%) 19.9 (17.6) 59.4 (64.4) 16.0 (14.3) 4.9 (4.1) 
fNi, TMA (%) 56.8 (53.6) 24.4 (25.2) 12.0 (15.2) 6.8 (6.0) 
 

# Rates estimated by fitting the T1 relaxation curve in the presence of Ni2+ ion using equation 12; 
$ Exchange rates between S1 peak and S2 peak and between S1 peak and S3 peak; 
† Rates kex, kCB and kBC of K290A/dHis/M385C-TET between S2 and S3 peaks in the presence of 
Na+ and Asp; 
‡ Rates kex, kCB and kBC of K290A/dHis/M385C-TET between S2 and S3 peaks in the presence of 
Na+ and TMA; 
a Data shown are means ± s.d. from 3 independent samples; if the fitting error is larger than s.d. 
then we report the fitting error; EXSY data in the parentheses are values from a repeat 
experiment with a independent sample; STD data in the parentheses are values from a repeat 
experiment with an independent sample; 
b Errors are the fitting errors. Data in the parentheses are values from a repeat experiment with 
an independent sample.     
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Supplementary Table 2. Cryo-EM data collection, refinement and validation 
statistics 
 
 GltPh OFS 

(EMD-20922) 
(PDB 6UWF) 

GltPh iOFS 
(EMD-20923) 
(PDB 6UWL) 

Data collection and processing   
Magnification    81,000                                    81,000 
Voltage (kV) 300 300 
Electron exposure (e–/Å2) 50.1615 50.1615 
Defocus range (μm) -1.5 to -2.5 -1.5 to -2.5 
Pixel size (Å) 0.53 0.53 
Symmetry imposed C1 C1 
Initial particle images (no.) 2,694,050 2,694,050 
Final  particle images (no.) 94,731 120,282 
Map resolution (Å) 
    FSC threshold                   

3.08 
0.143 

3.62 
0.143 

Map resolution range (Å) 2.4-3.2 3.0-4.0 
   
Refinement   
Initial model used (PDB code) 2NWX 3V8G 
Model resolution (Å) 
    FSC threshold 

3.2 
0.5 

3.9 
0.5 

Model resolution range (Å) 3.1-20 3.6-20 
Map sharpening B factor (Å2) -104.1 -146.6 
Model composition 
    Non-hydrogen atoms 
    Protein residues 
    Ligands 

 
3178 
417 
3 

 
3029 
402 
2 

B factors (Å2) 
    Protein 
    Ligand 

 
58.75 
67.27 

 
30.17 
63.10 

R.m.s. deviations 
    Bond lengths (Å) 
    Bond angles (°) 

 
0.005 
0.842 

 
0.007 
1.044 
 

 Validation 
    MolProbity score 
    Clashscore 
    Poor rotamers (%)    

 
1.22 
2.44 
0 

 
1.77 
5.44 
0 

 Ramachandran plot 
    Favored (%)                                     
    Allowed (%) 
    Disallowed (%) 

 
96.6 
3.2 
0 

 
92.2 
7.6 
0.25 
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