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Abstract: 

 

Background - DNA methylation patterns associated with habitual diet have not been well 

studied. 

Methods - Diet quality was characterized using a Mediterranean-style diet score (MDS) and the 

Alternative Healthy Eating Index score (AHEI). We conducted ethnicity-specific and trans-

ethnic epigenome-wide association analyses for diet quality and leukocyte-derived DNA 

methylation at over 400,000 cytosine-guanine dinucleotides (CpGs) in five population-based 

cohorts including 6,662 European ancestry (EA), 2,702 African ancestry (AA), and 360 Hispanic 

ancestry (HA) participants. For diet-associated CpGs identified in epigenome-wide analyses, we 

conducted Mendelian randomization (MR) analysis to examine their relations to cardiovascular 

disease (CVD) risk factors and examined their longitudinal associations with all-cause mortality.  

Results - We identified 30 CpGs associated with either MDS or AHEI, or both, in EA 

participants. Among these CpGs, 12 CpGs were significantly associated with all-cause mortality 

(Bonferroni corrected p-value < 1.6×10-3). Hypermethylation of cg18181703 (SOCS3) was 

associated with higher scores of both MDS and AHEI and lower risk for all-cause mortality (p-

value = 5.7×10-15). Ten additional diet-associated CpGs were nominally associated with all-cause 

mortality (p-value < 0.05). MR analysis revealed eight putatively causal associations for six 

CpGs with four CVD risk factors (BMI, triglycerides, high-density lipoprotein cholesterol 

concentrations, and type 2 diabetes; Bonferroni corrected MR p-value < 4.5×10-4). For example, 

hypermethylation of cg11250194 (FADS2) was associated with lower triglyceride concentrations 

(MR p-value = 1.5×10-14).and hypermethylation of cg02079413 (SNORA54; NAP1L4) was 

associated with BMI (corrected MR p-value = 1×10-6).  

Conclusions - Habitual diet quality was associated with differential peripheral leukocyte DNA 

methylation levels of 30 CpGs, most of which were also associated with multiple health 

outcomes, in EA individuals. These findings demonstrate that integrative genomic analysis of 

dietary information may reveal molecular targets for disease prevention and treatment.   

 
 
 
Key words: cardiovascular disease risk factors; all-cause death; Mendelian randomization; diet; 
DNA methylation; diet quality score; alternative healthy eating index 
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Nonstandard Abbreviations and Acronyms 

CpG: cytosine–guanine dinucleotide 

CVD: cardiovascular disease 

n-3 FAs: omega-3 polyunsaturated fatty acids 

MDS: Mediterranean-style diet score 

AHEI: Alternative Healthy Eating Index 

EA: European Ancestry 

AA: African ancestry 

HA: Hispanic ancestry 

FDR: false discovery rate 

MR: Mendelian Randomization 

 

 

 

Introduction 

Epigenetic alterations are involved in the pathogenesis of many human diseases.1 DNA 

methylation, which commonly occurs at cytosine–guanine dinucleotide (CpG) sites, is a well-

studied epigenetic modification that may affect gene expression and contribute to the 

development of chronic diseases, including cardiovascular disease.2-4  

Several lines of evidence suggest that diet may be actively involved in epigenetic 

regulation, which impacts diet-related disease risk.5-8 Tremblay et al. measured genome-wide 

DNA methylation profiles before and after a six-week supplementation of daily dose of 3 grams 

of omega-3 polyunsaturated fatty acids (n-3 FAs) in 36 participants with BMI between 25 to 40 
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kg/m2.9 They found that n-3 FAs supplementation caused differential DNA methylation of 308 

CpGs, which could be linked to 16 pathways related to cardiovascular disease (CVD) including 

inflammatory response and lipid metabolism.  

While previous studies provide useful evidence that diet plays an important role in 

regulating the human epigenome, studies of DNA methylation signatures for overall diet quality, 

however, are few in number and limited by small sample sizes. Diet quality is crucial for chronic 

diseases prevention.10-12 In cohort studies, diet quality is often assessed using a variety of diet 

scores, including the Mediterranean-style diet score (MDS) and the Alternative Healthy Eating 

Index (AHEI) score.13-18 These studies showed that a higher diet score was associated with lower 

disease burden. A thorough insight into the biological mechanisms underlying diet-disease 

associations is important for disease prevention and treatment. To fill this knowledge gap, we 

conducted an epigenome-wide association study of diet quality, assessed by MDS and AHEI, 

with peripheral blood-derived DNA methylation in cohorts with representation of individuals of 

European as well as non-European ancestries.  

 

Methods 

The study design is presented in Figure 1. The datasets analyzed in the present study are 

available at the dbGAP repository phs000280.v5.p1 (ARIC), phs000007.v29.p10 (FHS), 

phs000741.v2.p1 (GOLDN), phs000209.v13.p3 (MESA), phs000853.v1.p1 (NAS), and 

phs000821.v1.p1 (LBC; phenotypic data). RS has a protocol for approving data requests 

(secretariat.epi@erasmusmc.nl). The informed consents given by KORA study participants do 

not cover data posting in public databases. However, data are available upon request from 

KORA Project Application Self-Service Tool (https://epi.helmholtz-muenchen.de/) Data requests 
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can be submitted online and are subject to approval by the KORA Board. Methylation data of 

LBC have been submitted to the European Genome-phenome Archive under accession number 

EGAS00001000910. For ESTHER and InCHIANTI, the datasets used and/or analyzed during 

the current study are available from the corresponding author upon request. Data for WHI and 

CHS can be requested at https://www.whi.org/researchers/SitePages/Write%20a%20Paper.aspx 

and https://chs-nhlbi.org/node/6222, respectively. The study protocol was approved by each 

participating institutions’ Institutional Review Board. All participants provided written informed 

consent. Full descriptions of study populations, phenotypic definitions, DNA methylation 

profiling, and statistical analyses are available in the Supplemental Material.  

 

Results 

Epigenome-wide association analysis in European Ancestry (EA) participants. We analyzed 

403,087 autosomal CpGs. For each diet quality score, either MDS or AHEI, we conduct two 

analyses, a two-step analysis (i.e., discovery and replication) and an one-step analysis (i.e., meta-

analysis of all cohorts with internal validation). For MDS, the discovery analysis identified 13 

CpGs at false discovery rate (FDR) < 0.05 (corresponding p-value = 1.5×10-6; Supplemental 

Table 1; Supplemental Figure 1 [Manhattan plot] and Supplemental Figure 2 [Quantile-Quantile 

plot]). Of these CpGs, three replicated in the replication samples after Bonferroni correction 

(corresponding p-value < 0.004; Supplemental Table 1). The one-step analysis identified 12 

CpGs associated with MDS at FDR < 0.05 (corresponding p-value = 1.2×10-6; Supplemental 

Table 2; Supplemental Figure 3 [Manhattan plot] and Supplemental Figure 2 [Quantile-Quantile 

plot]). Using models with adjustment for sex, age, and energy intake, the two analyses (two-step 

analysis and one-step analysis) identified 14 CpGs associated with MDS.  
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For AHEI, in the two-step analysis, the discovery step identified 41 CpGs at FDR < 0.05 

(corresponding p-value = 6×10-6; Supplemental Table 3; Supplemental Figure 1 [Manhattan plot] 

and Supplemental Figure 2 [Quantile-Quantile plot]). Two CpGs replicated after Bonferroni 

correction (corresponding p-value < 0.001; Supplemental Table 3). The one-step analysis 

identified 24 CpGs at FDR < 0.05 (corresponding p-value = 3.1×10-6; Supplemental Table 4; 

Supplemental Figure 3 [Manhattan plot] and Supplemental Figure 2 [Quantile-Quantile plot]). 

The combination of the two-step analysis and the one-step identified 24 CpGs associated with 

AHEI using models adjusted for sex, age, and energy intake.  

To reduce potential confounding effects by other lifestyle factors, we additionally 

adjusted for smoking status, physical activity, and BMI. Among the 14 CpGs associated with 

MDS, ten CpGs remained significant (p-value < 0.05/14; Figure 2), while all 24 CpGs associated 

with AHEI remained significant (p-value < 0.05/24; Figure 2). Overall, after adjustment for 

multiple confounders, we identified 30 CpGs associated with either MDS or AHEI, or both 

(Table 1). Pairwise correlations of the 30 CpGs were low to moderate, absolute Pearson r 

ranging from 0 to 0.66 (Supplemental Table 5).  As shown in Supplemental Figure 4, regression 

coefficients in meta-analyses of all EA participants using MDS and AHEI were highly 

correlated, e.g., Pearson r was 0.97 for the regression coefficients of the top 500 CpGs in MDS 

versus AHEI. We therefore combined the CpGs identified using the two diet scores in the 

subsequent analyses.  

Functional and regulatory annotation of diet-associated CpGs.  

Relative to the whole set of CpGs analyzed, the 30 diet-associated CpGs were enriched in gene 

body regions (p-value = 9.3×10-4). The mean whole blood-derived DNA methylation levels of 

the 30 CpGs were moderately associated with those measured in muscle, omentum, and spleen 
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(Supplemental Figure 5), with Spearman ranked r = 0.56 (n=6), 0.60 (n=6), and 0.62 (n=3); p-

value = 1.5×10-3, 6.1×10-4, and 3.5×10-4, respectively.19  

Among the 30 CpGs, 26 CpGs were annotated to 27 protein-coding genes (Supplemental 

Table 6). Based on the GTEx expression dataset,20 the annotated genes were differentially 

expressed in several tissues (Supplemental Figure 6 and Supplemental Table 7), e.g., differential 

expression was reported for 17 genes in muscle and 12 genes in small intestine (Bonferroni 

corrected p-value = 0.03 and 0.04, respectively). Gene set analyses did not reveal significant 

enrichment of pathways. Several genes, however, have important biological functions relevant to 

diet-associated diseases, e.g., SORBS1 (annotated to cg03190891) and FADS2 (annotated to 

cg11250194) play crucial roles in insulin signaling and fatty acids metabolism, respectively.  

GWAS analysis 

We identified 4,925 cis-meQTL variants for 23 of the 30 CpGs in the FHS (Supplemental 

Material). We found that 68 cis-meQTL variants for ten CpGs exactly matched a GWAS 

reported single nucleotide polymorphism (SNP) in the NHGRI-EBI GWAS Catalog21 (p-value < 

5×10-8; Supplemental Table 8). For example, rs174550 for cg11250194 (FADS2) was associated 

with plasma omega-6 polyunsaturated fatty acid concentrations.22 Overall, these ten CpGs were 

linked to 35 unique traits, of which many are also diet-associated, such as lipid levels and 

chronic kidney disease.23,24  

Associations of diet-associated CpGs with CVD risk factors.  

In the EWAS catalog (Supplemental Table 9), we found that 26 (of 30) CpGs have been reported 

to be associated with one or more CVD risk factors, e.g., hypermethylation of cg18181703 

(SOCS3) was associated with lower BMI and lower risk of type 2 diabetes. 25-27 We conducted 

bidirectional Mendelian Randomization (MR) analysis to examine the potential causal relations 
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between diet-associated CpGs and CVD risk factors, i.e., CpG  CVD trait and CVD trait  

CpG. The MR analysis in direction of CpG to CVD trait was performed for 22 (of 30) CpGs that 

had cis-meQTL variants and summary results from the selected GWAS. We found significant 

putatively causal association for eight CpG-trait pairs after Bonferroni correction for 22 CpGs 

and five traits (corresponding MR p-value < 4.5×10-4) and nominally significant putatively 

causal association for 14 CpG-trait pairs (MR p-value < 0.05; Supplemental Table 10). For 

example, as shown in Figure 3, hypermethylation of cg11250194 (FADS2) was associated with 

lower triglyceride concentrations (MR p-value = 1.5×10-14) and hypermethylation of cg02079413 

(SNORA54; NAP1L4) was associated with higher BMI (MR p-value = 1×10-6). We also observed 

unexpected associations in the MR analysis. For example, hypermethylation of cg26470501 

(BCL3) was positively associated with BMI (MR p-value = 6.5×10-5; Supplemental Table 10; 

Figure 3), which was not consistent with the positive association that we observed between diet 

and this CpG and the inverse association between this CpG and BMI.25,28 In the opposite 

direction, MR analyses linking CVD traits to CpG, revealed no significant putative causal 

association after correction for multiple testing (p-value < 0.002; 0.05/30 diet-associated CpGs; 

Supplemental Table 11). Nevertheless, we observed two nominally significant associations: 

higher BMI was associated with hypomethylation of cg18181703 (p-value = 0.04) and higher 

waist-to-hip ratio adjusted for BMI (WHRadjBMI) was associated with hypomethylation of 

cg25953130 (p-value = 0.02). 

Relations of diet-associated CpGs with mortality.  

Of the 30 diet score-associated CpGs, the relations of 27 CpGs with all-cause mortality were 

examined in ten EA cohorts (N up to 10,083). Three CpGs were excluded because of missing 

data. After adjusting for multiple covariates (Figure 4), we found that 12 CpGs were significantly 
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associated with all-cause mortality following Bonferroni correction (corresponding p-value < 

1.6×10-3); ten additional CpGs were nominally associated with all-cause mortality (p-value < 

0.05). The direction of the associations between CpGs and mortality was concordant with that for 

the diet-CpG associations, e.g., hypermethylation of cg18181703 (SOCS3), which was associated 

with higher scores of both AHEI and MDS, was associated with lower all-cause mortality (p-

value = 5.7×10-15).  

Multiethnic analysis 

Although we observed largely consistent directions of effect in AA and HA participants for the 

30 CpGs identified in EA participants, none of these CpGs was significant after Bonferroni 

correction (Supplemental Table 12). The transethnic meta-analysis identified 21 CpGs at FDR < 

0.05 including 13 CpGs for AHEI with a corresponding p-value of 1.1×10-6 and 10 CpGs for 

MDS with a corresponding p-value of 7×10-7 (Supplemental Table 13). Of the 21 CpGs, ten 

CpGs were not among the 30 CpGs identified in EA participants and the correlations of the ten 

CpGs with the 30 CpGs were low to moderate, |r| ranging from 0 to 0.49 (Supplemental Table 

14). The annotated genes for these ten CpGs (Supplemental Table 15) showed enrichment of 

lipid metabolism-related pathways (Supplemental Table 16). Nine of the ten CpGs were 

associated with nine unique traits in the EWAS catalog including serum triglyceride and HDL 

concentrations 29 (Supplemental Table 17). 

 

Discussion 

In participants of EA ancestry, we identified 30 CpGs whose methylation in whole blood was 

associated with diet scores assessed, either MDS or AHEI, or both. Aligning cis-meQTL variants 

for these CpGs with GWAS catalog reported variants revealed that diet-associated differential 
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DNA methylation can be linked to a series of metabolic and inflammatory disorders. 

Importantly, we also observed associations between these CpGs and all-cause mortality, which 

may reflect the importance of diet-induced epigenetic changes on health outcomes. Our study 

provides novel evidence that integrative genomic analysis of dietary information may be useful 

to highlight molecular targets for disease prevention and treatment. 

Accumulating evidence has shown that epigenetic profiles may be regulated by dietary 

factors.6 A recent study found that women who had better adherence to the Mediterranean diet 

had greater DNA methylation levels at long interspersed nucleotide elements 1 (LINE-1), a 

surrogate marker of global genomic DNA methylation.8 In a small subgroup (n=36) of the 

Prevención con Dieta Mediterránea (PREDIMED) study, genome-wide methylation levels in 

peripheral blood derived DNA were assessed at baseline and again five years later.7 This study 

revealed that adherence to the Mediterranean diet may impact DNA methylation levels of several 

inflammation-related genes. None of the CpGs identified in this PREDIMED report, however, 

showed statistically significant differential DNA methylation in the meta-analysis in the present 

study. 

Higher MDS and AHEI scores have been reported to be associated with lower body 

weight.17,18 Our observation that diet scores were positively associated with DNA methylation 

levels of cg18181703 (SOCS3) is therefore consistent with the inverse association of 

cg18181703 and BMI identified in multiple studies.25,28,30 Overall, by integrating association 

analysis and MR analysis, our data indicate that diet quality may affect BMI, alter DNA 

methylation of cg18181703, and impact long-term health. The association between cg18181703 

and all-cause mortality also was consistent with observations in a small-scale epigenome-wide 

study.31 SOCS3 is a well characterized gene involved in immune system regulation, which 
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suggests that the association of diet scores and cg18181703 may be relevant to inflammation and 

may partly explain the association of cg18181703 with all-cause mortality.  

Several diet score-associated CpGs, such as cg19693031 (TXNIP) and cg02716826 

(SUGT1P1; AQP3), have been reported to be associated with CVD risk factors.26,27 TXNIP, 

thioredoxin-interacting protein, is a key regulator of energy metabolism and a therapeutic 

candidate for type 2 diabetes.32 AQP3, aquaporin 3, is a member of water channel proteins that 

are associated with a number of diseases such as hypertension and congestive heart failure.33 Our 

MR analyses also support a causal link between methylation levels of diet-associated CpGs and 

CVD risk factors, e.g., hypermethylation of cg11250194 (FADS2) was associated with lower 

triglyceride concentrations. FADS2 is a key member of the fatty acid desaturase (FADS) 

family.34 This observation is consistent with the role of diet in the regulation of enzyme activity 

relevant to fatty acid desaturation.35 Therefore, the present study provides key evidence that diet 

may interact with the human genome via epigenetic mechanisms to impact health outcomes.  

In a post-hoc analysis, we conducted lookup analysis for diet score-associated CpGs 

using data reported in a prior epigenome-wide association study of acute coronary syndrome. 36 

Although none of the 30 CpGs we report here was significant or correlated with the 47 CpGs 

identified in this prior study, we found that one of the 47 CpGs, cg14066471 was significantly 

associated with AHEI (p=0.0004) and nominally associated with MDS (p=0.004) after 

Bonferroni correction for 47 CpGs in our trans-ethnic analysis. This observation suggests that 

our data represent a good resource for other investigators to conduct lookup analyses. It also 

suggests that a candidate approach may identify additional CpGs associated with diet and 

diseases. 
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A major strength of the present study is its large sample size, which includes data from 

five US and European population-based cohorts, and the use of two common and well-studied 

diet scores. Several limitations warrant discussion. The diet scores were based on different 

versions of FFQs, which are prone to measurement errors due to self-reported diet data. In 

addition, although the associations remained significant for the majority of CpGs after 

adjustment for lifestyle factors, we cannot rule out the possibility of residual confounding. 

Although we showed a moderate correlation between peripheral blood-derived DNA methylation 

profiles and those from other tissues, we lacked data to analyze tissue-specific diet-associated 

DNA methylation changes which may be more directly related to the development of chronic 

diseases. Our study may lack power to detect diet-associated DNA methylation markers in AA 

and HA participants due to the smaller sample sizes (n=2,702 for AA and n=360 for HA) relative 

to EA participants (n=6,662). 

In conclusion, the present study demonstrates that diet quality is associated with 

differential DNA methylation levels of 30 CpGs in leukocyte-derived DNA among EA 

participants. Our findings demonstrate that integration of dietary information and genomic data 

may reveal useful insights into the molecular effects at the intersection of diet, risk factors, and 

chronic diseases. Future studies with larger sample sizes, deeper coverage of DNA methylation, 

and more precise dietary measurement are needed to validate our findings and to investigate diet-

associated DNA methylation patterns in larger ethnically diverse samples.  
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Table 1. Diet scores-associated CpGs in European Ancestry (EA) meta-analysis 
 

 
Genome build 37. Regression coefficients are DNA methylation change for per standard deviation change in diet 
scores from analyses using sex, age, and energy intake adjusted models. Direction order (from left to right): FHS, 
ARIC, GOLDN, MESA, and RS. AHEI: Alternative Healthy Eating Index. MDS: Mediterranean-style diet score 
 

 

CpG CHR Position Gene Diet 
Meta-analysis in all EA participants 

Beta SE P Direction I-squared 
cg04885881 1 11123118 

 
MDS 0.004 0.001 3.2E-07 +, +, +, +, + 0.12 

cg24735226 1 65096537 CACHD1 AHEI -0.004 0.001 1.6E-06 -, -, -, -, - 0 
cg07805029 1 92953256 GFI1 AHEI 0.003 0.001 3.1E-06 +, +, +, +, + 0 
cg19693031 1 145441552 TXNIP MDS 0.003 0.001 3.1E-07 +, +, +, +, + 0.14 
cg24694018 1 145457621 POLR3GL AHEI 0.002 0.0003 8.3E-07 +, +, +, +, + 0 
cg01940273 2 233284934 

 
MDS 0.005 0.001 1.6E-12 +, +, +, +, + 0 

cg20842915 7 39665132 RALA AHEI 0.003 0.001 8.1E-08 +, +, +, +, + 0 
cg02508743 8 56903623 LYN AHEI -0.002 0.001 2.5E-06 -, -, -, -, - 0 
cg27039118 8 116575902 TRPS1 AHEI 0.004 0.001 1.2E-06 +, +, +, +, + 0 
cg02716826 9 33447032 SUGT1P1;AQP3 MDS 0.002 0.0005 5.6E-07 +, +, +, +, + 0 
cg25953130 10 63753550 ARID5B AHEI 0.004 0.001 1.2E-08 +, +, +, +, + 0 
cg03190891 10 97201172 SORBS1 AHEI -0.003 0.0005 9.0E-08 -, -, -, -, - 0 
cg02079413 11 2986505 SNORA54;NAP1L4 MDS -0.002 0.0004 3.1E-07 -, -, -, -, - 0.14 
cg11250194 11 61601937 FADS2 AHEI 0.003 0.001 1.5E-06 +, +, +, +, + 0 
cg11468085 11 67435577 ALDH3B2 AHEI -0.002 0.0005 1.4E-06 -, -, -, -, - 0.06 
cg25909064 11 120082805 OAF AHEI 0.002 0.0004 8.0E-07 +, +, +, +, + 0 
cg03646329 13 48987165 LPAR6;RB1 AHEI 0.003 0.001 1.5E-06 +, +, +, +, + 0     

MDS 0.004 0.001 1.1E-06 +, +, +, +, + 0 
cg16969872 13 79968324 RBM26 AHEI 0.003 0.001 3.0E-09 +, +, +, +, + 0     

MDS 0.003 0.001 1.2E-06 +, +, +, +, + 0.25 
cg09940677 14 103415458 CDC42BPB AHEI -0.001 0.0003 2.9E-06 -, -, -, -, - 0 
cg13074055 14 106329206 

 
AHEI 0.005 0.001 1.3E-06 +, +, +, +, + 0 

cg27118035 16 31891978 ZNF267 AHEI -0.003 0.0005 4.9E-09 -, -, -, -, - 0 
cg08732950 16 89023389 CBFA2T3 MDS -0.003 0.0005 2.8E-08 -, -, -, -, - 0 
cg02097604 17 17750910 TOM1L2 AHEI 0.002 0.0003 6.6E-09 +, +, +, +, + 0     

MDS 0.002 0.0003 3.6E-08 +, +, +, +, + 0 
cg16936953 17 57915665 VMP1 AHEI 0.004 0.001 1.5E-08 +, +, +, +, + 0 
cg18181703 17 76354621 SOCS3 AHEI 0.004 0.001 2.0E-12 +, +, +, +, + 0     

MDS 0.004 0.001 3.5E-10 +, +, +, +, + 0 
cg19202384 17 79894511 PYCR1 AHEI 0.002 0.0004 9.9E-07 +, +, +, +, + 0.04 
cg01294327 19 2291373 LINGO3 AHEI 0.005 0.001 1.4E-06 +, +, +, +, + 0 
cg26470501 19 45252955 BCL3 AHEI 0.002 0.0004 2.4E-06 +, +, +, +, + 0.03 
cg08884571 19 45901453 PPP1R13L AHEI -0.004 0.001 4.6E-07 -, -, -, -, - 0 
cg05232694 20 48809539 

 
AHEI 0.004 0.001 3.1E-08 +, +, +, +, + 0 
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Figure Legends: 

 

Figure 1. Study design flow chart. AA: African ancestry. EA: European ancestry. HA: Hispanic 

ancestry. CpGs: cytosine-guanine dinucleotides (DNA methylation sites). AHEI: Alternative 

Healthy Eating Index. MDS: Mediterranean-style diet score. FDR: false discovery rate. GWAS: 

genome-wide association study. cis-meQTLs: cis methylation quantitative loci. EWAS: 

epigenome-wide association study. GEO: Gene Expression Omnibus. GTEx: Genotype-Tissue 

Expression database. Discovery cohort: Framingham Heart Study (FHS). Replication cohorts: 

Atherosclerosis Risk in Communities (ARIC) Study, Genetics of Lipid Lowering Drugs and Diet 

Network (GOLDN), Multi-Ethnic Study of Atherosclerosis (MESA), and Rotterdam Study (RS). 

Cohorts for all-cause mortality includes: ARIC, FHS, ESTHER study, InChianti Study, Lothian 

Birth Cohort (LBC) Study 1921 and 1936, Cardiovascular Health Study (CHS), KORA F4 

Study, Normative Aging Study (NAS), and Women's Health Initiative (WHI).  

 

Figure 2. Effect of additional adjustment for lifestyle factors (smoking and physical activity) and 

BMI in European ancestry participants. A and B are 14 CpGs identified using the Mediterranean-

style diet score (MDS). C and D are 24 CpGs identified using the Alternative Healthy Eating 

Index (AHEI). CpGs highlighted in red-colored rectangle are those identified in the two-step 

analysis alone and CpGs highlighted in green-colored rectangle are those identified in both one-

step and two-step analyses. Orange colored dash line represents -log10 of 0.05 and green colored 

dash line represents -log10 of Bonferroni corrected p-value threshold, i.e., 0.05/14 for MDS and 

0.05/24 for AHEI. Four CpGs (cg05575921, cg06126421, cg12075928, and cg25189904) in 
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MDS analysis became non-significant after Bonferroni correction in models with adjustment for 

lifestyle factors and BMI, whereas all 24 CpGs in AHEI analysis remained significant. 

 

Figure 3. Mendelian Randomization (MR) analyses for associations between cg11250194 

(FADS2) and triglycerides (TG), between cg02079413 (SNORA54; NAP1L4) and BMI, and 

between cg26470501 (BCL3) and BMI. IVW: inverse variance weighted. Symbols and bars 

represent effects size and standard errors of instruments variables (cis-meQTL variants) used in 

MR analysis. Solid line is for MR-IVW analysis and dashed line is for MR-Egger analysis. No 

horizontal pleiotropy effect was detected for all MR analyses. 

 

Figure 4. Meta-analysis of association between 30 diet-associated CpGs and all-cause mortality 

in 10 cohorts of European ancestry participants (n≈10,000). A positive sign for diet indicates that 

a higher dietary scores (MDS or AHEI, or both) were associated with DNA hypermethylation, 

whereas, a hazard ratio of over 1.0 indicates that DNA hypermethylation was associated with 

increased all-cause mortality. Models were adjusted for baseline covariates including sex, age, 

smoking status, physical activity level, alcohol intake, BMI, and prevalence disease status of 

hypertension, type 2 diabetes, cardiovascular disease, and cancer. Estimated leukocyte counts, 

technical variables, and kinship (for related study samples) were also considered. Hazard ratios 

and 95% confidence interval were estimated using Cox proportional hazard models and meta-

analyzed using random effect models. X-axis is in logarithmic scale. 
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