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S1 Datasets 

S1.1 TCGA - Breast Invasive Carcinoma  
The expression dataset of interest includes 817 RNA-seq Version2 RSEM4 profiles of breast invasive cancer 
samples, subject to upper quartile normalization and log2-transformation. Based on Ciriello et al. (2015) 
supplementary materials, RNA sequencing was performed at the University of North Carolina at Chapel Hill on 
the Illumina HiSeq 2000; the RNA-seq profiles under study were obtained from levels of transcripts sequenced 
genome-wide with the Illumina mRNA-seq method and processed as follows. Resulting sequencing reads were 
aligned to the human hg19 genome assembly using MapSlice. Gene expression was quantified for the 
transcript models corresponding to the TCGA GAF 2.13 using RSEM4 and normalized within samples to a fixed 
upper quartile (UQ normalization). For our analyses, Upper quartile normalized RSEM data were log2 
transformed. Genes with a value of zero following log2 transformation were set to the missing value, and 
genes with missing values in more than 20% of samples were excluded from downstream analyses, in 
compliance with what Ciriello et al. did in their work in 2015. Thus, ultimately, we used a dataset comprising 
19,737 genes in each sample. Furthermore, Ciriello et al. performed a standard PAM50-based classification 
for the samples of the dataset, whose subtype calls are reported in Table S1. 

     

S1.2 GEO dataset GSE96058  
Illumina paired-end mRNA-sequencing and expression estimation were performed for a cohort of 3,273 breast 
cancer samples from the Multicenter Sweden Cancerome Analysis Network-Breast Initiative (Brueffer et al., 
2018) and collected under GEO dataset accession number GSE96058. Gene expression data is made of FPKM 
profiles generated using Cufflinks 2.2.1 software. The resulting data was post-processed by collapsing on 
30,865 unique gene symbols (sum of FPKM values of each matching transcript), adding to each expression 
measurement 0.1 FPKM, and performing a log2 transformation. PAM50 subtyping was performed by Brueffer 
et al. according to the standard PAM50-based classification, using a fixed reference selected to match the 
original cohort used in Parker et al. (2009). The distribution of subtype calls is reported in Table S1. 

 

S1.3 PanCA dataset and GEO dataset GSE81538  
The PanCA dataset includes 236 breast cancer mRNA-seq profiles selected from Pan Cancer Atlas, without 
overlaps with the samples already included in the used TCGA dataset. They were treated with RSEM pipeline, 
UQ-normalized, and log2-transformed. The GSE81538 dataset, instead, contains 405 breast cancer mRNA-seq 
profiles subject to FPKM normalization and log2-transformation and collected under GEO dataset accession 
number GSE81538. For both datasets, published subtype calls, assigned according to standard PAM50-based 
classifications by the original collectors, are available and reported in Table S1.  

 

Table S1. Dataset characteristics and compositions according to the published PAM50 classifications: Luminal A (LumA), 
 Luminal B (LumB), Her2-Enriched (Her2) Basal and Normal-like. 

 

Dataset 
Tot RNA-seq 

profiles 
Data 

normalization 
LumA LumB Her2 Basal 

Normal-
like 

TCGA 817 RSEM 415 176 65 136 25 

GSE96058 3,273 FPKM 1,657 729 327 339 221 

PanCA 236 RSEM 131 32 16 43 14 

GSE81538 405 FPKM 156 105 65 57 22 
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Figures S1 and S2 show the use of the described datasets in the computational path following illustrated.  

 

Figure S1. Emulation and machine learning paths. Parallel workflows over the TCGA dataset. 

 

 

Figure S2. PAM50-based and machine learning paths. Roles of all the available datasets using their 
disclosed subtype calls and target labels. 
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S2 PAM50 emulation   

S2.1 Missing gene expressions 
For our PAM50 emulation, we needed to restrict the gene set of interest to the PAM50 panel. Consequently, 
in whichever case we had to face a missing gene expression data issue, we solved it on log2-space as follows. 
Missing log2-values were excluded from reference sample estimation by defining modified functions that 
compute mean, median and standard deviation over a restricted subset of all the values. In this way, whether 
a specific gene had an NA (not available) value among one of the samples under examination, the contribution 
of that sample for that specific gene would be discarded from the computation of the overall mean, median, 
or standard deviation. On the contrary, to compute the correlations between a sample profile and each 
subtype centroid, we substituted missing values with zero-values, since each NA value was in its turn caused 
by the absence of the absolute gene expression value for that specific gene in the involved sample. This 
replacement is a standard use also in other pipelines for the treatment of RNA-seq counts and in NanoString 
data handling, where it is suggested to substitute null or below 1 absolute gene expression values with a 
unitary constant bias (i.e., a null log2-value).  

 

S2.2 Subtyping on TCGA dataset 
PAM50 classifications were performed using the class centroids developed by Parker et al. in 2009 and 
reported in Table S2. 

Table S2. PAM50 centroids by Parker et al. (2009). 

PAM50 GENES Basal Her2-Enriched Luminal A Luminal B Normal-like 

ACTR3B 0.71833189105221 -0.481665674726704 0.0099810704381048 -0.190551327982217 0.465722870515964 

ANLN 0.537372300595531 0.26693160932886 -0.57924571615828 0.0988041789187431 -0.83693959305506 

BAG1 -0.574506867003171 -0.476072868053812 0.758221161127353 -0.405458622327578 0.316552972849696 

BCL2 -0.118760430362242 -0.157913959232179 0.287487439627067 -0.44133949784535 0.533978871455655 

BIRC5 0.300488641307438 0.405733099101299 -0.881434366334594 0.603850776734403 -0.876636423925443 

BLVRA -0.642677513396256 0.335336040994047 0.0420420167875037 0.691204961687021 -0.163412811613957 

CCNB1 0.191208143233350 0.135476651890144 -0.491662113750233 0.503176357566503 -0.545269311937199 

CCNE1 0.5602710279181 0.0668722320900592 -0.430291227412725 -0.016661429525915 -0.255476058116241 

CDC20 0.399695241707236 0.00835552010412316 -0.469044010265104 -0.0704124657384466 -0.0455048098566988 

CDC6 0.159418279239843 0.589006820321944 -0.61282430546711 0.510895969130001 -0.595752175354644 

CDCA1 0.472400167554248 -0.0238192070320764 -0.712520818851019 0.589626882663298 -0.370533364608738 

CDH3 0.508362012467715 0.210889691612697 -0.513649344383634 -1.41913443744317 0.757920623508959 

CENPF 0.482976287851816 -0.0292661598656275 -0.54374023405061 0.278228556393300 -0.0705830752611994 

CEP55 0.567748893765426 0.276381021673186 -0.746721735125358 0.460015762468336 -1.16237418628659 

CXXC5 -0.92038581344894 -0.241550612126531 0.467411570831134 0.321335019875456 0.0509014360369965 

EGFR -0.0304168492933523 -0.0963826205261192 0.00916296285683097 -0.412401259011741 0.341637082320563 

ERBB2 -0.808353979685898 1.75984423053252 0.608191264034737 0.159651873930408 -0.870238456252032 

ESR1 -2.74651308572764 -1.51311125337343 2.16141188167927 1.60589991409782 -0.418282349385733 

EXO1 0.42809035571695 0.0492971938541269 -0.567474505364458 0.141241281899209 -0.4507805368292 

FGFR4 -0.271238025272568 0.821778152444019 0.170811924512710 -0.247036037777853 0.857472776645833 

FOXA1 -2.62694672123675 0.0228271511969584 1.0174574205457 0.360757794789733 -0.782812106272943 

FOXC1 1.49045147226633 -0.947174191636912 -0.174957960004945 -1.56485496402643 1.11154786423416 
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GPR160 -1.05497467201534 0.583194826166968 0.685489972807875 0.714407601174597 -0.423568467196315 

GRB7 -0.276128585792610 1.03065778049362 0.0415689860888212 0.0877508871181497 0.241710990681836 

KIF2C 0.203572580112815 -0.165102048401172 -0.505394668119272 -0.18289071282855 -0.390014483980550 

KNTC2 0.600356166736404 0.0425467918407693 -0.58822098932071 0.386706843524287 -1.06962886016236 

KRT14 0.0968267225951578 -0.443646142118489 0.368375943286720 -0.639446965945955 1.73568631016155 

KRT17 0.482565528200505 -0.337837101113602 0.0142098620606827 -1.46374293365444 1.75959843723177 

KRT5 0.506640416426025 -0.42826177758168 0.215320067973960 -0.911607270494262 1.78511689525264 

MAPT -0.42582927334418 -0.357506541134998 0.700622717588887 -0.19034057442467 0.117828498493485 

MDM2 -0.251366205388229 -0.106728680574222 0.141957430453390 -0.133779036556646 0.274214010559593 

MELK 0.523033872432266 0.198013114679137 -0.58208810796246 0.447934629706117 -0.743764675552645 

MIA 1.57827636824347 -0.90489862111629 -0.165258584299697 -1.42292626721177 2.03885955577086 

MKI67 0.476537447819512 0.065662359566943 -0.501871622444359 -0.145217867594777 -0.166004063281183 

MLPH -0.339972458833524 -0.195228657981430 0.339304417889105 -0.456149914938842 0.750758364744867 

MMP11 -0.556037671980059 0.5067587600346 -0.00625509011475386 0.33419930855919 -2.32698511905842 

MYBL2 0.389893451959192 0.205263580428381 -0.84356993132705 0.467281990134531 -0.601704754297017 

MYC 0.178763812453212 -1.04683283160474 -0.090830821420967 0.0152643973204342 1.02917620291809 

NAT1 -0.936848945968056 -0.0899884918164858 2.92278679191125 0.470788041948480 -0.363273764184013 

ORC6L 0.216304796525868 0.204402449297876 -0.352220666898442 0.110627650250106 -0.255879493250552 

PGR -0.429133388609156 -0.279409915717406 0.445785002691586 -0.448839843849832 0.126011481678608 

PHGDH 0.634518869785175 -0.186625862203220 -0.398682233972277 -1.03013931821750 0.66043775260378 

PTTG1 0.264131894483995 0.055809894817994 -0.634468270258443 0.249725280730980 -0.549781259548456 

RRM2 0.156204675747248 0.68272488919714 -0.950760200359295 0.350663839755693 -1.12105492950754 

SFRP1 0.98798845910263 -1.04820266695367 0.131566363888596 -1.72045826151304 2.43628866770475 

SLC39A6 -1.05112505157325 -0.695736456552694 2.06145907498356 1.65330302214459 0.116889693935195 

TMEM45B -1.10945818050443 1.33063617180581 0.446242044594737 0.375688226418575 0.0362089142863473 

TYMS 0.449800897311564 0.05294489694821 -0.644602075052837 0.492606521200551 -0.726989454321298 

UBE2C 0.218534146535747 0.0610805976997803 -0.519818399226962 0.292799305558851 -0.40889468512475 

UBE2T 0.389908898288675 0.28453681332228 -0.539259390713988 0.738952133209629 -0.952381005370445 

 

Performing PAM50 classification using ten references computed as medians of ten random subsets with 60% 
ER+/40% ER- proportion did not bring complete nor even over 90% of concordance with the subtype calls of 
Ciriello et al. (2015) (84%-87%). On the contrary, using the medians of ten random subsets with the same 
balanced ER+/ER- proportion of the subset of samples employed by Ciriello et al. (2015), we found an average 
concordance of 95%. Finally, using a subset built by including 262 samples within the specific sample set 
selected by Ciriello et al. (2015) brought nearly perfect concordance (99.3%), although we had to exclude from 
the median computation 52 samples used in Ciriello et al. (2015) but not available within the 817 under study.  

Then, ten additional PAM50 classifications were performed with references built as an average of within-class 
averages (AWCAs), using each time as starting class assignments the subtype calls obtained from the previous 
PAM50 classifications involving the random subset with 60% ER+/40% ER-. The process is schematized in 
Figure S3. This reference building procedure aims to increase robustness through averaging, and effectively 
led to significantly more stable and accurate results (91%-93%) in the corresponding PAM50 classifications, 
even without any care to the originally employed subset chosen by Ciriello et al. (2015).  
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Figure S3. A robust method (AWCA) to calculate the PAM50 reference and improve subtyping consistency. 

Eventually, we built other random 60% ER+/40% ER- subsets with progressive size halving (from 400 to 25 

samples), as to investigate the robustness of AWCA reference construction. For each size, from ten random 

subsets we computed the corresponding median-based PAM50 classifications and we used them to build ten 

new AWCA references. For any size, PAM50 classifications based on the newly generated AWCA references 

showed much lower dispersion and were approximately 5% more concordant with the already published calls 

than the corresponding median-based classifications (Figure S4). Furthermore, AWCA references brought 

robust results with subsets of 200 samples and even using 50 samples only; conversely, median-based PAM50 

classifications needed a subset of 400 samples to reach stable results, while subsets of only 50-25 samples 

become really critical. 

 

 

 

 
Figure S4. Discordances with published calls:  distributions after AWCA-based or median-based classifications, for different 

sizes of subsets involved in reference construction. 
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Considering that the starting subtype assignments do not affect relevantly the final PAM50 classification in 
case of the AWCA strategy, we eventually built two average references within the TCGA dataset, according to 
the published subtype calls of Ciriello et al. (2015): one excluding Normal-like class and one including it. These 
AWCAs were used for two other PAM50 classifications of the TCGA dataset. Although the reference built as 
the average of only the 4 intrinsic subtype classes led to higher classification accuracy, in both cases the overall 
error rate fluctuated between the 7% and 9%, keeping over 90% of concordance. Non-concordant calls 
involved primarily Luminal A (LumA) and Luminal B (LumB) classes, sharing some similar molecular traits from 
being Luminal tumors; furthermore, most parts of the disagreements were coincident with the ones already 
found with the previous PAM50 classifications, based on the subsets under study. Confusion matrices are 
reported in Figure S5.  

 

 
Figure S5. PAM50 classifications of the TCGA dataset using average sample references (AWCA). 

All previous results confirmed that the samples used for building the reference may affect meaningfully the 

subsequent PAM50 classification and may lead to some inconsistencies in multiple instances of subtype calling. 

However, most of the inconsistencies were widely recurrent across reference changes, and discordant 

classifications typically involved samples showing comparable correlations with more than one subtype, as 

clearly emerged from Figure S6. Notice that the average correlations are here computed considering the ten 

PAM50 classifications using as references the medians of different 60% ER+/40% ER- subsets (subset size 400), 

whereas the cases of at least a discordant subtype call are evaluated considering also the target label, i.e., the 

Ciriello et al. subtype.   

Figure S6. Discordant subtype calls in multiple PAM50 classifications mainly emerge in case of comparable average correlations with 
more than one subtype. 
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Figure S7 shows the distribution of subtypes when concordant calls are experienced within 10 PAM50 

classifications and the Ciriello et al. subtypes, once the adopted strategy of reference building is fixed. 

Specifically, the concordant calls with the Ciriello et al. subtypes for the ten PAM50 classifications using as 

references the medians of different 60% ER+/40% ER-” subsets are reported in blue, whereas, the 

concordances of the PAM50 classifications using AWCA references are reported in orange.  

 

Figure S7. Distribution of subtypes within samples with all concordant calls, comparing different reference building strategies. 

 

Finally, without considering the concordance with Ciriello et al. subtype calls, Figure S8 reports the maximum 

number of concordant calls within 10 PAM50 classifications, when the strategy of reference building is fixed.  

 

Figure S8. Amount of concordant calls in 10 PAM50 classifications, using two different strategies for reference computation. 

 

In conclusion, discordant classifications involved mainly samples having comparable correlations with more 

subtypes and for some samples, the boundary between two or more classes appeared labile, maybe due to 

the possible coexistence of mixed traits. 
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This non-separability among subtypes also emerged clearly from the Principal Component Analysis that we 

performed independently for the RSEM values of the TCGA dataset and for the FPKM profiles of the GSE96058 

dataset. As we can see from the graphs in Figure S9 showing the first two principal components, RSEM and 

FPKM data do not mix well. This compelled us to learn independently the parameters of the models dealing 

with RSEM or with FPKM data, as discussed later in the supervised learning context. 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure S9. Principal component analyses of TCGA and GSE96058 datasets. First two components for each dataset under study. 
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S3. In-silico Prosigna emulation and Risk of Recurrence estimation 

S3.1 Prosigna test and Risk of Recurrence models 
The PAM50 assay was also converted into an alternative FDA approved predictive test called Prosigna (Wallden 
et al., 2015), working on expression data profiled by NanoString nCounter® technology and implementing an 
alternative Nearest Shrunken Centroid classification (Tibshirani et al., 2002). The Prosigna test is used to define 
a category of metastatic risk at ten years in women undergoing surgery for invasive BC and focuses on a subset 
of the PAM50 panel called NANO46. Eventually, the test provides two distinct, but correlated, information: 
the BC intrinsic subtype and the category of risk of recurrence (low, medium or high). This latter one is precisely 
differentiated also based on lymph node involvement. The assay exploits a trademarked technology and a 
proprietary algorithm for breast cancer intrinsic subtyping, having the following peculiarities: 

• The normalization procedures are specifically designed for expression data collected and processed on 
NanoString nCounter platforms 

• The reference included in the Prosigna kit consists of in-vitro transcribed RNA-targets, to be processed 
together with the sample under study 

• The classification predicted by Prosigna excludes the Normal-like class, which is instead present in other 
PAM50-based approaches  

• The Nearest Shrunken Centroid approach uses Pearson linear correlation as distance metric to assign one 
of the four intrinsic subtypes.  

Then, ROR score of a patient is computed from a weighted sum of NANO46 Pearson correlations to each 
intrinsic subtype centroid, proliferation score and tumor size parameters, according to the following model: 

𝑅𝑂𝑅𝑃𝑟𝑜𝑠𝑖𝑔𝑛𝑎 = −0.0067 𝐵𝑎𝑠𝑎𝑙𝑐𝑜𝑟 +  0.4317 𝐻𝑒𝑟2𝑒𝑐𝑜𝑟 −  0.3172 𝐿𝑢𝑚𝐴𝑐𝑜𝑟  +  0.4894 𝐿𝑢𝑚𝐵𝑐𝑜𝑟 +  0.1981 𝑃𝑟𝑜𝑙𝑖𝑓𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑐𝑜𝑟𝑒 +  0.1133 𝑇𝑢𝑚𝑜𝑟𝑠𝑖𝑧𝑒   

Prosigna predictive model was trained on NanoString profiles over nCounter® platform and its accuracy was 
confirmed also by subsequent analytical and clinical validation studies (Wallden et al., 2015). However, it is 
based on the former PAM50-based ROR-C predictor of Parker et al., a Cox regression model that estimates the 
risk of recurrence score (ROR-C) as a weighted sum of Spearman correlations with subtype centroids and 
tumor size parameter: 

𝑅𝑂𝑅 − 𝐶 = 0.05 𝐵𝑎𝑠𝑎𝑙𝑐𝑜𝑟 +  0.11 𝐻𝑒𝑟2𝑒𝑐𝑜𝑟 −  0.23 𝐿𝑢𝑚𝐴𝑐𝑜𝑟 +  0.09 𝐿𝑢𝑚𝐵𝑐𝑜𝑟 +  0.17 𝑇𝑢𝑚𝑜𝑟𝑠𝑖𝑧𝑒                                                        

Following, we discuss our emulation on TCGA RNA-seq data of a Prosigna-inspired intrinsic subtyping and, 
eventually, we compare the so-obtained results with the ones found using the original PAM50 approach with 
the same AWCA reference.  

 

S3.1.1 Data pre-processing and normalization  

After discarding Normal-like samples and solving missing value issue as previously described, we focused not 
only on the PAM50 panel but also over eight housekeeping genes, needed to replicate Prosigna normalization 
steps. The Prosigna test requires first to divide each PAM50 sample profile by the geometric mean of the 
housekeeper absolute expression values. Since we worked on log2-space, we computed equivalently the 
arithmetic mean of the log2-values and we subtracted it from each log2-transformed sample profile. However, 
in our in-silico emulation on RNA-seq profiles, this normalization is a mere translation into the logarithmic 
space, which did not bring any advantage. A fixed value subtraction does not affect the Pearson correlation to 
be computed and not even the subsequent subtyping procedure. Furthermore, all the profiles were already 
UQ normalized within-sample. Housekeeper normalization is instead required for Prosigna test on the 
NanoString platform to correct input variability.  

Following, we had to calculate the Log2ratios with respect to a reference sample. Although each real Prosigna 
assay run includes as reference the in vitro transcribed RNAs of all the 58 target genes, to be processed in the 
NanoString platform together with the sample, in our emulation we were forced to consider a fixed reference. 
Thus, we used an AWCA-based reference, built averaging in log2-space the gene expressions inside each 
subtype class and, then, taking the average of these within-class averages, to equate the contributions of the 
intrinsic subtypes despite their unbalanced proportions. But, in this case, the Normal-like class was a-priori 
excluded from the AWCA computation. Our reference sample was subtracted from the normalized profiles to 
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find the corresponding Log2ratios. This step is the most relevant for subsequent subtype calls since it provides 
differential alteration of each gene in each profile under study. Furthermore, in this case, we noticed that any 
sweep of the reference value would affect greatly the following subtype calls, even more than for the PAM50-
method, showing the lack of robustness for a Prosigna inspired approach in absence of its in-vitro reference.  

Lastly, we computed the z-scores from the Log2ratio values of each sample under study, as required by the 
Prosigna test to uncouple each gene from the sample mean and variance of a single realization. However, for 
our subtyping of RNA-seq profiles, this step appeared not meaningful, probably because each profile came 
from the same already normalized experimental cohort. 

 

S3.1.2 Prosigna classification with the Nearest Shrunken Centroid method 

Once all the normalization steps were concluded, we performed the subtyping procedure according to the 
Prosigna implementation of the Nearest Shrunken Centroid method. Test guidelines specify to calculate 
Pearson correlations between a sample z-score and each centroid of the four intrinsic subtypes. Prosigna 
centroids are anyhow disclosed only limited to the NANO46 gene list (a subset of the PAM50 panel). Thus, we 
faced an additional missing-value problem. At first, we replaced the four missing genes in the Prosigna 
centroids with the mean normalized expression of each of the 4 genes among all the 792 samples under study. 
Yet, this choice implied to cancel from the summation the contribution of the standard scores for each of the 
four genes of interest, as it can be easily seen from the following expression of the Pearson Correlation:   

𝜑𝑥,𝑦 =
1

𝑛−1
∑ (

𝑥𝑖−𝑥̅

𝑠𝑥
) (

𝑦𝑖−𝑦̅

𝑠𝑦
)

𝑛

𝑖=1

. 

In this way, each Pearson coefficient was obtained from the division by n-1 with n equal to 50 because of the 
50 genes of the PAM50 panel. Thus, the only difference with respect to completely discarding the gene 
expression of the four genes without centroid-values was to reduce the magnitude of the obtained 
correlations. Since Prosigna guidelines indicate NANO46 genes as the only ones significantly implied in clinical 
outcomes, we narrowed down our analysis over these genes only. For each sample we calculated the Pearson 
correlations between each z-score vector restricted to the NANO46 subset and all the disclosed Prosigna 
centroids, as required also for the subsequent computation of the ROR score. Then, each sample was assigned 
to the subtype for which it had the highest correlation coefficient.  

 

S3.1.3 Prosigna classification of the TCGA dataset  

To summarize, dealing with the TCGA dataset we discarded the 25 Normal-like specimens, whereas for the 
remaining 792 samples we performed the Prosigna subtyping using the average of within-class averages as 
reference. Thus, comparing our Prosigna-emulation subtyping results with the Ciriello et al. (2015) subtype 
calls (Figure S10), we found 111 not concordant assignments and overall accuracy of 0.86. 

For Ciriello et al. (2015) Basal samples we had again a perfect match, whereas the most part of discordances 
was for Ciriello et al. (2015) Luminal A samples predicted as Luminal B. However, a misprediction from Luminal 
A to Luminal B, even whether should be effectively incorrect, would cause only a more pessimistic prediction, 
since Luminal B tumors lead to worst clinical outcomes than Luminal A ones. This pessimistic trend emerged 
again in 11 Ciriello et al. (2015) Her2-Enriched (Her2) samples predicted as Basal, known that Basal tumors 
usually follow the most aggressive clinical course. 
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S3.2 Conclusions from the Prosigna emulation and Risk of recurrence comparative analysis 
Prosigna seemed an appealing candidate to work on RNA-seq data since it is designed for highly sensitive and 
reproducible NanoString profiles, able to quantify very low RNA concentrations similarly to what RNA-seq 
does. Nonetheless, we had to exclude Normal-like samples from our in-silico emulation, since the Prosigna 
test does not include the Normal-like class. After replicating all the normalization steps required by the 
Prosigna test, we performed the Prosigna implementation of the Nearest Shrunken Centroid subtyping 
method. However, it is relevant to stress that we were forced to use again the AWCA reference sample, 
computed within the dataset as the average of within-class averages (AWCA), whereas the real Prosigna test 
provides an in-vitro reference to be processed with the sample under study directly inside the proprietary 
platform. Eventually, comparing our Prosigna-emulation subtyping results with the published PAM50 subtype 
calls by Ciriello et al. (2015), we found an overall concordance of 86% and we noticed a slightly pessimistic 
prediction trend both with respect to the published subtype calls and to the predictions obtained with the 
PAM50 method using the same AWCA reference sample, as shown in Figure S11.  

This kind of pessimistic trend could be caused by the reference choice or, partially, by how the Prosigna test 
and its centroids could have been designed, to handle false positive low-risk cases in subsequent clinical 
outcome predictions. Ultimately it is plausible that Prosigna normalization steps and in-vitro references are all 
probably intended to favour linearity between Prosigna centroids and each transformed profile under study, 
allowing the use of Pearson correlation as distance metric, but penalizing the portability of this approach on 
expression data different from the ones processed on its proprietary platform.  

Eventually, we performed also a comparative analysis of the Risk of Recurrence (ROR) scores computed 
downstream of either the AWCA-based PAM50 classification, or the standard PAM50 technical replica (strictly 
emulating the published PAM50 classification), or the Prosigna subtyping. ROR scores of PAM50 and Prosigna 
assays were respectively obtained according to the predictive models presented in S3.1. Then, they were 

Figure S10. Confusion matrix of the Prosigna in silico emulation on the TCGA 
dataset. 
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tested against the 10-year overall survival annotations of the TCGA dataset to compare their prognostic ability. 
Prosigna ROR scores resulted the weakest in distinguishing good and poor long-term clinical outcomes.  

Conversely, ROR scores from standard and AWCA-based PAM50 classifications were highly correlated to each 
other, with AWCA-based ROR scores that had the most statistically significant p-value in discriminating good 
and poor prognosis cases based on 10-year overall survival annotations. 

 

 
 

Figure S11. AWCA-PAM50 and Prosigna comparison. Both cases used an AWCA reference sample. Resulting subtype calls and 
concordances reached with published subtypes and with each other obtained from these intrinsic subtyping approaches (above). 
ROR scores distributions in 10-year overall survival (O.S.) good and poor prognosis cases for standard PAM50 technical replica, 

AWCA-based PAM50 and Prosigna. 

 

 

In conclusion, the graphs in Figure S12 show clearly some remarkable differences between the centroid values 
of the original PAM50 subtypes (in blue) with respect to the Prosigna centroids (in orange). This comparison 
involves all the NANO46 genes, the subset of PAM50 genes for which Prosigna centroids were made available. 
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Figure S12. Original PAM50 centroids by Parker et al. (2009) vs. Prosigna test centroids for NanoString profiles. 
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Consequently, we went on with the original PAM50 method and its centroids, moving towards the analysis of 
the other datasets at our disposal, as described in the main paper. All the relevant results of this wide 
investigation are reported in Section S4, here below.  

 

S4 PAM50 classifications of the GSE96058 dataset  

Two PAM50 classifications of the GSE96058 dataset were performed using the average of within-class average 
(AWCA) sample references, alternatively including or excluding the Normal-like class, as previously done for 
the TCGA dataset. This pair of AWCA references were built within the GSE96058 dataset itself according to its 
published subtype calls, whose distribution is summarized in Figure S13. Both PAM50 classifications of the 
GSE96058 dataset confirmed the effectiveness of the AWCA references to replicate a PAM50 classification 
with high accuracy even in the absence of the exactly used reference, as shown in Figure S14.  

 

 

Figure S13. Distribution of the published subtypes for the GSE96058 dataset 

 

 

 

Figure S14. PAM50 classifications of the GSE96058 dataset using AWCS references  
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S4.1 PAM50 classifications with internal or external AWCA references  
The AWCA references built using the RSEM values of the TCGA dataset were then used for the subtyping of 

the RSEM PanCA dataset, and the AWCA references obtained from the FPKM values of the GSE96058 dataset 

for the subtyping of the FPKM GSE81538 profiles (Figure S15). The experienced accuracies were high, quite 

comparable both with the accuracies reached in classifying the TCGA and GSE96058 datasets (i.e., the datasets 

involved in the reference computations) and with the accuracies reached in the classifications of the PanCA 

and GSE81538 datasets themselves using their inner AWCA references. Notably, the high concordances found 

with the published subtype calls showed that it is possible to use even an external reference to center RNA-

seq data for robust, single-sample PAM50 classification, provided that this external reference was built with 

RNA-seq data subject to the same normalization (RSEM or FPKM) of the data under PAM50-analysis. 

Furthermore, this hints at the chance of building and validate pre-defined reference samples able to assure 

future repeatability of classification. 

 

The best performing AWCA references for RSEM and FPKM data (built on TCGA excluding Normal-like class 
or in GSE96058, including Normal-like samples), are provided in Table S3 here below.  

 

 

 

 

 

 

Figure S15. PAM50 classifications of TCGA and PanCA datasets as well as of GSE96058 and GSE81538 datasets using average sample 
references (AWCA) built on TCGA and GSE96058 datasets, respectively. 
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Table S3. Best performing AWCA references for RSEM or FPKM data 

PAM50 GENES RSEM FPKM PAM50 GENES RSEM FPKM 

ACTR3B 7.8100 1.4074 KNTC2 8.3203 1.4998 

ANLN 9.9353 2.1223 KRT14 7.8568 4.3271 

BAG1 10.4049 4.2097 KRT17 8.8621 4.8571 

BCL2 9.6031 3.1651 KRT5 8.7922 4.4478 

BIRC5 8.7554 2.8230 MAPT 9.0991 2.6669 

BLVRA 10.1555 5.5727 MDM2 10.9720 3.2181 

CCNB1 10.1547 3.7837 MELK 8.7175 1.8623 

CCNE1 6.9164 1.0039 MIA 4.3840 2.2149 

CDC20 9.5420 3.5678 MKI67 11.1800 1.9167 

CDC6 9.0988 1.9639 MLPH 11.1385 4.8013 

CDCA1 8.3907 1.4540 MMP11 12.3251 6.8134 

CDH3 9.7252 3.0283 MYBL2 10.0170 2.8490 

CENPF 11.2564 2.2384 MYC 10.4113 5.1635 

CEP55 8.9771 1.9884 NAT1 8.8031 3.6197 

CXXC5 9.1479 4.9090 ORC6L 7.2664 1.4998 

EGFR 7.6419 2.1281 PGR 7.6944 1.4540 

ERBB2 13.3007 6.1550 PHGDH 10.1339 0.9210 

ESR1 10.4286 4.5612 PTTG1 8.8261 0.7854 

EXO1 8.1784 1.0373 RRM2 10.2831 4.2061 

FGFR4 7.4098 1.2902 SFRP1 9.2263 3.8384 

FOXA1 11.1919 5.3494 SLC39A6 13.0777 3.2620 

FOXC1 7.6145 2.0805 TMEM45B 6.6985 3.9320 

GPR160 9.5055 3.4496 TYMS 9.4346 6.7095 

GRB7 9.6301 3.7535 UBE2C 9.5297 1.5739 

KIF2C 9.1794 2.0186 UBE2T 8.9184 2.4290 

 

Notably, at https://github.com/DEIB-GECO/BC_Intrinsic_subtyping, we provide the R code both to build AWCA 
references and to perform single-sample PAM50 classifications of RNA-seq profiles using our pre-computed 
AWCA references (for RSEM or FPKM expression data). For single-sample AWCA-based PAM50 subtyping we 
strongly encourage to use the AWCA reference obtained for the same data normalization of the RNA-seq data 
under exam. Conversely, the R code to generate AWCA references can be used on any expression data, even 
from other technical platforms (see the Appendix for further details on the evaluation of gene expression data 
from Affymetrix GeneChips). However, to provide valuable AWCA references to be further used for single-
sample classification of independent expression profiles, we suggest to check the original dataset composition 
and evaluate if its ER/PR/HER status distributions are representative of BC disease, according to the references 
in the literature. 

https://github.com/DEIB-GECO/BC_Intrinsic_subtyping
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S5 Machine learning path 

S5.1 Machine learning survey and embedded regularization 
In order to perform breast cancer (BC) intrinsic subtyping, different supervised methods were taken into 
account and compared. As always in machine learning problems, the “No free lunch theorem” suggested to 
investigate multiple classification models up to find a learner whose generalization accuracy, tested over 
unseen samples, appeared to suit properly our specific task. Additionally, we tried alternative feature selection 
approaches to find a set of genes relevant with respect to our subtyping task, and that could be used as feature 
space to improve the performances of the machine learning model under evaluation. In this perspective, most 
of the assessed learners were trained with embedded regularizations. 

Embedded regularization methods are often used to learn which features best contribute to the accuracy of 

the model while the model is being fitted. These canonical feature selection methods introduce additional 

penalization constraints into the optimization function of a predictive algorithm as to shrink some parameters 

towards zero, or even push the model toward lower complexity by driving some parameters to zero. 

Consequently, they reduce variance and risk of overfitting. Practically, if we consider a specific task to be 

accomplished through a model having 𝑤 as parameter vector and we take as optimization function to be 

minimized a suitable loss function 𝐿𝐷(𝑤), we can add a regularization term 𝐿𝑊(𝑤) to control overfitting, such 

that the total loss function to be minimized takes the form: 

𝐿(𝑤) = 𝐿𝐷 (𝑤)  +  𝛾 𝐿𝑊 (𝑤) 

where 𝛾 is the regularization hyperparameter in charge of weighing the whole penalization term. Since 𝛾 

controls the strength of shrinkage and feature selection, it must be properly tuned.  

In case of weight decay (or Ridge, L2-regularization), the penalization term is:  

𝐿𝑊(𝑤) = 𝛾𝑤𝑇𝑤 = 𝛾‖𝑤‖2
2 

It provides a parameter shrinkage by reducing the overall squared Euclidean norm of parameters and, as 

suggested by the name, in a sequential learning algorithm it encourages parameter values (weights) to decay 

toward zero. Nonetheless, none parameter and consequently none feature is effectively annulled. 

In case of Lasso (or L1-regularization), the penalization term is: 

𝐿𝑊(𝑤) = 𝛾‖𝑤‖1 

where ‖𝑤‖1is simply the sum of the absolute values of all the model parameters. This regularization, for 𝛾 

sufficiently large, drives to zero some parameters leading to a sparse model in which the corresponding 

variables play no role. Nonetheless, Lasso fails to do grouped selection, tending to select only one variable 

from a group and ignoring the others if correlated. This can compromise robustness and stability in case of 

high variability of features. Furthermore, when the number of parameters is bigger than the number of 

samples, Lasso regularization selects at most n features, where n is equal to the number of samples. Thus, in 

a genomic dataset, the number of selected genes is bounded by the number of samples, introducing additional 

bias. 

Finally, in case of elastic net (or combined L1-L2-regularization), the penalization term is: 

𝐿𝑊(𝑤) = 𝛾𝐿1‖𝑤‖1 + 𝛾𝐿2‖𝑤‖2
2 

where 𝛾𝐿1 and 𝛾𝐿2 are the Lasso and Ridge regularization hyperparameters, respectively. This combined 
regularization overcomes the flaws of the previous ones since the L1-part of the penalty generates a sparse 
model with effective feature selection, whereas the quadratic L2-part removes the limitation on the number 
of selected features, encourages grouping effect and stabilizes the L1-regularization path. 
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S5.2 Classifiers under evaluation 
The following subsections summarize the characteristics of the methods we implemented and tested. 
 

S5.2.1 Ensemble methods: Multiclass Decision Forest and Decision Jungle 
Ensemble models often provide better coverage and accuracy than a single classifier over complex tasks, 
combining several learners to manage and improve bias-variance trade-off. In our Decision Forest algorithm, 
bagging is implemented to train each decision tree in the ensemble using a randomly drawn subset of the 
training set. Furthermore, each decision tree restricts to a fixed number the features randomly selected for 
splitting each node. This kind of approach, where the random selection of features is combined with bagging, 
is known also as “Random forest” from the trademark algorithm of Leo Breiman and Adele Cutler. However, 
we referred to this approach as multiclass Decision Forest with bagging. The algorithm works by building a 
classification decision forest with multiple decision trees, such that each tree outputs a non-normalized 
frequency histogram of labels, and then the most popular output class is obtained by voting. Voting 
aggregation process sums these histograms and normalizes the result to get the “probability” for each label. 
The trees that have high prediction confidence have a greater weight in the final decision of the ensemble to 
achieve higher classification accuracy. Decision trees can represent non-linear decision boundaries and are 
non-parametric models, thus the sample population is not required to fit any parametrized distribution. 
Furthermore, they are efficient in computation and memory usage and perform integrated feature selection 
that makes them resilient in the presence of noisy features. All these peculiarities are shared with Decision 
Jungle, used as an alternative bagging-based ensemble method. Unlike conventional decision trees that only 
allow one path to every node, Decision Jungles are compact and powerful discriminative models for 
classification, where directed acyclic graphs (DAGs) allow multiple paths from the root to each leaf. Specifically, 
decision jungles use node merging as well as node splitting algorithms to jointly optimize both the features 
and the structure of the DAGs efficiently, while the weighted sum of entropies at the leaves is minimized during 
training. In the end, compared to decision forests, decision jungles require dramatically less memory while, 
usually, considerably improving generalization. 

 

S5.2.2 Multiclass Logistic Regression 
Logistic Regression is a classification method that uses the logistic sigmoid function on a linear combination of 
the features 𝜙, weighted by a parameter vector 𝑤, to estimate the posterior probability of a sample to 

belonging to a class 𝐶:  𝑝(𝐶|𝜙) =
1

1+exp(−𝑤𝑇𝜙)
= 𝜎(𝑤𝑇𝜙) 

This simple approach is thought for binary classification, where the alternative class probability is just the 
complement of the found probability. In the multiclass version, instead, multiclass Logistic Regression is also 
known as softmax Logistic Regression, since the posterior probabilities are given by a softmax transformation 

of the activation functions:  𝑝(𝐶𝑘|𝜙) = 𝑦𝑘(𝜙) =
exp(𝑤𝑘

𝑇𝜙)

𝛴𝑗 exp(𝑤𝑗
𝑇𝜙)

 

where each activation 𝑎𝑘 = 𝑤𝑘
𝑇𝜙 is a linear combination of the features 𝜙, weighted by a parameter vector 

𝑤𝑘, specific for each class 𝐶𝑘.  Softmax transformation squeezes toward one the biggest exponential, while 
pushes toward zero smallest ones. Finally, the predicted class is the one with the highest probability. For an 
N-dimensional feature space, this model has N adjustable parameters for each class 𝐶𝑘, to be computed 
through maximum likelihood estimation up to minimizing the following cross-entropy error function for the 

multivariate case:  𝐿𝐷(𝑤1 … 𝑤𝑘) = − log 𝑝(𝑇|𝜙; 𝑤1 … 𝑤𝑘) = ∑ (∑ −𝑡𝑛𝑘 log(𝑦𝑛𝑘)𝐾
𝑘=1 )

𝑁

𝑛=1
 

where 𝑦𝑛𝑘 is the probability that the 𝑛-th training sample belongs to the 𝐶𝑘 class, according to the logistic 
function estimate; 𝑇 is, instead, the matrix of the true labels, such that 𝑡𝑛𝑘 is usually null for each class except 
the 𝐶𝑘 class the 𝑛-th training sample belongs to, and whose value is one. We used this method with a 
combined L1-L2 regularization (elastic net) and therefore, to train the model, the following additional 
penalization term was added to the reported loss function. 

𝐿𝑊(𝑤) = 𝛾𝐿1‖𝑤‖1 + 𝛾𝐿2‖𝑤‖2
2 
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S5.2.3 Multiclass Neural Network  
A Feed-Forward artificial Neural Network (FFNN) is a non-linear model characterized by the number of neurons 
(nodes), their topology, their activation functions and the values of synaptic weights and biases. It includes a 
set of interconnected layers. The inputs are the first layer and are connected to an output layer by an acyclic 
graph comprised of weighted edges and nodes, i.e., neurons. Multiple hidden layers can be inserted between 
the input and output layers, but theoretically, having input from a compact set, just a single hidden layer and 
enough non-linear activation functions could model almost every non-linear function. In fact, a FFNN provides 
a linear combination of non-linear activation functions for each neuron along the feed-forward path, since all 
nodes in a layer are connected by the weighted edges to nodes in the next layer (Figure S16). Let consider 𝑖 
inputs, 𝑗 hidden neurons (on a single hidden layer) and 𝑘 outputs, with 𝐻 as activation function for the hidden 
neurons and 𝐺 as activation function for the output neurons. Let 𝑤11 … 𝑤𝑗𝑖  be the input-hidden layer weights; 

whereas, let 𝑊𝑘1 … 𝑊𝑘𝑗 be the hidden-output layer weights. 

The generic output 𝑂𝑘 will be:   𝑂𝑘 = 𝐺𝑘 (∑ 𝑊𝑘𝑗′ 𝐻𝑗 (∑ 𝑤𝑗′𝑖′

𝑖

𝑖′=1
𝐼𝑖′)

𝑗

𝑗′=1

) 

 

 
Figure S16. Multi-output Feed-Forward Neural Network. 

 

Most predictive tasks can be accomplished easily with at most two hidden layers, whereas deep neural 
networks with many layers can be very effective in complex tasks, including automated feature extraction 
steps. However, in our case, we decided to evaluate a fully connected Feed-Forward Neural Network with a 
single hidden layer and sigmoid activation functions, both for the hidden and output layers. Each output 
neuron is associated with a single class to evaluate the probability of belonging to that class; then, the class 
with the highest probability is the predicted one for the classification task. The relationship between inputs 
and outputs is learned from training the FFNN on normalized input data. The cross-entropy error function is 
adopted as loss function 𝐿(𝑊) with weight decay (L2-regularization), and backpropagation with learning rate 
𝜂 and momentum 𝛼 is used as rule to learn iteratively the parameters of the model, i.e., the weights associated 
with each edge of the network. In particular, the momentum term is added to avoid oscillation and risk of local 
minima. This means for a generic parameter w that its next value at time k+1 is: 

𝑤𝑘+1 = 𝑤𝑘 − 𝜂
𝜕𝐿(𝑤)

𝜕𝑤
|

𝑘

+ 𝛼
𝜕𝐿𝐷(𝑤)

𝜕𝑤
|

𝑘−1

 

Cross-validation is employed as tuning technique for model selection, up to find a proper number of hidden 
neurons, as well as suitable L2-regularization hyperparameter, learning rate 𝜂 , and momentum 𝛼. 
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S5.2.4 One-vs-All multiclass Support Vector Machine 
Support Vector Machines (SVMs) have been extensively used in the classification of gene expression data with 
thousands of features and limited set of samples, even if they are originally designed for binary classification 
tasks. In fact, the basic concept behind SVM binary classification for linearly separable data is finding among 
the infinite linear boundaries (called hyperplanes) that can separate the data, the optimal hyperplane that 
maximizes the margin from the nearest points of each class. Nevertheless, not every dataset is linearly 
separable, and SVMs are able to classify also complex and nonlinear data by taking advantage of the “Kernel 
Trick” to move toward higher dimensional spaces. Specifically, an SVM classifier can use a kernel function 𝐾 to 
nonlinearly transform the data into a higher dimension in which the problem is reduced to the linear case. 
Commonly used kernel functions include Polynomial, Gaussian radial basis function (RBF), or sigmoid 
functions. Hence, when target values 𝑡 are in {-1,1} and 𝑆 is the set of indexes of the support vectors 𝑥𝑚 with 
their associated parameters 𝑎𝑚, the class prediction for an unseen sample 𝑥𝑞 is computed as: 

𝑓(𝑥𝑞) = 𝑠𝑔𝑛 (∑ 𝛼𝑚𝑡𝑚𝐾(𝑥𝑞 , 𝑥𝑚) + 𝑏

𝑚∈𝑆

)  

where ∑ 𝛼𝑚𝑡𝑚𝐾(𝑥𝑞 , 𝑥𝑚) + 𝑏 = 0
𝑚∈𝑆

 is the equation of the hyperplane able to separate the data accurately. 

However, selecting the kernel function alongside the parameterization could be challenging during the model 
selection phase. Furthermore, handling noisy data requires to define a non-perfectly separating hyperplane 
that anyway minimizes the classification error, without increasing model complexity and introducing the risk 
of overfitting. Eventually, SVM can be extended to deal with multi-class classification problems as we did, i.e., 
using one SVM for each class in combination with an approach called One-vs-All. For each SVM, a given class 
is fitted against the rest of the classes, all combined together. Then, a prediction is performed by running all 
these binary classifiers and choosing the prediction with the highest confidence score. In our implementation, 
each SVM includes also Lasso regularization, to reduce the risk of overfitting, performing embedded feature 
selection. 

 

S5.3 Training phase and classifier survey 
For the training phase, the TCGA training set was split into 10 folds, randomly drawn and balanced with respect 
to subtypes. Given the generic classifier under study, each specific model, tuned with a specific combination 
of hyperparameters, was trained with 10-fold cross-validation, i.e., 10 times and each time over a different set 
of 9 folds, leaving the 10th fold out as validation set. Thus, each already tuned specific model learned its optimal 
parameter values over 10 slightly different training sets and could estimate its generalization accuracy, each 
time over a bunch of samples extraneous with respect to that turn of training. We repeated this training phase 
for each family of classifiers under study and we found the best-trained models, i.e., the models whose 
hyperparameter setting and learned parameter values led to the best generalization accuracy, estimated 
through cross-validation. Further details about the machine learning approaches under study are summarized 
in Table S4, whereas Figures S17-S21 report the performances on the TCGA test set of each assessed best-
trained model from each family of classifiers. 
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Figure S17. Multiclass Logistic Regression: Performances and confusion matrix on TCGA test set for the model trained with cross-
validation on TCGA training set  

 

Table S4. Machine learning survey. Accuracies estimated with 10-fold cross-validation on TCGA data, and details about the best 
trained models for each family of classifiers. 
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Figure S18. Multiclass Decision Jungle: Performances and confusion matrix on TCGA test set for the model trained with cross-
validation on TCGA training set 

 

 

 

 

Figure S19. Multiclass Decision Forest: Performances and confusion matrix on TCGA test set for the model trained with cross-
validation on TCGA training set  
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Figure S20. Multiclass Feed Forward Neural Network: Performances and confusion matrix on TCGA test set for the model trained 
with cross-validation on TCGA training set 

 

 

 

 

Figure S21. Support Vector Machines (one-VS-all): Performances and confusion matrix on TCGA test set for the model trained with 
cross-validation on TCGA training set 
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S5.4 Feature selection strategies 
Starting from the most promising supervised method, i.e., regularized multiclass Logistic Regression, several 
additional feature selection strategies were assessed, other than simply considering the PAM50 genes already 
involved in PAM50-based subtyping. The aim was to reduce the feature space of interest compared to the 
whole set of profiled genes and possibly improve the performance of the learner in performing the intrinsic 
subtyping task. First, these approaches were applied to the RSEM profiles of the TCGA dataset, for both 
training and testing. Then, some relevant feature spaces were employed also to train and test the multiclass 
Logistic Regression on the FPKM data of the GSE96058 dataset. Eventually, both PanCA and GSE81538 datasets 
were used as external datasets for testing the corresponding models trained respectively on the RSEM profiles 
of the TCGA dataset or on the FPKM profiles of the GSE96058 dataset. Further details about all the assessed 
feature selection methods are briefly discussed in the following subsections. 

 

S5.4.1 Blind approach 

At first, we tried a typical approach of feature selection for genomic data that works completely blindly with 
respect to the predictive task and depends only on the magnitudes and dynamicity of the collected expression 
values. This feature selection approach excluded simply the lowest expressed genes and the genes with the 
lowest variability, since they often represented less reproducible or potentially less useful features when 
working across multiple sequencing experiments. Therefore, specifically, we reduced the initial dimensionality 
of the TCGA dataset by discarding: 

• Genes whose average expression in 817 samples was in the 1st quartile of the distribution of the mean 
expressions of all the sequenced genes (exclusion of low-expressing genes) 

• Genes whose standard deviation, compared to the mean value of the expressions of the gene in the 
dataset, fell within the 1st quartile of the standard deviations of all the sequenced genes (exclusion of 
genes with low variability). 

After this feature selection step, the genes for each sample were almost halved, and hence the training set 
had 10,606 features (instead of 19,737). But after tuning and training (done exactly as for previous analysis) a 
regularized multiclass Logistic Regression over this reduced training set, the cross-validated accuracy was 
lower than the previous estimate. Then, we assessed that also over the test set the new best-trained model 
behaved worst, with an accuracy around 0.81 with respect to the accuracy of 0.85 experienced for the best 
model trained on the entire original feature space. Hence, this choice led to disappointing results. Indeed, the 
high sensitivity and accuracy of the RNA-sequencing quantitative measurements could make relevant for our 
subtyping task also low-expressed genes, excluded from classification methods based on the expertise gained 
on not up-to-date sequencing technologies.  

 

S5.4.2 Filter based approaches 

Among the assessed external strategies, not involving Logistic Regression during the feature selection phase, 
we considered several filter-based methods, since they are effective in computation time and robust to 
overfitting. Filter-based methods use a statistical measure to assign scores to features, which are then ranked 
accordingly and either selected to be kept or removed from the feature space. In supervised tasks, each 
feature is evaluated with respect to the target to be predicted, but regardless of the chosen model and without 
considering relationships among features, with some redundancy risk. However, we filtered out a certain 
number of features supposed to be less meaningful, or even irrelevant, for our subtyping task according to the 
next scoring metrics: 1) Fisher scores; 2) Mutual Information; 3) Chi-squared scores; 4) Spearman Correlation. 
In detail, we proceeded with the following workflow for each scoring metric. We started from the complete 
TCGA training set and we collected 5 wide random samplings with replacement, stratified with respect to 
subtypes. For each sampling, we used the given metric to score all the 19,737 original genes independently 
from the others, known that the score of each gene estimates its relationship with the Ciriello et al. (2015) 
target subtype to be predicted. Hence, for each scoring metric we obtained 5 rankings (one for each sampling) 
and, consequently, 5 scores for each gene with the given metric. The next step was simply to sum, in a single 
overall gene score, the 5 scores of each gene within a given metric and then to make the overall ranking for 
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that given metric. Notice that the overall ranking of each scoring metric is independent of the others. Using an 
overall ranking improved the robustness of the genes that emerged as the most relevant ones for a given 
metric since first positions include only genes meaningful across all the 5 cases scored with that given metric. 
Following, we used as alternative reduced feature spaces the top 1000 genes of each overall ranking (i.e., 
scoring metric), since the non-null weights (then non-null features) learned by the regularized multiclass 
Logistic Regression trained on the complete TCGA training set of 19,737 features/genes were approximately 
one thousand. 

 

S5.4.3 DEG-based approach: limma analysis 

We analyzed the whole original feature space of 19,737 genes, using limma, an R package for the analysis of 
gene expression data (from microarray or RNA-seq), whose core capability is the use of linear models to assess 
differential expression in the context of multifactor designed experiments. Specifically, by setting only the 
Ciriello et al. (2015) target subtype as variable in the experimental design, we noticed that the Basal class 
dominates because its expression profiles are more easily recognizable and different from those of the other 
classes, even more than the profiles of the other subtypes are different from each others. Thus, using the F 
statistic to rank the genes would favor mainly the distinction of Basal class from the other subtypes. To 
overcome this issue, we defined all the 10 possible contrasts between the 5 Breast Cancer subtypes, making 
pairwise differential analyses. Then, fixed an integer N, we selected genes according to the following criterion: 
for each contrast (i.e., for each pair of subtypes) given M genes differentially expressed according to the 
Sequencing Quality Control Consortium (SEQC) criterion (SEQC Consortium, 2014) (i.e., | log(Fold Change) | > 
1 and p-value < 0.01), the top N genes according to the p-value were chosen if M>N, otherwise all M 
differentially expressed genes were selected. In this way, we obtained 10 lists, each one including the top N 
genes (or at least all the M genes) differentially expressed in a given pairwise contrast. For each considered 
choice of N, through the union of the corresponding 10 lists, we gained a complete set of genes to be selected 
as feature space to train our regularized logistic regression. This criterion guaranteed that each possible so-
called limmaN feature space certainly includes the first N (or all the M) genes emerged as differentially 
expressed genes for each contrast, and therefore relevant to distinguish at least a couple of subtypes. Notice 
that as previously we tuned and trained our regularized Logistic Regression on the alternative feature spaces 
obtained for 11 different N values, ranging from 10 to 1000 (i.e., 10, 30, 50, 60, 70, 80, 90, 100, 200, 500, 
1000). 

 

S5.4.4 Feature selection strategy with a wrapper method 

As the last step of our study, we assessed if the prediction performances of the regularized multiclass Logistic 
Regression could be further improved using additionally a wrapper method. Wrapper methods consider 
feature selection as a search problem where different combinations of features are evaluated and compared 
based on the performances of the chosen model, detecting also possible feature interactions to avoid 
redundancy. However, the main limitation of these methods is the high computational cost, both in terms of 
time and memory, that made their use computationally unaffordable in case of wide feature space 
dimensionalities, like the ones of the RNA-seq datasets. Therefore, we implemented a strategy involving a 
wrapper method, but alternatively using as starting feature space some promising reduced feature spaces, 
like the ones previously obtained from Chi-squared based or DEG-based filtering. Sequential backward 
elimination was chosen as heuristic method to find reduced subsets of relevant features, since it appeared to 
us less prone to underfitting with respect to a forward selection of features, considering what we experienced 
with multiple assessments of the same task performed over smaller feature spaces of proof. The backward 
elimination algorithm started estimating the performances of the learner trained over the N-dimensionality 
whole-features training set. Then, it considers and estimates the accuracy of all the subsets with N-1 features. 
After choosing the subset whose estimated accuracy is the highest, it excludes accordingly the feature not 
belonging to that subset. In the case of equality, the elimination choice is sequential. Thus, the method 
iteratively discards one gene at a time until no more feature elimination improves the accuracy of the 
regularized multiclass Logistic Regression beyond a fixed threshold of gain. In our study, first, we applied our 
wrapper method over the top 1000 Chi-squared based genes; although multiple runs were unfeasible for 
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computational reasons, this still raw approach, combining regularized logistic regression, filter-based feature 
selection and the additional backward elimination, appeared worthy of further investigations, with a 
generalization accuracy estimated with 5-folds cross-validation of about 0.95. Therefore, also considering that 
the number of genes preserved by this first trial was about one hundred, we chose as starting feature spaces 
for other attempts of the combined strategy the top 200 and top 500 Chi-squared-based genes and our 
limma50 signature. For each alternative starting feature space, we carried out in parallel ten independent runs 
of backward elimination, performing each run with randomized feature order as to mitigate the bias 
introduced by the sequential gene scrolling (solvable only through an unfeasible exhaustive search). Since kept 
genes in each run were not robust (also because of the needed feature shuffling), eventually we combined all 
the genes kept in at least one run, with a sort of downstream preservation strategy, to face the lack of 
robustness experienced from multiple runs, while trying to increase the subtyping capability of the collected 
subsets. Each gene signature preserved from the three corresponding starting feature spaces was used in its 
turn as a reduced feature space. 

 

Implementation of the wrapper method 

To implement the strategy involving a wrapper method, we could not customize the Azure Machine Learning 
Studio workflow with R-scripts, due to the complexity of the investigation. Therefore, we run on a server the 
R code needed to implement the wrapper method, extracting data of interest through the AzureML library for 
R. Furthermore, we took advantage of several functions provided by LiblineaR, a package for the estimation of 
predictive regularized linear models for classification and regression, and by mlr, a complete framework for 
machine learning experiments in R. We used the function makeFeatSelWrapper from the mlr library, providing 
as parameters: 1) a regularized multiclass Logistic Regression as learner for the subtyping task (defined using 
LiblineaR library functions); 2) 5-fold cross-validation as approach for the evaluation of the performances over 
investigated subsets of features; 3) the overall accuracy as the measure for performance assessment; and 4) 
the feature selection strategy. This latter one was specified through the makeFeatSelControlSequential 
function together with its parameter indicating the choice of a backward elimination strategy. According to 
backward elimination, the feature selection algorithm starts estimating the performances of our learner 
trained over the whole-feature training set, i.e., the top N genes, and iteratively discards one gene at a time, 
provided that our learner, trained over a subset excluding that gene, shows higher estimated accuracy.  

 

S6 Performances of the main Logistic Regression models under evaluation 
To ease the access and comprehension of the relevant collected results, all the confusion matrices concerning 
different regularized multiclass Logistic Regression (mLR) models trained on the TCGA training set, or on the 
GSE96058 training set, and evaluated on the available inner and external test sets (PanCa and GSE81538) are 
reported here below in Figures S22-S36, together with some other relevant plots. Eventually, Tables S5 and S6 
summarize the performances reached in cross-validation and internal testing, with mLRs using the most 
relevant emerged signatures as feature spaces and meant respectively for RSEM or FPKM data.  

Notice that for each confusion matrix it is clearly specified: the training set on which the model was trained, 
the feature space of interest, for which kind of data it is intended (RSEM or FPKM), and the test set on which 
the reported subtyping results were evaluated. The feature spaces of interest moved from the whole sets of 
profiled genes, to relevant signatures found with our feature selection study. Additionally, as mentioned in the 
main paper, we used also the already known PAM50 genes as feature space for mLRs; so-obtained results 
were useful both to be compared with the AWCA-based PAM50 classifications and as a benchmark to better 
interpret and evaluate the performances reached with our alternative gene signatures of interest. 
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Figure S22. Regularized multiclass Logistic Regression: Performances and confusion matrix on TCGA test set for the model trained on 
TCGA training set using the whole TCGA gene set as feature space. 

 

 

 
Figure S23. Regularized multiclass Logistic Regression: Performances and confusion matrix on TCGA test set for the model trained on 

TCGA training set using the top1000 Chi-square based genes as feature space. 
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Figure S24. Regularized multiclass Logistic Regression: Recalls of each class on TCGA test set for the models trained on TCGA training 
set using alternatively the whole TCGA gene set or the top1000 Chi-square based genes as feature space. 

 

 

 
Figure S25. Regularized multiclass Logistic Regression: Performances and confusion matrix on TCGA test set for the model trained on 

TCGA training set using limma50 gene signature as feature space. 

 

 



Machine learning for RNA sequencing-based intrinsic subtyping of breast cancer 

31 
 

 

Figure S26. Regularized multiclass Logistic Regression: Recalls of each class on TCGA test set for the models trained on TCGA training 
set using alternatively the whole TCGA gene set or the limma50 gene signature as feature space. 

 

 

 

Figure S27. Comparative analysis on TCGA test set: Recalls of each class for different subtyping approaches 
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Figure S28. Comparative analysis on TCGA test set: Precisions of each class for different subtyping approaches 

 

 

 
Figure S29. Regularized multiclass Logistic Regression: Testing on the intra-dataset test set and on the external PanCA dataset of the 

model trained on TCGA training set using limma50 gene signature as feature space 
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Figure S30. Regularized multiclass Logistic Regression: Testing on the intra-dataset test set and on the external PanCA dataset of the 
model trained on TCGA training set using limma50_BWE gene signature as feature space 

 

 

Figure S31.  Regularized multiclass Logistic Regression: Testing on the intra-dataset test set and on the external PanCA dataset of 
the model trained on TCGA training set using PAM50 gene signature as feature space 
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Table S5. Feature selection study on the TCGA dataset: Main results. 

Feature 
Selection 
Strategy 

Regularized multiclass Logistic Regression trained 
on TCGA training set with different feature spaces 

Generalization 
accuracy 

estimated with 
cross-validation 

Overall 
accuracy on 
TCGA test 

set 

- ORIGNINAL FEATURE SPACE (19,737 GENES) 88% 85% 

FILTER 
METHODS 

TOP 1000 SPEARMAN CORRELATION  89% 87% 

TOP 1000 MUTUAL INFORMATION 89% 86% 

TOP 1000 FISHER SCORES 90% 87% 

TOP 1000 CHI-SQUARED BASED 90% 86% 

TOP 500 CHI-SQUARED BASED 90% 86% 

TOP 200 CHI-SQUARED BASED 89% 86% 

FILTER 
METHODS 

+ 
BACKWARD 

ELIMINATION 

SIGNATURE OF 165 GENES from TOP 200 Chi-squared 
+ BACKWARD ELIMINATION (10 runs) 91% 86% 

SIGNATURE OF 276 GENES from TOP 500 Chi-squared 
+ BACKWARD ELIMINATION (10 runs) 94% 86% 

 
LIMMA 

ANALYSIS 
 

limmaN: 
Union of 

TOP N 
Differentially 

Expressed 
Genes 

of each 
pairwise 
contrast 

SIGNATURE OF 4,168 GENES - limma1000 90% 84% 

SIGNATURE OF 2,326 GENES - limma500 89% 86% 

SIGNATURE OF 1,020 GENES - limma200 93% 88% 

SIGNATURE OF 538 GENES - limma100 95% 87% 

SIGNATURE OF 277 GENES - limma50 92% 88% 

limma50 
+ 

BACKWARD 
ELIMINATION 

SIGNATURE OF 210 GENES - limma50_BWE 
(from limma50 + BACKWARD ELIMINATION 10 runs) 93% 87% 

A PRIORI PAM50 genes 92% 89% 
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Figure S32. Regularized multiclass Logistic Regression: Performances and confusion matrix on GSE96058 test set for the model 

trained on GSE96058 training set using the whole GSE96058 gene set as feature space. 

 

 

 

Figure S33. Regularized multiclass Logistic Regression: Performances and confusion matrix on GSE96058 test set for the model 
trained on GSE96058 training set using limma50 gene signature as feature space. 
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Figure S34. Regularized multiclass Logistic Regression: Testing on the intra-dataset test set and on the external PanCA dataset of the 
model trained on TCGA training set using limma50 gene signature as feature space 

 

 

Figure S35. Regularized multiclass Logistic Regression: Testing on the intra-dataset test set and on the external PanCA dataset of the 
model trained on TCGA training set using limma50_BWE gene signature as feature space 
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Figure S36. Regularized multiclass Logistic Regression: Testing on the intra-dataset test set and on the external PanCA dataset of the 
model trained on TCGA training set using PAM50  gene signature as feature space 

 

Table S6. Feature selection study on the GSE96058 dataset: Main results. 

Previous feature selection 
strategy 

Regularized multiclass logistic 
regression trained on GSE96058 
training set with different feature 
spaces 

Generalization 
accuracy 

estimated with 
Cross-validation 

Overall 
accuracy on 
GSE96058 

Test set 

- 
ORIGINAL FEATURE SPACE (30,865 
GENES) 88% 89% 

LIMMA ANALYSIS 
Union of 

TOP 50 Differentially 
Expressed Genes of each 

pairwise contrast 

limma50 - SIGNATURE OF 276 GENES   
excluding unavailable DRAIC gene 

90% 91% 

limma50 
+ 

BACKWARD 
ELIMINATION 

limma50_BWE - SIGNATURE OF 209 
GENES   from limma50 + BACKWARD 
ELIMINATION (10 runs) excluding 
unavailable DRAIC gene  

90% 91% 

A PRIORI PAM50 genes 93% 93% 
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Both limma50 and limma50_BWE gene signatures are reported in Table S7. Genes highlighted in pink belong 
also to limma50_BWE, while genes written in red are in common with the PAM50 signature. 

 

Table S7. List of genes belonging to limma50 and limma50_BWE signatures 

 

 

 

 

 

 

ACADSB IFRD1 TFF1 MPHOSPH6 IL17B SCUBE2 GSG2 TRPM6 ATP13A5 

RHOB IGF1R TFF3 SPRY2 C5AR2 EPS15L1 HORMAD1 TMEM86A 
GPR144 
(ADGRD2) 

ART3 KCNJ11 TTK NPM2 UBE2T HPSE2 C2ORF88 KIF18B TEPP 

BUB1 KCNMB1 XBP1 NDC80 RACGAP1 ALX4 MIEN1 CLDN19 SFT2D2 

CA12 KIFC1 MIA AGR2 TFCP2L1 DMRTC2 C2ORF40 SMYD1 C2CD4B 

CBR3 KRT16 GDF5 SPAG5 NUSAP1 CLSTN2 PARD6B LINC01105 TMEM220 

CCNA2 MAG FZD9 POLQ VGLL1 TINAGL1 SLC7A3 SGOL1 GATA3-AS1 

CCNB1 MYBL2 SPARCL1 STARD3 GINS2 NCAPG RERG ROPN1B C9ORF170 

CYP2B7P NAT1 SDPR KIF2C GALNT7 SOX17 MICALL1 NEK10 C9ORF152 

DMD NEFL BCAS1 WWP1 BCL11A DLK2 TSLP MBOAT1 FAM72B 

DUSP7 NEK2 STC2 UBE2C FAM64A GGCT FGD3 AGR3 
MIR143HG 
(CARMN) 

EDN3 NPY1R INPP4B CAPN11 RNF186 MLPH TICRR NXNL2 FAM72D 

EPHA2 NTF4 PRC1 WIF1 ROPN1 
ARMT1 
(C6ORF211) 

BOC NAGS FAM196B 

ESR1 NTRK2 TBX19 PADI2 SIDT1 VPS37B CENPL CYP4Z2P LINC00173 

EZH1 PCSK6 KCNQ4 SCRG1 ELOVL2 ASB13 CAPN13 CT62 DRAIC 

FANCA PGR CCNB2 CLCA4 CDCA8 SHCBP1 PGAP3 SUSD3  

FGFR2 PLK1 EXO1 TPX2 CEP55 MMRN2 LEMD1 SKA1  

FOXC1 FXYD1 AURKB TBC1D9 HJURP ZNF552 CGB7 FAM171A1  

FOXM1 PMAIP1 NRG2 SYNM MCM10 THSD4 KLHL29 RBM24  

FUT3 PRNP CLCA2 NCAPH TRPV6 FAM110D LRRC3B PRR15  

G6PD PTGER3 PPM1F SLC7A8 DEPDC1B CNTNAP3 MRGPRX3 NUDT8  

GATA3 PTPRZ1 ZNF516 CBX7 SCN3B LINC00472 TMEM45B RASGEF1C  

GFRA1 RLN2 GREB1 ORC6 CENPN DSN1 DEGS2 HID1  

GPM6B RRM2 ESPL1 TRIM29 DBNDD2 TRPM3 IFFO2 FAM19A3  

GRB7 SCN2B MELK SGK3 SLC22A11 CCDC170 IQGAP3 OR2L13  

GRIA4 CX3CL1 GINS1 SLC39A6 RGMA SLC44A4 OSR1 EOGT  

CXCL3 SFRP1 SEC16A SPDEF 
PAK7 
(PAK5) 

FAM83D CMBL TPRG1  

GSN SOX10 TROAP PAMR1 ERGIC1 PPP1R14C SRSF12 KY  

FOXA1 AURKA TSPAN1 RGS22 NDRG2 CDCA3 CHODL OVCH2  

HOXA2 TAC1 KIF20A GPR160 WDR19 NUF2 RIMS4 STAC2  
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S7 Final recap and comparisons of the main intrinsic subtyping approaches   
Table S8 summarizes the performances of the most relevant intrinsic subtyping approaches we evaluated and 
applied in our study. Specifically, it reports both the accuracies on their corresponding internal test set and on 
the dataset used for external testing. Corresponding internal and external test sets always include gene 
expression profiles subjected to the same normalization procedure (RSEM or FPKM) of the data used for 
developing the approach under consideration.  

Although regularized mLRs reached slightly lower accuracies compared to the here proposed AWCA version 
(which includes the Normal-like class) of the PAM50 method, this latter one is biased by the PAM50 nature of 
the published subtypes, assigned via PAM50 assays and thus using the same genes of interest and the same 
original centroids developed by Parker et al. (2009). Using PAM50 genes with mLR models brought valuable 
performances, despite the emerged ambiguity of the PAM50 labels them-selves, and set benchmark results, 
considering the same signature involved in the original PAM50 method. Eventually, even if slightly inferior, the 
performances of the limma50 and limma50_BWE based regularized mLRs are also interesting and worthy of 
further investigations and evaluations.  

Particularly, in Table S8 note that, for both the limma50 and limma50_BWE based mLRs intended for RSEM 
gene expression data, the accuracies reached on the internal TCGA test set and on the corresponding PanCa 
dataset used for external testing are uniform; the couple of mLR classifiers developed for FPKM data showed 
instead higher results overall, with slightly lower accuracies in the external GSE81538 test set than in the 
internal GSE96058 test set. This only marginal degradation on the unknown and independent samples of the 
external test set is usual for a good classifier, which is able anyway to tackle the overfitting risk during training. 
Eventually, in each of the mLRs, we experienced meaningful and quite comparable performances, which 
confirm the quality of single-sample intrinsic subtype callers developed with regularized Logistic Regression 
models and their reliability when dealing with unknown samples.  

Notably, at https://github.com/DEIB-GECO/BC_Intrinsic_subtyping, we provide the R code needed to use the 
limma50 and limma50_BWE based classifiers available to classify external samples subject to RSEM or FPKM 
normalization.  

 

Table S8.  Accuracies on internal and external test sets for the most promising intrinsic subtyping approaches  

Intrinsic 
subtyping 
approach 

Dataset used 
for AWCA 
reference 
building 

Gene set  
of interest 

Intended 
for Test set 

Accuracy 
on test  

set  

External 
test set 

Accuracy    
on external 

test set 

AWCA-
PAM50 TCGA PAM50  RSEM TCGA  93% PanCa 96% 

AWCA-
PAM50 GSE96058 PAM50 FPKM GSE96058  95% GSE81538 96% 

 Training set Feature space     
of interest      

Regularized 
mLR 

TCGA training 
set PAM50   RSEM TCGA         

test set 89% PanCa 90% 

Regularized 
mLR 

TCGA training 
set limma50   RSEM TCGA         

test set 88% PanCa 88% 

Regularized 
mLR 

TCGA training 
set limma50_BWE   RSEM TCGA         

test set 87% PanCa 87% 

Regularized 
mLR 

TCGA training 
set PAM50   FPKM GSE96058 

test set 93% GSE81538 92% 

Regularized 
mLR 

GSE96058 
training set limma50 FPKM GSE96058 

test set 91% GSE81538 89% 

Regularized 
mLR 

GSE96058 
training set limma50_BWE FPKM GSE96058 

test set 91% GSE81538 89% 

https://github.com/DEIB-GECO/BC_Intrinsic_subtyping
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S7.1 Robustness and concordance evaluation between main intrinsic subtyping approaches   
Until here, we used mainly the accuracy with respect to the published calls to evaluate our subtyping 

approaches; nonetheless, although these concordances with the published calls show classification stability, 

also other assessment must be highlighted to demonstrate more clearly the robustness of the here proposed 

single-sample approaches, i.e., the AWCA-based PAM50 classification and the most promising mLR classifiers. 

Particularly, Table S9 clearly highlights the increased robustness of the AWCA-based PAM50, compared with 

the standard one; conversely, for the mLR approaches, which are perfectly repeatable, Table S10 reports the 

mean pairwise concordance of classifications provided by mLR PAM50, limma50 and limma50_BWE among 

them and with the AWCA-based PAM50 one in each internal/external test set. The three mLR classifiers 

provided high classification robustness in each testing set, despite they consider different feature spaces. 

Moreover, comparing these three mLR-based classifications with the AWCA-based PAM50 subtyping, we 

found several cases of full agreement, but discordant with the published subtypes; hence, mLRs appear robust 

also in classifying ambiguous cases, despite published labels were used for their training. Furthermore, mLRs 

may be further enhanced in the future through a greater amount of training samples and more reliable labels, 

as the ones from AWCA-based subtyping. 

 

Table S9. Concordance among multiple runs of standard PAM50 or AWCA-based PAM50, varying the sample subset size of interest 

APPROACH 
SIZE OF SAMPLE SUBSET 
INVOLVED IN REFERENCE 

CONSTRUCTION 

MEAN PAIRWISE 
CONCORDANCE AMONG 

MULTIPLE RUNS  

MEAN PAIRWISE 
CONCORDANCE WITH 

PUBLISHED CALLS 

Standard PAM50  400 samples 95.4+/-1.0% 85.5+/-0.8% 

Standard PAM50  200 samples 95.2+/-1.4% 85.7+/-2.0% 

Standard PAM50 100 samples 93.1+/-2.9% 84.8+/-3.8% 

AWCA-based PAM50  400 samples 99.1+/-0.4% 91.1+/-0.4% 

AWCA-based PAM50 200 samples 98.7+/-0.5% 91.0+/-0.4% 

AWCA-based PAM50 100 samples 97.7+/-0.9% 91.0+/-1.3% 

 

Table S10. Concordance of mLR classifiers trained with different feature spaces: PAM50, limma50 and limma50_BWE genes 

DATASET 

MEAN PAIRWISE 

CONCORDANCE 

AMONG THE mLRs 

MEAN CONCORDANCE 

WITH AWCA-BASED 

PAM50 

TCGA TEST 95+/-3% 87+/-1% 

PANCA 92+/-4% 90+/-0.5% 

GSE96058 TEST 95+/-5% 91+/-0.6% 

GSE81538 93+/-3% 90+/-3% 

 

Eventually, we compared our single-sample classifications with an alternative independent subtyping method: 

the Absolute Intrinsic Molecular Subtyping (AIMS) of Paquet et al. Results of AIMS classifications are fully 

reported on Table S11; as shown, despite AIMS classification is a single-sample approach, its performances 

resulted weak. The quite low concordances with both published calls and AWCA-based PAM50 calls denote 

not very stable subtyping results, differently from what we experienced with AWCA-based PAM50. 
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Table S11. Concordance comparison of the AIMS classifier with published calls and with each of the here proposed single-sample 
classifiers 

DATASET 
AIMS VS 

PUBLISHED 
CALLS 

AIMS VS 
AWCA- 
PAM50 

AIMS VS 
mLR 

PAM50  

AIMS VS 
mLR 

LIMMA50  

AIMS VS 
mLR 

LIMMA50_
BWE  

TCGA TEST 
SET 

0.768844 0.753769 0.827471 0.839196 0.827471 

GSE96058 
TEST SET 

0.74847 0.723378 0.741126 0.746634 0.746634 

PANCA 
SET 

0.775424 0.830508 0.805085 0.838983 0.851695 

GSE81538 
SET 

0.787654 0.765432 0.767901 0.77284 0.760494 

 

 

S7.2 Prognostic assessment 
Eventually, we performed further analyses to evaluate the improved or reduced ability of the proposed 

classifiers to identify cases with better/worse prognosis, considering the 10-year overall survival annotations 

available for the datasets at our disposal. Specifically, we considered that each subtype call discordance 

between Luminal A and another subtype (or vice versa) implies a different expected prognosis. Figure S37 

shows the increased prognostic ability of our single-sample classifiers in such prognosis-related discordant 

cases compared with the published calls.  

 

Figure S37. Prognostic ability of proposed classifiers compared with the published calls, considering 10-year overall survival (O.S.). 

 

Conversely, Figures S38 focuses on discordances between the AWCA-based PAM50 classifications and each of 

the best mLR classifiers, showing a slightly improved prognostic value of mLR classifiers with respect to the 

AWCA-based PAM50. 
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Figure S38. Prognostic ability of mLR classifiers compared with AWCA-based PAM50, considering 10-year overall survival (O.S.). 

 

Thus, in case of discordances, probably due to the already mentioned ambiguity of subtype calls for samples 

of more difficult attribution, these clinical assessments provided an unbiased criterion to evaluate alternative 

classifications. Particularly, the emerged results confirmed the reliability of the approaches proposed in this 

work, in the light of their better capability of recognizing good and poor long-term clinical outcomes.  
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Appendix 

RSEM and FPKM data cross-comparative evaluations 
Table S12 summarizes results found in using AWCA references built on RSEM data as external AWCA 

references for PAM50 classification of FPKM data and vice versa. Comparing these results with those in Table 

S8 for the AWCA reference with the same normalization of the classified data, we notice the decreased stability 

of these so-obtained classifications. Thus, for the single-sample AWCA-based PAM50 method we strongly 

encourage the use of the corresponding normalized AWCA reference, as not to undermine the robustness 

gain provided by the AWCA approach. Such coherence becomes crucial for the already trained logistic 

regression models, as clearly exemplified in Table S13; we also evaluated strategies to scale and/or transform 

the differently normalized public data at our disposal, but performances did not improve, probably due to the 

introduced approximations and bias.   

Table S12. Cross-comparative evaluation of RSEM and FPKM AWCA references for PAM50 subtyping of differently normalized data. 

 

Table 13 Multiclass logistic regression models trained and tested on differently normalized data, using PAM50 genes as feature 
space. 

 

 

DATASET ON 

WHICH CROSS-

AWCA-BASED 

PAM50 IS APPLIED  

RSEM values of 

TCGA dataset 

RSEM values of 

TCGA dataset 

FPKM values of 

GSE96058 dataset 

FPKM values of 

GSE96058 dataset 

AWCA REFERENCE 

CONSTRCUTION 

AWCA reference 

built with FPKM 

data of GSE96058 

including Normal-

like class 

AWCA reference 

built with FPKM 

data of GSE96058 

excluding Normal-

like class 

AWCA reference 

built with RSEM 

data of TCGA 

including  Normal-

like class 

AWCA reference 

built with RSEM 

data of TCGA 

excluding Normal-

like class 

ACCURACY WITH 

RESPECT TO 

PUBLISHED CALLS 

80.6%  87.4%   87.9%   79.8%   

Approach Accuracy 
Macro-avg recall 

(balanced accuracy) 
Macro-avg precision 

 Tested on PANCA RSEM 
data 

Tested on PANCA RSEM 
data 

Tested on PANCA RSEM 
data 

mLR PAM50 trained 
on GSE96058 FPKM 

data 

64% 76% 73% 

 Tested on GSE81538 
FPKM data 

Tested on GSE81538 
FPKM data 

Tested on GSE81538 
FPKM data 

mLR PAM50 trained 
on TCGA RSEM data 

11%  
(almost all predicted as 

Normal-like) 
26% 64% 
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AWCA-based PAM50: an additional use-case on microarray data 
We tested the AWCA-based PAM50 method on microarray expression data from Affymetrix U133A-B chips. 

Our test was easily performed using the R code we made available on GitHub (https://github.com/DEIB-

GECO/BC_Intrinsic_subtyping); consequently, we provide also a useful conversion table to trace PAM50 genes 

in U133A-B and also in U133 PLUS 2.0 GeneChips. 

For this additional analysis, we used two public GEO dataset (GSE4922 and GSE1456). For both datasets, raw 

data were normalized by using the global mean method. Probe-set signal values were natural log transformed 

and scaled by adjusting the mean intensity to a target signal value. We simply converted natural log values 

into log2-transfored values and selected for each PAM50 gene the most specific available corresponding 

probe. In case of ties, we selected the probe bringing the highest mean signal and variance.  

The GSE4922 dataset includes 249 samples, without any subtype annotation, and is unbalanced in terms of ER 

status distribution (211 ER+/34 ER-). Therefore, we compared AWCA-based classifications with corresponding 

standard PAM50 classifications using 60% ER+/40% ER- subsets of 50 samples. Concordance evaluations show 

that our AWCA-based approach overcomes the standard one, with mean concordance of 96% versus 88% and 

lower standard deviation of only 2.0% versus 5.7%. 

The GSE1456 dataset includes 139 samples, 119 of which are assigned with intrinsic subtype. Nonetheless, no 

ER status annotation is available to repeat standard PAM50 classifications with corresponding AWCA-based 

PAM50 classifications. Therefore, we exported an AWCA reference built in the GSE4922 dataset to the 

GSE1456 dataset to be used as external reference for subtyping of GSE1456 dataset. This brought lower 

concordance with respect to the original calls (80/119); nonetheless, from a careful evaluation of our 

subtyping results against the available 7 year disease free survival annotations, we found that our calls were 

much more reliable in predicting medium-long clinical outcome than the published calls. Indeed, in all cases 

of discordances implying changes in expected prognoses, the original classification correctly predicts only 11 

cases, whereas our external AWCA-based subtyping provides 37 prognostic reliable subtype calls. Thus, for 

ambiguous/discordant samples AWCA-based PAM50 resulted to be more than 3 times better in recognizing 

good or poor prognoses within 7 years. 

Overall, both internal and external AWCA-based PAM50 classifications provided higher stability and reliability 

of subtyping, as well as a substantial increase of prognostic ability, compared with the standard PAM50, 

confirming the strength of our AWCA approach also on gene expression data from microarray technology.  

 

  

https://github.com/DEIB-GECO/BC_Intrinsic_subtyping
https://github.com/DEIB-GECO/BC_Intrinsic_subtyping
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