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Thermodynamic	cycles	for	pKa	and	binding	free	energy	determination		

 

Figure S1: Thermodynamic cycle for the complexation of cucurbit[7]uril (CB7) and a titratable 
ligand (L1). L1 refers to benzimidazole (BZ) and its derivatives ABZ, CBZ, FBZ, and TBZ.   	

	

 

Figure S2: Thermodynamic cycle for the perturbation of one ligand into another bound to a host 
(CB7), where the vertical arms represent free and bound simulations. 	
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Flattened	free	energy	barriers		

Flattened	 free	 energy	 barriers	 were	 used	 as	 a	 measure	 of	 convergence	 for	 our	 pKa	 and	

reference	 binding	 free	 energy	 simulations.	 Where	 sampling	 is	 iteratively	 optimized	 by	

flattening	free	energy	barriers.	By	reducing	the	free	energies	barriers,	trapping	of	individual	

states	 is	 avoided	 and	 sampling	 is	 more	 evenly	 distributed	 across	 all	 unprotonated	 and	

protonated	states.					

 

Figure	S3.	Flattened	free	energy	barriers	for	*BZ:CB7utlizing	a	three-state	model		
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pKa	determination	utilizing	RESP	partial	charges	

Simulations	were	 also	 performed	using	RESP1-3	 partial	 charges	 and	 CGenFF4	 parameters	

(Figure	S4	and	Table	S5)	which	yielded	poor	results	with	negative	Pearson	and	Spearman	

coefficients	indicating	that	both	the	correlation	to	experiment	and	predicted	relative	ranking	

were	significantly	off.	Small	positive	shifts	were	observed	for	ligands	ABZ,	CBZ,	FBZ,	and	TBZ,	

however,	 a	 negative	 shift	 in	 pKa	 (-1.4	 pK	 unit)	 was	 predicted	 for	 BZ.	 This	 prediction	 is	

consistent	with	a	previous	 theoretical	 study	performed	by	B.	Brooks	and	coworkers	that	

showed	 predicted	 pKa	 values	

were	 very	 sensitive	 to	 the	

partial	 charge	 scheme	 used.5		

They	observed	a	similar	drop	in	

pKa	(-1.36	pK	units)	for	BZ	upon	

complexation	with	CB7	utilizing	

RESP1-3	 partial	 charges	 and	 an	

enveloping	 distribution	

sampling	 method	 paired	 with	

Hamiltonian	 replica	exchange.5	

This	 is	 in	 contrast	 to	a	 large	 shift	 in	pKa	 (≈+7.5	pK	units)	when	 they	 changed	 the	partial	

charge	scheme	to	CGenFF4.	We	in	fact	saw	a	very	similar	trend,	albeit	a	smaller	shift	in	pKa	

for	BZ	(+3.9	pK	units),	using	a	completely	different	method.	Sampling	and	overstabilization	

of	the	protonated	form	of	BZ	was	cited	as	a	possible	cause	of	the	significantly	elevated	pKa	

shift	by	B.	Brooks	and	coworkers.5	In	contrast,	our	approach	does	not	suffer	from	sampling	

or	overstabilization	issues	by	design	due	to	the	employment	of	λ-dynamics6	with	enhanced	

Figure S4. A comparison between the experimental and 
computed pKa. The grey lines indicate ±1 pK unit. 
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sampling	 (ALF)7	 simulations,	 where	 sampling	 is	 iteratively	 optimized	 by	 flattening	 free	

energy	barriers	which	reduces	trapping	of	 individual	states.	This	allows	determination	of	

free	energies	where	trapping	is	avoided,	and	sampling	is	evenly	distributed	across	all		

unprotonated	and	protonated	states.	

	

	

Table S1. A comparison between the experimental pKa and those computed using the RESP 
charge scheme 

Ligand pKa
Exp pKa

RESP   
BZ 9.0 4.1±0.2   

ABZ 6.1 5.8±0.5   
CBZ 7.0 5.4±0.4   
FBZ 8.6 5.3±0.1   
TBZ 8.6 4.9±0.1   

 MUE 2.5   
 Pearson (R) -0.8   
 Spearman -0.9   
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Figure S5. The three-state model used for the pKa calculation with pendant groups labeled. States 
1 and 2 are in a neutral charge state while state 3, the protonated form, is in a +1 charge state. 	
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Figure S6. Modified CGenFF charges used for FBZ+  

 

 

Figure S7. Modified CGenFF charges used for TBZ+ 
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