

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Factors associated with the community-based newborn care program utilization in Geze Gofa rural district, south Ethiopia: a community based cross-sectional study

BMJ Open
bmjopen-2020-037792
Original research
16-Feb-2020
Gebremedhin, Tsegaye; University of Gondar College of Medicine and Health Sciences, Health Systems and policy Atnafu, Asmamaw; University of Gondar College of Medicine and Health Sciences, Health Systems and policy Dellie, Endalkachew; University of Gondar College of Medicine and Health Sciences, Health Systems and policy
Community child health < PAEDIATRICS, PUBLIC HEALTH, OBSTETRICS, HEALTH SERVICES ADMINISTRATION & MANAGEMENT

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reziez onz

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

associated with the community-based newborn care Factors program utilization in Geze Gofa rural district, south Ethiopia: a community based cross-sectional study Tsegaye Gebremedhin*, Asmamaw Atnafu, Endalkachew Dellie Department of Health Systems and Policy, Institute of Public Health, College of Medicine and Ēthio, "thiopia Health Sciences, University of Gondar, Ethiopia **Email address:** TG: tsegishg27@gmail.com AA: asme2002@gmail.com ED: endalkd.07@gmail.com *Corresponding author: TG: tsegishg27@gmail.com Po. Box 196, University of Gondar, Gondar, Ethiopia For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

~
2
3
1
4
5
6
7
/
8
9
10
11
12
13
14
15
16 17
17
18
10
19
20
21
22
23
24
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60

14 Abstract

Objective: This study aimed to identify the factors associated with the utilization of community based newborn care program among recently delivered women and newborns in Geze Gofa
 district, Southern Ethiopia.

18 **Design:** cross-sectional study

19 Setting: A community-based

20 Participants: A randomly selected 371 recently delivered women were interviewed at home by
21 using an interviewer-administered structured questionnaire.

Methods: Binary logistic regression analysis was performed. In the multivariable logistic
 regression analysis, a significant level at p-value <0.05 and Adjusted Odds Ratio (AOR) was
 used to declare the associated factors.

25 **Outcomes:** community-based newborn care program utilization.

Results: The findings show that the overall utilization of the CBNC program among recently
delivered women and their newborns was 37.5% (95% CI: 32.6-42.6). Women who attended
elementary school (AOR: 1.76, 95% CI: 1.01-3.07) and college and above (AOR: 3.71, 95% CI:
1.12-12.24), farmer women (AOR: 0.35, 95% CI: 0.16-0.79), lowest wealth status (AOR: 3.76,
95% CI: 1.65-8.54) and middle quantile of wealth status (AOR: 1.96, 95% CI: 1.01-3.76, and
preference of visiting hospital if they had faced any danger sign (AOR: 0.29, 95% CI: 0.11-0.78)
were factors associated with the utilization of CBNC program.

Conclusions: Community-based newborn care program utilization in the study area was low.
Women attended elementary school and college and above, farmer occupation, wealth status in

the poorest and middle quantile, and preference of visiting the hospital if they had faced danger signs among themselves and their newborns in the antepartum, intrapartum, and postpartum period were factors associated with CBNC program utilization. Therefore, awareness creation provision at the community level, convenient time arrangement, and increment of physical access to a health facility are essential to improve the uptake of CBNC in the rural district.

40 Keywords: Utilization; community based newborn care; Geze Gofa district; Ethiopia

1 2	
3 4 5	42
6 7	43
8 9 10	44
10 11 12	45
13 14	46
15 16 17	47
17 18 19	48
20 21	49
22 23 24	50
25 26	51
27 28	52
29 30 31	53
32 33	54
34 35	
36 37 20	
38 39	
40 41 42	
42 43 44	
44 45 46	
40 47 48	
49 50	
51 52	
53 54	
55 56	
57 58	
59	

42 Article summary

43 Strengths and limitations of this study

Since the community based newborn care is the new initiative provided by the health
 extension workers, the finding gives an insight for program implementers and policymakers
 to give accessibly and quality of services for mothers and newborn in the rural district.

- The study was not triangulated by qualitative methods.
- The study might be subjected to social desirability bias because the study used the
 interviewer-administered questionnaire. To minimize this, we have recruited data collectors
 from other district health facilities.
- Furthermore, women might experience recall bias, particularly on the services they had got during their previous obstetrics, such as during ANC visits. But compared to other studies, our study period asses in the last six months, which is shorter, and that might decrease the recall bias.

56 Introduction

A community-based newborn care (CBNC) program is an initiative that includes a newborn care package along the maternal and newborn health continuum of care ^{1 2}. It is carried out by the Health Extension Workers (HEWs) at the community level and aimed to improve maternal and newborn health' through the four Cs. These four Cs are prenatal and postnatal Contact; Caseidentification of newborns with signs of bacterial infection; Care, or treatment as early as possible; and Completion of a full seven-day course of appropriate antibiotics at the community level ³.

64 Community-based maternal and newborn care program has been implemented in low-income 65 countries, primarily for the improvement of maternal and newborn health status ⁴⁻⁷. In Malawi, a 66 community-based health promotion program is under implementation to increase access for areas 67 where facility care is limited, thereby removing key barriers for poor households such as distance 68 and transport costs. It also often offered free of charge and can be used to promote healthy 69 behaviors among the poorest and promote utilization of facility-based services, and in some 70 cases, provide treatment at home or community level ⁸.

In Ethiopia, 72% of women delivered at home without a skilled provider, and of these, more than 80% of home deliveries were among rural women ⁹. The first 48 hours of life is a critical phase in the lives of mothers and newborns and a period in which many neonatal deaths occur. Thirteen percent of newborns had a postnatal check within the first two days after birth, while 86% were not received postpartum check-ups ⁹. Lack of postnatal health checks can delay the identification of newborn complications and the initiation of appropriate care and treatment. Thus, early

BMJ Open

postpartum care is critical to ensure the proper neonatal care which includes exclusive
breastfeeding, cord care and thermal care and prevention of infections ¹⁰.

Every year nearly 45% of all under-five child deaths are among newborn infants within the first 28 days, and three-quarters of all infant deaths occur in the first week of life. But two-thirds of neonatal deaths can be prevented if effective health measures are provided at birth and during the first week of life ^{11 12}.

Moreover, in developing countries, home care visits are not delivered at the standard days 1 and 3 of a newborn's life, and for the majority of mothers, a third visit does not conduct before the end of the first week of life (day 7) ¹³. Therefore, this study was aimed to assess the utilization of community based newborn care program utilization and associated factors among recently delivered women and newborns in Geze Gofa district, Southern Ethiopia.

88 Methods

89 Study design and settings

90 The community-based cross-sectional study design was conducted in Geze Gofa district, Gamo 91 Gofa zone, South Nation Nationality, and Peoples Regional State, Ethiopia, from May 1 to 31, 92 2017, to assess the utilization of community-based newborn care program among recently 93 delivered women and newborns and its associated factors.

el.en

The district administratively divided into one urban and 29 rural kebeles with an entire residence of 87,731 population. Of these 43,690 (49.8%) are males and 44,041 (50.2%) are females. There are 20,441 (23.3%) women in the childbearing age group (15-49 years). There are also 3036

pregnant women and 13,695 under-five children in the district. Moreover, there are 3,036 and
2,799 neonates and under one-year infants, respectively, in the district.

All mothers in the childbearing age group who gave birth in the district in 2016/2017 were the
source population. Whereas, all mothers who gave birth in the district in the last six months
(since September first, 2016 to end of February 2017) were the study population.

Those mothers who gave birth both at home and health facility in the district six months before the study were included. But mothers who gave birth in another district and came to the study area, those who lost their babies and mothers critically ill and unable to respond to the interview were excluded from the study.

106 Sample size and sampling techniques

The sample was determined using a single population proportion formula (n = $(Z_{\alpha/2})^{2*P}$ (1-P)/(d)²) with the following assumptions of 50% of recently delivered women with their newborns utilized all the components of community-based newborn care service, expected margin of error (d) 5% and 95% confidence level. n = $(1.96)^{2}(0.5)(0.5)/(0.05)^{2} = 384$. Then by adding 5% of non-response rate, the final sample size was 403.

Initially using the lottery method, nine health posts (30% of the total health posts) were selected ¹⁴. Then proportional allocation was applied for each health post chosen based on the number of the mother who gave birth in the last six months, and the final study participant was selected using simple random sampling techniques (lottery method) from the health post-registration to find the required sample size. Then having the name and house number visited the mother at home, and the interview was conducted. Mothers who gave birth at home and health institutions in the last six months and alive infants were included in the study.

2	
_	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
13 14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51 52	
53	
54	
55	
56	
57	
58	
59	

60

119 Variables and measurements

The dependent variable of the study was the utilization of community based newborn care program. Whereas, the independent variables were; Socio-demographic and economic variables of women (age, educational status, religion and ethnicity, economic status, occupational status, parity), participation in health development army/Women health development team/meetings, availability of drugs, visiting time by HEWs, distance of the health post, presence of danger sign during pregnancy, delivery, postnatal period including for their newborn were the independent variables.

Community-based newborn care program utilization was measured when a pregnant mother and newborn received the following services during pregnancy, delivery and postnatal period up to two months (identified early in the community and received focused antenatal care, institutional childbirth and a newborn recognized for asphyxia and resuscitated, prevented and managed for hypothermia, for pre-term and low birth weight, and managed for neonatal sepsis and very severe diseases at community level by HEWs ¹⁵⁻²⁰.

Antenatal care service utilization: According to WHO for healthy pregnancies, antenatal care (ANC) should have at least four visits during the pregnancy in which the first within the first trimester ²¹. If the pregnancy is not healthy, the visit might be more than four times as per the healthcare provider's decision.

137 Recently delivered women (RDW): A terminology used in this study to denote a woman aged
138 15-49 years who delivered irrespective of place of delivery from September 1st, 2016 to the end
139 of February 2017.

> **Newborn:** A newborn baby in the first eight weeks after birth, which is eligible for community-based newborn care program services according to the Ethiopian CBNC program implementation guideline²².

> Wealth index was assessed using household assets through principal component analysis adapted from the Ethiopian demographic and health survey ²³.

Data collection tools and procedures

An interviewer-administered standardized structured questionnaire was used after reviewing different studies and guidelines ¹³ ¹⁶ ¹⁹ ²⁰ ²² ²⁴⁻³¹. The tool was initially developed in English and then translated into the local language (Amharic) and finally back to English to ensure its consistency. Four trained Bachelor of Sciences in Nurse's data collectors and two trained Bachelor of Sciences in Public Health Officer supervisors were recruited from Sawla health center, which is located nearby district. During the data collection process, supervisors have checked the data accuracy, consistency, and completeness daily.

Data quality control

Before data collection, a day training for data collectors and supervisors were given on the study objectives, data collection instruments, techniques, and producers. Data collectors were supervised daily, and every night the consistency and completeness of data were checked by the principal investigator (PI). A pretest was conducted on 21 women (5% the sample size) in Demba Gofa district (which is one of the neighbor districts and having almost similar characteristics). Before the actual data collection, all findings from the pre-test were incorporated into the final questionnaire, and necessary amendments were done.

161 Data processing and analysis

Data were cleaned and checked for completeness, consistency, coded, and entered into Epi-Data
version 3.1 software and exported to SPSS version 23 for analysis.

Descriptive statistics were used and presented with narration and tabular presentation. Both bivariable and multi-variable logistic regression analysis was computed to determine the associated factors. Those variables having a p-value of less than 0.2 in the bivariable logistic regression analysis were entered to multivariable logistic regression analysis to filter out confounding factors after checking model fitness, chi-square, and multi-collinearity assumptions. In the final multivariable logistic regression analysis model, a p-value less than 0.05 and AOR with 95% CI were used to declare the associated factors.

Results

172 Socio-demographic and economic characteristics of participants

A total of 371 women responded to the interviewer-administered questionnaire with a response rate of 92.1%. The mean age of the women was 27.6 (SD \pm 5) years. The majority of the women (74.4%) were married, and 6.2% were single. Religiously, 46.4% and 7.5% of women were protestant and Muslim followers, respectively. Regarding educational status, 42.3% of women were attended elementary school, and 5.9% were attended college and above. Among the total women, 72.5% were a housewife, and 4.0% were a government employee. Sixty-seven percent of women were from Gofa ethnicity. The mean parity of women in this study was $3.5 \text{ (SD} \pm 1.9)$. Nearly 30% and 14.6% of the women were in the middle and rich wealth status, respectively (Table 1).

Table 1: Socio-demographic and economic characteristics of study participants in Geze Gofa
district, south Ethiopia, June 2017 (n=371).

Variables	Responses	Frequency (n)	Percent (%
Age in years	<24	109	29.4
	24-35	246	66
	>35	16	4.3
Marital status	Single	23	6.2
	Married	276	74.4
	Widowed	32	8.
	Divorced	40	10.
Religious status	Protestant	172	46.4
	Orthodox	131	35.
	Muslim	28	7.
	Catholic	40	10.
Educational status	Unable to read and write	116	31.
	Able to read and write	25	6.
	Elementary school (Grade1-8)	157	42.
	High school	51	13.
	College and above	22	5.
Occupational status	Gov't employee	15	4.
	Merchant	31	8.
	Daily labor	21	5.
	Farmer	35	9.
	Housewife	269	72.
Ethnicity	Gofa	249	67.
	Gamo	69	18.
	Wolayita	27	7.
	Others*	26	7.
Parity	Primipara	53	16.:

Page 13 of 32

Multipara268Wealth quantilesPoorest65Poor6363Middle111111Rich5478	Variables	Responses	Frequency (n)	Percent (%)
Poor 63 Middle 111 Rich 54		Multipara	268	83.5
Middle111Rich54	Wealth quantiles	Poorest	65	17.5
Rich 54		Poor	63	17.0
		Middle	111	29.9
Richest 78		Rich	54	14.6
		Richest	78	21.0

184 * Amhara, Guraghe, Kembata

185 Antenatal care and institutional delivery services

The study shows that all of the respondents know the health extension workers (HEWs) who work in their respective kebeles, and the majority (90.7%) of the women have received advice from the HEWs during their recent pregnancy and in the postpartum period. A total of 340 (91.6%) women were responded that there is a health development team (1 to 5 network) in their community. Of those 323 (95.0%) are a member of the network and among those who were involved in the team 217 (67.1%) were attended the meeting during their recent pregnancy. Ninety-eight percent of women had received ANC visits during their last pregnancy. The mean age of pregnancy during the first ANC visit was 4.6 months (SD \pm 1.3), and 298 (81.9%) women were in their second trimester, and 8 (2.2%) were in their third trimester. Almost 80.2%, 15.4%, and 4.4% of women were going to health posts, health centers, and hospitals for their first ANC visits, respectively. Regarding ANC service packages for 95.6% of women abdominal examination (Leopold maneuver measurement), weight and blood pressure measurement were performed, and for 56.6% of women, routine laboratory investigation was conducted during their recent pregnancy. Moreover, 90.7%, 80.5%, and 6.6% of women have received tetanus toxoid vaccination, iron folate, and deworming during ANC visits for their recent pregnancy,

respectively. Of those who received ANC at least once, 285 (78.3%) of women were received ANC visit four and more times. Regarding knowledge of women about danger sign during pregnancy 79.2%, 75.5%, and 49.6% of women responded that vaginal bleeding, blurred vision, and convulsion are a sign of danger sign during pregnancy, respectively. One-fifth of the women faced at least one danger sign, and overall, 75.5% and 10% of the women mentioned that they went to health centers and hospitals, if they have faced any of the danger signs during their recent pregnancy. A total of 233 (62.8%) of women delivered at a health facility. Of that, 81.5%, 14.6%, and 3.9% of deliveries were at the health center, hospital, and health posts, respectively. For forty-one percent of the women, to reach the nearest health post, it takes 30 to 60 minutes (Table 2).

Table 2: Antenatal care and institutional delivery services utilization among recently delivered
women in Geze Gofa, district, south Ethiopia, June 2017 (n= 371).

Variables	Responses	Frequency	Percent
		(n)	(%)
Know the HEWs	Yes	371	100.0
	No	0	0
Types of services received from	General health informa	ation 328	88.4
the HEWs (n=371)	including the mother's group in	n the	
	kebele		
	Advice on pregnancy, deliv	very, 335	90.3
	and postnatal care inclu	ding	
	newborn care		
	Advice on newborn and	child 274	73.9
	disease and the management		
	Supplies on condom and pills	261	70.4
	Vitamin A for the mothers	176	47.4
	13		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Variables	Responses	Frequency	Percer
		(n)	(%
	Advice on HIV/AIDS and others	275	74.
	STI prevention and control		
Presence of health development	Yes	340	91
team (1 to 5 networks) in	No	31	8
community (n= 371)			
Member of 1 to 5 network (n=	Yes	323	95
340)	No	17	5
Attended the meeting during the	Yes	217	67
recent pregnancy? (n=323)	No	106	32
ANC follow up for the recent	Yes	364	98
pregnancy	No	7	1
Number of ANC visit (n=364)	Only Once	14	3
	Twice	26	7
	Three times	39	10
	Four and above	285	78
Age of gestation during the first	First trimester	58	15
ANC visit (n=364)	Second trimester	298	81
	Third trimester	8	2
Type of health facility for the first	Hospital	16	4
ANC visit	Health center	56	15
	Health post	292	80
Knowing about danger sign during	Swelling of hands and face	237	63
pregnancy	Blurred vision	280	75
	Convulsion	184	49
	Severe headache	248	66
	Severe lower abdominal pain	206	55
	Vaginal bleeding	294	79

Variables	Responses	Frequency	Percent
		(n)	(%)
Place of visits, if they have faced	Hospital	37	10.0
danger signs	Health center	280	75.5
	Health post	54	14.6
Faced danger sign during the	Yes	75	20.2
recent pregnancy, delivery, and	No	289	77.8
postnatal period			
Place of delivery	Health facility	233	62.8
	Home	138	37.2
Type of health facility attended	Hospital	34	14.6
during delivery (n= 233)	Health center	190	81.5
	Health post	9	3.9
Time takes to reach the nearest	Less than 30 minutes	79	21.3
health post	30 to 60 minutes	151	40.7
	60 to 120 minutes	109	29.4
	More than 120 minutes	32	8.6

Postpartum and immediate newborn care services

At the time of delivery or in the early days after the birth, 246 (66.3%) of women received postnatal care visits. From those, 100 (40.7%) of women were visited within the first 48 hours, 38 (15.4%) on the third day, and the rest after the third day. Immediately after delivery of those newborns delivered at home, for 13 (9.4%) of newborns after cutting the cord, anything was applied other than the ointment. From the total newborns, 336 (90.6%) of newborns started breastfeeding within the first hour, and the rest began between 1 and 48 hours after delivery. Moreover, 74.1% of newborns feed exclusive breastfeeding. Three fourth of women received

BMJ Open

information about breastfeeding for the first time from health extension workers, and 24 (6.5%)obtained from mass media (Table 3).

Table 3: Postpartum and immediate newborn care services utilization among recently delivered women and newborns in Geze Gofa district, south Ethiopia, June 2017 (n=371).

Variables	Responses	Frequency	Percen
		(n)	(%
Postnatal visit	Yes	246	66.
	No	125	33.
Postnatal care visiting time (n=246)	<48 hours	100	40.
	3 rd day	38	15.4
	After 3 rd day	108	43.9
Something applied on the cord (n=138)	Yes	13	9.4
	No	125	90.0
Timing of breast feeding	< 1hr	336	90.0
	≥1hrs	35	9.4
Exclusive breastfeeding	Yes	275	74.
	No	96	25.9
Source of information about breastfeeding	HEWs	278	74.9
	Health care provider	49	13.2
	from health canter		
	Mass media	24	6.:
	Relatives/friends	10	2.2
	Other*	10	2.
*Health development army leader, community	group, traditional birth atte	ndant	

227 From the total respondents, 256 (69.0%) mothers had information about community-based

newborn care provided by HEW at health post (HP) and community level.

During the first two months after delivery, 224(60.4%) of newborns were received postnatal follow up from HEWs at home. Of those who received a postpartum follow-up, 41 (18.3%) newborns checked once, and 87 (38.8%) newborns checked three and above times. The majority of the newborns 299 (80.6%) were weighed their birth weight within seven days. Of those, 271 (90.6%) and 12 (4.0%) were normal and overweight, respectively.

Among the total newborns, 56 (15.1%) faced health problems after delivery in the postnatal periods. The mean age of the young infants when experiences health problems was 40 (SD \pm 13) days and 34 (60.7%) of young infants have consulted the HEWs and visited health posts to receive medical services (Table 4).

Table 4: Community-based newborn care services during the first two months of age in Geze
Gofa district, south Ethiopia, June 2017 (n= 371).

Variables	Responses	Frequency	Percent
		(n)	(%)
Having information about the CBNC program	Yes	256	69.0
	No	115	30.9
Newborn received postnatal follow up from	Yes	224	60.4
HEWs at home within two months of age	No	147	39.6
Frequency of follow up received from HEWs	Once	41	18.3
(n=224)	Twice	96	42.9
	\geq Three times	87	38.8
Baby's weight was measured within the first	Yes	299	80.6
seven days of birth	No	72	19.4
Birth weight of the newborn (n=299)	Low birth weight	271	90.6
	Normal weight	16	5.4
	Big baby/over weight	12	4.0
Newborn faced a health problem during the	Yes	56	15.1

Page 19 of 32

first two months of age	No	315	84.9
Types of facility visited for mediacl services	Health posts	34	60.7
(n=56)	Health center	15	26.8
	Hospital	7	12.5

240 Overall community based newborn care program utilization

A community-based newborn care program utilization was measured when a woman and her newborn received all the components of the program (antenatal care + institutional delivery + postnatal care + neonatal care up to two months of age) continually at home and health post level. Accordingly, 37.5% (95% CI: 32.6-42.6) of women with their newborn's utilized full components of community based newborn care program (which is a continuum of maternal and newborn care services), and the rest had not received the complete parts of the program.

247 Factors associated with community based newborn care program utilization

In this study, bivariable and multivariable logistic regression analyses were performed to investigate the association of independent variables with the dependent variable of community based newborn care program utilization. These predictor variables that have a P-value of less than 0.2 during bivariable analysis were entered into multivariable logistic regression analysis.

In the bivariable logistic regression women's age, educational status, occupational status, ethnicity, wealth status, time is taken to reach the nearest health post, types of facility they went when having danger sign during pregnancy and after delivery, and previous information about community-based newborn care program were candidate variables. In the multivariable logistic regression analysis, educational status, occupational status, wealth status, and types of facility they visit when they having danger signs during pregnancy and after delivery up to two months were significantly associated with the utilization of community-based newborn care program.

Accordingly, women who attended elementary school were 1.7 times more utilized the program (AOR: 1.76, 95% CI: 1.01-3.07) and women who attended college and above were 3.7 times more utilized the program (AOR: 3.71, 95% CI: 1.12-12.24) compared to those who were unable to read and write. Those farmer women were a 65% lower utilization of the program compared to those housewife women (AOR: 0.35, 95% CI: 0.16-0.79). Women who were in the poorest wealth status were 3.76 times more utilized the program (AOR: 3.76, 95% CI: 1.65-8.54) and those who are in the middle quantile of wealth status were 1.96 times more utilized the program (AOR: 1.96, 95% CI: 1.03-3.76) compared to those who are in the highest quantile of wealth status. Moreover, women who preferred visiting the hospital if they had any danger signs were 70.4% less likely to utilize the services compared to those who would go to health posts (AOR: 0.29, 95% CI: 0.11-0.78) (Table 5).

Table 5: Bi-variable and multi-variable logistic regression analysis of community-based newborn
care program utilization among recently delivered women in Geze Gofa district, south Ethiopia,
June 2017 (n= 371).

	CBNC	CNBC		
Variables	utilized	non-utilized	COR (95% CI)	AOR (95% CI)
	n (%)	n (%)	- 2/	
Age in years				
≤24	36	73	2.028 (0.704-5.842)	1.413(0.419-4.758)
25-35	95	151	1.589 (0.577-4.377)	1.344 (0.440-4.100)
>35	8	8	1	1
Educational status				
Unable to read and write	49	67	1	1
Able to read and write	12	13	0.792 (0.333-1.885)	0.836 (0.323-2.165)
Elementary school	47	110	1.712 (1.036-2.829)	1.762 (1.012-3.071) *

BMJ Open

	CBNC	CNBC		
Variables	utilized	non-utilized	COR (95% CI)	AOR (95% CI
	n (%)	n (%)	-	
High school	26	25	0.703 (0.363-1.362)	0.804 (0.363-1.779
College and above	5	17	2.487 (0.859-7.199)	3.705 (1.122-12.235)
Occupational status				
Government employee	8	7	0.425 (0.149-1.211)	0.406 (0.128-1.289
Merchant	14	17	0.590 (0.278-1.252)	0.500 (0.218-1.146
Daily labour	9	12	0.648 (0.263-1.596)	0.397 (0.146-1.079
Farmer	20	15	0.365 (0.178-0.746)	0.350 (0.156-0.788)
House wife	88	181	1	
Ethnicity				
Goffa	86	163	1	
Gamo	30	39	0.686 (0.399-1.180)	0.756 (0.415-1.378
Wolayita	13	14	0.568 (0.256-1.263)	0.465 (0.195-1.110
Others*	10	16	0.844 (0.367-1.940)	1.267 (0.494-3.246
Wealth status			L.	
Poorest	13	52	4.211 (1.984-8.937)	3.756 (1.651-8.544)
Poor	22	41	1.962 (0.992-3.881)	1.921 (0.908-4.064
Middle	39	72	1.943 (1.076-3.508)	1.963 (1.025-3.758)
Rich	25	29	1.221 (0.609-2.447)	1.258 (0.566-2.798
Richest	40	38	1	
Time takes to reach the near	arest heal	th posts		
< 30 minutes	28	51	0.510 (0.196-1.327)	0.581 (0.206-1.637
30-60 minutes	59	92	0.437 (0.178-1.073)	0.483 (0.178-1.311
60-120 minutes	45	64	0.398 (0.159-1.000)	0.408 (0.146-1.140
> 120 minutes	7	25	1	
Place of visit, if they have	faced dar	nger sign		
during their recent pregnan	icy			
Hospital	20	17	0.298 (0.122-0.723)	0.296 (0.113-0.777) *
Health center	105	175	0.583 (0.303-1.123)	0.584 (0.288-1.183)
		20)	

		CBNC	CNBC					
Variables		utilized	non-utilized	COR (95% CI)	AOR (95% CI)			
		n (%)	n (%)					
	Health post	14	40	1	1			
Having infor	Having information about the CBNC program							
	Yes	90	166	1	1			
	No	49	66	0.730 (0.466-1.145)	0.726 (0.434-1.212)			

others: Amhara, Guraghe, and Kembata * statistically significant at p-value < 0.05

Discussion

> Overall, 37.5% of recently delivered women and their newborns have received the full component of community based newborn care program continually measured by ANC forth visit, institutional delivery, postnatal care visit, and neonatal care up to two months of age.

Our result is higher than a study conducted in Xaybouathong district in Khammouane province, Lao PDR shows only 6.8% continued to receive all 10 services used in modified composite coverage index which includes ANC 4 or more, neonatal tetanus protection, facility-based delivery, delivery attended by skilled birth attendant (SBA), PNC for mother and newborn, BCG, Penta, Polio, and family planning ¹⁵, a study finding in Ghana shows that throughout the pregnancy to post-delivery, 7.9% of women and children received the continuum of care through continuous visits to health facilities ¹⁶, and another study done in Ghana shows that only 8.0% of the women completed continuum of care measured as women who received ANC4+, SBA, and PNC within 48 hours, at two weeks, and six weeks ²⁰. The dissonancy could be justified; in this study, the inclusion of continuum of care includes only ANC, institutional delivery, immediate postnatal care, and newborn care services up to two months of age.

Page 23 of 32

BMJ Open

Moreover, our finding is higher than a study finding in Pakistan from the trends of a composite measure of the continuum of care, including antenatal care, delivery assistance, and postpartum care shows 27.4%¹⁸. This difference might be due to variation of the study period, which includes those women who gave birth five years before the survey, which might increase their bias to remember the services received before five years and the study area, which covers at the national level that contribute for low result findings. But lower than a study done at Sohag governorate, Egypt shows that 50.4% of women had achieved continuum of care measured (ANC+4 visit, delivered by skilled birth attendant and had PNC)¹⁷ and a study conducted in Cambodia shows that 60% of women had the full range of services for the continuum of maternal and newborn health care ³². This discrepancy might be the study includes only ANC, institutional delivery, and postnatal which does not include the newborn care in their continuum of care that gives a higher result. The other possible reason might be the difference in sample size and socio-cultural variations.

The results of this study showed that 98.1% of women received ANC services once, 76.8% four, and above times, 62.8% of women were delivered at a health facility, and 60.3% of newborns' health status was checked by HEWs up to two months of age. This study finding is higher than a study conducted in Ratanakiri province, Cambodia shows only 32.6% of women received ANC four and above visits for their recent pregnancy in the continuum of maternal, newborn, and child health services ³³. The possible explanation might be due to the difference in target group, which includes those women who gave birth two years before the study might forget the services they have taken. The other possible reason might be the difference in the service delivery pace for their ANC follow up; our study includes services taken at the health post level, but their study measures ANC services follow up only at health centers and hospitals. But lower than a study

conducted in at Sohag Governorate, Egypt shows 90% of women had antenatal care four and
above visits ¹⁷. Our lower finding might be explained by the small sample size and rural
residence of the study participants.

The study revealed that women who attended elementary school and college and above were 1.7 and 3.7 times more chance of utilization of the program, respectively, than those who were unable to read and write. This finding is comparable with that of a study done in Xaybouathong district in Khammouane province, Lao PDR shows women's education was positively associated with the continuum of maternal, newborn and child health services utilization ¹⁵. These findings might be explained by as a woman education level increase her knowledge and awareness about the importance of the services also increase.

Community based newborn care program utilization was lower by 65% among farmer women compared to those housewife women. This result is supported by a study done in the Xaybouathong district in Khammouane province, Lao PDR, which shows being farmers as occupations negatively associated with the continuum of maternal, newborn, and child health services utilization ¹⁵. This result might be explained by the inconvenience of service delivery time for those farmer women.

Those women who are in the poorest and middle quantiles of wealth status were 3.76 and 1.96 times more likely to utilize the community based newborn care program compared to women who are in the richest quantile. This finding is in disagreement with studies in Sohag Governorate, Egypt that shows women in the higher economic status were 1.6 times more utilized the continuum of maternal, newborn, and child health services compared to those women in the lower economic status ¹⁷, in Ghana women and children from richest households were

Page 25 of 32

BMJ Open

more likely to achieve the continuum of care ¹⁶, in Africa it shows on average there is a three-fold disparity in use of continuum of care for the wealthiest 20% of African women compared to the poorest ³⁴, and in Pakistan, it showed that the richest women had received 7 times more the complete continuum of care than poorest ¹⁸. This disagreement might be explained by the community based newborn care program in our study area is aimed to serve the poorest households at the health post and home level for the increment of heath care services access. The other possible explanation might be the wealthier families can afford the direct and indirect costs associated with antepartum, intrapartum, and postpartum services in a health facility and seeking quality services at the higher hospital.

In this study, those women who preferred visiting the hospital if they had faced any danger sign in the pre and postpartum period for themselves and their newborns were a 70.4% lower chance of the community based newborn care program utilization compared to those who were preferred visiting health posts which might be related with distance problem. This result is in line with a study in Pakistan showed having not a big problem in case of distance and transport arrangement to access health facility for medical care utilized the continuum of maternal, newborn, and child healthcare services, 76.1% and 72.9%, respectively ¹⁸. The other possible explanation might be the effectiveness of community health workers for delivering preventive maternal and child health interventions in low- and-middle income countries ³⁵ increase the utilization of community-based newborn care program.

353 Limitation of the study

This finding was not triangulated by qualitative methods and also might be subjected to social desirability bias because the study used the interviewer-administered questionnaire. To minimize

this, we have recruited data collectors from other district health facilities. Furthermore, women might experience recall bias, particularly on the services they had got during their previous obstetrics such as during ANC visits. But compared to other studies, our study period asses in the last six months, which is shorter, and that might decrease the recall bias.

Conclusions and implications

The study showed that community based newborn care program utilization in the study area was low, which was measured (ANC 4+ visit, institutional delivery, postnatal care, and newborn care up to two months of age). Women attended elementary school and college and above, having farmer occupation, wealth status in the poorest and middle quantile, and preference of visiting the hospital if they had faced danger sign among themselves and their newborns in the antepartum, intrapartum, and postpartum period were factors associated with community-based newborn care program utilization. Therefore, awareness creation provision at the community level for those illiterate women, arranging the convenient time for those farmer women, and constructing health facilities to the nearby the residents of the community could improve community-based newborn care program utilization for those resides in the rural district.

Acknowledgment: The authors would like to thank all respondents for their willingness to participated in the study. We are also grateful to the Geze Gofa district health office. Finally, our appreciation goes to the data collectors for their unreserved contribution in data collection activities.

Author Contributions: TG conceptualized the study. The methods and materials were
developed, and the data analysis, interpretation, and drafting of the paper were undertaken by
TG, AA, and ED. All authors invest significant contributions and approved the final draft.

Funding statement: This research received no specific grant from any funding agency in public,

379 commercial, or not-for-profit sectors.

Competing interests: The authors declare that they have no conflict of interest.

Patient consent: obtained

Ethical approval: Ethical approval was obtained from the ethical review board of Jimma
University (Ref. No. IHRPGC/418/2017). The official letter of co-operation was obtained from
the Geze Gofa district health office.

385 Data sharing statement: all the relevant data are provided in the manuscript. Data can be
386 provided by the contact of the corresponding author on a reasonable request.

References

1. Mathewos B, Owen H, Sitrin D, et al. Community-Based Interventions for Newborns in Ethiopia (COMBINE): Cost-effectiveness analysis. Health Policy Plan 2017;32(suppl 1):i21-i32. 10.1093/heapol/czx054 doi: published Online First: 2017/10/06]

- Berhanu D, Avan B. Community Based Newborn Care in Ethiopia: Quality of CBNC
 programme assessment Midline Evaluation Report March 2017. 2017
- 395 3. Banteyerga H. Ethiopia's health extension program: improving health through community
 396 involvement. *MEDICC review* 2014;13(3):46-49.
- 397 4. Perry HB, Zulliger R, Rogers MM. Community health workers in low-, middle-, and high 398 income countries: an overview of their history, recent evolution, and current
 399 effectiveness. *Annual review of public health* 2014;35:399-421.
- 400 5. Reducing intrapartum-related neonatal deaths in low-and middle-income countries—what
 401 works? Seminars in perinatology; 2010. Elsevier.
- 402 6. Nair N, Tripathy P, Prost A, et al. Improving newborn survival in low-income countries: 403 community-based approaches and lessons from South Asia. *PLoS medicine* 404 2010;7(4):e1000246.
 - 405 7. Maulik P, Darmstadt G. Community-based interventions to optimize early childhood
 406 development in low resource settings. *Journal of Perinatology* 2009;29(8):531.
- 407 8. Callaghan-Koru JA, Nonyane BA, Guenther T, et al. Contribution of community-based
 408 newborn health promotion to reducing inequities in healthy newborn care practices and
 410 knowledge in Malawi. 2013
- 43 410 9. Central Statistical Agency Addis Ababa E. Ethiopia Demographic and Health Survey 2016
 411 Addis Ababa, Ethiopia 2016
- 412 10. Callaghan-Koru JA, Abiy Seifu MT, Graft-Johnson Jd, et al. Newborn care practices at home
 413 and in health facilities in 4 regions of Ethiopia. 2013
- 5041411. World Health Organization. Global, regional and national neonatal health status. Fact sheet,5151524152016.
- 416 12. World Health Organization Regional Office for Africa. Newborn Health key facts. 2017.
 417 <u>https://www.afro.who.int/health-topics/newborn</u>.

Page 29 of 32

BMJ Open

1 2		
3 4	418	13. Zulfiqar A. Bhutta GLD, Babar S. Hasan and Rachel A. Haws. Community-Based
5	419	Interventions for Improving Perinatal and Neonatal Health Outcomes in Developing
6 7	420	Countries: A Review of the Evidence. 2005 doi: 10.1542/peds.2004-1441
8 9	421	14. Sambo LG, Chatora RR, Goosen E. Tools for assessing the operationality of district health
10 11	422	systems. Brazzaville: World Health Organization, Regional Office for Africa 2003
12	423	15. Sakuma S, Yasuoka J, Phongluxa K, et al. Determinants of continuum of care for maternal,
13 14	424	newborn, and child health services in rural Khammouane, Lao PDR. PloS one
15 16	425	2019;14(4):e0215635.
17 18	426	16. Shibanuma A, Yeji F, Okawa S, et al. The coverage of continuum of care in maternal,
19	427	newborn and child health: a cross-sectional study of woman-child pairs in Ghana. BMJ
20 21	428	Global Health 2018;3(4):e000786. doi: 10.1136/bmjgh-2018-000786
22 23	429	17. Hamed AF, Roshdy E, Sabry M. Egyptian status of continuum of care for maternal, newborn,
24	430	and child health: Sohag Governorate as an example. International Journal of Medical
25 26	431	Science and Public Health 2018;7(6):417-27.
27 28	432	18. Iqbal S, Maqsood S, Zakar R, et al. Continuum of care in maternal, newborn and child health
29 30	433	in Pakistan: analysis of trends and determinants from 2006 to 2012. BMC Health Services
31	434	Research 2017;17(1):189. doi: 10.1186/s12913-017-2111-9
32 33	435	19. Engmann CM, Hodgson A, Aborigo R, et al. Addressing the continuum of maternal and
34 35	436	newborn care in Ghana: implications for policy and practice. Health Policy and Planning
36 37	437	2016;31(10):1355-63. doi: 10.1093/heapol/czw072
38	438	20. Yeji F, Shibanuma A, Oduro A, et al. Continuum of care in a maternal, newborn and child
39 40	439	health program in Ghana: Low completion rate and multiple obstacle factors. PloS one
41 42	440	2015;10(12):e0142849.
43 44	441	21. World Health Organization. WHO recommendations on antenatal care for a positive
45	442	pregnancy experience: World Health Organization 2016.
46 47	443	22. Federal Ministry of Health E. Community Based Newborn Care Implementation Guideline
48 49	444	2013.
50 51	445	23. [Ethiopia] CSAC. Ethiopia Mini Demographic and Health Survey 2014. Addis Ababa,
52	446	Ethiopia. 2014
53 54	447	24. Federal Ministry of Health E. Maternal, newborn, child and adolescent health guideline 2012
55 56		20
57 58		28
59		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		

- 448 25. Tuladhar S. The Determinants of Good Newborn Care Practices in the Rural Areas of Nepal.
 449 2010
- 450 26. Owili PO, Muga MA, Chou Y-J, et al. Associations in the continuum of care for maternal,
 451 newborn and child health: a population-based study of 12 sub-Saharan Africa countries.
 10 452 *BMC public health* 2016;16(1):414.
- 453 27. Quayyum Z, Khan MNU, Quayyum T, et al. "Can community level interventions have an impact on equity and utilization of maternal health care"–Evidence from rural Bangladesh. *International journal for equity in health* 2013;12(1):22.
- 1745628. Veirum JE, Biai S, Jakobsen M, et al. Persisting high hospital and community childhood18457mortality in an urban setting in Guinea-Bissau. Acta paediatrica (Oslo, Norway : 1992)204582007;96(10):1526-30. doi: 10.1111/j.1651-2227.2007.00467.x [published Online First:224592007/09/14]
- 460 29. Kerber KJ, de Graft-Johnson JE, Bhutta ZA, et al. Continuum of care for maternal, newborn, and child health: from slogan to service delivery. *The Lancet* 2007;370(9595):1358-69.
 462 doi: <u>https://doi.org/10.1016/S0140-6736(07)61578-5</u>
- 463 30. Sule SS, Onayade AA. Community-based antenatal and perinatal interventions and newborn
 464 survival. Nigerian journal of medicine : journal of the National Association of Resident
 465 Doctors of Nigeria 2006;15(2):108-14. [published Online First: 2006/06/30]
- 466 31. Telfair J. An evaluation of state perinatal community-based programs in Alabama: overview.
 467 *Public health reports (Washington, DC : 1974)* 2003;118(5):484-6. doi: 10.1093/phr/118.5.484 [published Online First: 2003/08/28]
- 469 32. Wang W. Levels and determinants of continuum of care for maternal and newborn health in
 470 Cambodia-evidence from a population-based survey. *BMC Pregnancy and Childbirth* 471 2015;15 doi: 10.1186/s12884-015-0497-0
- 33. Yasuoka J, Nanishi K, Kikuchi K, et al. Barriers for pregnant women living in rural, agricultural villages to accessing antenatal care in Cambodia: A community-based cross-sectional study combined with a geographic information system. PLoS One 2018;13(3):e0194103. doi: 10.1371/journal.pone.0194103 [published Online First: 2018/03/20]
 - 477 34. de Graft-Johnson J, Kerber K, Tinker A, et al. The maternal, newborn and child health
 478 continuum of care. *Opportunities for Africa's newborns* 2006:23-36.

1 2		
3	479	35. Gilmore B, McAuliffe E. Effectiveness of community health workers delivering preventive
4 5	480	interventions for maternal and child health in low-and middle-income countries: a
6 7	481	systematic review. BMC public health 2013;13(1):847.
8 9	482	
10 11	102	
12		
13 14		
15 16		
17 18		
19 20		
21		
22 23		
24 25		
26 27		
28		
29 30		
31 32		
33 34		
35 36		
37		
38 39		
40 41		
42 43		
44 45		
46		
47 48		
49 50		
51 52		
53 54		
55		
56 57		30
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5-6
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	6, 7
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	7
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	8
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	8, 9
Bias	9	Describe any efforts to address potential sources of bias	9
Study size	10	Explain how the study size was arrived at	9
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	10
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	10
		(b) Describe any methods used to examine subgroups and interactions	10
		(c) Explain how missing data were addressed	
		(d) If applicable, describe analytical methods taking account of sampling strategy	10
		(e) Describe any sensitivity analyses	

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of *cross-sectional studies*

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	10
		confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	10, 11
		(b) Indicate number of participants with missing data for each variable of interest	12, 18
Outcome data	15*	Report numbers of outcome events or summary measures	18
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	18-20
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	18-20
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	-
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	-
Discussion			
Key results	18	Summarise key results with reference to study objectives	21
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	24
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	21-24
Generalisability	21	Discuss the generalisability (external validity) of the study results	25
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	26

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Community-based newborn care utilization and associated factors in Geze Gofa rural district, south Ethiopia: a community-based cross-sectional study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-037792.R1
Article Type:	Original research
Date Submitted by the Author:	01-Jun-2020
Complete List of Authors:	Gebremedhin, Tsegaye; University of Gondar College of Medicine and Health Sciences, Health Systems and policy Atnafu, Asmamaw; University of Gondar College of Medicine and Health Sciences, Health Systems and policy Dellie, Endalkachew; University of Gondar College of Medicine and Health Sciences, Health Systems and policy
Primary Subject Heading :	Health services research
Secondary Subject Heading:	Obstetrics and gynaecology, Public health
Keywords:	Community child health < PAEDIATRICS, PUBLIC HEALTH, OBSTETRICS, HEALTH SERVICES ADMINISTRATION & MANAGEMENT

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Community-based newborn care utilization and associated factors in Geze Gofa rural district, south Ethiopia: a community-based cross-sectional study

Tsegaye Gebremedhin*, Asmamaw Atnafu, Endalkachew Dellie

- Department of Health Systems and Policy, Institute of Public Health, College of Medicine and
- Health Sciences, University of Gondar, Ethiopia

Email address:

- TG: tsegishg27@gmail.com
- AA: asme2002@gmail.com
- ED: endalkd.07@gmail.com

*Corresponding author:

- TG: tsegishg27@gmail.com
- ı `thiopia Po. Box 196, University of Gondar, Gondar, Ethiopia

Abstract

BMJ Open

Objective: The community-based newborn care (CBNC) is a newborn care package along the maternal and newborn health continuum of care that has been implemented at the community level in Ethiopia. The utilization which might be affected by several factors has not been well assessed. Thus, this study aimed to examine the utilization of community-based newborn care and associated factors among women who delivered recently in Geze Gofa rural district, south Ethiopia. **Design:** Cross-sectional study Setting: Community-based Participants: Three-hundred seventy-one women who had their newborns recently were randomly selected. Then, they were interviewed at their places using an interviewer-administered structured questionnaire. **Methods:** A binary logistic regression analysis was done. In the multivariable logistic regression analysis, a p-value of <0.05 and Adjusted Odds Ratio (AOR) with 95% confidence interval (CI) were used to identify factors statistically associated with community-based newborn care utilization. **Outcomes:** Community-based newborn care utilization Results: The findings showed that the overall utilization of CBNC by women who delivered recently with their newborns was 37.5% (95% CI: 32.6-42.6). Factors associated with the

- 33 3.07), college and above (AOR: 3.71, 95% CI: 1.12-12.24), farmer women (AOR: 0.35, 95% CI:
- 0.16-0.79), women in the lowest (AOR: 3.76, 95% CI: 1.65-8.54) and middle quantile of wealth

utilization of CBNC included women who attended elementary school (AOR: 1.76, 95% CI: 1.01-

status (AOR: 1.96, 95% CI: 1.01-3.76, and those whose preference was visiting hospital they faced
any signs of danger (AOR: 0.29, 95% CI: 0.11-0.78).

37 Conclusions: The use of the community-based newborn care program in the study area was 38 surprisingly low. To increase utilization and potentially improve the outcomes of these neonates, 39 we need to increase awareness at community levels, make convenient arrangements, and increase 40 the availability of services at nearby health facilities that are essential to improve the uptake of 41 CBNC in the rural district.

42 Keywords: Utilization; community-based newborn care; Geze Gofa district; Ethiopia

43 Article summary

44 Strengths and limitations of this study

- The finding is expected to give insight to program implementers and policymakers who aim to raise the accessibly and quality of community-based newborn care services in the area.
- - Qualitative methods did not triangulate the study.
- The study might be subjected to social desirability bias because of the use of an interviewer administered questionnaire which was in fact minimized through the use of experienced and
- 50 trained data collectors from other district health facilities.
- Furthermore, women might experience recall bias, particularly regarding services they
 received during their previous obstetrics, such as ANC visits.

53 Introduction

Neonatal period, from birth to the first 28 days of life, is the most critical phase of life in which the risk for death is the highest and therefore needs more attention and care ¹².

Globally, 2.6 million newborns die in their first 28 days of life every year, and three-fourths of all
newborn deaths occur in the first week of life ³. The majority (98%) of the neonatal deaths are
from preventable causes, occurring in middle-and low-income countries, including Ethiopia ^{1 4}.
Ethiopia was one of the highest contributors in Africa with 187,000 neonatal mortality in 2015 ⁵.
According to the Ethiopian Demographic and Health Survey (EDHS) 2016, the neonatal mortality
rate in the country was 29 per 1000 live births ⁶.

A community-based maternal and newborn care program has been implemented in low-income countries, primarily for the improvement of maternal and newborn health status ⁷⁻¹⁰. Two-thirds of neonatal deaths can be prevented if effective health measures are provided at birth and during the first week of life ¹¹. Similarly, community-based health interventions increase access to areas where facility of care is limited. Therefore, removing key barriers such as distance and transport costs for the poor and promoting the utilization of facility-based services, and in some cases, providing treatment at community levels need to be considered ¹².

In Ethiopia, a community-based newborn care (CBNC) program is an initiative that includes a newborn care package along the maternal and newborn health continuum of care ^{13 14}. It is carried out by Health Extension Workers (HEWs) at community levels and aims at improving maternal and newborn health through the four Cs, prenatal and postnatal contact, case-identification of newborns with signs of bacterial infections, care or treatment as early as possible, and the completion of a full seven-day course of appropriate antibiotics at the community level ¹⁵.

Page 7 of 33

BMJ Open

Newborns in Ethiopia face multitude of barriers in accessing health care. Some of these are related to culture and fatalism and others to physical access due to distance and limited communication. Although nearly all the HEWs have been trained to treat severe newborn infections in the Community-Based Newborn Care (CBNC) program, relatively few sick newborns have been identified and treated in the country ^{16 17}.

The utilization of available maternal and child health services is very low in Ethiopia ¹⁸⁻²¹. A community-based child care household survey in 194 clusters in 46 woredas across four regions on newborn and child health service utilization showed that only 4.0% of the newborns had a postnatal check within the recommended first two days of life ²². For this low CBNC program service utilization, socioeconomic and demographic factors are the most important contributing variables ^{16 20 22}.

Despite the increasing availability of key maternal and newborn health services, low utilization and lack of quality services continue to be a challenge in Ethiopia²³⁻²⁵. Of the total 72% of women who delivered at home without skilled assistance, 80% were from rural residents. Besides, only thirteen percent of the newborns had a postnatal check within the critical first two days after birth, while 86% did not receive postpartum ⁶. Lack of postnatal health checks can delay the identification of newborn complications and initiate appropriate care and treatment. Thus, early postpartum service is critical to ensure proper neonatal care which includes exclusive breastfeeding, cord and thermal care and the prevention of infections ²⁶.

Moreover, home care visits are not delivered on the standard days (1 and 3) of a newborn's life, and for the majority of mothers a third visit does not occur before the end of the first week of life (day 7) in developing countries ²⁷.

> In Ethiopia, implementing the CBNC program has been taken as one of the core interventions to reduce child mortality and to attain the Sustainable Development Goals (SDGs) of reducing under-five mortality to less than 25 per 1000 live births and neonatal mortality to 12 or fewer per 1000 live births by 2030²⁸ ²⁹. However, studies that show the implementation status of these interventions are rare. Hence, this study aimed to inform policymakers, program managers, and care providers about the utilization level of the CBNC program and the extent to which its key components were implemented as intended in the study area and in similar settings. Therefore, the objective of this study was to assess the community-based newborn care utilization and associated factors among women who delivered recently and their newborns in the Geze Gofa district, southern Ethiopia. e e.

Methods

Study design and settings

A community-based cross-sectional study was conducted in Geze Gofa district, Gamo Gofa zone, Southern Nation Nationalities and Peoples' Region (SNNPR), Ethiopia, from May 1 to 31, 2017. Geze Gofa district is one of the seventeen districts in Gamo Gofa zone located 535km to the southwest of Addis Ababa, the capital of Ethiopia.

Administratively, the district is divided into one urban and 29 rural kebeles with 87,731 people. Of these, 43,690 (49.8%) were male and 44,041 (50.2%) female; 20,441 (23.3%) of the women were in the childbearing age group (15-49 years), and 3036 of the women were pregnant with 13,695 under-five children in the district; there also were 3,036 and 2,799 neonates and under one-year infants, respectively.

BMJ Open

All mothers in the childbearing age group and gave birth in 2016 -2017 were the source population,
whereas all mothers who delivered from September 1, 2016 to February 28, 2017 were the study
population.

Mothers who gave birth both at home and in health facilities in the district six months before the study and live young infants were included. Mothers who delivered in another district and came to the study area, lost their babies before two months of age, critically ill, and unable to respond to interviews were excluded.

125 Sample size and sampling techniques

126 The sample size was determined using the single population proportion formula ($n = \frac{P(1-P)(Z_{\alpha/2})^2}{d^2}$) 127 and assuming a 50% proportion (P) of service utilization of women and newborns, 5% expected 128 margin of error (d), 95% confidence level (CI), and 10% non-response that yielded a sample of 129 403.

Initially, nine health posts (30% of the total health posts) were selected using the lottery method ³⁰. Then, the sample was proportionally allocated to the nine health posts based on the estimated number of mothers who gave birth in the last six months. The final participants were selected using the simple random sampling technique (lottery method) from the delivery registries of the health posts. Then, home visits and interviews were conducted using household numbers.

135 Variables and measurements

The outcome variable of the study was the utilization of community-based newborn care program.
It was measured based on participant service uptake of such components of the program as early
identification pregnancy, receiving focused antenatal care (ANC), institutional delivery, postnatal

care (PNC) for mother and child within two months of the postpartum period, and identification and management of sick newborns at community level up to the age of two months ³¹⁻³⁶. Accordingly, if the mothers received all the five components of the program, we considered them as "utilized" the community-based newborn care program; otherwise as "not utilized". Antenatal care service utilization was measured according to WHO guidelines for healthy pregnancies the mother should make at least four visits during the pregnancy the first of which must be within the first trimester ³⁷. If the pregnancy is unhealthy, the visit might be more than four times as per the healthcare provider's decision. Institutional delivery service was measured when a woman gives birth at a health post, health center, hospital, or other private health facilities; otherwise, it is considered as home delivery Similarly, postnatal care service was considered as received if the mother and her newborn received healthcare services and were visited by providers within two months of birth. In this study, a woman who has delivered recently was used to denote a mother aged 15-49 years and delivered from September 1, 2016 to February 28, 2017. A newborn in our study was taken as a child in its first eight weeks after birth and taken as a target for community-based newborn care services according to the Ethiopian CBNC program implementation guidelines ³⁸. Birth weight was assessed by asking the mother and labelling as small (<2.5 kg), average (2.5-4.0 kg) and large (>4.0 kg). The explanatory variables were the age of women (<24, 24-35, >35 years), marital status (single, married, widowed, divorced), educational status (unable to read and write, able to read and write, elementary school, high school, college and above), religion (Protestant, Orthodox, Muslim, Catholic), ethnicity (Gofa, Gamo, Wolayita, Others), occupational status (Government employee,

Page 11 of 33

BMJ Open

merchant, daily labor, farmer, housewife), household wealth status (poorest, poorer, middle, richer, richest), parity (primipara, multipara), participation in the women health development team meetings (yes, no), visited by HEWs (yes, no), time it takes to the health post (<30,30-60, 60-120, >120 minutes), type of health facility visited for danger sign (hospital, health center, health post), and information about CBNC (yes, no).

Wealth index was assessed using household assets through principal component analysis adapted from the EDHS ³⁹ and ranked into five (poorest, poorer, middle, richer, and richest) levels.

Data collection tools and procedures

An interviewer-administered standardized structured questionnaire was used after reviewing different studies and guidelines ²⁷ ³² ³⁵ ³⁶ ³⁸ ⁴⁰⁻⁴⁷. The tool was initially developed in English and translated into the local language (Amharic) and finally back to English to ensure consistency. Four trained BSc. degree graduate nurses and two public health officers of the same qualification from the nearby Sawla district were recruited as data collectors and supervisors, respectively. The supervisors checked data accuracy, consistency and completeness daily.

Data quality control

Before data collection, a one day training was given to data collectors and supervisors on the objectives of the study, data collection instruments, techniques and producers. The data collectors were supervised daily, and the consistency and completeness of data were checked by the principal investigator every night. A pretest was conducted on 21 women (5% of the sample size) of Demba Gofa (one of the neighboring districts with similar characteristics). Before the actual data collection, all findings from the pretest were incorporated into the final questionnaire and amendments were made.

183 Data processing and analysis

Data were cleaned and checked for completeness and consistency before they were coded and
entered into Epi-Data version 3.1 software and exported to SPSS version 23 for analysis.

Descriptive statistics used were presented in narrations and tabular forms. Both bi-variable and multivariable logistic regression analyses was computed to determine the associated factors. Variables with p-values of less than 0.2 in the bivariable logistic regression were candidates for the multivariable analysis after checking model fitness, chi-square, and multi-collinearity assumptions. In the final multivariable logistic regression analysis model, a p-value of less than 0.05 and adjusted odds ratio (AOR) with a 95% confidence interval (CI) were used to identify statistically associated factors.

Patient and public involvement

No patients or the public were directly involved in the development of the research questions, outcomes, recruitment and the design of the study. However, the participants and administrative officials were informed about the research questions and objectives. The findings will be disseminated to the Geze Gofa District Health Office and Gamo Gofa Zonal Health Department. Besides, the results will be distributed to potential stakeholders who have been involved in program implementation after being published in a peer-reviewed scientific journal.

200 Ethical considerations

Ethical clearance was obtained from the ethical review board of Jimma University (Ref. No. IHRPGC/418/2017) and official letter of support was secured from Geze Gofa District Health Office. Informed written consent was obtained from each respondent after a brief explanation of Page 13 of 33

BMJ Open

the risk and benefit of the study to ensure their voluntariness to participate before the actual data collection. Participants had the right to withdraw at any time or to skip for a single question or segment of questions they did not want to answer or refuse to participate at all with no negative repercussions, and the interview has stayed averagely for 15 minutes.

Results

209 Sociodemographic and economic characteristics of participants

Table 1 shows the sociodemographic and economic characteristics of the study participants. A total of 371 women responded to the interviewer-administered questionnaire with a response rate of 92.1%. The mean age of the women was 27.6 (SD \pm 5) years; the majority (74.4%) were married and 6.2% single. Religious preference for 46.4 and 7.5% of the women were Protestant and Muslim, respectively; 42.3% went to elementary school, while 5.9% attended college or above; 72.5% were housewives and 4.0% government employees; 67.1% were Gofa by ethnicity. Additionally, the mean parity was 3.5 (SD \pm 1.9), and approximately 30 and 14.6% were in the middle and richer wealth status, respectively.

Table 1 Sociodemographic and economic characteristics of study participants in Geze Gofa

219 district, south Ethiopia, June 2017 (n=371)

Responses	Frequency (n)	Percent (%)
<24	109	29.4
24-35	246	66.3
>35	16	4.3
Single	23	6.2
Married	276	74.4
Widowed	32	8.6
	<24 24-35 >35 Single Married	<24

60

	Variables	Responses	Frequency (n)	Percent (%)
		Divorced	40	10.8
	Religion	Protestant	172	46.4
		Orthodox	131	35.3
		Muslim	28	7.5
		Catholic	40	10.8
	Educational status	Unable to read and write	116	31.3
		Able to read and write	25	6.7
		Elementary school (Grade1-8)	157	42.3
		High school	51	13.7
		College and above	22	5.9
	Occupational status	Gov't employee	15	4.0
		Merchant	31	8.4
		Daily labor	21	5.7
		Farmer	35	9.4
		Housewife	269	72.5
	Ethnicity	Gofa	249	67.1
		Gamo	69	18.6
		Wolayita	27	7.3
		Others*	26	7.0
	Wealth quantiles	Poorest	65	17.5
		Poorer	63	17.0
		Middle	111	29.9
		Richer	54	14.6
		Richest	78	21.0
)	Gov't employee: Govern	ment employee, * others: Amhara, C	Guraghe, Kembata	l
1	Health extension prog	gram services and other related	characteristics	
2	All of the respondents kn	new the health extension workers (HE	EWs) who worked	l in their respe
3	kebeles. The majority (9	0.7%) of the women received advice	from the HEWs	during their r

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 15 of 33

BMJ Open

pregnancies and postpartum period. Similarly, 88.4, 74.1, 73.9, 70.4, and 47.4% of the women received information about the HEP packages, advice on STI, newborn and child diseases as well as supplies and vitamin A, respectively. A total of 340 (91.6%) women said that there was a Health Development team (in 1 to 5 networks) in their community. Of those, 323 women (95.0%) were members of the networks, and 217 (67.1%) attended meetings during their recent pregnancies. Moreover, the nearest health post took less than 30, 30-60, 60-120 and more than 120 minutes of on foot travel for 21.3, 40.7, 29.4, and 8.6% of the participants, respectively.

231 Obstetric history and maternal health services

As shown in Table 2 below, 98.1% of the women had ANC visits during their recent pregnancies, and the mean age of the pregnancies during the first ANC visit was 4.6 months (SD \pm 1.3). Similarly, 80.2 and 4.4% of the women went to health posts and hospitals for their first ANC, respectively.

During their recent ANC visits, physical examinations and routine laboratory investigations were done for 95.6 and 56.6% of the women, respectively. Moreover, 90.7, 80.5, and 6.6% of the women received tetanus toxoid vaccination, iron folate supplementation, and deworming during ANC follow ups, respectively. Of those who had ANC follow ups, 285 (78.3%) made ANC visits four times and above. Regarding knowledge of danger signs during pregnancies, 79.2, 75.5, and 49.6% stated that their danger signs were vaginal bleeding, blurred vision, and convulsion, respectively. One-fifth of the women faced at least one danger sign, while 75.5 and 10% said that they went to health centers and hospitals when they have faced any of the danger signs, respectively. Of the total respondents, 233 (62.8%) delivered at health facilities.

Table 2: Obstetric characteristics and maternal health services in Geze Gofa district, south
Ethiopia, June 2017 (n= 371)

Variables	Responses	Frequency	Percent
		(n)	(%)
Parity	Primipara	53	16.5
	Multipara	268	83.5
ANC follow up	Yes	364	98.1
	No	7	1.9
Number of ANC visits	Once	14	3.9
(n=364)	Twice	26	7.1
	Three times	39	10.7
	Four and above	285	78.3
Timing of first ANC visit	First trimester	58	15.9
(n=364)	Second trimester	298	81.9
	Third trimester	8	2.2
Type of health facility for the	Hospital	16	4.4
first ANC visit	Health center	56	15.4
	Health post	292	80.2
Knowing about danger sign	Swelling of hands and face	237	63.9
during pregnancy	Blurred vision	280	75.5
	Convulsion	184	49.6
	Severe headache	248	66.8
	Severe lower abdominal pain	206	55.5
	Vaginal bleeding	294	79.2
Place of visits, if they have	Hospital	37	10.0
faced danger signs	Health center	280	75.5
	Health post	54	14.6
Faced danger sign	Yes	75	20.2

Variables	Responses	Frequency	Percent	
		(n)	(%)	
	No	289	77.8	
Place of delivery	Health facility	233	62.8	
	Home	138	37.2	
Type of health facility	Hospital	34	14.6	
attended during delivery (n=	Health center	190	81.5	
233)	Health post	9	3.9	

247 Postpartum and immediate newborn care services

The postpartum and immediate newborn care services are presented in Table 3. Of the total participants, 246 (66.3%) received postnatal care within seven days after birth. Nearly 41% of them visited in the first 48 hours of delivery; 13 (9.4%) of those who delivered at home were made to use local material (buffer, dung, and others) to apply on cord. Of the total newborns, 336 (90.6%) started breastfeeding within an hour of delivery. Moreover, 74.1% of the newborns breastfed exclusively. Three-fourths of the women received information about breastfeeding for the first time from HEWs, while 24 (6.5%) obtained from the mass media.

Table 3: Postpartum and immediate newborn care services in Geze Gofa district, south Ethiopia,
June 2017 (n= 371)

Variables	Responses	Frequency	Percent	
		(n)	(%)	
Postnatal visit	Yes	246	66.3	
	No	125	33.7	
Postnatal care visiting time	<48 hours	100	40.7	
(n=246)	3 rd day	38	15.4	
	After 3 rd day	108	43.9	

Timing of breastfeeding	< 1hr	336	90.6
initiation	≥1hrs	35	9.4
Exclusive breastfeeding	Yes	275	74.1
	No	96	25.9
Source of information about	HEWs	278	74.9
breastfeeding	Healthcare providers from health	49	13.2
	canter		
	Mass media	24	6.5
	Relatives/friends	10	2.7
	Other*	10	2.7

²⁵⁷ *others: health development army leader, community group, traditional birth attendant

258 Newborn care services during the first two months of age

Table 4 shows newborn care services during the first two months of age; 69.0% of the mothers had information about community-based newborn care provided by HEWs at community level health posts. During the first two months after delivery, 224 (60.4%) of the newborns received postnatal follow ups from HEWs at home. Of the newborns, 41 (18.3%) were checked once, and 87 (38.8%) three and above times. The majority of the newborns, 299 (80.6%), were weighed within seven days, and 271 (90.6%) and 12 (4.0%) of them had average and large birth weight, respectively. Out of the total newborns, 56 (15.1%) faced health problems within two months of the postnatal period, and 34 (60.7%) consulted HEWs and visited health posts to receive medical services.

Table 4: Newborn care services during the first two months of age in Geze Gofa district, south
Ethiopia, June 2017 (n= 371)

Variables	Responses	Frequency	Percent
		(n)	(%)
Having information about the CBNC program	Yes	256	69.0
	No	115	30.9
Newborn received PNC from HEWs at home	Yes	224	60.4
within two months of age	No	147	39.6
Frequency of follow up received from HEWs	Once	41	18.3
(n=224)	Twice	96	42.9
	\geq Three times	87	38.8
Baby's weight was measured within the first	Yes	299	80.6
seven days of birth	No	72	19.4
Birth weight of the newborn (n=299)	Small	271	90.6
	Average	16	5.4
	Large	12	4.0
Newborn faced a health problem during the	Yes	56	15.1
first two months of age	No	315	84.9
Types of facility visited for medical services	Health post	34	60.7
(n=56)	Health center	15	26.8
	Hospital	7	12.5

270 Community-based newborn care utilization 38

A community-based newborn care program utilization was measured when a woman and her newborn received all the components of the program (antenatal care + institutional delivery + postnatal care + neonatal care up to two months of age) continually at home and/or health post level. Accordingly, 37.5% (95% CI: 32.6-42.6) of the women and their newborns utilized the full community-based newborn care program while the rest did not receive the entire program.

276 Factors associated with community-based newborn care utilization

In the bivariable logistic regression, age, educational level, occupational status, ethnicity, wealth status, time taken to reach the nearest health post, types of facility visited during danger signs and previous information about CBNC were candidate variables. In the multivariable logistic regression analysis, educational level, occupational status, wealth status, and types of facility visited when they had danger signs were variables significantly associated as presented in Table 5.

Accordingly, women who attended elementary school, college and above were 1.76 (AOR: 1.76, 95% CI: 1.01-3.07) and 3.71 (AOR: 3.71, 95% CI: 1.12-12.24) times more likely to utilize the program compared to those who were unable to read and write, respectively. Farmer women were 65% less likely to utilize the program compared to housewives (AOR: 0.35, 95% CI: 0.16-0.79). Women who were in the poorest and middle wealth status were 3.76 (AOR: 3.76, 95% CI: 1.65-8.54) and 1.96 (AOR: 1.96, 95% CI: 1.03-3.76) times more likely to utilize the program than the richest women. Moreover, women who preferred visiting the hospital if they had any danger signs were 70.4% times less likely to utilize the services than those who chose to go to health posts (AOR: 0.29, 95% CI: 0.11-0.78).

Table 5: Bivariable and multivariable logistic regression analysis of factors associated with community-based newborn care utilization in Geze Gofa district, south Ethiopia, June 2017 (n= 371)

	CBNC	CNBC		
Variables	utilized	not utilized	COR (95% CI)	AOR (95% CI)
	n (%)	n (%)		
Age in years				
≤24	36 (33.0)	73 (67.0)	2.03 (0.70-5.84)	1.41 (0.42-4.76)
25-35	95 (38.6)	151 (61.4)	1.59 (0.58-4.38)	1.34 (0.44-4.10)
		19		

59

60

BMJ Open

	COR (95% CI)	CNBC	CBNC	
AOR (95% 0			utilized	Variables
		n (%)	n (%)	
	1	8 (50.0)	8 (50.0)	>35
				Educational status
	1	67 (57.8)	49 (42.2)	Unable to read & write
0.84 (0.32-2.1	0.79 (0.33-1.88)	13 (52.0)	12 (48.0)	Able to read & write
1.76 (1.01-3.07	1.71 (1.04-2.83)	110 (70.1)	47 (29.9)	Elementary school
0.80 (0.36-1.7	0.70 (0.36-1.36)	25 (49.0)	26 (51.0)	High school
3.71 (1.12-12.24	2.49 (0.86-7.20)	17 (77.3)	5 (22.7)	College and above
				Occupational status
0.41 (0.13-1.2	0.43 (0.15-1.21)	7 (46.7)	8 (53.3)	Government employee
0.50 (0.22-1.1	0.59 (0.28-1.25)	17 (54.8)	14 (45.2)	Merchant
0.40 (0.15-1.0	0.65 (0.26-1.60)	12 (57.1)	9 (42.9)	Daily labour
0.35 (0.16-0.79)	0.37 (0.18-0.75)	15 (42.9)	20 (57.1)	Farmer
	1	181 (67.3)	88 (32.7)	Housewife
		12.		Ethnicity
	1	163 (65.5)	86 (34.5)	Gofa
0.76 (0.42-1.3	0.69 (0.40-1.18)	39 (56.5)	30 (43.5)	Gamo
0.47 (0.20-1.1	0.57 (0.26-1.26)	14 (51.9)	13 (48.1)	Wolayita
1.27 (0.49-3.2	0.84 (0.37-1.94)	16 (61.5)	10 (38.5)	Others*
				Wealth status
3.76 (1.65-8.54)	4.21 (1.98-8.94)	52 (80.0)	13 (20.0)	Poorest
1.92 (0.91-4.0	1.96 (0.99-3.88)	41 (65.0)	22 (35.0)	Poorer
1.96 (1.03-3.76)	1.943 (1.07-3.51)	72 (64.9)	39 (35.1)	Middle
1.26 (0.57-2.8	1.221 (0.61-2.45)	29 (53.7)	25 (46.3)	Richer
	1	38 (48.7)	40 (51.3)	Richest
		minutes)	alth posts (in	Time takes to reach the nearest hea
	0.51 (0.20-1.33)	51 (64.6)	28 (35.4)	< 30
0.83 (0.45-1.5	0.44 (0.18-1.07)	92 (61.0)	59 (39.0)	30-60
0.70 (0.36-1.3	0.39 (0.16-1.00)	64 (58.7)	45 (41.3)	60-120
×	· · · · ·	20		

	CBNC	CNBC		
Variables	utilized	not utilized	COR (95% CI)	AOR (95% CI)
	n (%)	n (%)		
> 120	7 (21.9)	25 (78.1)		1.72 (0.61-4.85)
Place of visit (if they have faced	danger signs)	I		
Hospital	20 (54.0)	17 (46.0)	0.29 (0.12-0.72)	0.29 (0.11-0.78) *
Health center	105 (37.5)	175 (62.5)	0.58 (0.30-1.12)	0.58 (0.29-1.18)
Health post	14 (25.9)	40 (74.1)	1	1
Information about CBNC progra	m			
Yes	90 (35.2)	166 (64.8)	1	1
No	49 (42.6)	66 (57.4)	0.73 (0.47-1.15)	0.73 (0.43-1.21)

295 Others*: Amhara, Guraghe, and Kembata, *statistically significant at p-value <0.05

Discussion

Overall, 37.5% of the women who delivered recently and their newborns received the full components of the community-based newborn care program. This finding is higher than that of a study conducted at Xaybouathong district, Lao PDR. In this study, only 6.8% the women received all the modified composite coverage index components of maternal and child health services (ANC 4 or more, neonatal tetanus protection, facility-based delivery, delivery assisted by skilled birth attendant (SBA), PNC for mother and newborn, BCG, Penta, Polio, and family planning)³¹. A study in Ghana showed that from pregnancy to post-delivery, 7.9% of women and children received the continuum of care 32 , while another study in Ghana indicated that only 8.0% of the women completed the continuum of maternal and newborn care services ³⁶. Our finding is higher than that of a study conducted in Pakistan and showed that the continuum of maternal care was 27.4% ³⁴. The possible justification for the discrepancy could be the inclusion of the continuum of care as measured by ANC, institutional delivery, immediate postnatal care, and newborn care

Page 23 of 33

BMJ Open

services up to two months of age, whereas in others studies the continuum of care included a child health services until the age of one year. The other possible explanation might be the use of a longer study period retrospectively to assess the utilization that included five years before the survey, which might increased their recall bias about the services they received for the last five years and the sociodemographic variations of study areas. Moreover, stronger and more resilient health systems which focus on community-based service provisions like the health extension program in Ethiopia may explain some of the discordance in the findings of the current and other studies ⁴⁸⁻⁵⁰. Results however were lower than that of a study done at Sohag Governorate, Egypt, and showed that 50.4% of the women achieved the continuum of care as measured by ANC+4 visits, delivery by a skilled birth attendant and PNC ³³. In addition, a study conducted in Cambodia showed that 60% of women had the full range of services for the continuum of maternal and newborn healthcare ⁵¹. This discrepancy might be due to the use of only maternal continuum of care which did not include newborn care that could give a higher result. The other possible reason might be differences in study areas. A study conducted in Cambodia used a national survey which might have resulted in a higher findings and socio-cultural variations.

Our study showed that 98.1% of the women received ANC services once, 76.8% four times and above; 62.8% of women delivered at a health facility, and the health status of 60.3% of newborns was checked by HEWs until two months of age. Our finding is higher than that of a study conducted in Ratanakiri province, Cambodia, in which only 32.6% of the women made four and above visits in the continuum of maternal, newborn, and child health services ⁵². The possible explanation might be the difference in the target group, which included women who gave birth two years before the study which might have resulted in forgetting the services they took. The other possible reason might be the difference in the service delivery pace for ANC follow ups. Our

study included services taken at the health post level, while their study measured ANC service follow ups at health centers and hospitals only. Our findings is lower than that of a study conducted in Sohag Governorate, Egypt, which showed that 90% of the women had four and above antenatal care visits ³³. The explanation for our low result might be the sociodemographic variation in that we assessed the utilization for rural dwellers only. Moreover, the presence of better maternal and child health services achievement in Egypt might be the possible explanation for this higher findings ⁵³.

Our study showed that women who attended elementary school, college and above had 1.7 and 3.7 times more chance of getting CBNC service utilization compared to mothers who were unable to read and write, respectively. This finding was comparable with that of a study done in Xaybouathong district, Lao PDR, and showed women's education was positively associated with the continuum of maternal, newborn and child health service utilization ³¹. These findings might be explained by the fact a woman's education increases her knowledge and awareness about the importance of the services and the chance of getting information.

In this study, CBNC utilization was lower by 65% among farmer women compared to housewives. This result is supported by a study done in the Xaybouathong district, Lao PDR, which shows farming as an occupation is negatively associated with the continuum of maternal, newborn, and child health service utilization ³¹. This result might be explained by the inconvenience of the time of service delivery for farmer women since services are provided at the community level.

Women who are in the poorest and middle wealth quantile were 3.76 and 1.96 times more likely to utilize the community-based newborn care program compared to those who were in the richest. This finding is different from those studies in Sohag Governorate, Egypt, that shows women in

Page 25 of 33

BMJ Open

the higher economic status utilized 1.6 times more of the continuum of maternal, newborn, and child health services compared to those in the lower economic status ³³. A study in Ghana showed that women and children in the richest households were more likely to utilize the continuum of care ³². Another study in Africa showed that there was a three-fold disparity in the use of the continuum of care between the wealthiest 20% of African women compared to the poorest ⁵⁴. In Pakistan, a study showed that the richest women were seven times more likely to utilize the continuum of care than the poorest ³⁴. This disagreement might be explained by the fact that the program in our study area aimed to serve the poorest households at health post and household levels to increase service access. The other possible explanation might be that wealthier families can afford the direct and indirect costs of services of health centers or hospitals and seek more quality care at higher facilities by well-trained providers. Additionally, the program in our case is a free service that does not incur any cost on those who cannot seek other services at advanced or higher facilities.

In this study, women who preferred to visit hospitals when they faced danger signs had a 70.4% lower chance of utilization of the community-based newborn care services compared to those who preferred health posts. According to the Ethiopian health tier system, health posts are more accessible than hospitals; so, those who want to visit hospitals might not get the services as easily as they need ⁵⁵. This result is in line with that of a study in Pakistan and showed that the absence of problems relating to distance and travel arrangements to access health facilities increases the utilization of the continuum of maternal, newborn, and child healthcare services by 76.1% and 72.9%, respectively ³⁴. The other possible explanation might be that the effectiveness of community health workers in delivering preventive maternal and child health interventions in lowand-middle income countries ⁵⁶ increases community-based service acceptability in rural
 communities.

378 Limitations of the study

The finding was not triangulated by qualitative methods which are also subject to social desirability bias owing to our use of an interviewer-administered questionnaire. To minimize the impact, data collectors were recruited from other districts. Moreover, the women might have experienced recall bias, particularly regarding the services they received during their previous obstetrics, ANC visits, for instance. Compared to other studies however our work assessed later events that preceded the study by only six months. On top of that, the data collectors were highly experienced and well-trained on the tools to explain the questions and extend the time for respondents so they recall events later.

Conclusion and implications

The study showed that community-based newborn care utilization in the study area was low compared to the current national recommendations. Elementary school, college and above education as well as the poorest and middle wealth status affected the utilization positively, whereas farming occupation and preference of hospitals in case of danger signs affected the utilization negatively. Therefore, awareness creation at community levels for illiterate women, arranging convenient time for farmer women and providing full components of maternal and newborn services in nearby community level health facilities could improve the utilization of community-based newborn care program in rural districts. Furthermore, subsequent studies must explore the barriers for low utilization of community-based newborn care services using

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
33 34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
52	
53	
54	
55	
56	
57	
58	
59	
60	

qualitative methods and also better if studies assessed the effectiveness of the program on maternaland child health outcomes.

Acknowledgment: The authors would like to thank all respondents for their willingness to
participated in the study. We are also grateful to the Geze Gofa district health office. Finally, our
appreciation goes to the data collectors for their unreserved contribution in data collection
activities.

403 Author Contributions: TG conceptualized the study. AA and ED developed the methods and
404 materials. TG, AA, and ED undertook the data analysis, interpretation, and drafting of the paper.
405 All authors invest significant contributions and approved the final draft.

406 Funding statement: This research received no specific grant from any funding agency in public,407 commercial, or not-for-profit sectors.

408 **Competing interests:** The authors declare that they have no conflict of interest.

409 **Patient consent:** obtained

410 Ethical approval: Ethical approval was obtained from the ethical review board of Jimma
411 University (Ref. No. IHRPGC/418/2017). The official letter of co-operation was obtained from
412 the Geze Gofa district health office.

413 Data sharing statement: all the relevant data are provided in the manuscript. Data can be provided
414 by the contact of the corresponding author on a reasonable request.

416 **References**

1 2 3

4 5 6

7

8

9

23

24 25

56

57 58 59

60

- 417 1. World Health Organization. Global, regional and national neonatal health status. Fact sheet,
 418 2016.
- 419 2. Kliegman RM, Staton B, Gene J. Nelson Textbook of Pediatrics 20th. *Neurology part p* 420 2015:2863-74.
- 421 3. Organization WH. Global health observatory (GHO) data: Neonatal mortality. *World Health* 422 Organization Retrieved from: www who int/gho/child_health/mortality/neonatal/en 2016
- 423 4. Organization WH. Newborns: reducing mortality <u>https://www.who.int/news-room/fact-</u>
 424 <u>sheets/detail/newborns-reducing-mortality</u> 2018.
- 425 5. UNICEF. Committing to Child Survival: A promise renewed–progress report 2015. Retrieved
 426 August 8, 2017, 2017.
 - 427 6. Central Statistical Agency Addis Ababa E. Ethiopia Demographic and Health Survey 2016
 428 Addis Ababa, Ethiopia 2016
- 7. Perry HB, Zulliger R, Rogers MM. Community health workers in low-, middle-, and high income countries: an overview of their history, recent evolution, and current effectiveness.
 Annual review of public health 2014;35:399-421.
- 432 8. Reducing intrapartum-related neonatal deaths in low-and middle-income countries—what
 433 works? Seminars in perinatology; 2010. Elsevier.
- 434 9. Nair N, Tripathy P, Prost A, et al. Improving newborn survival in low-income countries:
 435 community-based approaches and lessons from South Asia. *PLoS medicine* 436 2010;7(4):e1000246.
- 40 41
 437 10. Maulik P, Darmstadt G. Community-based interventions to optimize early childhood 42 438 development in low resource settings. *Journal of Perinatology* 2009;29(8):531.
- 44 439 11. World Health Organization Regional Office for Africa. Newborn Health key facts. 2017.
 45 440 <u>https://www.afro.who.int/health-topics/newborn</u>.
- 47
 441 12. Callaghan-Koru JA, Nonyane BA, Guenther T, et al. Contribution of community-based
 49
 442 newborn health promotion to reducing inequities in healthy newborn care practices and
 50
 51
 443 knowledge in Malawi. 2013
- 444 13. Mathewos B, Owen H, Sitrin D, et al. Community-Based Interventions for Newborns in
 445 Ethiopia (COMBINE): Cost-effectiveness analysis. *Health Policy Plan*

1 2		
- 3 4	446	2017;32(suppl_1):i21-i32. doi: 10.1093/heapol/czx054 [published Online First:
5	447	2017/10/06]
6 7	448	14. Berhanu D, Avan B. Community Based Newborn Care in Ethiopia: Quality of CBNC
8 9	449	programme assessment Midline Evaluation Report March 2017. 2017
10 11	450	15. Banteyerga H. Ethiopia's health extension program: improving health through community
12	451	involvement. MEDICC review 2014;13(3):46-49.
13 14	452	16. Mathewos B, Owen H, Sitrin D, et al. Community-based interventions for newborns in
15 16	453	Ethiopia (COMBINE): cost-effectiveness analysis. Health policy and planning
17	454	2017;32(suppl_1):i21-i32.
18 19	455	17. Degefie Hailegebriel T, Mulligan B, Cousens S, et al. Effect on Neonatal Mortality of Newborn
20 21	456	Infection Management at Health Posts When Referral Is Not Possible: A Cluster-
22 23	457	Randomized Trial in Rural Ethiopia. Global health, science and practice 2017;5(2):202-
24	458	16. doi: 10.9745/ghsp-d-16-00312 [published Online First: 2017/06/15]
25 26	459	18. Alamneh Y, Adane F, Yirga T, et al. Essential newborn care utilization and associated factors
27 28	460	in Ethiopia: a systematic review and meta-analysis. BMC Pregnancy and Childbirth
29 30	461	2020;20(1):1-9.
31	462	19. Mathewos B, Musema Y, Bekele A, et al. Community-based Newborn Care in Ethiopia:
32 33	463	Implementation Strength and Lessons Learned. Ethiopian Medical Journal 2019(3)
34 35	464	20. Gebremariam A, Mohammed H, Hailemichael A, et al. Community-Based Newborn Care in
36 37	465	Afar: Lessons Learned. Ethiopian Medical Journal 2019(3)
38	466	21. Ameha A, Legesse H, Sylla M, et al. The Effect of Community-Based Newborn Care
39 40	467	Intervention on Service Utilization for Sick Newborn and Children. Ethiopian Medical
41 42	468	Journal 2019(3)
43 44	469	22. Okwaraji YB, Berhanu D, Persson LA. Community-based child care: household and health-
45	470	facility perspectives. Dagu Baseline Survey, Ethiopia, December 2016-February 2017.
46 47	471	Community-based child care: household and health facility perspectives 2017
48 49	472	23. Zimmerman LA, Shiferaw S, Seme A, et al. Evaluating consistency of recall of maternal and
50	473	newborn care complications and intervention coverage using PMA panel data in SNNPR,
51 52	474	Ethiopia. <i>PloS one</i> 2019;14(5)
53 54	475	24. Canavan ME, Brault MA, Tatek D, et al. Maternal and neonatal services in Ethiopia: measuring
55 56	476	and improving quality. Bulletin of the World Health Organization 2017;95(6):473.
57		28
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4	477	25. Bobo FT, Yesuf EA, Woldie M. Inequities in utilization of reproductive and maternal health
5 6	478	services in Ethiopia. International journal for equity in health 2017;16(1):105.
7	479	26. Callaghan-Koru JA, Abiy Seifu MT, Graft-Johnson Jd, et al. Newborn care practices at home
8 9	480	and in health facilities in 4 regions of Ethiopia. 2013
10 11	481	27. Zulfiqar A. Bhutta GLD, Babar S. Hasan and Rachel A. Haws. Community-Based
12 13 14	482	Interventions for Improving Perinatal and Neonatal Health Outcomes in Developing
	483	Countries: A Review of the Evidence. 2005 doi: 10.1542/peds.2004-1441
15 16	484	28. Taylor ME. Community Based Newborn Care in Ethiopia: Introduction to the Special Issue.
17	485	Ethiopian Medical Journal 2019(3)
18 19 20 21 22 23	486	29. Semu Y, Tekle E, Bekele A, et al. Making Community Based Newborn Care Sustainable in
	487	Ethiopia. Ethiopian Medical Journal 2019(3)
	488	30. Sambo LG, Chatora RR, Goosen E. Tools for assessing the operationality of district health
24	489	systems. Brazzaville: World Health Organization, Regional Office for Africa 2003
25 26	490	31. Sakuma S, Yasuoka J, Phongluxa K, et al. Determinants of continuum of care for maternal,
27 28	491	newborn, and child health services in rural Khammouane, Lao PDR. PloS one
28 29 30 31	492	2019;14(4):e0215635.
	493	32. Shibanuma A, Yeji F, Okawa S, et al. The coverage of continuum of care in maternal, newborn
32 33	494	and child health: a cross-sectional study of woman-child pairs in Ghana. BMJ Global
34 35	495	Health 2018;3(4):e000786. doi: 10.1136/bmjgh-2018-000786
36	496	33. Hamed AF, Roshdy E, Sabry M. Egyptian status of continuum of care for maternal, newborn,
37 38	497	and child health: Sohag Governorate as an example. International Journal of Medical
39 40	498	Science and Public Health 2018;7(6):417-27.
41	499	34. Iqbal S, Maqsood S, Zakar R, et al. Continuum of care in maternal, newborn and child health
42 43	500	in Pakistan: analysis of trends and determinants from 2006 to 2012. BMC Health Services
44 45	501	Research 2017;17(1):189. doi: 10.1186/s12913-017-2111-9
46 47	502	35. Engmann CM, Hodgson A, Aborigo R, et al. Addressing the continuum of maternal and
48	503	newborn care in Ghana: implications for policy and practice. Health Policy and Planning
49 50	504	2016;31(10):1355-63. doi: 10.1093/heapol/czw072
51 52	505	36. Yeji F, Shibanuma A, Oduro A, et al. Continuum of care in a maternal, newborn and child
53	506	health program in Ghana: Low completion rate and multiple obstacle factors. PloS one
54 55	507	2015;10(12):e0142849.
56 57		29
58		

1 2					
2 3 4	508	37. World Health Organization. WHO recommendations on antenatal care for a positive pregr			
5	509	experience: World Health Organization 2016.			
6 7	510	38. Federal Ministry of Health E. Community Based Newborn Care Implementation Guideline			
8 9	511	2013.			
10	512	39. [Ethiopia] CSAC. Ethiopia Mini Demographic and Health Survey 2014. Addis Ababa,			
11 12 13 14 15 16	513	Ethiopia. 2014			
	514	40. Federal Ministry of Health E. Maternal, newborn, child and adolescent health guideline 2012			
	515	41. Tuladhar S. The Determinants of Good Newborn Care Practices in the Rural Areas of Nepal.			
17	516	2010			
18 19	517	42. Owili PO, Muga MA, Chou Y-J, et al. Associations in the continuum of care for maternal,			
20 21	518	newborn and child health: a population-based study of 12 sub-Saharan Africa countries.			
22 23	519	<i>BMC public health</i> 2016;16(1):414.			
24 25 26 27 28 29 30 31 32 33 34 35	520	43. Quayyum Z, Khan MNU, Quayyum T, et al. "Can community level interventions have an			
	521	impact on equity and utilization of maternal health care"-Evidence from rural Bangladesh.			
	522	International journal for equity in health 2013;12(1):22.			
	523	44. Veirum JE, Biai S, Jakobsen M, et al. Persisting high hospital and community childhood			
	524	mortality in an urban setting in Guinea-Bissau. Acta paediatrica (Oslo, Norway : 1992)			
	525	2007;96(10):1526-30. doi: 10.1111/j.1651-2227.2007.00467.x [published Online First:			
	526	2007/09/14]			
36 37	527	45. Kerber KJ, de Graft-Johnson JE, Bhutta ZA, et al. Continuum of care for maternal, newborn,			
38	528	and child health: from slogan to service delivery. The Lancet 2007;370(9595):1358-69.			
39 40	529	doi: 10.1016/s0140-6736(07)61578-5			
41 42	530	46. Sule SS, Onayade AA. Community-based antenatal and perinatal interventions and newborn			
43	531	survival. Nigerian journal of medicine : journal of the National Association of Resident			
44 45	532	Doctors of Nigeria 2006;15(2):108-14. [published Online First: 2006/06/30]			
46 47	533	47. Telfair J. An evaluation of state perinatal community-based programs in Alabama: overview.			
48 49	534	Public health reports (Washington, DC : 1974) 2003;118(5):484-6. doi:			
50	535	10.1093/phr/118.5.484 [published Online First: 2003/08/28]			
51 52	536	48. Fetene N, Linnander E, Fekadu B, et al. The Ethiopian health extension program and variation			
53 54	537	in health systems performance: what matters? <i>PloS one</i> 2016;11(5)			
55 56					
57		30			
58 59					
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml			

- 49. Admasu K-B. Designing a resilient National health system in Ethiopia: the role of leadership. *Health Systems & Reform* 2016;2(3):182-86.
- 540 50. Afework MF, Admassu K, Mekonnen A, et al. Effect of an innovative community based health
 541 program on maternal health service utilization in north and south central Ethiopia: a
 542 community based cross sectional study. *Reproductive health* 2014;11(1):28.
- 1254351. Wang W. Levels and determinants of continuum of care for maternal and newborn health in13544Cambodia-evidence from a population-based survey. BMC Pregnancy and Childbirth155452015;15 doi: 10.1186/s12884-015-0497-0
- 52. Yasuoka J, Nanishi K, Kikuchi K, et al. Barriers for pregnant women living in rural, agricultural villages to accessing antenatal care in Cambodia: A community-based cross-sectional study combined with a geographic information system. PLoS One 2018;13(3):e0194103. doi: 10.1371/journal.pone.0194103 [published Online First: 2018/03/20]
- 551 53. Benova L, Campbell OM, Sholkamy H, et al. Socio-economic factors associated with maternal
 552 health-seeking behaviours among women from poor households in rural Egypt.
 553 *International journal for equity in health* 2014;13(1):111.
- 554 54. de Graft-Johnson J, Kerber K, Tinker A, et al. The maternal, newborn and child health
 555 continuum of care. *Opportunities for Africa's newborns* 2006:23-36.
 - 556 55. Federal Ministry of Health E. The Ethiopian health tire system, 2010.
 557 <u>https://ethiopiahealth.blogs.wm.edu/ethiopian-health-system</u>.
- 3855856. Gilmore B, McAuliffe E. Effectiveness of community health workers delivering preventive3940559interventions for maternal and child health in low-and middle-income countries: a41560systematic review. BMC public health 2013;13(1):847.

 BMJ Open

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5-7
Objectives	3	State specific objectives, including any prespecified hypotheses	7
Methods			
Study design	4	Present key elements of study design early in the paper	7
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	7-8
Participants 6 (a) Give the eligibility criteria, and the sources and methods of selection of participants		8	
Variables	7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable 8-10		8-10
Data sources/ measurement	ata sources/ 8* For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe 9-10		9-10
Bias	9	Describe any efforts to address potential sources of bias	10
Study size	10	Explain how the study size was arrived at	8
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	11
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	11
		(b) Describe any methods used to examine subgroups and interactions	11
		(c) Explain how missing data were addressed	
		(d) If applicable, describe analytical methods taking account of sampling strategy	11
		(e) Describe any sensitivity analyses	

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	12
		confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	12-13
		(b) Indicate number of participants with missing data for each variable of interest	13-18
Outcome data	15*	Report numbers of outcome events or summary measures	18
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	18-21
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	18-21
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	-
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	-
Discussion			
Key results	18	Summarise key results with reference to study objectives	21
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	25
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	21-25
Generalisability	21	Discuss the generalisability (external validity) of the study results	25
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	26
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Community-based newborn care utilization and associated factors in Geze Gofa rural district, south Ethiopia: a community-based cross-sectional study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-037792.R2
Article Type:	Original research
Date Submitted by the Author:	27-Jul-2020
Complete List of Authors:	Gebremedhin, Tsegaye; University of Gondar College of Medicine and Health Sciences, Health Systems and policy Atnafu, Asmamaw; University of Gondar College of Medicine and Health Sciences, Health Systems and policy Dellie, Endalkachew; University of Gondar College of Medicine and Health Sciences, Health Systems and policy
Primary Subject Heading :	Health services research
Secondary Subject Heading:	Obstetrics and gynaecology, Public health
Keywords:	Community child health < PAEDIATRICS, PUBLIC HEALTH, OBSTETRICS, HEALTH SERVICES ADMINISTRATION & MANAGEMENT

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Community-based newborn care utilization and associated factors in Geze Gofa rural district, south Ethiopia: a community-based cross-sectional study

Tsegaye Gebremedhin*, Asmamaw Atnafu, Endalkachew Dellie

- Department of Health Systems and Policy, Institute of Public Health, College of Medicine and
- Health Sciences, University of Gondar, Gondar, Ethiopia

Email address:

- TG: tsegishg27@gmail.com
- AA: asme2002@gmail.com
- ED: endalkd.07@gmail.com

*Corresponding author:

- TG: tsegishg27@gmail.com
- ` `thiopia Po. Box 196, University of Gondar, Gondar, Ethiopia

BMJ Open

ABSTRACT **Objective** The community-based newborn care (CBNC) is a newborn care package along the maternal and newborn health continuum of care that has been implemented at the community level in Ethiopia. The utilization which might be affected by several factors has not been well assessed. Thus, this study aimed to examine the utilization of community-based newborn care and associated factors among women who delivered recently in Geze Gofa rural district, south Ethiopia. **Design** Cross-sectional study Setting Community-based **Participants** Three-hundred seventy-one women who had their newborns recently were randomly selected. Then, they were interviewed at their places using an interviewer-administered structured questionnaire.

Methods A binary logistic regression analysis was done. In the multivariable logistic regression
analysis, a p-value of <0.05 and Adjusted Odds Ratio (AOR) with 95% confidence interval (CI)
were used to identify factors statistically associated with community-based newborn care
utilization.

Outcomes Community-based newborn care utilization

Results The findings showed that the overall utilization of CBNC by women who delivered recently with their newborns was 37.5% (95% CI: 32.6-42.6). Factors associated with the utilization of CBNC included women who attended elementary school (AOR: 1.76, 95% CI: 1.01-3.07), college and above (AOR: 3.71, 95% CI: 1.12-12.24), farmer women (AOR: 0.35, 95% CI: 0.16-0.79), women in the lowest (AOR: 3.76, 95% CI: 1.65-8.54) and middle quantile of wealth

status (AOR: 1.96, 95% CI: 1.01-3.76, and those whose preference was visiting hospital they faced any signs of danger (AOR: 0.29, 95% CI: 0.11-0.78).

Conclusions The use of the community-based newborn care program in the study area was surprisingly low. To increase utilization and potentially improve the outcomes of these neonates, we need to increase awareness at community levels, make convenient arrangements, and increase the availability of services at nearby health facilities that are essential to improve the uptake of

17 18	41	CBNC	in	the	rural	district.
19 20						
20 21						
22						
23						
24						
25						
26						
27						
28						
29						
30						
31 32						
33						
34						
35						
36						
37						
38						
39 40						
41						
42						
43						
44						
45						
46						
47 48						
49						
50						
51						
52						
53						
54						
55						
56 57				3		
58						
59						
60			For peer review only - ht	tp://bmjopen.bmj.com/	/site/about/guidelines.xhtml	

42 Article summary

43 Strengths and limitations of this study

- The finding is expected to give insight to program implementers and policymakers who aim to
- 45 raise the accessibly and quality of community-based newborn care services in the area.
 - Qualitative methods did not triangulate the study.
- The study might be subjected to social desirability bias because of the use of an intervieweradministered questionnaire which was in fact minimized through the use of experienced and
 trained data collectors from other district health facilities.
 - Furthermore, women might experience recall bias, particularly regarding services they
 received during their previous obstetrics, such as ANC visits.

52 INTRODUCTION

Neonatal period, from birth to the first 28 days of life, is the most critical phase of life in which
the risk for death is the highest and therefore needs more attention and care.¹²

Globally, 2.6 million newborns die in their first 28 days of life every year, and three-fourths of all newborn deaths occur in the first week of life.³ The majority (98%) of the neonatal deaths are from preventable causes, occurring in middle-and low-income countries, including Ethiopia.¹⁴ Ethiopia was one of the highest contributors in Africa, with 187,000 neonatal mortality in 2015.⁵ According to the Ethiopian Demographic and Health Survey (EDHS) 2016, the neonatal mortality rate in the country was 29 per 1000 live births.⁶

A community-based maternal and newborn care program has been implemented in low-income countries, primarily for the improvement of maternal and newborn health status.⁷⁻¹⁰ Two-thirds of neonatal deaths can be prevented if effective health measures are provided at birth and during the first week of life.¹¹ Similarly, community-based health interventions increase access to areas where facility of care is limited. Therefore, removing key barriers such as distance and transport costs for the poor and promoting the utilization of facility-based services, and in some cases, providing treatment at community levels need to be considered.¹²

In Ethiopia, a community-based newborn care (CBNC) program is an initiative that includes a newborn care package along the maternal and newborn health continuum of care.^{13 14} It is carried out by Health Extension Workers (HEWs) at community levels and aims at improving maternal and newborn health through the four Cs, prenatal and postnatal contact, case-identification of newborns with signs of bacterial infections, care or treatment as early as possible, and the completion of a full seven-day course of appropriate antibiotics at the community level.¹⁵

Page 7 of 35

BMJ Open

Newborns in Ethiopia face multitude of barriers in accessing health care. Some of these are related to culture and fatalism and others to physical access due to distance and limited communication. Although nearly all the HEWs have been trained to treat severe newborn infections in the Community-Based Newborn Care (CBNC) program, relatively few sick newborns have been identified and treated in the country.^{13 16}

The utilization of available maternal and child health services is very low in Ethiopia.¹⁷⁻²⁰ A community-based child care household survey in 194 clusters in 46 woredas across four regions on newborn and child health service utilization showed that only 4.0% of the newborns had a postnatal check within the recommended first two days of life.²¹ For this low CBNC program service utilization, socioeconomic and demographic factors are the most important contributing variables.^{13 19 21}

Despite the increasing availability of key maternal and newborn health services, low utilization and lack of quality services continue to be a challenge in Ethiopia.²²⁻²⁴ Of the total 72% of women who delivered at home without skilled assistance, 80% were from rural residents. Besides, only thirteen percent of the newborns had a postnatal check within the critical first two days after birth, while 86% did not receive postpartum.⁶ Lack of postnatal health checks can delay the identification of newborn complications and initiate appropriate care and treatment. Thus, early postpartum service is critical to ensure proper neonatal care which includes exclusive breastfeeding, cord and thermal care and the prevention of infections.²⁵

Moreover, home care visits are not delivered on the standard days (1 and 3) of a newborn's life,
and for the majority of mothers, a third visit does not occur before the end of the first week of life
(day 7) in developing countries.²⁶

In Ethiopia, implementing the CBNC program has been taken as one of the core interventions to reduce child mortality and to attain the Sustainable Development Goals (SDGs) of reducing under-five mortality to less than 25 per 1000 live births and neonatal mortality to 12 or fewer per 1000 live births by 2030.²⁷ ²⁸ However, studies that show the implementation status of these interventions are rare. Hence, this study aimed to inform policymakers, program managers, and care providers about the utilization level of the CBNC program and the extent to which its key components were implemented as intended in the study area and in similar settings. Therefore, the objective of this study was to assess the community-based newborn care utilization and associated factors among women who delivered recently and their newborns in the Geze Gofa district, southern Ethiopia.

106 METHODS

107 Study design and settings

A community-based cross-sectional study was conducted in Geze Gofa district, Gamo Gofa zone,
Southern Nation Nationalities and Peoples' Region (SNNPR), Ethiopia, from May 1 to 31, 2017.
Geze Gofa district is one of the seventeen districts in Gamo Gofa zone located 535km to the
southwest of Addis Ababa, the capital of Ethiopia.

Administratively, the district is divided into one urban and 29 rural kebeles with 87,731 people. Of these, 43,690 (49.8%) were male and 44,041 (50.2%) female; 20,441 (23.3%) of the women were in the childbearing age group (15-49 years), and 3036 of the women were pregnant with 13,695 under-five children in the district; there also were 3,036 and 2,799 neonates and under oneyear infants, respectively.

BMJ Open

All mothers in the childbearing age group and gave birth in 2016 -2017 were the source population,
whereas all mothers who delivered from September 1, 2016 to February 28, 2017 were the study
population.

Mothers who gave birth both at home and in health facilities in the district six months before the study and live young infants were included. Mothers who delivered in another district and came to the study area, lost their babies before two months of age, critically ill, and unable to respond to interviews were excluded.

124 Sample size and sampling techniques

125 The sample size was determined using the single population proportion formula $(n = \frac{P(1-P)(Z_{\alpha/2})^2}{d^2})$ 126 and assuming a 50% proportion (P) of service utilization of women and newborns, 5% expected 127 margin of error (d), 95% confidence level (CI), and 10% non-response that yielded a sample of 128 403.

Initially, nine health posts (30% of the total health posts) were selected using the lottery method.²⁹ Then, the sample was proportionally allocated to the nine health posts based on the estimated number of mothers who gave birth in the last six months. The final participants were selected using the simple random sampling technique (lottery method) from the delivery registries of the health posts. Then, home visits and interviews were conducted using household numbers.

134 Variables and measurements

The outcome variable of the study was the utilization of community-based newborn care program.
It was measured based on participant service uptake of such components of the program as early
identification pregnancy, receiving focused antenatal care (ANC), institutional delivery, postnatal

care (PNC) for mother and child within two months of the postpartum period, and identification and management of sick newborns at community level up to the age of two months.³⁰⁻³⁵ Accordingly, if the mothers received all the five components of the program, we considered them as "utilized" the community-based newborn care program; otherwise as "not utilized". Antenatal care service utilization was measured according to WHO guidelines for healthy pregnancies the mother should make at least four visits during the pregnancy, the first of which must be within the first trimester.³⁶ If the pregnancy is unhealthy, the visit might be more than four times as per the healthcare provider's decision. Institutional delivery service was measured when a woman gives birth at a health post, health center, hospital, or other private health facilities; otherwise, it is considered as home delivery Similarly, postnatal care service was considered as received if the mother and her newborn received healthcare services and were visited by providers within two months of birth. In this study, a woman who has delivered recently was used to denote a mother aged 15-49 years and delivered from September 1, 2016 to February 28, 2017. A newborn in our study was taken as a child in its first eight weeks after birth and taken as a target for community-based newborn care services according to the Ethiopian CBNC program implementation guidelines.³⁷ Birth weight was assessed by asking the mother and labelling as small (<2.5 kg), average (2.5-4.0 kg) and large (>4.0 kg). The explanatory variables were the age of women (<24, 24-35, >35 years), marital status (single, married, widowed, divorced), educational status (unable to read and write, able to read and write, elementary school, high school, college and above), religion (Protestant, Orthodox, Muslim, Catholic), ethnicity (Gofa, Gamo, Wolayita, Others), occupational status (Government employee,

Page 11 of 35

BMJ Open

merchant, daily labor, farmer, housewife), household wealth status (poorest, poorer, middle, richer, richest), parity (primipara, multipara), participation in the women health development team meetings (yes, no), visited by HEWs (yes, no), time it takes to the health post (<30,30-60, 60-120, >120 minutes), type of health facility visited for danger sign (hospital, health center, health post), and information about CBNC (yes, no).

Wealth index was assessed using household assets through principal component analysis adapted from the EDHS³⁸ and ranked into five (poorest, poorer, middle, richer, and richest) levels.

Data collection tools and procedures

An interviewer-administered standardized structured questionnaire was used after reviewing different studies and guidelines.^{26 31 34 35 37 39-46} The tool was initially developed in English and translated into the local language (Amharic) and finally back to English to ensure consistency. Four trained BSc. degree graduate nurses and two public health officers of the same qualification from the nearby Sawla district were recruited as data collectors and supervisors, respectively. The supervisors checked data accuracy, consistency and completeness daily.

Data quality control

Before data collection, a one day training was given to data collectors and supervisors on the objectives of the study, data collection instruments, techniques and producers. The data collectors were supervised daily, and the consistency and completeness of data were checked by the principal investigator every night. A pretest was conducted on 21 women (5% of the sample size) of Demba Gofa (one of the neighboring districts with similar characteristics). Before the actual data collection, all findings from the pretest were incorporated into the final questionnaire and amendments were made.

182 Data processing and analysis

Data were cleaned and checked for completeness and consistency before they were coded and
entered into Epi-Data version 3.1 software and exported to SPSS version 23 for analysis.

Descriptive statistics used were presented in narrations and tabular forms. Both bi-variable and multivariable logistic regression analyses were computed to determine the associated factors. Variables with p-values of less than 0.2 in the bivariable logistic regression were candidates for the multivariable analysis after checking model fitness, chi-square, and multi-collinearity assumptions. In the final multivariable logistic regression analysis model, a p-value of less than 0.05 and adjusted odds ratio (AOR) with a 95% confidence interval (CI) were used to identify statistically associated factors.

Patient and public involvement

No patients or the public were directly involved in the development of the research questions, outcomes, recruitment and the design of the study. However, the participants and administrative officials were informed about the research questions and objectives. The findings will be disseminated to the Geze Gofa District Health Office and Gamo Gofa Zonal Health Department. Besides, the results will be distributed to potential stakeholders who have been involved in program implementation after being published in a peer-reviewed scientific journal.

199 Ethical considerations

Ethical clearance was obtained from the ethical review board of Jimma University (Ref. No. IHRPGC/418/2017) and an official letter of support was secured from Geze Gofa District Health Office. Informed written consent was obtained from each respondent after a brief explanation of Page 13 of 35

BMJ Open

the risk and benefit of the study to ensure their voluntariness to participate before the actual data collection. Participants had the right to withdraw at any time or to skip for a single question or segment of questions they did not want to answer or refuse to participate at all with no negative repercussions, and the interview has stayed averagely for 15 minutes.

RESULTS

208 Sociodemographic and economic characteristics of participants

Table 1 shows the sociodemographic and economic characteristics of the study participants. A total of 371 women responded to the interviewer-administered questionnaire with a response rate of 92.1%. The mean age of the women was 27.6 (SD \pm 5) years; the majority (74.4%) were married and 6.2% single. Religious preference for 46.4 and 7.5% of the women were Protestant and Muslim, respectively; 42.3% went to elementary school, while 5.9% attended college or above; 72.5% were housewives and 4.0% government employees; 67.1% were Gofa by ethnicity. Additionally, the mean parity was 3.5 (SD \pm 1.9), and approximately 30 and 14.6% were in the middle and richer wealth status, respectively.

217 Table 1 Sociodemographic and economic characteristics of study participants in Geze Gofa

218 district, south Ethiopia, June 2017 (n=371)

Variables	Responses	Frequency (n)	Percent (%)
Age in years	<24	109	29.4
	24-35	246	66.3
	>35	16	4.3
Marital status	Single	23	6.2
	Married	276	74.4
	Widowed	32	8.6

Variables	Responses	Frequency (n)	Percent (%
	Divorced	40	10.
Religion	Protestant	172	46.
	Orthodox	131	35.
	Muslim	28	7.
	Catholic	40	10.
Educational status	Unable to read and write	116	31.
	Able to read and write	25	6
	Elementary school (Grade1-8)	157	42
	High school (Grade 9-12)	51	13.
	College and above	22	5.
Occupational status	Gov't employee	15	4
	Merchant	31	8
	Daily labor	21	5.
	Farmer	35	9
	Housewife	269	72
Ethnicity	Gofa	249	67.
	Gamo	69	18
	Wolayita	27	7
	Others*	26	7
Wealth quantiles	Poorest	65	17.
	Poorer	63	17
	Middle	111	29
	Richer	54	14.

Page 15 of 35

BMJ Open

pregnancies and postpartum period. Similarly, 88.4, 74.1, 73.9, 70.4, and 47.4% of the women received information about the HEP packages, advice on STI, newborn and child diseases as well as supplies and vitamin A, respectively. A total of 340 (91.6%) women said that there was a Health Development team (in 1 to 5 networks) in their community. Of those, 323 women (95.0%) were members of the networks, and 217 (67.1%) attended meetings during their recent pregnancies. Moreover, the nearest health post took less than 30, 30-60, 60-120 and more than 120 minutes of on foot travel for 21.3, 40.7, 29.4, and 8.6% of the participants, respectively.

230 Obstetric history and maternal health services

As shown in Table 2 below, 98.1% of the women had ANC visits during their recent pregnancies, and the mean age of the pregnancies during the first ANC visit was 4.6 months (SD \pm 1.3). Similarly, 80.2 and 4.4% of the women went to health posts and hospitals for their first ANC, respectively.

During their recent ANC visits, physical examinations and routine laboratory investigations were done for 95.6 and 56.6% of the women, respectively. Moreover, 90.7, 80.5, and 6.6% of the women received tetanus toxoid vaccination, iron folate supplementation, and deworming during ANC follow ups, respectively. Of those who had ANC follow ups, 285 (78.3%) made ANC visits four times and above. Regarding knowledge of danger signs during pregnancies, 79.2, 75.5, and 49.6% stated that their danger signs were vaginal bleeding, blurred vision, and convulsion, respectively. One-fifth of the women faced at least one danger sign, while 75.5 and 10% said that they went to health centers and hospitals when they have faced any of the danger signs, respectively. Of the total respondents, 233 (62.8%) delivered at health facilities.

Table 2 Obstetric characteristics and maternal health services in Geze Gofa district, south Ethiopia,

Variables	Responses	Frequency (n)	Percent (%)
Parity	Primipara	53	16.5
	Multipara	268	83.5
ANC follow up	Yes	364	98.1
	No	7	1.9
Number of ANC visits	Once	14	3.9
(n=364)	Twice	26	7.1
	Three times	39	10.7
	Four and above	285	78.3
Timing of first ANC visit	First trimester	58	15.9
(n=364)	Second trimester	298	81.9
	Third trimester	8	2.2
Type of health facility for	Hospital	16	4.4
the first ANC visit	Health center	56	15.4
	Health post	292	80.2
Knowing about danger sign	Swelling of hands and face	237	63.9
during pregnancy	Blurred vision	280	75.5
	Convulsion	184	49.6
	Severe headache	248	66.8
	Severe lower abdominal pain	206	55.5
	Vaginal bleeding	294	79.2
Place of visits, if they have	Hospital	37	10.0
faced danger signs	Health center	280	75.5
	Health post	54	14.6
Faced danger sign	Yes	75	20.2
	No	289	77.8

Variables	Responses	Frequency (n)	Percent (%)
Place of delivery	Health facility	233	62.8
	Home	138	37.2
Type of health facility	Hospital	34	14.6
attended during delivery (n=	Health center	190	81.5
233)	Health post	9	3.9

Postpartum and immediate newborn care services

The postpartum and immediate newborn care services are presented in Table 3. Of the total participants, 246 (66.3%) received postnatal care within seven days after birth. Nearly 41% of them visited in the first 48 hours of delivery; 13 (9.4%) of those who delivered at home were made to use local material (buffer, dung, and others) to apply on cord. Of the total newborns, 336 (90.6%) started breastfeeding within an hour of delivery. Moreover, 74.1% of the newborns breastfed exclusively. Three-fourths of the women received information about breastfeeding for the first time from HEWs, while 24 (6.5%) obtained from the mass media.

Table 3 Postpartum and immediate newborn care services in Geze Gofa district, south Ethiopia,
June 2017 (n= 371)

Variables	Responses	Frequency (n)	Percent (%)
Postnatal visit	Yes	246	66.3
	No	125	33.7
Postnatal care visiting time	<48 hours	100	40.7
(n=246)	3 rd day	38	15.4
	After 3 rd day	108	43.9
Timing of breastfeeding	< 1hr	336	90.6
initiation	≥1hrs	35	9.4
Exclusive breastfeeding	Yes	275	74.1

	No	96	25.9
Source of information about	HEWs	278	74.9
breastfeeding	Healthcare providers from	49	13.2
	health canter		
	Mass media	24	6.5
	Relatives/friends	10	2.7
	Other*	10	2.7

*others: health development army leader, community group, traditional birth attendant

257 Newborn care services during the first two months of age

Table 4 shows newborn care services during the first two months of age; 69.0% of the mothers had information about community-based newborn care provided by HEWs at community level health posts. During the first two months after delivery, 224 (60.4%) of the newborns received postnatal follow ups from HEWs at home. Of the newborns, 41 (18.3%) were checked once, and 87 (38.8%) three and above times. The majority of the newborns, 299 (80.6%), were weighed within seven days, and 271 (90.6%) and 12 (4.0%) of them had average and large birth weight, respectively. Out of the total newborns, 56 (15.1%) faced health problems within two months of the postnatal period, and 34 (60.7%) consulted HEWs and visited health posts to receive medical services.

Table 4 Newborn care services during the first two months of age in Geze Gofa district, south
Ethiopia, June 2017 (n= 371)

Variables	Responses	Frequency (n)	Percent (%)
Having information about the CBNC	Yes	256	69.0
program	No	115	30.9
Newborn received PNC from HEWs at	Yes	224	60.4

home within two months of age	No	147	39.6
Frequency of follow up received from	Once	41	18.3
HEWs (n=224)	Twice	96	42.9
	\geq Three times	87	38.8
Baby's weight was measured within the first	Yes	299	80.6
seven days of birth	No	72	19.4
Birth weight of the newborn (n=299)	Small	271	90.6
	Average	16	5.4
	Large	12	4.0
Newborn faced a health problem during	Yes	56	15.1
the first two months of age	No	315	84.9
Types of facility visited for medical	Health post	34	60.7
services (n=56)	Health center	15	26.8
	Hospital	7	12.5

269 Community-based newborn care utilization

A community-based newborn care program utilization was measured when a woman and her newborn received all the components of the program (antenatal care + institutional delivery + postnatal care + neonatal care up to two months of age) continually at home and/or health post level. Accordingly, 37.5% (95% CI: 32.6-42.6) of the women and their newborns utilized the full community-based newborn care program while the rest did not receive the entire program.

275 Factors associated with community-based newborn care utilization

In the bivariable logistic regression, age, educational level, occupational status, ethnicity, wealth status, time taken to reach the nearest health post, types of facility visited during danger signs and previous information about CBNC were candidate variables. In the multivariable logistic regression analysis, educational level, occupational status, wealth status, and types of facility

visited when they had danger signs were variables significantly associated, as presented in Table5.

Accordingly, women who attended elementary school, college and above were 1.76 (AOR: 1.76, 95% CI: 1.01-3.07) and 3.71 (AOR: 3.71, 95% CI: 1.12-12.24) times more likely to utilize the program compared to those who were unable to read and write, respectively. Farmer women were 65% less likely to utilize the program compared to housewives (AOR: 0.35, 95% CI: 0.16-0.79). Women who were in the poorest and middle wealth status were 3.76 (AOR: 3.76, 95% CI: 1.65-8.54) and 1.96 (AOR: 1.96, 95% CI: 1.03-3.76) times more likely to utilize the program than the richest women. Moreover, women who preferred visiting the hospital if they had any danger signs were 70.4% times less likely to utilize the services than those who chose to go to health posts (AOR: 0.29, 95% CI: 0.11-0.78).

Table 5 Bivariable and multivariable logistic regression analysis of factors associated with community-based newborn care utilization in Geze Gofa district, south Ethiopia, June 2017 (n= 371)

	CBNC	CNBC	0	
Variables	utilized	not utilized	COR (95% CI)	AOR (95% CI)
	n (%)	n (%)		
Age in years				
≤24	36 (33.0)	73 (67.0)	2.03 (0.70-5.84)	1.41 (0.42-4.76)
25-35	95 (38.6)	151 (61.4)	1.59 (0.58-4.38)	1.34 (0.44-4.10)
>35	8 (50.0)	8 (50.0)	1	1
Educational status				
Unable to read & write	49 (42.2)	67 (57.8)	1	1
Able to read & write	12 (48.0)	13 (52.0)	0.79 (0.33-1.88)	0.84 (0.32-2.17)
Elementary school	47 (29.9)	110 (70.1)	1.71 (1.04-2.83)	1.76 (1.01-3.07) *

AOR (95% C				** • • • •
	COR (95% CI)	not utilized	utilized	Variables -
0.90 (0.26, 1.7	0.70 (0.26, 1.26)	n (%)	n (%)	High ashaal
0.80 (0.36-1.7	0.70 (0.36-1.36)	25 (49.0)	26 (51.0)	High school
3.71 (1.12-12.24)	2.49 (0.86-7.20)	17 (77.3)	5 (22.7)	College and above
0.41.00.40.4.0			0 (52.2)	Occupational status
0.41 (0.13-1.2	0.43 (0.15-1.21)	7 (46.7)	8 (53.3)	Government employee
0.50 (0.22-1.1	0.59 (0.28-1.25)	17 (54.8)	14 (45.2)	Merchant
0.40 (0.15-1.0	0.65 (0.26-1.60)	12 (57.1)	9 (42.9)	Daily labour
0.35 (0.16-0.79)	0.37 (0.18-0.75)	15 (42.9)	20 (57.1)	Farmer
	1	181 (67.3)	88 (32.7)	Housewife
				Ethnicity
	1	163 (65.5)	86 (34.5)	Gofa
0.76 (0.42-1.3	0.69 (0.40-1.18)	39 (56.5)	30 (43.5)	Gamo
0.47 (0.20-1.1	0.57 (0.26-1.26)	14 (51.9)	13 (48.1)	Wolayita
1.27 (0.49-3.2	0.84 (0.37-1.94)	16 (61.5)	10 (38.5)	Others*
		12.		Wealth status
3.76 (1.65-8.54)	4.21 (1.98-8.94)	52 (80.0)	13 (20.0)	Poorest
1.92 (0.91-4.0	1.96 (0.99-3.88)	41 (65.0)	22 (35.0)	Poorer
1.96 (1.03-3.76)	1.943 (1.07-3.51)	72 (64.9)	39 (35.1)	Middle
1.26 (0.57-2.8	1.221 (0.61-2.45)	29 (53.7)	25 (46.3)	Richer
		38 (48.7)	40 (51.3)	Richest
		minutes)	ealth posts (in	Time takes to reach the nearest he
	0.51 (0.20-1.33)	51 (64.6)	28 (35.4)	< 30
0.83 (0.45-1.5	0.44 (0.18-1.07)	92 (61.0)	59 (39.0)	30-60
0.70 (0.36-1.3	0.39 (0.16-1.00)	64 (58.7)	45 (41.3)	60-120
1.72 (0.61-4.8		25 (78.1)	7 (21.9)	> 120
			. ,	Place of visit (if they have faced of
0.29 (0.11-0.78)	0.29 (0.12-0.72)	17 (46.0)	20 (54.0)	Hospital
0.58 (0.29-1.1	0.58 (0.30-1.12)	175 (62.5)	105 (37.5)	Health center

	CBNC	CNBC		
Variables	utilized	not utilized	COR (95% CI)	AOR (95% CI)
	n (%)	n (%)		
Health post	14 (25.9)	40 (74.1)	1	1
Information about CBNC program	m			
Yes	90 (35.2)	166 (64.8)	1	1
No	49 (42.6)	66 (57.4)	0.73 (0.47-1.15)	0.73 (0.43-1.21)

Others*: Amhara, Guraghe, and Kembata, *statistically significant at p-value < 0.05

295 DISCUSSION

Overall, 37.5% of the women who delivered recently and their newborns received the full components of the community-based newborn care program. This finding is higher than that of a study conducted at Xaybouathong district, Lao PDR. In this study, only 6.8% the women received all the modified composite coverage index components of maternal and child health services (ANC 4+, neonatal tetanus protection, facility-based delivery, PNC, immunization, and family planning).³⁰ A study in Ghana showed that from pregnancy to post-delivery, 7.9% of women and children received the continuum of care,³¹ while another study in Ghana indicated that only 8.0% of the women completed the continuum of maternal and newborn care services.³⁵ Our finding is higher than that of a study conducted in Pakistan and showed that the continuum of maternal care was 27.4%.³³ The possible justification for the discrepancy could be the inclusion of the continuum of care as measured by ANC, institutional delivery, immediate postnatal care, and newborn care services up to two months of age, whereas in others studies the continuum of care included a child health services until the age of one year. The other possible explanation might be the use of a longer study period retrospectively to assess the utilization that included five years before the survey, which might increased their recall bias about the services they received and the

Page 23 of 35

BMJ Open

sociodemographic variations of study areas. Moreover, stronger and more resilient health systems which focus on community-based service provisions like the health extension program in Ethiopia may explain some of the discordance in the findings of the current and other studies.⁴⁷⁻⁴⁹ Results however were lower than that of a study done at Sohag Governorate, Egypt, and showed that 50.4% of the women achieved the continuum of care.³² In addition, a study conducted in Cambodia showed that 60% of women had the full range of services for the continuum of maternal and newborn healthcare.⁵⁰ This discrepancy might be due to the use of only maternal continuum of care which did not include newborn care that could give a higher result. A study conducted in Cambodia used a national survey which might have resulted in a higher findings and the study area and socio-cultural variations might be other possible reasons.

Our study showed that 98.1% of the women received ANC services once, 76.8% four times and above; 62.8% of women delivered at a health facility, and the health status of 60.3% of newborns was checked by HEWs until two months of age. Our finding is higher than that of a study conducted in Ratanakiri province, Cambodia, in which only 32.6% of the women made four and above visits in the continuum of maternal, newborn, and child health services.⁵¹ The possible explanation might be the difference in the target group, which included women who gave birth two years before the study which might have resulted in forgetting the services they took. The other possible reason might be the difference in the service delivery pace for ANC follow ups. Our study included services taken at the health post level, while their study measured ANC service follow ups at health centers and hospitals only. Our findings is lower than that of a study conducted in Sohag Governorate, Egypt, which showed that 90% of the women visited four and above antenatal care.³² The reason for our low results may be the sociodemographic variability, as we have only assessed the utilization for rural residents. Moreover, the presence of better maternal

and child health services achievement in Egypt might be the possible explanation for this higher
 findings.⁵²

Our study showed that women who attended elementary school, college and above had 1.7 and 3.7 times more chance of getting CBNC service utilization compared to mothers who were unable to read and write, respectively. This finding was comparable with that of a study done in Nepal South Asia and sub-Sahara countries in which women's education was positively associated with the maternal and newborn health service utilization.^{53 54} These findings might be explained by the fact that an education for a woman increases her knowledge and awareness about the importance of the services and the chance of getting information.

In this study, CBNC utilization was lower by 65% among farmer women compared to housewives. This result is supported by a study done in the district of Xaybouathong, Lao PDR, `showing that agriculture is detrimental to the use of maternal, newborn and child health services.³⁰ This result might be explained by the difficulty of serving women farmers because services are delivered at the community level.

Women who are in the poorest and middle wealth quantile were 3.76 and 1.96 times more likely to use the community-based newborn care program compared to those who were in the richest. This finding is different from those studies done in the a rural community of south eastern Nigeria and western regions of china showing women with higher economic status increased maternal and child service utilization.^{55 56} A study in Ghana showed that women and children in the richest households were more likely to utilize the continuum of care.³¹ Another study in Africa showed that there was a three-fold disparity in the use of the continuum of care between the wealthiest 20% of African women compared to the poorest.⁵⁷ This disagreement might be explained by the

Page 25 of 35

BMJ Open

fact that the program in our study area aimed to serve the poorest households at health post and household levels to increase service access. The other possible explanation might be that wealthier families can afford the direct and indirect costs of services of health centers or hospitals and seek more quality care at higher facilities by well-trained providers. Additionally, the program in our case is a free service that does not incur any cost on those who cannot seek other services at advanced or higher facilities.

In this study, women who preferred to visit hospitals when they faced danger signs had a 70.4% lower chance of utilization of the community-based newborn care services compared to those who preferred health posts. According to the Ethiopian health tier system, health posts are more accessible than hospitals; so, those who want to visit hospitals might not get the services as easily as they need.⁵⁸ This result is in line with that of a study in Pakistan and showed that the absence of difficulties for access to health facilities increases the use of maternal, newborn, and child healthcare continuum by 76.1 and 72.9%, respectively.³³ The other possible explanation might be that the effectiveness of community health workers in delivering preventive maternal and child health interventions in low- and middle- income countries⁵⁹ increases community-based service acceptability in rural communities.

372 Limitations of the study

The finding was not triangulated by qualitative methods which are also subject to social desirability bias owing to our use of an interviewer-administered questionnaire. To minimize the impact, data collectors were recruited from other districts. Moreover, the women might have experienced recall bias, particularly regarding the services they received during their previous obstetrics, ANC visits, for instance. Compared to other studies however our work assessed later events that preceded the study by only six months. On top of that, the data collectors were highly
experienced and well-trained on the tools to explain the questions and extend the time for
respondents so they recall events later.

381 CONCLUSIONS

The study showed that community-based newborn care utilization in the study area was low compared to the current national recommendations. Elementary school, college and above education as well as the poorest and middle wealth status affected the utilization positively, whereas farming occupation and preference of hospitals in case of danger signs affected the utilization negatively. Therefore, awareness creation at community levels for illiterate women, arranging convenient time for farmer women and providing full components of maternal and newborn services in nearby community level health facilities could improve the utilization of community-based newborn care program in rural districts. Furthermore, subsequent studies must explore the barriers for low utilization of community-based newborn care services using qualitative methods and also better if studies assessed the effectiveness of the program on maternal and child health outcomes.

Acknowledgment The authors would like to thank all respondents for their willingness to
 participated in the study. We are also grateful to the Geze Gofa district health office. Finally, our
 appreciation goes to the data collectors for their unreserved contribution in data collection
 activities.

Author Contributions TG conceptualized the study. AA and ED developed the methods and
materials. TG, AA, and ED undertook the data analysis, interpretation, and drafting of the paper.
All authors invest significant contributions and approved the final draft.

400 Funding statement This research received no specific grant from any funding agency in public,

401 commercial, or not-for-profit sectors.

Competing interests The authors declare that they have no conflict of interest.

403 Patient consent Obtained

404 Ethical approval Ethical approval was obtained from the ethical review board of Jimma
405 University (Ref. No. IHRPGC/418/2017). The official letter of co-operation was obtained from
406 the Geze Gofa district health office.

407 Data sharing statement All the relevant data are provided in the manuscript. Data can be provided
408 by the contact of the corresponding author on a reasonable request.

REFERENCES

- 411 1. World Health Organization. Global, regional and national neonatal health status. Fact sheet,
 412 2016.
- 413 2. Kliegman RM, Staton B, Gene J. Nelson Textbook of Pediatrics 20th. *Neurology part p*414 2015:2863-74.
- 415 3. Organization WH. Global health observatory (GHO) data: Neonatal mortality. *World Health* 416 Organization Retrieved from: www who int/gho/child health/mortality/neonatal/en 2016
- 417 4. Organization WH. Newborns: reducing mortality <u>https://www.who.int/news-room/fact-</u>
 418 sheets/detail/newborns-reducing-mortality 2018.
- 4 419 5. UNICEF. Committing to Child Survival: A promise renewed–progress report 2015. Retrieved
 420 August 8, 2017, 2017.
 - 421 6. Central Statistical Agency Addis Ababa E. Ethiopia Demographic and Health Survey 2016
 422 Addis Ababa, Ethiopia 2016
- 423 7. Perry HB, Zulliger R, Rogers MM. Community health workers in low-, middle-, and high 424 income countries: an overview of their history, recent evolution, and current effectiveness.
 425 Annual review of public health 2014;35:399-421.
 - 426 8. Reducing intrapartum-related neonatal deaths in low-and middle-income countries—what
 427 works? Seminars in perinatology; 2010. Elsevier.
 - 9. Nair N, Tripathy P, Prost A, et al. Improving newborn survival in low-income countries:
 community-based approaches and lessons from South Asia. *PLoS medicine*2010;7(4):e1000246.
 - 431 10. Maulik P, Darmstadt G. Community-based interventions to optimize early childhood
 432 development in low resource settings. *Journal of Perinatology* 2009;29(8):531.

1 2		
3 4	433	11. World Health Organization Regional Office for Africa. Newborn Health key facts. 2017.
5 6 7	434	https://www.afro.who.int/health-topics/newborn.
7 8 9	435	12. Callaghan-Koru JA, Nonyane BA, Guenther T, et al. Contribution of community-based
10 11	436	newborn health promotion to reducing inequities in healthy newborn care practices and
12 13	437	knowledge in Malawi. 2013
14 15 16	438	13. Mathewos B, Owen H, Sitrin D, et al. Community-Based Interventions for Newborns in
16 17 18	439	Ethiopia (COMBINE): Cost-effectiveness analysis. Health policy and planning
19 20	440	2017;32(1):21-32. doi: 10.1093/heapol/czx054 [published Online First: 2017/10/06]
21 22	441	14. Berhanu D, Avan B. Community Based Newborn Care in Ethiopia: Quality of CBNC
23 24 25	442	programme assessment Midline Evaluation Report March 2017. 2017
26 27	443	15. Banteyerga H. Ethiopia's health extension program: improving health through community
28 29	444	involvement. MEDICC review 2014;13(3):46-49.
30 31 32	445	16. Degefie Hailegebriel T, Mulligan B, Cousens S, et al. Effect on Neonatal Mortality of Newborn
32 33 34	446	Infection Management at Health Posts When Referral Is Not Possible: A Cluster-
35 36	447	Randomized Trial in Rural Ethiopia. Global health, science and practice 2017;5(2):202-
37 38	448	16. doi: 10.9745/ghsp-d-16-00312 [published Online First: 2017/06/15]
39 40 41	449	17. Alamneh Y, Adane F, Yirga T, et al. Essential newborn care utilization and associated factors
42 43	450	in Ethiopia: a systematic review and meta-analysis. BMC Pregnancy and Childbirth
44 45	451	2020;20(1):1-9.
46 47 49	452	18. Mathewos B, Musema Y, Bekele A, et al. Community-based Newborn Care in Ethiopia:
48 49 50	453	Implementation Strength and Lessons Learned. Ethiopian Medical Journal 2019(3)
51 52	454	19. Gebremariam A, Mohammed H, Hailemichael A, et al. Community-Based Newborn Care in
53 54	455	Afar: Lessons Learned. Ethiopian Medical Journal 2019(3)
55 56 57		28
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	456	20. Ameha A, Legesse H, Sylla M, et al. The Effect of Community-Based Newborn Care
5 6	457	Intervention on Service Utilization for Sick Newborn and Children. Ethiopian Medical
7 8 9	458	Journal 2019(3)
10 11	459	21. Okwaraji YB, Berhanu D, Persson LA. Community-based child care: household and health-
12 13	460	facility perspectives. Dagu Baseline Survey, Ethiopia, December 2016-February 2017.
14 15 16	461	Community-based child care: household and health facility perspectives 2017
17 18	462	22. Zimmerman LA, Shiferaw S, Seme A, et al. Evaluating consistency of recall of maternal and
19 20	463	newborn care complications and intervention coverage using PMA panel data in SNNPR,
21 22 23	464	Ethiopia. <i>PloS one</i> 2019;14(5)
24 25	465	23. Canavan ME, Brault MA, Tatek D, et al. Maternal and neonatal services in Ethiopia: measuring
26 27	466	and improving quality. Bulletin of the World Health Organization 2017;95(6):473.
28 29 30	467	24. Bobo FT, Yesuf EA, Woldie M. Inequities in utilization of reproductive and maternal health
31 32	468	services in Ethiopia. International journal for equity in health 2017;16(1):105.
33 34	469	25. Callaghan-Koru JA, Abiy Seifu MT, Graft-Johnson Jd, et al. Newborn care practices at home
35 36 37	470	and in health facilities in 4 regions of Ethiopia. 2013
37 38 39	471	26. Zulfiqar A. Bhutta GLD, Babar S. Hasan and Rachel A. Haws. Community-Based
40 41	472	Interventions for Improving Perinatal and Neonatal Health Outcomes in Developing
42 43	473	Countries: A Review of the Evidence. 2005 doi: 10.1542/peds.2004-1441
44 45 46	474	27. Taylor ME. Community Based Newborn Care in Ethiopia: Introduction to the Special Issue.
47 48	475	Ethiopian Medical Journal 2019(3)
49 50	476	28. Semu Y, Tekle E, Bekele A, et al. Making Community Based Newborn Care Sustainable in
51 52 53 54 55	477	Ethiopia. Ethiopian Medical Journal 2019(3)
56 57 58		29
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
- 3 4	478	29. Sambo LG, Chatora RR, Goosen E. Tools for assessing the operationality of district health
5 6	479	systems. Brazzaville: World Health Organization, Regional Office for Africa 2003
7 8 9	480	30. Sakuma S, Yasuoka J, Phongluxa K, et al. Determinants of continuum of care for maternal,
10 11	481	newborn, and child health services in rural Khammouane, Lao PDR. PloS one
12 13	482	2019;14(4):e0215635.
14 15 16	483	31. Shibanuma A, Yeji F, Okawa S, et al. The coverage of continuum of care in maternal, newborn
10 17 18	484	and child health: a cross-sectional study of woman-child pairs in Ghana. BMJ Global
19 20	485	Health 2018;3(4):e000786. doi: 10.1136/bmjgh-2018-000786
21 22	486	32. Hamed AF, Roshdy E, Sabry M. Egyptian status of continuum of care for maternal, newborn,
23 24 25	487	and child health: Sohag Governorate as an example. International Journal of Medical
26 27	488	Science and Public Health 2018;7(6):417-27.
28 29	489	33. Iqbal S, Maqsood S, Zakar R, et al. Continuum of care in maternal, newborn and child health
30 31 32	490	in Pakistan: analysis of trends and determinants from 2006 to 2012. BMC Health Services
33 34	491	Research 2017;17(1):189. doi: 10.1186/s12913-017-2111-9
35 36	492	34. Engmann CM, Hodgson A, Aborigo R, et al. Addressing the continuum of maternal and
37 38	493	newborn care in Ghana: implications for policy and practice. Health policy and planning
39 40 41	494	2016;31(10):1355-63. doi: 10.1093/heapol/czw072
42 43	495	35. Yeji F, Shibanuma A, Oduro A, et al. Continuum of care in a maternal, newborn and child
44 45	496	health program in Ghana: Low completion rate and multiple obstacle factors. PloS one
46 47 48	497	2015;10(12):e0142849.
40 49 50	498	36. World Health Organization. WHO recommendations on antenatal care for a positive pregnancy
51 52	499	experience: World Health Organization 2016.
53 54		
55 56 57		30
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	500	37. Federal Ministry of Health E. Community Based Newborn Care Implementation Guideline
5 6	501	2013.
7 8 9	502	38. [Ethiopia] CSAC. Ethiopia Mini Demographic and Health Survey 2014. Addis Ababa,
10 11	503	Ethiopia. 2014
12 13	504	39. Federal Ministry of Health E. Maternal, newborn, child and adolescent health guideline 2012
14 15 16	505	40. Tuladhar S. The Determinants of Good Newborn Care Practices in the Rural Areas of Nepal.
17 18	506	2010
19 20	507	41. Owili PO, Muga MA, Chou Y-J, et al. Associations in the continuum of care for maternal,
21 22 23	508	newborn and child health: a population-based study of 12 sub-Saharan Africa countries.
24 25	509	<i>BMC public health</i> 2016;16(1):414.
26 27	510	42. Quayyum Z, Khan MNU, Quayyum T, et al. "Can community level interventions have an
28 29 30	511	impact on equity and utilization of maternal health care"-Evidence from rural Bangladesh.
31 32	512	International journal for equity in health 2013;12(1):22.
33 34	513	43. Veirum JE, Biai S, Jakobsen M, et al. Persisting high hospital and community childhood
35 36 27	514	mortality in an urban setting in Guinea-Bissau. Acta paediatrica (Oslo, Norway : 1992)
37 38 39	515	2007;96(10):1526-30. doi: 10.1111/j.1651-2227.2007.00467.x [published Online First:
40 41	516	2007/09/14]
42 43	517	44. Kerber KJ, de Graft-Johnson JE, Bhutta ZA, et al. Continuum of care for maternal, newborn,
44 45 46	518	and child health: from slogan to service delivery. The Lancet 2007;370(9595):1358-69.
47 48	519	doi: 10.1016/s0140-6736(07)61578-5
49 50	520	45. Sule SS, Onayade AA. Community-based antenatal and perinatal interventions and newborn
51 52 53	521	survival. Nigerian journal of medicine : journal of the National Association of Resident
55 54 55	522	Doctors of Nigeria 2006;15(2):108-14. [published Online First: 2006/06/30]
56 57 58		31
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2		
3 4	523	46. Telfair J. An evaluation of state perinatal community-based programs in Alabama: overview.
5 6	524	Public health reports (Washington, DC : 1974) 2003;118(5):484-6. doi:
7 8	525	10.1093/phr/118.5.484 [published Online First: 2003/08/28]
9 10 11	526	47. Fetene N, Linnander E, Fekadu B, et al. The Ethiopian health extension program and variation
12 13	527	in health systems performance: what matters? PloS one 2016;11(5)
14 15	528	48. Admasu K-B. Designing a resilient National health system in Ethiopia: the role of leadership.
16 17 18	529	Health Systems & Reform 2016;2(3):182-86.
19 20	530	49. Afework MF, Admassu K, Mekonnen A, et al. Effect of an innovative community based health
21 22	531	program on maternal health service utilization in north and south central Ethiopia: a
23 24 25	532	community based cross sectional study. Reproductive health 2014;11(1):28.
25 26 27	533	50. Wang W. Levels and determinants of continuum of care for maternal and newborn health in
28 29	534	Cambodia-evidence from a population-based survey. BMC Pregnancy and Childbirth
30 31 32	535	2015;15 doi: 10.1186/s12884-015-0497-0
33 34	536	51. Yasuoka J, Nanishi K, Kikuchi K, et al. Barriers for pregnant women living in rural,
35 36	537	agricultural villages to accessing antenatal care in Cambodia: A community-based cross-
37 38 39	538	sectional study combined with a geographic information system. PLoS One
39 40 41	539	2018;13(3):e0194103. doi: 10.1371/journal.pone.0194103 [published Online First:
42 43	540	2018/03/20]
44 45	541	52. Benova L, Campbell OM, Sholkamy H, et al. Socio-economic factors associated with maternal
46 47 48	542	health-seeking behaviours among women from poor households in rural Egypt.
49 50	543	International journal for equity in health 2014;13(1):111.
51 52		
53 54 55		
56 57		32
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	544	53. Bhatta DN, Aryal UR. Paternal Factors and Inequity Associated with Access to Maternal
5 6	545	Health Care Service Utilization in Nepal: A Community Based Cross-Sectional Study.
7 8	546	PLOS ONE 2015;10(6):e0130380. doi: 10.1371/journal.pone.0130380
9 10 11	547	54. Singh K, Story WT, Moran AC. Assessing the continuum of care pathway for maternal health
12 13	548	in South Asia and sub-Saharan Africa. Maternal and child health journal 2016;20(2):281-
14 15	549	89.
16 17 18	550	55. Agunwa C, Obi I, Ndu A, et al. Determinants of patterns of maternal and child health service
18 19 20	551	utilization in a rural community in south eastern Nigeria. BMC Health Services Research
21 22	552	2017;17(1):715.
23 24 25	553	56. Qian Y, Zhou Z, Gao J, et al. An economy-related equity analysis of health service utilization
25 26 27	554	by women in economically underdeveloped regions of western China. International
28 29	555	journal for equity in health 2017;16(1):186.
30 31 22	556	57. De Graft-Johnson J, Kerber K, Tinker A, et al. The maternal, newborn and child health
32 33 34	557	continuum of care. Opportunities for Africa's newborns 2006:23-36.
35 36	558	58. Federal Ministry of Health E. The Ethiopian health tire system, 2010.
37 38	559	https://ethiopiahealth.blogs.wm.edu/ethiopian-health-system.
39 40 41	560	59. Gilmore B, McAuliffe E. Effectiveness of community health workers delivering preventive
42 43	561	interventions for maternal and child health in low-and middle-income countries: a
44 45 46	562	systematic review. BMC public health 2013;13(1):847.
47 48	563	
49 50		
51 52 53		
55 54 55		
56 57 58		33
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5-7
Objectives	3	State specific objectives, including any prespecified hypotheses	7
Methods			
Study design	4	Present key elements of study design early in the paper	7
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	7-8
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	8
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	8-10
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	9-10
Bias	9	Describe any efforts to address potential sources of bias	10
Study size	10	Explain how the study size was arrived at	8
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	11
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	11
		(b) Describe any methods used to examine subgroups and interactions	11
		(c) Explain how missing data were addressed	
		(d) If applicable, describe analytical methods taking account of sampling strategy	11
		(e) Describe any sensitivity analyses	

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	12
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	12-13
		(b) Indicate number of participants with missing data for each variable of interest	13-18
Outcome data	15*	Report numbers of outcome events or summary measures	18
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	18-21
		(b) Report category boundaries when continuous variables were categorized	18-21
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	-
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	-
Discussion			
Key results	18	Summarise key results with reference to study objectives	21
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	25
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	21-25
Generalisability	21	Discuss the generalisability (external validity) of the study results	25
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	26

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml