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1. Pathogen dynamics

Here we describe the probabilistic calculus for the evolution of a quantitative trait and the concurrent
population dynamics in a given ecological niche, and we derive the minimum-leverage relations used in
the main text.

Stochastic evolution of pathogen traits. These dynamical processes of a quantitative trait G and
of the population size N are generically coupled by selection: fitness effects generated by the evolution
of the trait change the population’s carrying capacity, which, in turn, affects the natural variation of the
trait and the speed of evolution. In the main text, we use the diffusion equation (17) to describe the
evolution of the population mean trait,

Γ(t) =

∫
Gρ(G, t) dG; (S1)

here ρ(G, t) is the trait distribution in the evolving population, which is generated by common mutations
with individually small effects. The diffusive evolution of Γ depends on diffusion and on response coeffi-
cients [1, 2]. The trait diffusion coefficient D is given by the increase of the heritable trait variance per
generation by new mutations,

D = Uε20, (S2)

which depends on the total mutation rate at trait-encoding genomic sites, U , and the mean square trait
effect of these mutations, ε20. The trait response to the entropic force (dS(Γ)/dΓ) equals D, which ensures
the neutral trait dynamics leads to the correct equilibrium trait distribution given by Eq. (S6) below.
The trait response to selection depends on the response coefficient

∆ = 2DNe, (S3)

which equals the equilibrium expectation value of the heritable trait variance. Over a broad range of
evolutionary conditions, Eq. (S3) can be regarded as a defining relation for the effective population size
Ne [2], similar to the relation π = 2µNe that links the sequence variance at neutral sites to the point
mutation rate µ [3]. The effective population size Ne given by Eq. (S3) is also broadly related to the
coalescence time, τc = 2Ne [4, 5]. The relation of Ne to the census population size N depends on the
system and its evolutionary mode; some relevant cases are listed below.

Pathogen population dynamics. The population size dynamics of Eq. (18) can be derived from a
simple birth-death model. We consider a Poisson process with birth rate b(G,N) and death rate d(G,N),
in which the reproductive rate

r(G,N) ≡ b(G,N)− d(G,N) = fp(Γ)− cN � 1 (S4)

depends on the population size and the niche constraint parameter c, and the constraint b(G,N) +
d(G,N) = 1 is satisfied. This model generates the deterministic population dynamics

Ṅ = r̄(Γ, N)N = f̄p(Γ)N − cN2, (S5)
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where overbars denote averages with respect to the trait distribution ρ(G, t). To leading order in r,
the birth-death model generates the processes 1 → 0 with probability p = 1/4, 1 → 1 with p = 1/2,
1→ 2 with p = 1/4, leading to population size fluctuations with a diffusion constant N/2, cf main text.
Together, we obtain the population dynamics given in Eq. (17); we use the approximation f̄(Γ) ≈ f(Γ)
explained below. Other models of this class differ in their detailed birth and death rates but generate a
similar diffusive dynamics of large population sizes (i.e., in a Taylor expansion about N̄) [6, 7].

Neutral eco-evolutionary equilibrium. In the special case of neutral evolution, i.e., for a trait- and
time-independent absolute fitness fp(G, t) = f0, the evolutionary dynamics given by Eq. (17) has an
equilibrium distribution

Q0(Γ) =
1

ZΓ,0
exp[S(Γ)]. (S6)

According to this distribution, the probability of a given Γ value is proportional to the density of sequence
states mapped onto that value. Here we assume equiprobability of sequence states under neutral evolution;
i.e., we ignore sequence composition biases at trait loci, which are usually small and irrelevant for this
paper.

Similarly, the population dynamics given by Eq. (18) has an equilibrium distribution

Q0(N) =
1

ZN,0
exp

[
−c (N − N̄0)2

]
, (S7)

which describes stable fluctuations of the population size around the carrying capacity of the ecological
niche,

N̄0 =
f0

c
. (S8)

Here we assume that this carrying capacity is large enough so that the probability of fluctuations leading
to extinction of the population can be neglected [8].

Evolutionary stationary states under selection. The evolution of the mean population trait Γ, as
described by Eq. (17), responds to the mean population fitness

f̄p(t) =

∫
ρ(G, t) fp(G, t) dG. (S9)

Given a trait distribution of approximate Gaussian form, we can write

f̄p = fp(Γ) +
1

2
∆f ′′p (Γ) + . . . ; (S10)

for sufficiently smooth fitness functions, this leads to the approximation f̄p(Γ) ≈ fp(Γ) used in the main
text and below.

In any time-independent fitness landscape fp(Γ), the dynamics of Eq. (17) generates an equilibrium
distribution

Qeq(Γ) =
1

ZΓ
exp[ψp(Γ)] (S11)
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given in terms of the free fitness
ψp(Γ) = S(Γ) + F(Γ), (S12)

which is the sum of the entropy S(Γ) defined in Eq. (S6) and the fitness potential

F(Γ) =

∫ Γ

Γ0

2Ne(Γ) f̄ ′p(Γ) dΓ. (S13)

The integral on the r.h.s. contains an arbitrary reference point Γ0, variations of which can be absorbed into
the normalization factor ZΓ. The derivative of the free fitness with respect to Γ defines the evolutionary
force

∂Γψp(Γ, ζ) = 2Ne(Γ) f̄ ′p(Γ, ζ) + S′p(Γ). (S14)

as given in Eq. (1) of the main text.

The fitness potential (S13) takes into account that the effective population size generically depends
on the trait value, Ne = Ne(Γ). Such variation is often relevant in pathogen systems, where census
population sizes can vary considerably during an evolutionary process. Variable effective population sizes
generate an inhomogeneous response to selection. The form of this response depends on the evolutionary
mode of the system and on the underlying ecology, which can have a complex impact on one another.
We can distinguish two broad regimes where simplifications lead to tractable computations. (i) If the
coalescence process is dominated by genetic drift, the coalescence time exceeds the relaxation time of the
population size in a stable population, τc � τN , as shown in the next paragraph. In this case, we use the
approximation

Ne(Γ) ≈ N̄(Γ); (S15)

hence, the evolutionary dynamic decouples from the instantaneous census population size and becomes
autonomous. If the evolutionary range of Γ generates only small relative differences in absolute fitness,
δf/f = δN̄/N̄ � 1, we can further approximate Ne by a constant. The fitness potential then reduces to
the standard form of a reduced fitness,

F(Γ) = 2Nefp(Γ). (S16)

(ii) Under clonal evolution in large asexual populations, the coalescence process is dominated by inter-
ference effects, which generates effective population sizes with a very weak dependence on N . Here we
use the approximation

Ne ∼ (logN)1/3, (S17)

which can be derived from a travelling fitness wave model [5]. The dominant contribution to the integral
in equation (S13) then comes from variations in fp(Γ); hence, for the leading-order estimates used below,
we can still use the approximation (S16).

Importantly, given strongly varying pathogen population sizes, the mode of pathogen evolution and
the scaling of Ne are themselves subject to control and can change in the course of a control processs.
For example, the breeding phase protocol for adaptive trait formation described in the main text has a
crossover from a drift regime to a clonal interference regime as a function of the pathogen population
size. The corresponding effective population sizes, Eq. (S15) and (S17), enter the scaling of the control
score Jbr(G) in Eq. (31). For extreme non-equilibrium processes, which involve likely trajectories with
population sizes far from the carrying capacity, we expect the evolutionary process to couple to the path-
dependent census population size. The fluctuation statistics of this regime is more involved and falls
outside the scope of this paper.
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Ecological states under selection. The population dynamics of Eq. (18) reaches a simple conditional
equilibrium distribution

Qeq(N |Γ) =
1

ZN
exp

[
−c (N − N̄(Γ))2

]
(S18)

with the trait-dependent carrying capacity

N̄(Γ) =
fp(Γ)

c
, (S19)

if the relaxation time of the population size, τN , is much smaller than the coalescence time, τc = 2Ne.
This condition is self-consistently fulfilled for stable populations with coalescence dominated by genetic
drift. To show this, we estimate the coalescence time in terms of the time-averaged census population
size at a given trait value, τc ∼ 2N̄ − O(N̄1/2). The relaxation time τN = 1/(cN̄) follows directly from
Eq. (18). Together, the condition for time separation between population dynamics and evolution reads

τN (Γ)

τc(Γ)
∼ 1

2cN̄2(Γ)
=
〈(N − N̄(Γ)2)〉

N̄2(Γ)
� 1. (S20)

This relation involves the variance of the population size scaled by the squared carrying capacity, which
is small for stable populations far from stochastic extinctions. If the evolutionary process is also at
equilibrium, we can then combine the distributions (S11) and (S18) into an equilibrium distribution of
the joint eco-evolutionary dynamics,

Qeq(Γ, N) = Qeq(Γ)Qeq(N |Γ) =
1

Z
exp

[
F(Γ)− c (N − N̄0)2

]
. (S21)

On the other hand, clonal evolution under strong interference selection generates shorter coalescence
times τc, which can become comparable to τs. In that case, the stationary distribution Q(Γ, N) no longer
has the simple equilibrium form (S21); it becomes a non-equilibrium state with a nonvanishing probability
current. However, the marginal trait distribution retains the equilibrium form Qeq(Γ) given by Eq. (S11),
as long as the trait dynamics remains (approximately) autonomous.

Non-equilibrium fluctuation theory and evolutionary flux. The stochastic dynamics given by
Eqs. (17) can be applied to estimate the probability of adaptive eco-evolutionary processes in a generically
time-dependent fitness seascape fp(Γ, t). A realization of the evolutionary process in a given population
maps an evolutionary path Γ, which is defined by a continuous function Γ(t) connecting an initial popu-
lation state with mean trait Γ0 at time t0 to a final state with mean trait Γf at time tf (t0 ≤ t ≤ tf ). The
relevant non-equilibrium fluctuation theory is contained in refs. [9, 10, 11, 12] and reviewed in ref. [13];
the evolutionary fluctuation theory used here has been established in ref. [14]. Here we develop the
probabilistic calculus for pathogen trait paths Γ; in the following section, we generalize this calculus to
control processes with paths (Γ, ζ).

The probability (density) P(Γ) of the trait path Γ evolving in the free fitness seascape ψp(Γ, t) is the
product of the probability of the initial state at the time t0 and the conditional probability (or propagator)
of the subsequent path for given initial state,

P(Γ) = Q(Γ0, t0)G(Γ). (S22)
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This forward path probability is to be compared with the probability

PT (ΓT ) = Q(Γf , tf )GT (ΓT ) (S23)

of the time-reversed (backward) path ΓT , which is defined by the map

ΓT (t) ≡ Γ(tf + t0 − t) (t0 ≤ t ≤ tf ) (S24)

evolving in the time-reversed free fitness seascape

ψTp (Γ, t) ≡ fp(Γ, tf + t0 − t) (t0 ≤ t ≤ tf ). (S25)

A key result of non-equilibrium fluctuation theory is the time-reversal relation

G(Γ)

GT (Γt)
= exp[Θp(Γ)], (S26)

which relates the conditional probabilities (propagators) of the forward and the backward path, as defined
in Eqs. (S22) and (S23). Here Θp(Γ) is the evolutionary flux of the forward path,

Θp(Γ) =

∫ tf

t0

∂

∂Γ
ψp(Γ(t), t) Γ̇(t) dt = Θ0(Γ) + Ξ(Γ), (S27)

where
Θ0(Γ) = S(Γf )− S(Γ0) (S28)

is the neutral flux and

Ξ(Γ) =

∫ tf

t0

2Ne(Γ(t))
∂

∂Γ
fp(Γ(t), t) Γ̇(t) dt (S29)

is the scaled fitness flux of the forward path Γ. The definition of the evolutionary flux, Eq. (S27), and the
time-reversal relation, Eq. (S26), apply to evolutionary dynamics by common mutations and by discrete,
large-effect mutations. For a discrete substitution process changing an initial trait G1 to a derived trait
G2, the population mean trait and mean free fitness can be written in terms of the frequency of the
derived allele,

Γ = xG2 + (1− x)G1, (S30)

ψ̄p(t) = xψp(G2, t) + (1− x)ψp(G1, t), (S31)

and the evolutionary flux takes the form [14]

Θp(Γ) =

∫ tf

t0

∂

∂x
ψp(x(t), t) ẋ(t) dt. (S32)

The relations (S26) – (S29) can be derived by a straightforward generalization of the analogous result
in ref. [14]. They are valid as long as the evolutionary dynamics can be written in an (approximately)
autonomous form, i.e., with an effective population size Ne(Γ). As discussed above, this includes evolu-
tionary parameter regimes with coalescence dominated by genetic drift or by interference selection.
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In the special case of evolutionary equilibrium in a time-independent fitness landscape, the evolu-
tionary flux Θp(Γ) reduces to the difference in free fitness between the final and initial state of the
path Γ,

Θp(Γ) = log
Qeq(Γf )

Qeq(Γ0)
= ψp(Γf )− ψp(Γ0). (S33)

This result follows by comparison of Eqs. (S28), (S29) with Eq. (S11) and expresses detailed balance of
the evolutionary equilibrium state; i.e.,

Peq(Γ)

Peq(ΓT )
=
Qeq(Γ0)

Qeq(Γf )
exp[Θp(Γ)] = 1. (S34)

In the regime of fast population dynamics (τN � τc), this probabilistic calculus can be generalized
to the full eco-evolutionary dynamics, which is described by joint paths (Γ,N) of pathogen trait and
population size. The time-reversal relation for the joint process takes the form

G(Γ,N)

GT (Γt,NT )
= exp

[
Θp(Γ) + Θ̃p(Γ,N)

]
(S35)

with the population size flux

Θ̃p(Γ,N) = − c
2

[(Nf − N̄(Γf ))2 − (Ni − N̄(Γ0))2]. (S36)

Fitness flux theorem. An immediate consequence of the time-reversal relation (S26) is the identity〈
exp(Θp + ∆Σp)

〉
t0,tf

= 1. (S37)

Here 〈. . . 〉t0,tf denotes averages over the ensemble of paths Γ in the time interval (t0, tf ), Θp(Γ) is the
evolutionary flux of a given path Γ defined by Eqs. (S26) – (S29), and ∆Σp(Γ) ≡ Σp(Γf , tf )−Σp(Γ0, t0),
where

Σp(Γ, t) = − logQ(Γ, t) (S38)

is the local entropy of the trait value Γ. We note that this local entropy is defined from the trait
distribution Q(Γ, t) and is complementary to the entropy S(Γ), which counts sequence states at a given
trait value and appears in Eqs. (S6) and (S12).

Following standard fluctuation theory, the identity (S37) is proved by using Eqs. (S22) and (S26) to
rewrite the path weight, P(Γ) exp[Θp(Γ) + ∆Σp(Γ)] = PT (ΓT ), and integrating over the path ensemble;
Eq. (S37) then reduces to the normalization condition

∫
ΓT PT (ΓT ) = 1. By defining the difference in

local relative distance to the neutral ensemble between the final and the initial state of the path Γ,

∆H(Γ) = log
Q(Γf , tf )

Q0(Γf )
− log

Q(Γ0, t0)

Q0(Γ0)
, (S39)

we can rewrite Eq. (S37) in an equivalent form containing the scaled fitness flux,〈
exp(Ξ−∆H)

〉
t0,tf

= 1, (S40)
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Details of definitions and derivations are given in ref. [14]. The flux identities (S37) and (S40) are valid
for any evolutionary process given by stochastic equations of the form (17). Importantly, they do not
depend on specific properties of the initial and the final state; that is, they are valid over any subperiod
(t1, t2) ⊂ (t0, tf ).

By applying Jensen’s inequality to Eq. (S37), we obtain the inequality〈
Θp

〉
t0,tf

+
〈
∆Σp

〉
t0,tf

≥ 0, (S41)

which is again valid for any subperiod (t1, t2) ⊂ (t0, tf ). Here and in the following relations, equality
applies to equilibrium and strict inequality to spontaneous processes (i.e., non-equilibrium processes that
take place with a finite speed). In the special case of a time-independent fitness landscape, this relation
can be rewritten in terms of free fitness differences,

〈ψp(tf )〉 − 〈ψp(t0)〉 ≥ −
〈
∆Σp

〉
t0,tf

. (S42)

In the main text, we use the deterministic form of the inequality (S41),

Θp(Γ) ≥ 0; (S43)

see Eq. (3). This form emerges in two ways: (i) For traits with a sufficiently large number of encoding
genome sites, the distributions Σp(Γ, t0) and Σp(Γ, tf ) become peaked around the maximum-likelihood
values Γ∗i and Γ∗f , respectively. Integrating over these distributions, neglecting the subleading contri-
bution from the ∆Σp term, and dropping the star notation leads to the form (S43), in analogy with
the thermodynamic limit. In practice, the form (S43) provides already a reasonable approximation for
transcriptional protein-protein binding traits that are encoded in ∼ 10 − 20 sequence sites. (ii) A simi-
lar dominance of the Θp term in equation (S41) arises in the regime of large Ne, which corresponds to
large scaled selection amplitudes F(Γ). The relation (S43) says the trait moves on average uphill on the
instantaneous free fitness landscape ψp(Γ, t), which is the sum of the time-dependent fitness potential
F(Γ, t) and the Boltzmann entropy S(Γ), defined as the log number of sequence states with trait value
Γ.

In the special case of evolutionary equilibrium in a time-independent (or slowly varying) fitness land-
scape, the relation (S43) reduces to the inequality (5),

ψp(Γf )− ψp(Γ0) ≡ [F(Γf )−F(Γ0)] + [S(Γf )− S(Γ0)] ≥ 0. (S44)

2. Control dynamics

Fluctuation theory of instantaneous-update control. The fluctuation relations derived in the
previous section generalize to eco-evolutionary control processes with instantaneous update, which are
described by control paths (Γ, ζ). Such processes include pathogen evolution by common and by discrete,
large-effect mutations, as well as control dynamics by local and greedy update rules. For a control process
governed by free fitness and payoff landscapes ψp(Γ, ζ), ψh(Γ, ζ), the evolutionary flux of the pathogen,
Eq. (S27), takes the form

Θp(Γ, ζ) =

∫ tf

t0

∂Γ ψp(Γ(t), ζ(t)) Γ̇(t) dt. (S45)
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In a similar way, we define the host flux

Θh(Γ, ζ) =

∫ tf

t0

∂ζ ψh(Γ(t), ζ(t)) ζ̇(t) dt. (S46)

The joint process of pathogen evolution and control has a time reversal relation analogous to Eq. (S26),

G(Γ, ζ)

G(ΓT , ζT )
= exp[Θp(Γ, ζ) + Θh(Γ, ζ)]. (S47)

This implies a fluctuation relation analogous to Eq. (S37),〈
exp(Θp + Θh + ∆Σ)

〉
t0,tf

= 1, (S48)

where Σ(Γ, ζ) = − logQ(Γ, ζ) is the local entropy of the joint state distribution. The partial fluxes of
pathogen and host are related to conditional probabilities,

G(Γ|ζ)

G(ΓT |ζT )
= exp[Θp(Γ, ζ)], (S49)

G(ζ|Γ)

G(ζT |ΓT )
= exp[Θh(Γ, ζ)], (S50)

leading to fluctuation relations 〈
exp(Θp + ∆Σp)

〉
t0,tf

(ζ) = 1, (S51)〈
exp(Θh + ∆Σh)

〉
t0,tf

(Γ) = 1. (S52)

The corresponding deterministic relations

Θp(Γ, ζ) ≥ 0, (S53)

Θh(Γ, ζ) ≥ 0, (S54)

are used in the main text; see also Fig. 4C. The host flux relation (S54) distinguishes instantaneous-
update control from computational protocols, which result from a nonlocal control dynamics and often
have piecewise negative Θh (Fig. 4F,J).

Computational control. In this paper, we consider the class of scoring functions for computational
control defined by Eq. (9),

Ω(Γ, ζ) =

∫ tf

t0

ψh(Γ(t′), ζ(t′)) dt′ − λTδ(Γ, ζ), (S55)

which is defined for paths (Γ, ζ) extending over a control period T ≡ tf−t0. The first term on the r.h.s. is
the integral of the instantaneous payoff function ψh(Γ, ζ) evaluated on the path (Γ, ζ). The second term
penalizes the total time the path (Γ, ζ) remains below a payoff maximum ψ∗h by more than a margin δ.
By defining the modified payoff function

ψλ(Γ, ζ) = ψh(Γ, ζ)− λHδ(ψ
∗
h − ψh(Γ, ζ)) (S56)
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with Hδ(x) = 1 for x > δ and Hδ(x) = 0 otherwise, we can write the scoring function as an integral,

Ω(Γ, ζ) =

∫ tf

t0

ψλ(Γ(t′), ζ(t′)) dt′. (S57)

For the subsequent analysis, it is convenient to define the reduced score

∆Ω(Γ, ζ) =

∫ tf

t0

∆ψλ(Γ(t′), ζ(t′)) dt′, (S58)

where ∆ψλ(Γ, ζ) = ψλ(Γ, ζ)− C with an offset C that will be specified below.

For a given control protocol ζ, we define the expectation value of the scoring function (S58),

〈∆Ω〉(ζ) =
〈∫ tf

t0

∆ψλ(Γ(t′), ζ(t′)) dt′
〉

≡
∫

∆Ω(Γ, ζ)P(Γ|ζ)DΓ, (S59)

where P(Γ|ζ) denotes the conditional probability distribution over trait paths Γ generated by the stochas-
tic process of pathogen evolution under the protocol ζ. Optimized computational protocols maximize this
expectation value, a problem that can be solved by a transfer matrix approach. We consider the expected
score (S59) for the set of paths defined in a partial time segment (t, tf ) (t0 ≤ t < tf ) and constrained to
a pathogen initial state Γ(t) = G,

〈∆Ω〉(ζ;G, t) =
〈∫ tf

t

∆ψλ(Γ(t′), ζ(t′)) dt′
〉

Γ(t)=G
, (S60)

and we define the conditional optimized protocol ζ∗(G, t) and the corresponding payoff integral J(G, t),

ζ∗(G, t) = arg max
ζ

∆Ω(ζ;G, t), J(G, t) = max
ζ

∆Ω(ζ;G, t). (S61)

For pathogen evolution by common mutations described in a diffusion approximation of the form (17),
this conditional optimum can be shown to satisfy the local relation [15]

∂

∂t
J(G, t) = max

ζ

[
∆ψλ(G, ζ)− VΓ(G, ζ)

∂

∂G
J(G, t)− D

2

∂2

∂G2
J(G, t)

]
, (S62)

where VΓ(G, ζ) = D∂Gψp(G, ζ) is the deterministic pathogen velocity in Eq. (17). This relation is known
as the Hamilton-Jacobi-Bellman equation for continuous-time stochastic control [15]. It can be used to
compute the optimal solution J(G, t) and the associated optimal control protocol ζ∗(G, t) by recursion
backwards in time. In the control theory literature, the path optimization problem is often formulated
in terms of the cost function (−Ω(Γ, ζ)), and the conditional optimum (−J(G, t)) is referred to as the
cost-to-go function.

Here we are interested in the deterministic control problem (D = 0) with boundary conditions

Γ(t) = G, lim
t→∞

Γ(t) = Γ∗; (S63)
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these control paths link a given initial pathogen state with the computational equilibrium point (Γ∗, ζ∗)
given by Eq. (8). Choosing the offset C = ψ∗h, the scoring function (S58) has a finite limit

lim
tf→∞

∫ tf

t0

∆ψλ((Γ(t′), ζ(t′)) dt′ =

∫ Γ∗

G

∆ψλ(Γ, ζ)

VΓ(Γ, ζ)
dΓ. (S64)

We can then solve Eq. (S62) along the maximum-core control path (Γ∗, ζ∗) by the method of charac-
teristics. Because the payoff function has no explicit time dependence, the solution only depends on the
initial trait value,

J(G) =

∫ ∞
t0

∆ψλ((Γ∗(t′), ζ∗(t′)) dt′ (S65)

=

∫ Γ∗

G

max
ζ

∆ψλ(Γ, ζ)

VΓ(Γ, ζ)
dΓ, (S66)

which is equivalent to the local path condition given in Eq.([22),

ζ∗(Γ) = arg max
ζ

∆ψλ(Γ, ζ)

Vp(Γ, ζ)
. (S67)

In the main text, we use a extented HJB calculus to compute control paths compounded of common
mutations treated in diffusion approximation and discrete, large-effect mutations. In the case of adaptive
trait formation, Eq. (31]) an initial protocol with a gain-of-function mutation of effect G is prepended
to a breeding protocol with starting point G and optimal score J(G) given by Eq. )S66). Here, the
duration of the initial step is part of the optimization of the combined protocol. Similarly, the protocol
for metastable control, Eq. (37), consists of a baseline protocol with recurrent escape mutations of effect
G compounded with a separable rescue protocol with optimal score J(G). Here, the frequency of escape
mutations is part of the optimization of the combined protocol.

Accessibility of the computational equilibrium. Here we analyze the evolutionary stability of
the computational equilibrium protocol (Γ∗, ζ∗) under local dynamics of pathogen and host, as given by
Eqs. (17) and (19). We use the deterministic form(

Γ̇

ζ̇

)
=

(
VΓ

Vζ

)
(S68)

with the velocity field (
VΓ

Vζ

)
(Γ, ζ) =

(
∆p ∂Γfp
∆h ∂ζfh

)
(Γ, ζ). (S69)

Both components of the deterministic dynamics (S68) take the form of Breeder’s equation. Here we
have omitted the entropic force contained in Eqs. (17) and [1], which is appropriate for large pathogen
populations. In our model of ecological control, (G∗, λ∗) is a fixed point of the deterministic dynamics,(

VΓ

Vζ

)
(Γ∗, ζ∗) = 0. (S70)
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Using Eqs. (12), the stability of this fixed point can be expressed in terms of the binding probability,(
∂ΓVΓ ∂ζVΓ

∂ΓVζ ∂ζVζ

)
(Γ, ζ) =

(
−qph∆p ∂

2
ΓPbind −qph∆p ∂ζ∂ΓPbind

qphqhp∆h ∂Γ∂ζPbind qphqhp∆h ∂
2
ζPbind

)
(Γ, ζ) (S71)

with pbind(Γ, ζ) given by Eq. (11). It is straightforward that this matrix is negative-definite in the
parameter regime of interest; cp/qph < 1/4. Hence, the computational equilibrium point (G∗, λ∗) is a
stable fixed point of the deterministic evolutionary dynamics given by Eq. (S69). In contrast, in our model
of evolutionary control, (G∗, λ∗) is not a fixed point of the deterministic host-pathogen dynamics. In this
case, the velocity field (S69) has a component Vζ(G

∗, λ∗) 6= 0, i.e., the host can gain a transient payoff
advantage by moving away from the optimal stationary amplitude ζ∗. Hence, computational equilibrium
point (G∗, λ∗) cannot be reached or maintained by a local control dynamics.

In Fig. S2, we compare computational and instantaneous-update control paths for ecological and
evolutionary control. Consistent with the above stability analysis, deterministic local-update paths for
ecological control converge to (G∗, λ∗); greedy-update control paths converge to the same point. The
corresponding stochastic paths, which follow the dynamical equations (17) and (19) or (20), get localized
to the neighborhood of (G∗, λ∗). For evolutionary control, however, these paths converge or get localized
to a Nash equilibrium point (Γ†, ζ†) that has lower payoff than (G∗, λ∗).

Maximum-score paths always converge to the computational equilibrium point (G∗, λ∗) (Figs. 4D,
S2). We note that these paths are obtained by backward iteration of the Hamilton-Jacobi-Bellman
equation (S62) or, equivalently, by evaluation of the local condition (S67). We can compare these

paths to path-optimized control with a different boundary condition, limt→∞ Γ(t) = Γ̂, where (Γ̂, ζ̂) =
arg maxΓ,ζ ψh(Γ, ζ) is the point of the absolute host payoff maximum. The deterministic control path

converging to (Γ̂, ζ̂) is a well-defined solution of the Hamilton-Jacobi-Bellman equation with an asymp-

totic host payoff fh(Γ̂, ζ̂) > f∗h ; however, this solution has to be discarded on biological grounds. The

fixed point (Γ̂, ζ̂) corresponds to a minimum of the pathogen fitness with respect to trait variation,

(Γ̂, ζ̂) = arg minΓ fp(Γ, ζ̂) (the locus of these minima is shown as a dotted line in Fig. 2 and Fig. S2).

Hence, the pathogen population is under disruptive selection, i.e., mutants with G < Γ̂ and with G > Γ̂
are under positive selection. These mutants cannot be simultaneously contained by control selection of
the form fp ∼ Pbind considered in this paper. We conclude that stationary control has to be in an evo-
lutionarily stable pathogen state, as described by the condition (Γ∗, ζ∗) = arg maxΓ fp(Γ, ζ

∗) in Eq. (8).
Computational control protocols converging to such states are obtained by maximizing the host payoff
integral, Eq. (9), with appropriate boundary conditions.
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[14] Mustonen V, Lässig M (2010) Fitness flux and ubiquity of adaptive evolution. Proceedings of the National
Academy of Sciences 107(9):4248–4253.

[15] Kappen HJ (2007) An introduction to stochastic control theory, path integrals and reinforcement learning
in AIP Conference Proceedings. pp. 149–181.

12



Supporting Figures
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Figure S1: Computational equilibrium protocols. (A, B) Ecological control, (C, D) evolutionary control.
(A, C) Equilibrium log control amplitude, log ζ∗ (orange), and pathogen trait, G∗ (blue), as functions of the
control cost, ch. Yellow shading marks the strong control regime. (B, D) Host payoff, f∗h (orange), pathogen
fitness, f∗p (blue), and control efficiency, η∗ (green), as functions of ch. Model parameters: fp = 1, qph = 1/qph =
0.9, cp = 0.09 (ecological control); fp,0 = 1, qph = 0.9, qhp = 5/9, cp = 0.09, ch = 5 (evolutionary control).
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Figure S2: Dynamical accessibility of the computational equilibrium point. The figure compares
maximum-score computational control paths (orange) with local (brown) and greedy (purple) instantaneous-
update paths (left panels: deterministic, right panels: stochastic). These paths start from a common initial
condition (grey square). Deterministic paths converge to, stochastic paths get localized around, the computational
equilibrium point (Γ∗, ζ∗) given by Eq. [10] (red dot), the Nash equilibrium point (Γ†, ζ†) given by Eq. [9] (red
open circle), or the no-control fixed point (blue). Host payoff is marked by contours; cf. Fig. 2B. (A) Ecological
control. All paths converge/get localized to the computational equilibrium point, which is also a Nash equilibrium.
(B) Evolutionary control. The computational control path converges to (Γ∗, ζ∗), but this point cannot be reached
by instantaneous-update dynamics. Local-update and greedy paths converge/get localized to the Nash equilibrium
(Γ†, ζ†), or to no control fixed point, both have lower host payoff than the computational equilibrium. Parameters
are as in Fig. 4.
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Figure S3: Computational control dynamics depends on sequence diversity and speed parameter.
The maximum-score control path is shown for different values of the trait sequence diversity and the speed
parameter: (A) θ = 1, λ = 0 (as in Fig. 4D), (B) θ = 1, λ = 1, (C) θ = 50, λ = 0. Weighing in the speed of
control (λ = 1) moves the control path closer to the path of maximal adaptive speed VΓ (green line). This path
is given by log ζ(Γ) = −Γ; i.e., the antibody dosage equals the Γ-dependent dissociation constant. Other model
parameters as in Fig. 4.
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Figure S4: Tuning fitness valleys by computational control. The figure illustrates the extented HJB
calculus, Eq. (31) and (37), used to optimize control paths across pathogen fitness valleys. (A) Adaptive trait
formation. The initial-phase score, ∆Ωin (dashed), the optimal breeding score, Jbr (dotted), and the total score,
∆Ω = ∆Ωin + Jbr (solid) are plotted against the maximum-likelihood gain-of-function trait G?(ζ) for θ = 1, 102

and initiation amplitude log ζ varying in the range [1, 6] (darker lines indicate protocols with clonal interference
in the breeding phase). All scores measure time-integrated differences of the adaptive protocol compared to
the computational equilibrium. The score maximum determines the optimal compound protocol (Gin, ζin); see
Eqs. (31 – 36). This protocol circumvents the pathogen fitness valley preventing gain of function in the uncontrolled
state: a high initiation dosage ζin sets an amplitude Gin = G∗(ζin) where gain-of-function mutations are more
frequent. (B) Metastable control. The baseline score, ∆ωbase (dashed), the rescue score, vJres (dotted), and
the total score, ∆ω = ωbase + v∆Jres (solid) are plotted against the maximum-likelihood gain-of-function trait
G?(ζ) for θ = 10−2 and 0.28 (close to θc) and baseline amplitude log ζ varying in the range [1, 6.5]. All scores
measure time-averaged differences of the metastable protocol compared to the computational equilibrium (red
line). The score maximum determines the optimal compound protocol (Gesc, ζbase); see Eqs. (37 – 41). This
protocol broadens the pathogen fitness valley for resistance evolution compared to optimal control of the wild
type, (Γwt = 0, ζ0 = arg maxζ ψh(0, ζ)): an enhanced baseline dosage ζbase > ζ0 sets an amplitude Gesc(ζbase)
where escape mutations are rarer. Model parameters: Ne = 106, xesc = 0.05, a = 2, other parameters as in Fig. 4.
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