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1. Development of phenotype-based predictions 
We examined the extent to which growth dynamics store information relevant for strain 

identification and other characteristics. For the subsequent analysis, we used Support Vector 
Machine (SVM), a supervised learning algorithm. 
 

1.1 Strain prediction – clinical isolates: Supplementary Tables 1.1-1.4, Supplementary Figure 1.1 
Here, we described the accuracy of strain identification of the clinical isolate library (203 

strains) using one of two methods: (1) 3-fold cross validation with holdout and (2) 4-fold cross 
validation. For the 3-fold cross validation procedure, we reported the accuracy of a validation 
set. For the 4-fold cross validation procedure, we reported the average test set accuracy across 
the four folds. The latter, which is reported in the main text, prevents skewing of the accuracy 
by certain replicates by averaging results using all replicates as the test set (Supplementary 
Tables 1.1-1.4). The first is to demonstrate the generality of our models as the reported 
validation accuracy is on data the model has not previously seen. Due to the similarity between 
the results, for the main text and subsequent analysis we utilized the 4-fold cross validation 
procedure due to its consistency. 

 
For both methods, we reported the optimal parameter set using multiclass Support 

Vector Machines. The top k strains predicted are checked against the true label (k = 1 or k = 5). 
If multiple parameter sets resulted in the highest accuracy, only one is shown. Parameters were 
selected from the following options: kernel function (linear, quadratic, rbf), kkt violation level 
(0, 0.05, 0.1), box constraint of the soft margin C (10, 100, 1000), and rbf scaling factor 𝜎 (1, 10, 
20). Here, the label for each strain was decided according to phylogenetic analysis (described in 
Methods and Supplementary Section 3.2). All isolates with a pairwise distance of 0 were 
considered as the same strain while those with a distance greater than 0 were labeled to be 
unique strains. The phylogenetic tree separated the 244 isolates into 203 strains. To choose 4 
replicates as the final dataset, we randomly chose 4 replicates out of all replicates (from 
multiple isolates) if more than a single isolate made up a strain. The randomness inherent to 
this process can lead to some variability in the reported accuracy. 
 

The raw experimental data consisted of OD600 measurements, a measure of cell density, 
as a function of time (99 time points in increments of 10 minutes). In this section, we compared 
the use of the growth curves (cell density as a function of time), time derivative of cell density 
(weighted growth rate as a function of time), growth rate, and other metrics as the covariates 
to train the SVM model (Supplementary Tables 1.1-1.4). The other metrics are area under the 
growth curve (AUC) and maximum time derivative of cell density (𝜇) as the predictor in 
Supplementary Table 1.4 and Figure 1.1. Here, we calculated the AUC of the growth curves 
after smoothing with a median filter (window = 3) using trapezoidal numerical integration. 
Additionally, 𝜇 was defined as the maximum value of the time derivative of the growth curve, 
after the same smoothing protocol. By using either of these metrics or both in combination, we 
showed that the time derivative of cell density curves (Supplementary Table 1.1) were a better 
predictor of strain identity for the clinical isolates than the other data processing approaches. 
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MATLAB files in package (https://github.com/youlab/strain_prediction_CZ): 
predictStrain_clinicalIsolates.m (main file), importClinicalIsolates.m, 
multi_class_svm_cv_topk.m, multi_class_svm_ci.m, clinSVMOpt.m,  
predictStrain_clinicalIsolates_changetime.m (Supplementary Figure 1.1), 
predictStrain_clinicalIsolates_traditionalGR.m (main file), 
importClinicalIsolates_traditionalGR.m 
 
 
Supplementary Table 1.1 

The features used are one of two metrics: (1) the time derivative of growth curves and 
(2) the growth rate. Additionally, we compare the use of phylogeny based on a core set of 
genes (MLST) and SNPs. When using either approach for strain definition, the conclusion 
remains the same. Here, we demonstrate two approaches to estimating the predictive 
capability of growth dynamics.  

In the first, we use a 4-fold cross validation in which the average test accuracy of the 4 
folds is reported. The top k (k = 1) predictions are used to predict each sample in the test set. 
The accuracy for all combinations of growth conditions is compared to the accuracy associated 
with random chance; the top three conditions are highlighted in bold.  

In the second, we use 1 replicate as the held-out validation set and 3-fold cross 
validation is applied to the other 3 replicates to optimize the SVM hyper-parameters. A final 
model uses these optimized parameters to predict the accuracy of the validation set. The 
average test accuracy for the 3-fold cross validation is reported along with the accuracy of the 
validation set. The similarity in the hold out test accuracy with the average cross validation 
accuracy demonstrates the generalizability of the model. 
 

SVM Parameters Average Test 
Accuracy 
4-fold CV1 

Hold Out Test 
Accuracy 
3-fold CV2 

Growth Condition 

Predictions below are based on time derivative of growth curves using a SNP approach to 
strain definition (203 unique strains). 

Random chance 0.49% 0.49% ----------top 1---------- 

Rbf kernel, C = 100, 
kkt = 0, 𝝈 = 10 

91.50% CV: 88.18% 
Test: 92.12% 

10,000x dilution 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 10 

92.12% CV: 90.64% 
Test: 83.74% 

Phage treatment 

Rbf kernel, C= 10, kkt 
= 0, 𝝈 = 10 

91.50% CV: 88.43% 
Test: 83.25% 

100x dilution 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 10 

91.01% CV: 87.68% 
Test: 80.30% 

Carbenicillin treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 10 

95.94% CV: 94.58% 
Test: 96.06% 

10,000x dilution + Phage 
treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 10 

96.31% CV: 95.07% 
Test: 98.03% 

10,000x dilution + 100x dilution 
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Rbf kernel, C = 100, 
kkt = 0, 𝝈 = 20 

96.31% CV: 95.24% 
Test: 94.58% 

10,000x dilution + Carbenicillin 
treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 10 

96.80% CV: 95.57% 
Test: 95.57% 

Phage treatment + 100x dilution 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 10 

96.18% CV: 94.42% 
Test: 97.54% 

Phage treatment + Carbenicillin 
treatment 

Rbf kernel, C = 1000, 
kkt = 0.1, 𝝈 = 20 

96.18% CV: 93.76% 
Test: 95.57% 

100x dilution + Carbenicillin 
treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 10 

97.78% CV: 95.89% 
Test: 97.54% 

10,000x dilution + Phage 
treatment + 100x dilution 

Linear kernel, C = 10, 
kkt = 0 

96.80% CV: 96.22% 
Test: 96.06% 

10,000x dilution + Phage 
treatment + Carbenicillin 
treatment 

Quadratic kernel, C = 
10, kkt = 0 

97.41% CV: 95.73% 
Test: 96.55% 

10,000x dilution + 100x dilution + 
Carbenicillin treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

96.31% CV: 95.73% 
Test:95.57% 

Phage treatment + 100x dilution + 
Carbenicillin treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

97.53% CV: 96.39% 
Test:  97.00% 

10,000x dilution + Phage 
treatment + 100x dilution + 
Carbenicillin treatment 

Predictions below are based on growth rate time courses using a SNP approach to strain 
definition (203 unique strains). 

Random chance 0.49% 0.49% ----------top 1---------- 
Rbf kernel, C = 100, 
kkt = 0, 𝝈 = 10 

83.50% CV: 78.82% 
Test: 80.79% 

10,000x dilution 

Rbf kernel, C = 100, 
kkt = 0, 𝝈 = 10 

84.48% CV:  80.13% 
Test: 82.76% 

Phage treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 10 

84.98% CV: 81.78%  
Test: 80.79% 

100x dilution 

Rbf kernel, C = 100, 
kkt = 0, 𝝈 = 10 

60.47% CV: 55.50% 
Test: 53.70% 

Carbenicillin treatment 

Rbf kernel, C = 100, 
kkt = 0, 𝝈 = 20 

92.24% CV: 87.03% 
Test: 92.61% 

10,000x dilution + Phage 
treatment 

Rbf kernel, C = 100, 
kkt = 0, 𝝈 = 10 

93.47% CV: 89.82% 
Test: 92.61% 

10,000x dilution + 100x dilution 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 10 

86.58% CV: 78.82% 
Test: 85.22% 

10,000x dilution + Carbenicillin 
treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

92.73% CV: 90.64% 
Test: 91.13% 

Phage treatment + 100x dilution 

Rbf kernel, C = 100, 
kkt = 0, 𝝈 = 20 

86.45% CV: 82.43% 
Test: 84.73% 

Phage treatment + Carbenicillin 
treatment 

Rbf kernel, C = 100, 
kkt = 0, 𝝈 = 10 

88.55% CV: 82.43% 
Test: 87.68% 

100x dilution + Carbenicillin 
treatment 
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Rbf kernel, C = 100, 
kkt = 0, 𝝈 = 20 

94.83% CV: 93.10% 
Test: 94.09% 

10,000x dilution + Phage 
treatment + 100x dilution 

Rbf kernel, C = 100, 
kkt = 0, 𝝈 = 20 

92.98% CV: 87.68% 
Test: 93.10% 

10,000x dilution + Phage 
treatment + Carbenicillin 
treatment 

Rbf kernel, C = 100, 
kkt =0 , 𝝈 = 20 

94.83% CV: 92.12% 
Test: 92.12% 

10,000x dilution + 100x dilution + 
Carbenicillin treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 10 

93.35% CV: 91.30% 
Test: 92.61% 

Phage treatment + 100x dilution + 
Carbenicillin treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

95.32% CV: 92.94% 
Test: 96.06% 

10,000x dilution + Phage 
treatment + 100x dilution + 
Carbenicillin treatment 

Predictions below are based on time derivative of growth curves using an MLST approach 
to strain definition (41 unique strains). 

Random chance 2.4% 2.4% ----------top 1---------- 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

97.56% CV:  96.75% 
Test: 95.12% 

10,000x dilution 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

97.56% CV:  96.75% 
Test: 95.12% 

Phage treatment 

Rbf kernel, C = 100, 
kkt = 0, 𝝈 = 20 

96.34% CV:  90.24% 
Test: 92.68% 

100x dilution 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

96.34% CV:  96.75% 
Test: 90.24% 

Carbenicillin treatment 

Rbf kernel, C =10, kkt 
= 0, 𝝈 = 10 

99.39% CV:  99.19% 
Test: 100% 

10,000x dilution + Phage 
treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 10 

98.78% CV:  98.37% 
Test: 97.56% 

10,000x dilution + 100x dilution 

Quadratic kernel, C = 
10, kkt = 0 

98.17% CV:  99.19% 
Test: 92.68% 

10,000x dilution + Carbenicillin 
treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 10 

98.17% CV:  98.37% 
Test: 95.12% 

Phage treatment + 100x dilution 

Quadratic kernel, C 
=10, kkt = 0 

98.17% CV:  99.19% 
Test: 92.68% 

Phage treatment + Carbenicillin 
treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 10 

96.95% CV:  94.31% 
Test: 92.68% 

100x dilution + Carbenicillin 
treatment 

Rbf kernel, C = 10, 
kkt = 0.05, 𝝈 = 20 

100% CV:  100% 
Test: 100% 

10,000x dilution + Phage 
treatment + 100x dilution 

Linear kernel, C = 10, 
kkt = 0  

98.78% CV:  99.19% 
Test: 97.56% 

10,000x dilution + Phage 
treatment + Carbenicillin 
treatment 

Rbf kernel, C = 10, 
kkt = 0.1, 𝝈 = 20 

98.17% CV:  99.19% 
Test: 92.68% 

10,000x dilution + 100x dilution + 
Carbenicillin treatment 
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Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

98.17% CV:  99.19% 
Test: 95.12% 

Phage treatment + 100x dilution + 
Carbenicillin treatment 

Linear kernel, C = 10, 
kkt = 0 

98.78% CV:  99.19% 
Test: 95.12% 

10,000x dilution + Phage 
treatment + 100x dilution + 
Carbenicillin treatment 

Predictions below are based on growth rate time courses using an MLST approach to strain 
definition (41 unique strains). 

Random chance 2.4% 2.4% ----------top 1---------- 

Rbf kernel, C = 100, 
kkt = 0, 𝝈 = 20 

94.51% CV:  95.94% 
Test: 90.24% 

10,000x dilution 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 10 

88.41% CV:  83.74% 
Test: 90.24% 

Phage treatment 

Rbf kernel, C = 100, 
kkt = 0, 𝝈 = 10 

92.07% CV:  88.62% 
Test: 87.80% 

100x dilution 

Rbf kernel, C = 100, 
kkt = 0, 𝝈 = 10 

70.12% CV:  65.85% 
Test: 58.54% 

Carbenicillin treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

94.51% CV:  94.31% 
Test: 97.56% 

10,000x dilution + Phage 
treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 10 

98.78% CV:  96.75% 
Test: 100% 

10,000x dilution + 100x dilution 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 10 

96.34% CV:  95.94% 
Test: 97.56% 

10,000x dilution + Carbenicillin 
treatment 

Rbf kernel, C = 100, 
kkt = 0, 𝝈 = 20 

93.90% CV:  90.24% 
Test: 92.68% 

Phage treatment + 100x dilution 

Rbf kernel, C = 100, 
kkt = 0, 𝝈 = 20 

90.24% CV:  90.24% 
Test: 82.93% 

Phage treatment + Carbenicillin 
treatment 

Rbf kernel, C =100 , 
kkt = 0, 𝝈 = 20 

97.56% CV:  90.24% 
Test: 97.56% 

100x dilution + Carbenicillin 
treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

98.17% CV:  95.35% 
Test: 100% 

10,000x dilution + Phage 
treatment + 100x dilution 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

95.73% CV:  95.12% 
Test: 100% 

10,000x dilution + Phage 
treatment + Carbenicillin 
treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

98.17% CV:  96.75% 
Test: 100% 

10,000x dilution + 100x dilution + 
Carbenicillin treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 10 

96.34% CV:  95.12% 
Test: 97.56% 

Phage treatment + 100x dilution + 
Carbenicillin treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

98.17% CV:  96.75% 
Test: 100% 

10,000x dilution + Phage 
treatment + 100x dilution + 
Carbenicillin treatment 
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Supplementary Table 1.2 
The features used are one of two metrics: (1) the time derivative of growth curves and 

(2) the growth rate. We run the 4-fold cross validation protocol such that the top k (k = 5) 
predictions are used to predict each sample in the test set. The accuracy for all combinations of 
growth conditions are compared to the accuracy associated with random chance; the top three 
conditions are highlighted in bold. 
 

SVM Parameters Average Test 
Accuracy 

Growth Condition 

Predictions below are based on time derivative of growth curves using a SNP approach to 
strain definition (203 unique strains). 

Random chance 2.46% ----------top 5---------- 

Quadratic kernel, C = 10, kkt = 0 97.04% 10,000x dilution 

Rbf kernel, C = 100, kkt = 0.1, 𝝈 = 10 96.67% Phage treatment 

Rbf kernel, C= 100, kkt = 0, 𝝈 = 20 97.04% 100x dilution 
Rbf kernel, C = 10, kkt = 0.1, 𝝈 = 20 96.18% Carbenicillin treatment 

Rbf kernel, C = 100, kkt = 0.1, 𝝈 = 10 97.78% 10,000x dilution + Phage treatment 

Rbf kernel, C = 100, kkt = 0.1, 𝝈 = 10 97.78% 10,000x dilution + 100x dilution 
Quadratic kernel, C = 10, kkt = 0 97.66% 10,000x dilution + Carbenicillin 

treatment 
Rbf kernel, C = 100, kkt = 0.1, 𝝈 = 10 97.66% Phage treatment + 100x dilution 

Quadratic kernel, C = 10, kkt = 0 97.78% Phage treatment + Carbenicillin 
treatment 

Quadratic kernel, C = 10, kkt = 0 98.03% 100x dilution + Carbenicillin 
treatment 

Linear kernel, C = 10, kkt = 0 98.15% 10,000x dilution + Phage treatment + 
100x dilution 

Linear kernel, C = 10, kkt = 0 97.91% 10,000x dilution + Phage treatment + 
Carbenicillin treatment 

Linear kernel, C = 10, kkt = 0 97.78% 10,000x dilution + 100x dilution + 
Carbenicillin treatment 

Linear kernel, C = 10, kkt = 0 97.41% Phage treatment + 100x dilution + 
Carbenicillin treatment 

Linear kernel, C = 10, kkt = 0 98.28% 10,000x dilution + Phage treatment + 
100x dilution + Carbenicillin 
treatment 

Predictions below are based on growth rate time courses using a SNP approach to strain 
definition (203 unique strains). 

Random chance 2.46% ----------top 5---------- 

Rbf kernel, C = 10, kkt = 0, 𝝈 = 10 92.24% 10,000x dilution 

Rbf kernel, C = 10, kkt = 0, 𝝈 = 10 93.72% Phage treatment 

Rbf kernel, C = 10, kkt = 0, 𝝈 = 10 93.84% 100x dilution 
Rbf kernel, C = 100, kkt = 0, 𝝈 =  10 81.28% Carbenicillin treatment 
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Rbf kernel, C = 100, kkt = 0, 𝝈 = 20 96.18% 10,000x dilution + Phage treatment 
Rbf kernel, C = 10, kkt = 0, 𝝈 = 10 96.06% 10,000x dilution + 100x dilution 

Rbf kernel, C = 10, kkt = 0, 𝝈 = 20 95.69% 10,000x dilution + Carbenicillin 
treatment 

Rbf kernel, C = 10, kkt = 0, 𝝈 = 20 96.55% Phage treatment + 100x dilution 

Rbf kernel, C = 10, kkt = 0, 𝝈 = 20 95.32% Phage treatment + Carbenicillin 
treatment 

Rbf kernel, C = 10, kkt = 0, 𝝈 = 20 95.32% 100x dilution + Carbenicillin treatment 

Rbf kernel, C = 100, kkt = 0, 𝝈 = 20 96.80% 10,000x dilution + Phage treatment + 
100x dilution 

Rbf kernel, C = 100, kkt = 0, 𝝈 = 20 97.54% 10,000x dilution + Phage treatment + 
Carbenicillin treatment 

Rbf kernel, C = 10, kkt = 0, 𝝈 = 20 97.78% 10,000x dilution + 100x dilution + 
Carbenicillin treatment 

Rbf kernel, C = 100, kkt = 0, 𝝈 = 20 97.17% Phage treatment + 100x dilution + 
Carbenicillin treatment 

Rbf kernel, C = 10, kkt = 0, 𝝈 = 20 98.03% 10,000x dilution + Phage treatment + 
100x dilution + Carbenicillin 
treatment 
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Supplementary Table 1.3 
We use the smoothed growth curves as the features to the 4-fold cross validation 

procedure (k = 1). The accuracy for all combinations of growth conditions is compared to the 
accuracy associated with random chance; the top three conditions are highlighted in bold. 
Additionally, we compare the use of phylogeny based on a core set of genes (MLST) and SNPs. 
When using either approach for strain definition, the conclusion remains the same. 
 

SVM Parameters Average Test 
Accuracy 

Growth Condition 

Predictions below use a SNP approach to strain definition (203 unique strains). 
Random chance 0.49% ----------top 1---------- 

Rbf kernel, C = 1000, kkt = 0.1, 𝝈 = 20 87.93% 10,000x dilution 

Rbf kernel, C = 1000, kkt = 0.1, 𝝈 = 20 83.25% Phage treatment 

Rbf kernel, C= 100, kkt = 0.1, 𝝈 = 10 77.96% 100x dilution 

Rbf kernel, C = 1000, kkt = 0.1, 𝝈 = 10 81.40% Carbenicillin treatment 

Rbf kernel, C = 1000, kkt = 0.1, 𝝈 = 10 92.61% 10,000x dilution + Phage 
treatment 

Rbf kernel, C = 1000, kkt = 0.1, 𝝈 = 10 92.86% 10,000x dilution + 100x dilution 
Rbf kernel, C = 1000, kkt = 0.05, 𝝈 = 20 92.61% 10,000x dilution + Carbenicillin 

treatment 
Rbf kernel, C = 100, kkt = 0.1, 𝝈 = 20 90.64% Phage treatment + 100x dilution 

Rbf kernel, C = 1000, kkt = 0.1, 𝝈 = 20 90.52% Phage treatment + Carbenicillin 
treatment 

Rbf kernel, C = 100, kkt = 0.1, 𝝈 = 20 90.02% 100x dilution + Carbenicillin 
treatment 

Rbf kernel, C = 1000, kkt = 0.1, 𝝈 = 20 94.58% 10,000x dilution + Phage 
treatment + 100x dilution 

Rbf kernel, C = 100, kkt = 0.1, 𝝈 = 20 94.34% 10,000x dilution + Phage 
treatment + Carbenicillin 
treatment 

Rbf kernel, C = 100, kkt = 0.1, 𝝈 = 20 93.35% 10,000x dilution + 100x dilution + 
Carbenicillin treatment 

Rbf kernel, C = 100, kkt = 0.1, 𝝈 = 20 94.46% Phage treatment + 100x dilution 
+ Carbenicillin treatment 

Rbf kernel, C = 100, kkt = 0.05, 𝝈 = 20 95.69% 10,000x dilution + Phage 
treatment + 100x dilution + 
Carbenicillin treatment 

Predictions below use a MLST approach to strain definition (41 unique strains). 
Random chance 2.4% ----------top 1---------- 

Linear kernel, C = 10, kkt = 0 96.34% 10,000x dilution 

Linear kernel, C = 10, kkt = 0 93.29% Phage treatment 

Rbf kernel, C = 1000, kkt = 0, 𝝈 = 20 93.90% 100x dilution 

Rbf kernel, C = 1000, kkt = 0, 𝝈 = 20 91.46% Carbenicillin treatment 
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Rbf kernel, C = 10, kkt = 0, 𝝈 = 10 97.56% 10,000x dilution + Phage 
treatment 

Rbf kernel, C = 100, kkt = 0, 𝝈 = 20 98.17% 10,000x dilution + 100x dilution 

Linear kernel, C = 10, kkt = 0 93.90% 10,000x dilution + Carbenicillin 
treatment 

Rbf kernel, C = 100, kkt = 0, 𝝈 = 20 96.95% Phage treatment + 100x dilution 
Rbf kernel, C = 100, kkt = 0, 𝝈 = 20 93.29% Phage treatment + Carbenicillin 

treatment 

Rbf kernel, C = 1000, kkt =0 , 𝝈 = 20 94.51% 100x dilution + Carbenicillin 
treatment 

Rbf kernel, C = 10, kkt = 0, 𝝈 = 10 99.39% 10,000x dilution + Phage 
treatment + 100x dilution 

Rbf kernel, C = 100, kkt = 0, 𝝈 = 20 95.12% 10,000x dilution + Phage 
treatment + Carbenicillin 
treatment 

Linear kernel, C = 10, kkt = 0 95.12% 10,000x dilution + 100x dilution + 
Carbenicillin treatment 

Rbf kernel, C = 10, kkt = 0, 𝝈 = 10 94.51% Phage treatment + 100x dilution + 
Carbenicillin treatment 

Linear kernel, C = 10, kkt = 0 96.95% 10,000x dilution + Phage 
treatment + 100x dilution + 
Carbenicillin treatment 
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Supplementary Table 1.4 
We apply the 4-fold cross validation procedure with SVM to a dataset using AUC, 𝜇 

(maximum of time derivative of growth curves), or a combination of AUC and 𝜇 as the 
covariates (k = 1). SVM hyperparameters are selected from the following options: kernel 
function (rbf), kkt violation level (0, 0.05, 0.1), box constraint of the soft margin C (10, 100), and 
rbf scaling factor 𝜎 (1, 10, 20). The accuracy for all combinations of growth conditions is 
compared to the accuracy associated with random chance; the top three conditions are 
highlighted in bold. Additionally, we compare the use of phylogeny based on a core set of genes 
(MLST) and SNPs. When using either approach for strain definition, the conclusion remains the 
same. 
 

Average Test Accuracy Growth Condition 

𝝁 AUC AUC + 𝝁  

Predictions below use a SNP approach to strain definition (203 unique strains). 

0.49% -------random chance top 1------- 

1.72% 7.27% 14.29% 10,000x dilution 
2.09% 9.48% 19.95% Phage treatment 

2.71% 7.64% 15.27% 100x dilution 
2.34% 11.58% 22.78% Carbenicillin treatment 

8.25% 32.02% 46.55% 10,000x dilution + Phage treatment 
8.62% 21.01% 45.32% 10,000x dilution + 100x dilution 

9.61% 40.64% 48.28% 10,000x dilution + Carbenicillin treatment 

9.61% 26.60% 49.14% Phage treatment + 100x dilution 
8.99% 45.57% 53.94% Phage treatment + Carbenicillin treatment 

9.98% 39.90% 50.00% 100x dilution + Carbenicillin treatment 
15.89% 57.14% 66.26% 10,000x dilution + Phage treatment + 100x dilution 

16.87% 67.36% 65.52% 10,000x dilution + Phage treatment + Carbenicillin treatment 

18.47% 59.61% 63.67% 10,000x dilution + 100x dilution + Carbenicillin treatment 
19.95% 65.76% 70.20% Phage treatment + 100x dilution + Carbenicillin treatment 

26.11% 77.96% 77.46% 10,000x dilution + Phage treatment + 100x dilution + 
Carbenicillin treatment 

Predictions below use a MLST approach to strain definition (41 unique strains). 

2.4% -------random chance top 1------- 

13.42% 25.00% 42.07% 10,000x dilution 

14.02% 24.39% 57.32% Phage treatment 
11.59% 18.90% 40.24% 100x dilution 

14.63% 38.41% 57.32% Carbenicillin treatment 

30.49% 67.07% 75.00% 10,000x dilution + Phage treatment 
29.27% 62.20% 70.12% 10,000x dilution + 100x dilution 

32.93% 70.73% 76.22% 10,000x dilution + Carbenicillin treatment 

36.59% 53.05% 81.10% Phage treatment + 100x dilution 

37.20% 70.12% 88.41% Phage treatment + Carbenicillin treatment 
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35.98% 68.90% 75.61% 100x dilution + Carbenicillin treatment 
46.34% 78.66% 88.41% 10,000x dilution + Phage treatment + 100x dilution 

50.00% 85.37% 90.85% 10,000x dilution + Phage treatment + Carbenicillin treatment 

45.12% 84.76% 82.93% 10,000x dilution + 100x dilution + Carbenicillin treatment 

54.27% 82.32% 90.24% Phage treatment + 100x dilution + Carbenicillin treatment 

62.80% 89.63% 93.29% 10,000x dilution + Phage treatment + 100x dilution + 
Carbenicillin treatment 
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Supplementary Figure 1.1 
The impact of experimental time span and sampling frequency on strain identification.  
 We vary the time span and sampling frequency to examine the effect of controlling the 
number of time points on strain identification accuracy (features are time derivative of growth 
curves). Here, we define strains through phylogeny based on SNPs. From left to right, the 
number of growth conditions used as the training dataset increases. In each plot, the red filled 
points indicate the number of data points resulting in the greatest classification accuracy for 
each dataset. In both cases, increasing the number of growth conditions can prevent the 
decrease in classification accuracy as the time span shortens or as the sampling interval 
increases. 
(a) Time span varies  
(b) Sampling interval varies  
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1.2 Antibiotic resistance prediction: Supplementary Tables 1.5-1.8, Supplementary Figure 1.2-1.3 
In this section, we described the accuracy of antibiotic resistance predictions with the 

corresponding optimal parameter set using SVM for four antibiotics spanning four classes – 
SAM, GM, SXT, and CIP (Supplementary Tables 1.5-1.8). For all antibiotics, we compared the 
predictive accuracy using two types of features: (1) time derivative of growth curve and (2) 
growth rate. The results using the first are reported in the main text. 

 
We modified the traditional cross validation procedure and take the average (accuracy, 

true positive rate, and true negative rate) across 244 models where each model was trained on 
the replicates of 243 isolates and the test set consists of the replicates for 1 isolate. This 
provided an estimate of the predictive potential for resistance given a larger dataset. If multiple 
parameter sets resulted in the highest accuracy then only one is shown. In this case, we defined 
the model with the highest accuracy as the one where the average of the accuracy, true 
positive rate, and true negative rate is the highest. Parameters were selected from the 
following options: kernel function (rbf), kkt violation level (0, 0.1), box constraint of the soft 
margin C (10, 100, 1000), and rbf scaling factor 𝜎 (1, 10, 20). We additionally visualized these 
results in terms of ROC curves. Using the time derivative of growth curves, those for SAM and 
SXT are found in the main text and those for GM and CIP are in Supplementary Figure 1.2a. 
Using growth rate as the features, those for all four antibiotics are in Supplementary Figure 
1.2b. 
 
MATLAB files in package (https://github.com/youlab/strain_prediction_CZ): 
predictResistance_clinicalIsolates.m (main file), clinResSVMOpt.m, 
Figure5b_resistance_prediction_GC_roc.m (main file), 
predictResistance_clinicalIsolates_traditionalGR.m (main file), clinResSVMOpt_mod.m, 
Figure5b_resistance_prediction_GC_roc_traditionalGR.m (main file) 
 
 
 
 
Supplementary Table 1.5  

Results for SAM. The features used are one of two metrics: (1) time derivative of growth 
curve and (2) growth rate. For SAM, 135 out of 244 isolates are classified as resistant according 
to standard disk diffusion. 
 

SVM Parameters Average 
Accuracy 

Average 
TPR 

Average 
TNR 

Growth Condition 

Predictions below are based on time derivative of growth curves. 
Rbf kernel, C = 10, kkt = 
0.1, 𝛔 = 20 

68.65% 68.89% 68.35% 10,000x dilution 

Rbf kernel, C = 10, kkt = 
0, 𝛔 = 20 

66.91% 69.63% 63.53% Phage treatment 



 16 

Rbf kernel, C = 1000, kkt 
= 0, 𝛔 = 10 

66.50% 74.49% 54.59% 100x dilution 

Rbf kernel, C = 100, kkt = 
0, 𝛔 = 20 

72.54% 72.96% 72.02% Carbenicillin treatment 

Rbf kernel, C = 10, kkt = 
0, 𝛔 = 20 

70.80% 72.96% 68.12% 10,000x dilution + Phage 
treatment 

Rbf kernel, C = 10, kkt = 
0.1, 𝛔 = 10 

67.21% 72.04% 61.24% 10,000x dilution + 100x dilution 

Rbf kernel, C = 10, kkt = 
0, 𝛔 = 10 

81.45% 84.07% 78.21% 10,000x dilution + Carbenicillin 
treatment 

Rbf kernel, C = 10, kkt = 
0, 𝛔 = 10 

62.70% 68.52% 55.50% Phage treatment + 100x 
dilution 

Rbf kernel, C = 10, kkt = 
0, 𝛔 = 10 

77.77% 81.67% 72.94% Phage treatment + Carbenicillin 
treatment 

Rbf kernel, C = 10, kkt = 
0, 𝛔 = 10 

70.90% 77.78% 62.39% 100x dilution + Carbenicillin 
treatment 

Rbf kernel, C = 10, kkt = 
0, 𝛔 = 10 

68.95% 73.70% 63.07% 10,000x dilution + Phage 
treatment + 100x dilution 

Rbf kernel, C = 10, kkt = 
0, 𝛔 = 10 

82.58% 88.52% 75.23% 10,000x dilution + Phage 
treatment + Carbenicillin 
treatment 

Rbf kernel, C = 10, kkt = 
0, 𝛔 = 10 

81.25% 87.04% 74.08% 10,000x dilution + 100x dilution 
+ Carbenicillin treatment 

Rbf kernel, C = 10, kkt = 
0, 𝛔 = 10 

77.66% 84.81% 68.81% Phage treatment + 100x 
dilution + Carbenicillin 
treatment 

Rbf kernel, C = 10, kkt = 
0, 𝛔 = 20 

82.99% 87.78% 77.06% 10,000x dilution + Phage 
treatment + 100x dilution + 
Carbenicillin treatment 

Predictions below are based on growth rate time courses.* 

Rbf kernel, C = 10, kkt = 
0, 𝛔 = 20 

68.14% 67.59% 68.81% 10,000x dilution 

Rbf kernel, C = 10, kkt = 
0, 𝛔 = 20 

55.94% 67.04% 42.20% 100x dilution 

Rbf kernel, C = 10, kkt = 
0, 𝛔 = 20 

66.39% 68.15% 64.22% 10,000x dilution + 100x dilution 

*Predictions are not reported for conditions when SVM is unable to converge (within 
10,000,000 iterations). 
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Supplementary Table 1.6  
Results for GM. The features used are one of two metrics: (1) time derivative of growth 

curve and (2) growth rate. For GM, only ~15% of the isolates (39/244) are positive for resistance 
according to standard disk diffusion, resulting in an imbalanced dataset. So, the optimal 
parameter set is determined by the average true positive rate. 
 

SVM Parameters Average 
Accuracy 

Average 
TPR 

Average 
TNR 

Growth Condition 

Predictions below are based on time derivative of growth curves. 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

71.93% 40.38% 77.93% 10,000x dilution 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

68.95% 33.33% 75.73% Phage treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

62.81% 28.21% 69.39% 100x dilution 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

72.13% 33.97% 79.39% Carbenicillin treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

77.97% 20.51% 88.90% 10,000x dilution + Phage 
treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

75.31% 19.23% 85.98% 10,000x dilution + 100x dilution 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

77.46% 19.23% 88.54% 10,000x dilution + Carbenicillin 
treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

72.75% 16.03% 83.54% Phage treatment + 100x dilution 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

75.41% 17.31% 86.46% Phage treatment + Carbenicillin 
treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

74.49% 19.87% 84.88% 100x dilution + Carbenicillin 
treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

80.33% 15.38% 92.68% 10,000x dilution + Phage 
treatment + 100x dilution 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

80.02% 12.82% 92.80% 10,000x dilution + Phage 
treatment + Carbenicillin 
treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

79.10% 10.90% 92.07% 10,000x dilution + 100x dilution + 
Carbenicillin treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

78.07% 11.54% 90.73% Phage treatment + 100x dilution + 
Carbenicillin treatment 

Rbf kernel, C = 100, 
kkt = 0, 𝝈 = 20 

80.74% 8.97% 94.39% 10,000x dilution + Phage 
treatment + 100x dilution + 
Carbenicillin treatment 

Predictions below are based on growth rate time courses.* 
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Rbf kernel, C = 1000, 
kkt = 0, 𝝈 = 20 

74.18% 28.85% 82.80% 10,000x dilution 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 1 

59.94% 37.82% 64.15% 100x dilution 

Rbf kernel, C = 100, 
kkt = 0, 𝝈 = 20 

68.44% 31.41% 75.49% 10,000x dilution + 100x dilution 

*Predictions are not reported for conditions when SVM is unable to converge (within 
10,000,000 iterations). 
 
 
 
 
Supplementary Table 1.7  

Results for SXT. The features used are one of two metrics: (1) time derivative of growth 
curve and (2) growth rate. For SXT, 140 out of 244 isolates are classified as resistant according 
to standard disk diffusion. 
 

SVM Parameters Average 
Accuracy 

Average 
TPR 

Average 
TNR 

Growth Condition 

Predictions below are based on time derivative of growth curves. 
Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

59.94% 63.57% 55.05% 10,000x dilution 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

60.04% 61.07% 58.65% Phage treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

55.53% 55.00% 56.25% 100x dilution 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

68.34% 73.57% 61.30% Carbenicillin treatment 

Rbf kernel, C = 100, 
kkt = 0, 𝝈 = 20 

64.34% 68.75% 58.41% 10,000x dilution + Phage treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

58.61% 61.96% 54.09% 10,000x dilution + 100x dilution 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

68.55% 71.61% 64.42% 10,000x dilution + Carbenicillin 
treatment 

Rbf kernel, C = 10, 
kkt = 0.1, 𝝈 = 20 

61.58% 65.54% 56.25% Phage treatment + 100x dilution 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 10 

74.08% 80.00% 66.11% Phage treatment + Carbenicillin 
treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

67.32% 72.86% 59.86% 100x dilution + Carbenicillin 
treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 10 

61.99% 71.96% 48.56% 10,000x dilution + Phage treatment 
+ 100x dilution 
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Rbf kernel, C = 100, 
kkt = 0, 𝝈 = 20 

69.47% 73.93% 63.46% 10,000x dilution + Phage treatment 
+ Carbenicillin treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

65.47% 72.14% 56.49% 10,000x dilution + 100x dilution + 
Carbenicillin treatment 

Rbf kernel, C = 100, 
kkt = 0, 𝝈 = 20 

70.70% 77.14% 62.02% Phage treatment + 100x dilution + 
Carbenicillin treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

68.85% 75.18% 60.34% 10,000x dilution + Phage treatment 
+ 100x dilution + Carbenicillin 
treatment 

Predictions below are based on growth rate time courses.* 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

64.96% 64.46% 65.62% 10,000x dilution 

Rbf kernel, C = 10, 
kkt = 0.1, 𝝈 = 20 

57.38% 59.11% 55.05% 100x dilution 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

58.81% 60.54% 56.49% 10,000x dilution + 100x dilution 

*Predictions are not reported for conditions when SVM is unable to converge (within 
10,000,000 iterations). 
 
 
 
 
Supplementary Table 1.8  

Results for CIP. The features used are one of two metrics: (1) time derivative of growth 
curve and (2) growth rate. For CIP, 146 out of 244 isolates are classified as resistant according 
to standard disk diffusion 
 

SVM Parameters Average 
Accuracy 

Average 
TPR 

Average 
TNR 

Growth Condition 

Predictions below are based on time derivative of growth curves. 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

65.16% 67.12% 62.24% 10,000x dilution 

Rbf kernel, C = 
1000, kkt = 0, 𝝈 = 
10 

66.50% 74.49% 54.59% Phage treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 10 

63.93% 71.40% 52.81% 100x dilution 

Rbf kernel, C = 10, 
kkt = 0.1, 𝝈 = 20 

71.41% 68.84% 75.26% Carbenicillin treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 10 

69.36% 74.32% 61.99% 10,000x dilution + Phage treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 10 

68.03% 75.00% 57.65% 10,000x dilution + 100x dilution 
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Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

72.23% 75.86% 66.84% 10,000x dilution + Carbenicillin 
treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 10 

67.73% 74.83% 57.14% Phage treatment + 100x dilution 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 10 

74.49% 80.82% 65.05% Phage treatment + Carbenicillin 
treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

71.72% 76.03% 65.31% 100x dilution + Carbenicillin 
treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 10 

71.31% 77.23% 62.50% 10,000x dilution + Phage treatment 
+ 100x dilution 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 10 

75.31% 78.60% 70.41% 10,000x dilution + Phage treatment 
+ Carbenicillin treatment 

Rbf kernel, C = 100, 
kkt = 0.1, 𝝈 = 20 

70.90% 76.54% 62.50% 10,000x dilution + 100x dilution + 
Carbenicillin treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 10 

73.98% 80.14% 64.80% Phage treatment + 100x dilution + 
Carbenicillin treatment 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 10 

74.69% 78.94% 68.37% 10,000x dilution + Phage treatment 
+ 100x dilution + Carbenicillin 
treatment 

Predictions below are based on growth rate time courses.* 
Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

69.36% 66.95% 72.96% 10,000x dilution 

Rbf kernel, C = 100, 
kkt = 0, 𝝈 = 10 

66.91% 72.95% 57.91% 100x dilution 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 20 

67.11% 69.69% 63.27% 10,000x dilution + 100x dilution 

*Predictions are not reported for conditions when SVM is unable to converge (within 
10,000,000 iterations). 
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Supplementary Figure 1.2 
Compare phenotype-based and WGS-based resistance prediction.  

We compare ROC curves for the phenotype-based predictions (time derivative of 
growth curve) and genotype-based predictions (in red). 
(a) Features are the time derivative of growth curve. 
(b) Features are the growth rate. 
 

  
 
Supplementary Figure 1.3    
Compare resistance profile for clinical isolate library.  
(a) We compare the resistance profiles (SAM, GM, SXT, CIP) of isolates defined as the same 
strain based on an MLST approach to strain definition. Each set of isolates clustered as one 
strain is separated by a black horizontal line.  
(b) We compare the resistance profiles (PIPTAZ: piperacillin-tazobactam, TIM: ticarcillin-
clavulanate, SAM) of the 185 clinical isolates sourced from blood samples due to antibiotic 
resistance information for additional antibiotics in the Beta-lactam class. This shows that 
resistance to one antibiotic in a class does not necessarily imply resistance to others in the 
same class. 
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SAM GM SXT CIP
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SAMTIMPIPTAZ
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1.3 Limitations of method for strain prediction - Keio Collection: Supplementary Tables 1.9-1.10 
The dataset we utilized in this section was derived from published work in which growth 

curves of 97% of the Keio collection were collected with a total of 49 time points per strain.1 
Because the collection consisted of isolates each with single gene knockouts, we assumed each 
isolate to be a unique strain. Unlike the experimental protocol we design (Methods), this 
dataset is more limited in terms of the number of growth conditions, the resolution of the 
growth dynamics, and the number of replicates; simultaneously, this dataset contained an 
order of magnitude greater number of strains (a total of 3,866 strains).  
 

Here, the features used were one of two metrics related: (1) time derivative of growth 
curve and (2) growth rate. The following analysis included accuracy of strain identification with 
3-fold cross validation along with optimal parameter set using multiclass Support Vector 
Machines. If multiple parameter sets resulted in the highest accuracy then only one was shown. 
Parameters were selected from the following options: kernel function (rbf), kkt violation level 
(0, 0.05, 0.1), box constraint of the soft margin C (10, 100), and rbf scaling factor 𝜎 (1, 10, 20).  
 
Matlab files in package (https://github.com/youlab/strain_prediction_CZ): 
predictStrain_keio_singlePlate.m, predictStrain_keio_singlePlate_traditionalGR.m, 
predictStrain_keio_allPlates.m 
 
 
 
Supplementary Table 1.9 

The features used are one of two metrics: (1) time derivative of growth curve and (2) 
growth rate. We display the accuracy for 3-fold cross validation with the corresponding optimal 
SVM parameter set on a few sample plates and display the accuracy of the average across the 
test sets in comparison to the prediction due to random chance (k = 1 or 10). 
 

SVM Parameters k Average Test 
Accuracy 

Plate Number of 
Strains 

Random 
Chance 

Predictions below are based on time derivative of growth curves. 

Rbf kernel, C = 10, kkt = 0, 𝝈 = 10 
Rbf kernel, C = 10, kkt = 0, 𝝈 = 10 

1 
10 

10.53% 
41.67% 

5 76 1.32% 
13.2% 

Rbf kernel, C = 100, kkt = 0, 𝝈 = 10 
Rbf kernel, C = 100, kkt = 0, 𝝈 = 10 

1 
10 

14.21% 
47.06% 

7 68 1.47% 
14.7% 

Rbf kernel, C = 10, kkt = 0, 𝝈 = 1 
Rbf quadratic, C = 10, kkt = 0 

1 
10 

2.75% 
18.43% 

9 85 1.18% 
11.8% 

Rbf kernel, C = 10, kkt = 0, 𝝈 = 10 
Rbf kernel, C = 10, kkt = 0, 𝝈 = 10 

1 
10 

14.05% 
41.67% 

11 76 1.32% 
13.2% 

Rbf kernel, C = 10, kkt = 0, 𝝈 = 20 
Rbf kernel, C = 10, kkt = 0, 𝝈 = 20 

1 
10 

11.62% 
46.97% 

13 66 
1.52% 
15.2% 

Rbf kernel, C = 1000, kkt = 0, 𝝈 = 10 1 70.13% 15 77 1.30% 
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Rbf kernel, C = 10, kkt = 0, 𝝈 = 10 10 78.79% 13.0% 
Linear kernel, C = 10, kkt = 0 
Rbf kernel, C = 10, kkt = 0, 𝝈 = 20 

1 
10 

1.85% 
20.37% 

17 72 1.39% 
13.9% 

Rbf kernel, C = 100, kkt = 0, 𝝈 = 10 
Rbf kernel, C = 10, kkt = 0, 𝝈 = 20 

1 
10 

12.82% 
42.31% 

19 78 1.28% 
12.8% 

Predictions below are based on growth rate time courses. 
Rbf kernel, C = 100, kkt = 0, 𝝈 = 10 
Rbf kernel, C = 100, kkt = 0, 𝝈 = 20 

1 
10 

14.04% 
48.68% 

5 76 1.32% 
13.2% 

Rbf kernel, C = 1000, kkt = 0, 𝝈 = 10 
Rbf kernel, C = 100, kkt = 0, 𝝈 = 20 

1 
10 

17.65% 
54.90% 

7 68 1.47% 
14.7% 

Rbf kernel, C = 1000, kkt = 0, 𝝈 = 10 
Rbf kernel, C = 100, kkt = 0, 𝝈 = 10 

1 
10 

3.92% 
26.67% 

9 85 1.18% 
11.8% 

Rbf kernel, C = 100, kkt = 0, 𝝈 = 20 
Rbf kernel, C = 100, kkt = 0, 𝝈 = 20 

1 
10 

17.54% 
55.26% 

11 76 1.32% 
13.2% 

Rbf kernel, C = 1000, kkt = 0, 𝝈 = 10 
Rbf kernel, C = 100, kkt = 0, 𝝈 = 20 

1 
10 

18.18% 
54.55% 

13 66 1.52% 
15.2% 

Rbf kernel, C = 100, kkt = 0, 𝝈 = 10 
Rbf kernel, C = 10, kkt = 0, 𝝈 = 10 

1 
10 

47.62% 
80.09% 

15 77 1.30% 
13.0% 

Rbf kernel, C = 10, kkt = 0, 𝝈 = 10 
Rbf kernel, C = 10, kkt = 0, 𝝈 = 10 

1 
10 

2.78% 
22.69% 

17 72 
1.39% 
13.9% 

Rbf kernel, C = 1000, kkt = 0, 𝝈 = 10 
Rbf kernel, C = 10, kkt = 0, 𝝈 = 10 

1 
10 

7.27% 
35.90% 

19 78 1.28% 
12.8% 

 
 
 
 
Supplementary Table 1.10 

We display the accuracy for 3-fold cross validation with the corresponding optimal SVM 
parameter set. Here, we run the cross validation protocol on 3,866 strains in the Keio collection 
such that the top k (k = 10, 50, and 100) predictions identify each sample in the test set. The 
features used are one of two metrics: (1) time derivative of growth curve and (2) growth rate. 
 

SVM Parameters Average Test Accuracy k Random 
chance 

Predictions below are based on time derivative of growth curves. 

Rbf kernel, C = 10, kkt = 0.05, 𝝈 = 1 12.69% 10 0.26% 

Rbf kernel, C = 10, kkt = 0.05, 𝝈 = 1 12.69% 50 1.29% 

Rbf kernel, C = 10, kkt = 0, 𝝈 = 10 33.57% 100 2.59% 

Predictions are based on growth rate time courses. 

Rbf kernel, C = 100, kkt = 0.05, 𝝈 = 10 14.05% 10 0.26% 

Rbf kernel, C = 100, kkt = 0.05, 𝝈 = 10 28.30% 50 1.29% 

Rbf kernel, C = 100, kkt = 0.05, 𝝈 = 20 37.91% 100 2.59% 
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1.4 Strain prediction on environmental isolates: Supplementary Table 1.11 
We described the accuracy of strain identification with 3-fold cross validation along with 

an optimal parameter set using multiclass Support Vector Machines for a library of 143 unique 
environmental isolates collected across Duke University. We have 12 replicates of all strains, so 
we used a hold out cross validation procedure. We set aside 3 replicates per strain as the 
validation set. A 3-fold cross validation procedure was applied to the other 9 replicates per 
strain such that per fold 3 replicates were used as the test set and 6 replicates were used as the 
training set. We reported the average accuracy across these test sets as well as the accuracy of 
the validation set. If multiple parameter sets resulted in the highest accuracy then only one was 
shown. Parameters were selected from the following options: kernel function (quadratic, rbf), 
kkt violation level (0, 0.05, 0.1), box constraint of the soft margin C (10, 100, 1000), and rbf 
scaling factor 𝜎 (1, 5, 10, 20). In Supplementary Table 1.11, we described these predictions 
using two metrics as the features: (1) the time derivative of the growth curve and (2) the 
growth rate. For this particular dataset, growth rate performed better than the time derivative, 
the results of both features were reported in the main text. 
 
Matlab files in package (https://github.com/youlab/strain_prediction_CZ): 
predict_EnvironmentalIsolates.m (main file), envSVMOpt.m, importEnvironmentalIsolates.m, 
predict_EnvironmentalIsolates_traditionalGR.m (main file), 
importEnvironmentalIsolates_traditionalGR.m 
 
 
 
Supplementary Table 1.11 

We describe the predictions of genetic identity for the environmental isolate library 
(143 strain classes). The features used are one of two metrics: (1) time derivative of growth 
curve and (2) growth rate. 
 

SVM Parameters Average Test 
Accuracy of 

3-fold CV 

Hold Out Test 
Accuracy 

(validation set) 

# of 
strains 

k Random 
chance 

Predictions below are based on time derivative of growth curves. 

Rbf kernel, C = 10, kkt = 0, 𝝈 = 5 78.71% 82.75% 143 1 0.70% 

Predictions are based on growth rate time courses. 

Rbf kernel, C = 10, kkt = 0, 𝝈 = 5 86.56% 90.68% 143 1 0.70% 
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1.5 An empirical confidence interval for support vector machines: Supplementary Figure 1.4 
In this section, we described the development of an estimate for the confidence of the 

model predictions for the strain-level classification. Since we used a one-versus-all SVM 
approach, we generate one classifier per class for a total of 𝑵 classifiers. With this model, 
classifier 𝒊 draws a hyperplane between the training set of class 𝒊 and the training set for all 
other classes. So, each sample in the test set is associated with 𝑵 margins (distance between 
the data point and the hyperplane). To predict the class of the unknown samples, we choose 
the class with the maximum margin (out of 𝑵 margins). Generally, a larger margin indicates a 
higher confidence. As such, for each sample, we define a metric, the maximum margin, as the 
greatest value of the set of 𝑵 margins. We use the maximum margins of the test sets (using the 
4-fold cross validation procedure described in Supplementary Section 1.1) to generate a 
frequency distribution of all predictions and compare this distribution to that of all incorrectly 
predicted samples. We label each of the values in these vectors according to whether they 
were classified correctly (1 is correctly classified and 0 is misclassified) and use logistic 
regression to plot the probability of the prediction being correct.  
 
Matlab files in package (https://github.com/youlab/strain_prediction_CZ): 
confidenceInterval_clinicalIsolates.m (main file) 
 
 
Supplementary Figure 1.4 
Empirical generation of confidence interval for strain identification SVM models.  

We illustrate the density curve of the maximum margin for all predictions in the test set 
and the estimated confidence for given maximum margins (features are time derivative of 
growth curves). We overlay the frequency distribution of all correctly classified points in the 
test set (green) and the frequency distribution of the misclassified points (red). Given these 
distributions, we plot the logistic regression curve. (a) Single growth conditions;(b) Quadruple 
combination growth condition; (c) Double combination growth conditions; (d) Triple 
combination growth conditions 
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1.6 A comparison to current technologies: Supplementary Figure 1.5 
Although the experimental method we have described in the main text is a proof of 

concept approach, we compare the results and workflow to that of other current technologies. 
Specifically, we examined the relative accuracies of antibiotic resistance prediction using WGS 
and growth dynamics. In Supplementary Figure 1.5, we illustrate the workflow of our approach 
in comparison to the current standard (used in the clinic) and other alternative approaches 
(sequence-based techniques).  
 
Supplementary Figure 1.5 
Comparison of current bacterial characterization strategies and our new framework.  

Under the current protocol, the phenotype-based technique we developed has an 
estimated time to strain-level and antibiotic resistance identification of ~48 hours. In contrast, 
WGS requires ~56 hours and the current Gold Standard require ~80 hours to get the same 
information. In addition, the organism identification resolution is lower for the Gold Standard 
while WGS has a significantly higher associated cost. 
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1.7 Strain prediction - the effect of biological replicates on predictive power: Supplementary 
Table 1.12, Supplementary Figure 1.6 

Using the methods described in the main text, we use a high throughput liquid handling 
protocol to devise a second dataset of growth curves for a subset of the clinical isolates. For this 
dataset, we generated growth curves for the clinical isolate library with 3 biological replicates 
each of which had 4 technical replicates (each growth curve had 145 data points). Here, we 
described the accuracy of strain identification of the clinical isolate library (194 strains using an 
SNP based approach or 41 strains using a MLST approach) using one of two methods: (1) 2-fold 
cross validation with holdout and (2) 3-fold cross validation. When multiple isolates were 
classified as being the same strain, one isolate was chosen at random to represent the strain. 
For the 2-fold cross validation procedure, we treated the 4 technical replicates per biological 
replicate as a distinct fold and held out all 4 technical replicates for the third biological replicate 
for the validation set. The accuracy across the two folds as well as the validation set are 
reported in Supplementary table 1.12. This procedure demonstrates the ability of the models 
to generalize to growth dynamics from biological replicates not present in the training dataset. 
Similarly, we used the 4 technical replicates for each biological replicate as one of the 3 folds 
for the 3-fold cross validation procedure. The average test set accuracy across the three folds is 
reported in Supplementary table 1.12. The features used to train the model were those 
described in Supplementary Section 1.1. 

 
For both cross validation methods, we reported the optimal parameter set using 

multiclass Support Vector Machines. The top k strains predicted are checked against the true 
label (k = 1). If multiple parameter sets resulted in the highest accuracy, only one is shown. 
Parameters were selected from the following options: kernel function (linear, quadratic, rbf), 
kkt violation level (0, 0.05, 0.1), box constraint of the soft margin C (10, 100, 1000), and rbf 
scaling factor 𝜎 (1, 10, 20). Here, the label for each strain was decided according to 
phylogenetic analysis (described in Methods and Supplementary Section 3).  
 
MATLAB files in package (https://github.com/youlab/strain_prediction_CZ): 
importClinicalIsolates_replicates.m, clinSVMOpt_bioRep.m, 
importClinicalIsolates_replicates_traditionalGR.m, SuppFigure_visualizeData_clin_bioRep.m 
 
Supplementary Table 1.12 

SVM Parameters Average Test 
Accuracy 
3-fold CV1 

Hold Out Test 
Accuracy 
2-fold CV2 

Growth Condition 

SNP approach to strain definition (194 unique strains). 

Random chance 0.52% 0.52% ----------top 1---------- 
Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 10 

82.56% 
 

CV: 81.06% 
Test: 74.87% 

100x dilution – time derivative of 
growth curves 

Rbf kernel, C = 100, 
kkt = 0, 𝝈 = 10 

81.01% CV: 81.38% 
Test: 70.75% 

100x dilution – growth rate time 
courses 
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Rbf kernel, C = 100, 
kkt = 0, 𝝈 = 10 

69.07% CV: 65.72% 
Test: 60.18% 

100x dilution – smoothed growth 
curve 

MLST approach to strain definition (41 unique strains). 

Random chance 2.4% 2.4% ----------top 1---------- 

Rbf kernel, C = 10, 
kkt = 0, 𝝈 = 10 

95.33% CV: 97.26% 
Test: 90.85% 

100x dilution – time derivative of 
growth curves 

Rbf kernel, C = 100, 
kkt = 0, 𝝈 = 20 

93.70% CV: 97.87% 
Test: 79.88% 

100x dilution – growth rate time 
courses 

Rbf kernel, C = 100, 
kkt = 0, 𝝈 = 10 

89.43% CV: 91.16% 
Test: 78.05% 

100x dilution – smoothed growth 
curve 

 
 
Supplementary Figure 1.6 
A visualization of the features: biological replicates of the clinical isolates.  

The time derivative of growth curves for the 194 clinical strains (as defined by SNPs) are 
illustrated with 3 biological replicates (in red, green, or blue), each of which has 4 technical 
replicates. 
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2. An overview of the data 
 Using the methods described in the main text, we have generated growth dynamics for 
203 unique clinical strains in replicates of 4 under 4 growth conditions (10,000x dilution, phage, 
100x dilution, and carbenicillin) and 143 unique environmental strains in replicates of 12 under 
a single growth condition (10,000x dilution). The latter is illustrated by Figure 2 and the former 
is visualized in Supplementary Figure 2.1.  
 
MATLAB files in package (https://github.com/youlab/strain_prediction_CZ): 
SuppFigure_visualizeData.m (main file) 
 
 
 

2.1 An overview of the phenotypic landscape: Supplementary Figure 2.1 
 
Supplementary Figure 2.1 
A visualization of the features: environmental isolates.  

The time derivative of growth curves for the 143 environmental strains are illustrated in 
replicates of 12. 
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2.2 A comparison between the genetic and phenotypic landscape: Supplementary Figure 2.2-2.3, 
Supplementary Table 2.1-2.3 
 In this section, we compared the genetic and phenotypic landscapes of the clinical and 
environmental isolate libraries. We defined the phenotypic distance between pairs of strains as 
the Euclidean distance between the average of all replicates (growth dynamics) for both strains. 
Here, we demonstrated these correlations with two types of features: (1) time derivative of 
growth curves and (2) growth rate. We saw a lack of correlation between phylogenetic distance 
and phenotypic distance for both clinical and environmental isolate libraries (Supplementary 
Table 2.1, Table 2.3, and Supplementary Figure 2.3). In contrast, there was a relatively stronger 
correlation between some phenotypes (Supplementary Table 2.2 and Supplementary Figure 
2.2). As a positive control, we compared the Spearman correlation between the growth 
dynamics of two replicates and show that the correlation is significantly stronger, as anticipated 
(Supplementary Table 2.1). 
 
Matlab files in package (https://github.com/youlab/strain_prediction_CZ): 
Supp_correlationsClinicalIsolates.m, Figure4_correlation_envIsolates.m, 
Supp_correlationsClinicalIsolates_traditionalGR.m, 
Figure4_correlation_envIsolates_traditionalGR.m 
 
 
 
Supplementary Figure 2.2 
An examination of the correlation between phenotypic landscapes.  

We visualize additional correlations between pairs of growth conditions with a density 
plot and report the corresponding Spearman correlation coefficient. Here, the growth 
phenotype is defined by the time derivative of the growth curves. 
(a) Phage treatment vs 100x dilution (p = 2.56x10-7) 
(b) 10,000x dilution vs 100x dilution (p = 2.68x10-7) 
(c) 100x dilution vs Carbenicillin treatment (p = 8.48x10-5) 
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Supplementary Figure 2.3 
The correlation between phenotypic and genetic landscapes of environmental isolates.  

We visualize four additional correlations on the taxonomic level of order with a density 
plot and report the corresponding Spearman correlation coefficient (and significance). Here, 
the growth phenotype is defined by the time derivative of the growth curves. 
Actinomycetales (𝜌 = 0.064, p =  0.13)  
Micrococcales (𝜌 =0.14, p =  0.29)  
Pseudomonadales (𝜌 = -0.03 p =  0.62)  
Enterobacteriales (𝜌 = -0.12, p =  0.65) 
 

 
 
 
 
Supplementary Table 2.1 

Results from Mantel test describe correlation between phylogenetic distance and 
phenotypic distance (average of 4 replicates).2 Here, we demonstrate these correlations with 
two types of features: (1) time derivative of growth curves and (2) growth rate. Additionally, we 
compare the use of phylogeny based on a core set of genes (MLST) and SNPs. When using 
either approach for strain definition, the conclusion remains the same. 
 

Matrix 1 Matrix 2 Spearman 
correlation (𝝆) 

p-value 

Phenotype is the time derivative of growth curves and using a SNP approach to 
phylogenetic distance. 

Phylogeny Phenotype (10,000x) -0.0258 0.81 
Phylogeny Phenotype (Phage) -0.0475 0.92 

Phylogeny Phenotype (100x) 0.1242 6.62x10-5 

Phylogeny Phenotype (Carbenicillin) -0.0302 0.80 
Phylogeny Phenotype (10,000x, Phage) -0.0491 0.92 
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Phylogeny Phenotype (10,000x, 100x) 0.0397 0.13 
Phylogeny Phenotype (10,000x, Carbenicillin) -0.0363 0.85 

Phylogeny Phenotype (Phage, 100x) 0.0383 0.14 

Phylogeny Phenotype (Phage, Carbenicillin) -0.0411 0.86 

Phylogeny Phenotype (100x, Carbenicillin) 0.0376 0.15 

Phylogeny Phenotype (10,000x, Phage, 100x) 0.0035 0.46 
Phylogeny Phenotype (10,000x, Phage, Carbenicillin) -0.0480 0.91 

Phylogeny Phenotype (10,000x, 100x, Carbenicillin) 0.0096 0.39 

Phylogeny Phenotype (Phage, 100x, Carbenicillin) 0.0098 0.40 

Phylogeny Phenotype (10,000x, Phage, 100x, Carbenicillin) -0.0094 0.60 

Phenotype is the time derivative of growth curves and using a MLST approach to 
phylogenetic distance. 

Phylogeny Phenotype (10,000x) -0.0206 0.77 

Phylogeny Phenotype (Phage) -0.042 0.90 

Phylogeny Phenotype (100x) 0.12 0.001 

Phylogeny Phenotype (Carbenicillin) -0.023 0.74 
Phylogeny Phenotype (10,000x, Phage) -0.04 0.91 

Phylogeny Phenotype (10,000x, 100x) 0.04 0.094 
Phylogeny Phenotype (10,000x, Carbenicillin) -0.024 0.76 

Phylogeny Phenotype (Phage, 100x) 0.041 0.12 
Phylogeny Phenotype (Phage, Carbenicillin) -0.031 0.81 

Phylogeny Phenotype (100x, Carbenicillin) 0.041 0.12 

Phylogeny Phenotype (10,000x, Phage, 100x) 0.0086 0.40 
Phylogeny Phenotype (10,000x, Phage, Carbenicillin) -0.036 0.85 

Phylogeny Phenotype (10,000x, 100x, Carbenicillin) 0.019 0.29 
Phylogeny Phenotype (Phage, 100x, Carbenicillin) 0.017 0.31 

Phylogeny Phenotype (10,000x, Phage, 100x, Carbenicillin) 3.8x10-4 0.50 

Phenotype is the growth rate time courses and using a SNP approach to phylogenetic 
distance. 

Phylogeny Phenotype (10,000x) 0.039 0.1718 
Phylogeny Phenotype (Phage) 0.0084 0.4159 

Phylogeny Phenotype (100x) -0.0066 0.5636 

Phylogeny Phenotype (Carbenicillin) 0.0366 0.1780 

Phylogeny Phenotype (10,000x, Phage) 0.0309 0.2204 

Phylogeny Phenotype (10,000x, 100x) 0.0346 0.2001 
Phylogeny Phenotype (10,000x, Carbenicillin) 0.0398 0.1652 

Phylogeny Phenotype (Phage, 100x) 0.0036 0.4608 

Phylogeny Phenotype (Phage, Carbenicillin) 0.0474 0.1138 
Phylogeny Phenotype (100x, Carbenicillin) 0.0351 0.1787 

Phylogeny Phenotype (10,000x, Phage, 100x) 0.0302 0.2359 

Phylogeny Phenotype (10,000x, Phage, Carbenicillin) 0.0498 0.1109 

Phylogeny Phenotype (10,000x, 100x, Carbenicillin) 0.0393 0.1661 
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Phylogeny Phenotype (Phage, 100x, Carbenicillin) 0.0459 0.1149 
Phylogeny Phenotype (10,000x, Phage, 100x, Carbenicillin) 0.0493 0.1130 

Phenotype is the growth rate time courses and using a MLST approach to phylogenetic 
distance. 

Phylogeny Phenotype (10,000x) 0.017 0.33 

Phylogeny Phenotype (Phage) 0.030 0.23 
Phylogeny Phenotype (100x) -0.0072 0.57 

Phylogeny Phenotype (Carbenicillin) 0.018 0.30 

Phylogeny Phenotype (10,000x, Phage) 0.018 0.32 

Phylogeny Phenotype (10,000x, 100x) 0.010 0.39 

Phylogeny Phenotype (10,000x, Carbenicillin) 0.014 0.35 
Phylogeny Phenotype (Phage, 100x) 0.022 0.29 

Phylogeny Phenotype (Phage, Carbenicillin) 0.034 0.18 

Phylogeny Phenotype (100x, Carbenicillin) 0.016 0.34 

Phylogeny Phenotype (10,000x, Phage, 100x) 0.015 0.34 

Phylogeny Phenotype (10,000x, Phage, Carbenicillin) 0.028 0.23 
Phylogeny Phenotype (10,000x, 100x, Carbenicillin) 0.013 0.36 

Phylogeny Phenotype (Phage, 100x, Carbenicillin) 0.031 0.20 
Phylogeny Phenotype (10,000x, Phage, 100x, Carbenicillin) 0.026 0.25 

 
 
 
Supplementary Table 2.2 

Results from Mantel test describe correlation between phenotypic distance between 
pairs of growth conditions (average of 4 replicates).2 A positive control is highlighted in italics to 
illustrate the expected high correlation between replicates. Here, we demonstrate these 
correlations with two types of features: (1) time derivative of growth curves and (2) growth 
rate. 
 

Matrix 1 Matrix 2 Spearman 
correlation (𝝆) 

p-value 

Phenotype is the time derivative of growth curves. 

Phenotype (10,000x) Phenotype (Phage) 0.2854 3.16x10-7 
Phenotype (10,000x) Phenotype (100x) 0.1666 2.68x10-7 

Phenotype (10,000x) Phenotype (Carbenicillin) 0.2462 2.30x10-7 

Phenotype (Phage) Phenotype (100x) 0.1972 2.56x10-7 

Phenotype (Phage) Phenotype (Carbenicillin) 0.2360 5.70x10-7 

Phenotype (100x) Phenotype (Carbenicillin) 0.1180 8.48x10-5 
Phenotype (4 conditions) – 
replicate 1 

Phenotype (4 conditions) – 
replicate 2 

0.9255 3.85x10-8 

Phenotype is the growth rate time courses. 

Phenotype (10,000x) Phenotype (Phage) -0.1084 0.9877 

Phenotype (10,000x) Phenotype (100x) 0.0638 0.0729 
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Phenotype (10,000x) Phenotype (Carbenicillin) 0.1079 9x10-3 
Phenotype (Phage) Phenotype (100x) 0.1449 1.4x10-3 

Phenotype (Phage) Phenotype (Carbenicillin) -0.0595 0.9026 

Phenotype (100x) Phenotype (Carbenicillin) 0.1318 1x10-3 

 
 
 
Supplementary Table 2.3 

Results from Mantel test describe correlation between phylogenetic distance and 
phenotypic distance (average of 12 replicates) for the environmental isolates. Here, we 
demonstrate these correlations with two types of features: (1) time derivative of growth curves 
and (2) growth rate. 
 

Matrix 1 
Phylogeny 

Matrix 2 
Phenotype  

Spearman 
correlation (𝝆) 

p-value 

Phenotype is the time derivative of growth curves. 
Actinomycetales  10,000x 0.064 0.13 

Micrococcales 10,000x 0.14 0.29 
Bacillales 10,000x 0.11 2.7x10-7 

Pseudomonadales 10,000x -0.03 0.62 
Enterobacteriales 10,000x -0.12 0.65 

Lactobacillales 10,000x 0.31 0.26 

Streptomycetales 10,000x 0 0.50 
Phenotype is the growth rate time courses. 

Actinomycetales  10,000x -0.0076 0.53 
Micrococcales 10,000x 0.57 0.014 

Bacillales 10,000x 0.12 2.6x10-7 

Pseudomonadales 10,000x 0.09 0.10 
Enterobacteriales 10,000x -0.18 0.79 

Lactobacillales 10,000x 0.31 0.32 
Streptomycetales 10,000x 0 0.50 
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3. Whole genome sequencing of isolate libraries 
The whole genome sequence of all isolates in our library are publicly available 

(Methods).3 Here, we compile these sequences for two purposes (1) to make a phylogenetic 
tree and (2) for antibiotic resistance prediction using known mutations or genes conferring 
resistance. We further describe the method for making the phylogenetic tree in the main text. 
The workflow for the derivation of the phylogenetic tree (Supplementary Figure 3.1 for clinical 
isolates) is described in Supplementary Figure 3.2 (clinical isolates) and Supplementary Figure 
3.3 (environmental isolates). The results of the phylogenetic trees for both libraries were used 
as the labels for the corresponding growth dynamics in Supplementary Section 1. We used 
three distinct approaches to predict the antimicrobial resistance for the 244 isolates using the 
available WGS: (1) a compilation of mechanisms from a literature search, (2) CARD, and (3) 
ResFinder.  
 

3.1 Phylogenetic tree: Supplementary Figures 3.1-3.3, Supplementary Table 3.1 
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Supplementary Figure 3.1 
A visualization of the phylogenetic tree.  

Using the methodology described in the Methods, we generate a phylogenetic tree for 
the 244 clinical isolate library.  
(a) With the SNP-based approach to strain definition, there are 203 unique strains in the library 
of 244 clinical isolates. The majority of the clusters (188 isolates) consisted of a single isolate, 
the largest cluster consists of 20 isolates, 12 clusters consist of sets of only two or three 
isolates, and 2 clusters consist of sets of four or five isolates. 
(b) With the MLST-based strain definition, there are 41 unique strains in the library of 244 
clinical isolates. The majority of the library resided within the largest cluster consisting of 104 
isolates followed by clusters of size 19, 15, and 14. And in contrast to the SNP approach, only 21 
clusters consisted of a single isolate.  
 
a. 
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b. 
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Supplementary Figure 3.2 
Analysis pipeline for phylogenetic tree. 

The illustration describes the methodology for generating the phylogenetic tree from 
the clinical isolates (See methods for a detailed description). 
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Supplementary Figure 3.3 
Analysis pipeline for phylogenetic tree. 

The illustration describes the methodology for generating the phylogenetic tree from 
the environmental isolates (See methods for a detailed description).  
 

 
 
Supplementary Table 3.1 

The order list and reference genome ID of phylogenetic analysis 

Order List Reference ID  

Actinomycetales FS151 
Flavobacteriales FS15 

Sphingobacteriales FS18 
Corynebacteriales FS511 

Micrococcales FS239 

Bacillales FS108 
Lactobacillales FS623 

Rhizobiales FS161 
Rhodospirillales FS07 

Sphingomonadales FS586 

Streptomycetales FS156 

Burkholderiales FS335 

Neisseriales FS494 
Enterobacteriales FS123 

Pseudomonadales FS106 

Xanthomonadales FS157 

Unclassified NA 

Eukaryota FS211 
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3.2 WGS-based antibiotic resistance prediction: Supplementary Tables 3.2-3.3 
To apply the current capability of genomic sequences to predict antibiotic resistances, 

we used three approaches. The first was to compile a comprehensive list of known resistance 
genes for 4 antibiotics for Enterobacteriaceae based on gene summaries found in the literature 
as well as a pubmed search.4-13 The second was to use the Comprehensive Antibiotic Resistance 
Database (CARD), and the third was to use ResFinder; both are publicly available databases 
containing antimicrobial resistance genes.14,15 We compared these three methods for two 
purposes (1) to represent different approaches to identifying antimicrobial resistances and (2) 
to utilize common sources of antimicrobial resistance genes or gene products. In the case of 
Ampicillin-Sulbactam, Trimethoprim-Sulfamethoxazole, and Gentamicin, known genes 
conferring resistance were identified based on a threshold of 95% gene similarity and 50% gene 
length. For Ciprofloxacin, in addition to gene identification based on the described threshold, 
specific amino acid substitutions/mutations were searched for (Supplementary Table 3.2).16,17 
Supplementary Table 3.3 describes the results based on 95% gene similarity and 50% gene 
length with the compiled literature search and the two curated databases, CARD and ResFinder. 

 
Ciprofloxacin mutations of interest: We looked into mutations described in Supplementary 
Table 3.2 where the mutation resulted in an amino acid change.16,17 For an isolate to be 
predicted as resistant according to the WGS, we looked for one of two conditions to be fulfilled: 
(1) the presence of AcrA (945112) and AcrB (945108) and at least 2 mutations in gyrA (946614) 
and (2) the presence of AcrA (945112) and AcrB (945108) and at least 1 mutation in gyrA 
(946614) and at least 1 mutation in parC (947499).  
 
MATLAB files in package (https://github.com/youlab/strain_prediction_CZ): 
predictResistance_WGS.m (main file), resistance_card.m, resistance_literature.m, 
resistance_resfinder.m, resistance_roc_WGS.m (main file) 
 
Supplementary Table 3.2 

A summary of the genes/mutations and corresponding gene ID’s associated with CIP 
resistance. 

Gene ID (pubmed) Descriptions of mutation 

915402 mutations in amino acids 426-464 
945108 G288D substitution 

946614 mutations in amino acids 67-106 

947499 mutations in amino acids 47-133 

947501 mutations in amino acids 420-458 

 
Supplementary Table 3.3 

A summary of the predicted resistance profiles for the 244 isolates using a database of 
known resistance genes/mutations compiled from the literature and two publicly available 
resources, ResFinder and CARD.4-15 
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Antibiotic 
(class) 

Metric Ampicillin-
sulbactam 

(SAM) 
(𝜷-lactam + 𝜷-

lactamase 
inhibitor) 

Gentamicin 
(GM) 

(aminoglycoside) 

Trimethoprim-
sulfamethoxazole 

(SXT) 
(sulfonamide 
combination) 

Ciprofloxacin 
(CIP) 

(fluoroquinolone) 

Literature Sensitivity 
(TPR) 

93.33% 100% 92.14% 83.56% 

Specificity 
(TNR) 

42.20% 47.32% 77.88% 95.92% 

Accuracy 70.49% 55.74% 86.07% 88.52% 

ResFinder15 Sensitivity 
(TPR) 

88.89% 94.87% 92.14% 22.60% 

Specificity 
(TNR) 

45.87% 47.80% 78.85% 100% 

Accuracy 69.67% 55.33% 86.48% 53.69% 

CARD14 Sensitivity 
(TPR) 

89.63% 100% 83.57% 100% 

Specificity 
(TNR) 

44.04% 1.46% 87.50% 0% 

Accuracy 69.26% 17.21% 85.25% 59.84% 
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