Geometric renormalization unravels self-similarity of the multiscale human connectome

Muhua Zheng,^{1,2} Antoine Allard,^{3,4} Patric Hagmann,⁵

Yasser Alemán-Gómez, $^{5,\,6,\,7}$ and M. Ángeles ${\rm Serrano}^{1,\,2,\,8}$

¹Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona, Spain ²Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona, Spain ³Département de physique, de génie physique et d'optique, Université Laval, Québec, Canada G1V 0A6 ⁴Centre interdisciplinaire de modélisation mathématique, Université Laval, Québec, Canada G1V 0A6 ⁵Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland ⁶Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Prilly, Switzerland ⁷Medical Image Analysis Laboratory (MIAL), Centre d'Imagerie BioMédicale (CIBM), Lausanne, Switzerland ⁸ICREA, Passeig Lluís Companys 23, E-08010 Barcelona, Spain (Dated: June 27, 2020)

www.pnas.org/cgi/doi/10.1073/pnas.1922248117

CONTENTS

I. Results for UL dataset	3
A. Parcellation and distribution of areas	3
B. Average fiber length at different resolutions	4
C. MH connectomes vs GR flows for all subjects	5
D. Behavior of the connection probabilities	14
E. Navigability on the independent MH connectome layers and GR shell	17
F. Multiscale navigation protocol.	18
G. Network properties of null models	21
II. Cross-validating results in the HCP dataset	23
III. Comparison of similarity distances with Euclidean distances and homophily	41
IV. Statistics for subjects in the UL and the HCP datasets	42
References	55

I. RESULTS FOR UL DATASET

A. Parcellation and distribution of areas

FIG. S1. Lateral and medial views of the multi-scale cortical parcellation.

FIG. S2. Histograms of surface areas of regions at each connectome scale.

B. Average fiber length at different resolutions

FIG. S3. Average fiber length $\bar{f}^{(l)}(mm)$ for each subject in UL dataset.

FIG. S4. Complementary cumulative degree distribution $P_c^{(l)}(k_{res}^{(l)})$ of rescaled degrees $k_{res}^{(l)}$ for different layers l in each subject as compared to the multiscale GR unfolding, where the symbols correspond to the empirical multiscale connectome and the line to the GR flow.

FIG. S5. The degree-dependent clustering coefficient $\bar{c}^{(l)}(k_{res}^{(l)})$ of rescaled degrees $k_{res}^{(l)}$ for different layers l in each subject as compared to the multiscale GR shell, where the symbols correspond to the empirical multiscale connectome and the line to the GR flow.

FIG. S6. Normalized average nearest-neighbour degree $\bar{k}_{nn,n}^{(l)}(k_{res}^{(l)}) = \bar{k}_{nn}^{(l)}(k_{res}^{(l)})\langle k^{(l)} \rangle / \langle (k^{(l)})^2 \rangle$ versus rescaled degrees $k_{res}^{(l)}$ for different layers l in each subject as compared to the multiscale GR unfolding, where the symbols correspond to the empirical multiscale connectome and the line to the GR flow.

FIG. S7. Rich club coefficient $r^{(l)}(k_{res}^{(l)})$ versus rescaled degrees $k_{res}^{(l)}$ for different layers l in each subject as compared to the multiscale GR unfolding, where the symbols correspond to the empirical multiscale connectome and the line to the GR flow. The two largest hubs in subjects 2 and 21 are disconnected, giving two outlier values 0. 8

FIG. S8. Community structure of the empirical multiscale connectomes and the GR unfolding.

FIG. S9. Average clustering coefficient and mean degree for all the layers in each subject as compared to the multiscale GR unfolding, where the symbols correspond to the empirical multiscale connectome and the lines to the GR flow.

FIG. S10. Network properties across 40 subjects for all layers in the UL dataset. Each column shows the complementary cumulative degree distribution, degree-dependent clustering coefficient, degree-degree correlations, rich club coefficient and modularity. The degrees have been rescaled by the internal average degree of the corresponding layer $k_{res}^{(l)} = k^{(l)}/\langle k^{(l)} \rangle$. The solid lines show the corresponding average values across 40 subjects in the cohort and the shadows indicate 2σ deviations.

FIG. S11. Subject No. 10 is a typical subject in the UL dataset. Each column shows the complementary cumulative degree distribution, degree dependent clustering coefficient, degreedegree correlations and rich club coefficient. The degrees have been rescaled by the internal average degree of the corresponding layer $k_{res}^{(l)} = k^{(l)}/\langle k^{(l)} \rangle$. Different lines correspond to different subject in each cohort. The results for subject No. 10 have been highlighted in black color.

FIG. S12. Average fiber length $\bar{f}^{(l,0)}$ in layer 0 of links outside supernodes in layer l, where supernodes are defined by the anatomical coarse-graining in the empirical curve (symbols) or the similarity coarse-graining in the GR case (lines).

D. Behavior of the connection probabilities

FIG. S13. Empirical connection probabilities $p^{(l)}(x_{ij}^{(l)})$ for each subject in the Euclidean space. The whole range of Euclidean distances x_{ij} is binned, and for each bin the ratio of the number of connected connectome pairs to the total number of connectome pairs falling within this bin is shown.

FIG. S14. Empirical versus theoretical connection probability $p^{(l)}(\lambda_{ij}^{(l)})$ within a given range of $\lambda_{ij}^{(l)}$ in GR shell for each subject. Open symbols are the connection probability of GR networks within a given range of $\lambda_{ij}^{(l)}$ and the gray lines shows the theoretical curves.

FIG. S15. Hidden degrees κ versus observed degree k of highest resolution layer in subject No. 10.

FIG. S16. Navigability in the hyperbolic space on the independent MH connectome layers and GR shell. open symbols correspond to the independent hyperbolic embeddings of the MH connectome layers and the solid lines to the GR shell.

F. Multiscale navigation protocol.

In this section, we study the performance of the multiscale GR protocol[1] in the GR shell of the 40 MH connectomes. Notice that when a packet can get stuck into a loop in single layer greedy routing, the multiscale navigation protocol can find alternative paths by taking advantage of the increased efficiency of greedy forwarding in the coarse-grained layers. When node i needs to send a packet to a destination node j, node i performs a virtual greedy forwarding step in the highest possible layer to find which supernode should be next in the greedy path. Based on this, node i then forwards the packet to its physical neighbour in the real network, which guarantees that it will eventually reach such supernode. The full details of this process is described as follows.

To guarantee navigation inside supernodes, we require an extra condition in the renormalization process and only consider blocks of connected consecutive nodes (a single node can be left alone forming a supernode by itself) to produce the GR shell. Notice that the new requirement does not alter the self-similarity of the renormalized networks forming the multiscale shell nor the congruency with the hidden metric space [1].

With respect to standard greedy routing in single layered networks, the multiscale navigation protocol requires adding the following information about the supernodes and their neighbors.

- (i) The coordinates $(r_i^{(l)}, \theta_i^{(l)})$ of node *i* in every layer *l*.
- (ii) For each node i, she should know her (super)neighbours list and their coordinates in each layer.
- (iii) Let SuperN(i, l) be the supernode to which *i* belongs in layer *l*. Supposed that SuperN(i, l) contains (super)nodes $\{i, i_1, i_2 \dots\}$ and SuperN(k, l) has (super)nodes $\{k, k_1, k_2 \dots\}$ in layer *l*. If SuperN(i, l) is connected to SuperN(k, l), there is at least one edge between (super)nodes $\{i, i_1, i_2 \dots\}$ and $\{k, k_1, k_2 \dots\}$ in layer *l*, and the connected (super)nodes of $\{i, i_1, i_2 \dots\}$ and $\{k, k_1, k_2 \dots\}$ are called "gateway". So, for every superneighbour of node SuperN(i, l) in layer *l*, node *i* knows which (super)node or (super)nodes in layer l - 1 are gateways reaching it.
- (iv) If SuperN(i, l 1) is a gateway reaching some supernode s, at least one of its (super)neighbours in layer l 1 belongs to s; node i knows which.

This information allows us to navigate the network as follows. If node *i* wants to send a packet to a destination node *j*, node *i* should know *j*'s coordinates in all *L* layers $(r_i^{(l)}, \theta_i^{(l)})$ and then node *i* will first check if it is connected to *j*; in that case, the decision is clear. If it is not, it will performs a virtual greedy forwarding step in the highest possible layer to find which supernode should be next in the greedy path. The detailed steps are provided as following:

- 1. Find the highest layer l_{max} in which SuperN (i, l_{max}) and SuperN (j, l_{max}) still have different coordinates. Set $l = l_{max}$.
- 2. Perform a standard step of greedy routing in layer l: find the closest neighbour of $\operatorname{SuperN}(i, l)$ to $\operatorname{SuperN}(j, l)$. This is the current target $\operatorname{SuperT}(l)$.
- 3. While l > 0, look into layer l 1:

Set l = l - 1.

If SuperN(i, l) is a gateway connecting to some (super)node within SuperT(l+1), node i sets as new current target SuperT(l) its (super)neighbour belonging to SuperT(l + 1) closest to SuperN(j, l). Else node i sets as new target SuperT(l) the gateway in SuperN(i, l + 1) connecting to SuperT(l + 1) (its (super)neighbour belonging to SuperN(i, l + 1)).

4. In layer l = 0, SuperT(0) belongs to the real network and she is a neighbour of i, so node i forwards the message to SuperT(0).

Fig. S17 (a) shows the gain in success rate as the number of renormalized layers used in the multiscale navigation process is increased, for the representative subject in the cohort. Interestingly, the navigability properties of every GR brain representation are very similar. For all subjects, the success rate increases significantly with the number of navigated layers in the shell, in fact it becomes very close to 100% with the inclusion of just two renormalized layers (Fig. S17 (c)), and this improvement comes at the expense of only a mild increase of the stretch of successful paths (Fig. S17 (b) and (d)).

FIG. S17. Performance of the GR multiscale navigation protocol in the GR shells of the human connectomes. (a) Success rate p_s and (b) average stretch \bar{s} as a function of the number of GR shell layers used in the routing process for subject No. 10, computed for 10^4 randomly selected pairs of nodes in layer l = 0. (c) and (d) The same for the 40 subjects in the cohort. The colors of the dots represent the magnitude of the corresponding property and their sizes are proportional to the number of layers used in the routing process.

G. Network properties of null models

FIG. S18. Loss the self-similarity in null networks. Each column shows complementary cumulative degree distribution $P_c^{(l)}(k_{res}^{(l)})$, degree-dependent clustering coefficient $\bar{c}^{(l)}(k_{res}^{(l)})$, and degreedegree correlations $\bar{k}_{nn,n}^{(l)}(k_{res}^{(l)})$.

FIG. S19. Comparison the network properties between standard GR and CP-RW GE model. Each column shows complementary cumulative distribution $P_c^{(l)}(k_{res}^{(l)})$, degree dependent clustering coefficient $\bar{c}^{(l)}(k_{res}^{(l)})$, and degree-degree correlations $\bar{k}_{nn,n}^{(l)}(k_{res}^{(l)})$. We found that the self-similarity was still preserved to some extents in layer 0 to 2.

FIG. S20. Average fiber length $\bar{f}^{(l)}$ for each subject in HCP dataset.

FIG. S21. Self-similarity of the MH connectome at different resolutions. (A-E) Results for HCP subject No. 15. Filled symbols correspond to the empirical MH connectome and the lines to the GR shell. (A) Complementary cumulative degree distribution $P_c^{(l)}(k_{res}^{(l)})$. (B) Degree dependent clustering coefficient $\bar{c}^{(l)}(k_{res}^{(l)})$. Inset: flow of the average clustering coefficient $\langle c \rangle$. (C) Degreedegree correlations $\bar{k}_{nn,n}^{(l)}(k_{res}^{(l)})$. Inset: flow of the average degree $\langle k \rangle$. (D) Rich club coefficient $r^{(l)}(k_{res}^{(l)})$ for low and intermediate values of the rescaled threshold degrees. Inset: average fiber length $\bar{f}^{(l,0)}$ in layer 0 of links outside supernodes in layer l, where supernodes are defined by the anatomical coarse-graining in the empirical curve or the similarity coarse-graining in the GR case. In the three insets in (B)-(D), error bars show the ± 2 standard error interval around the mean; when not visible the bars are within symbol size. (E) Community structure of the multiscale connectomes. $Q^{(l)}$ is the modularity in layer $l, Q^{(l,0)}$ is the modularity that the community structure of layer l induces in layer 0, and $AMI^{(l)}$ is the adjusted mutual information between the latter and the community partition directly detected in layer 0 (see Materials and Methods). The subindices $\{emp,GR\}$ indicate the empirical MH connectomes and the GR shell, respectively. $\mathrm{AMI}_0^{(emp,GR)}$ is the adjusted mutual information between topological communities in the empirical MH connectomes at each layer and the GR flow measured in their projection over layer 0. (F-J) Variability of topological properties in the HCP dataset. Blue symbols correspond to the properties of layer 0 in all subjects. The red line correspond to HCP subject No. 10. The black dashed line represents the average value across the 44 subjects in the cohort. In the plots, degrees have been rescaled by the average degree of the corresponding layer $k_{res}^{(l)} = k^{(l)} / \langle k^{(l)} \rangle$.

FIG. S22. Self-similarity of the MH connectome at different resolutions. We show results for subject No. 0-7 in HCP dataset. Filled symbols correspond to the empirical MH connectome and the lines to the GR shell. Each column shows complementary cumulative distribution $P_c^{(l)}(k_{res}^{(l)})$, degree dependent clustering coefficient $\bar{c}^{(l)}(k_{res}^{(l)})$, degree-degree correlations $\bar{k}_{nn,n}^{(l)}(k_{res}^{(l)})$, rich club coefficient $r^{(l)}(k_{res}^{(l)})$, and community structure of the multiscale connectomes.

FIG. S23. Self-similarity of the MH connectome at different resolutions. We show results for subject No. 8-15 in HCP dataset. Filled symbols correspond to the empirical MH connectome and the lines to the GR shell. Each column shows complementary cumulative distribution $P_c^{(l)}(k_{res}^{(l)})$, degree dependent clustering coefficient $\bar{c}^{(l)}(k_{res}^{(l)})$, degree-degree correlations $\bar{k}_{nn,n}^{(l)}(k_{res}^{(l)})$, rich club coefficient $r^{(l)}(k_{res}^{(l)})$, and community structure of the multiscale connectomes.

FIG. S24. Self-similarity of the MH connectome at different resolutions. We show results for subject No. 16-23 in HCP dataset. Filled symbols correspond to the empirical MH connectome and the lines to the GR shell. Each column shows complementary cumulative distribution $P_c^{(l)}(k_{res}^{(l)})$, degree dependent clustering coefficient $\bar{c}^{(l)}(k_{res}^{(l)})$, degree-degree correlations $\bar{k}_{nn,n}^{(l)}(k_{res}^{(l)})$, rich club coefficient $r^{(l)}(k_{res}^{(l)})$, and community structure of the multiscale connectomes.

FIG. S25. Self-similarity of the MH connectome at different resolutions. We show results for subject No. 14-31 in HCP dataset. Filled symbols correspond to the empirical MH connectome and the lines to the GR shell. Each column shows complementary cumulative distribution $P_c^{(l)}(k_{res}^{(l)})$, degree dependent clustering coefficient $\bar{c}^{(l)}(k_{res}^{(l)})$, degree-degree correlations $\bar{k}_{nn,n}^{(l)}(k_{res}^{(l)})$, rich club coefficient $r^{(l)}(k_{res}^{(l)})$, and community structure of the multiscale connectomes.

FIG. S26. Self-similarity of the MH connectome at different resolutions. We show results for subject No. 32-39 in HCP dataset. Filled symbols correspond to the empirical MH connectome and the lines to the GR shell. Each column shows complementary cumulative distribution $P_c^{(l)}(k_{res}^{(l)})$, degree dependent clustering coefficient $\bar{c}^{(l)}(k_{res}^{(l)})$, degree-degree correlations $\bar{k}_{nn,n}^{(l)}(k_{res}^{(l)})$, rich club coefficient $r^{(l)}(k_{res}^{(l)})$, and community structure of the multiscale connectomes.

FIG. S27. Self-similarity of the MH connectome at different resolutions. We show results for subject No. 40-43 in HCP dataset. Filled symbols correspond to the empirical MH connectome and the lines to the GR shell. Each column shows complementary cumulative distribution $P_c^{(l)}(k_{res}^{(l)})$, degree dependent clustering coefficient $\bar{c}^{(l)}(k_{res}^{(l)})$, degree-degree correlations $\bar{k}_{nn,n}^{(l)}(k_{res}^{(l)})$, rich club coefficient $r^{(l)}(k_{res}^{(l)})$, and community structure of the multiscale connectomes.

FIG. S28. Average clustering coefficient (a) and mean degree (b) for all the layers in each subject as compared to the multiscale GR unfolding, where the symbols correspond to the empirical multiscale connectome and the lines to the GR flow.

FIG. S29. Network properties across 44 subjects for all layers in the HCP dataset. Each column shows the complementary cumulative degree distribution, degree-dependent clustering coefficient, degree-degree correlations, rich club coefficient and modularity. The degrees have been rescaled by the internal average degree of the corresponding layer $k_{res}^{(l)} = k^{(l)}/\langle k^{(l)} \rangle$. The solid lines show the corresponding average values across 44 subjects in the cohort and the shadows indicate 2σ deviations.

FIG. S30. Subject No. 15 is a typical subject in HCP dataset. Each column shows the complementary cumulative degree distribution, degree dependent clustering coefficient, degree-degree correlations and rich club coefficient. The degrees have been rescaled by the internal average degree of the corresponding layer $k_{res}^{(l)} = k^{(l)}/\langle k^{(l)} \rangle$. Different lines correspond to different subject in each cohort. The results for subject No. 15 have been highlighted in black color.

FIG. S31. Network properties of l = 0 as compared to model predictions for HCP subject No. 15. (A) Complementary cumulative degree distribution, (B) custering spectrum, (C) average nearest neighbors degree, and (C)-inset rich club coefficient. Red symbols correspond to subject No. 15, and black dashed lines to the group average across the 44 subjects in the sample. Blue lines correspond to the ensemble average over 100 synthetic networks generated with the S¹ model using the coordinates and parameters inferred by Mercator [2], and the orange regions to the 2σ confidence interval around the expected value. (D)-(F) Comparison of predictions in our model (average over the ensemble of 100 synthetic networks) with real values for (D) degrees, (E) number of triangles, and (F) sum of degrees of neighbors. Error bars show the 2σ confidence interval around the expected values. Statistical tests for the goodness of fit — Pearson correlation coefficient ρ , χ^2 test is normalized by the number of nodes, and ζ score— are reported in each graph.

FIG. S32. Results for HCP subject No. 15. (A) and (B). Distribution $p(\Delta \theta_s)$ of average angular separation between subnodes of coarse-grained nodes from one layer to the next in MH and GR, respectively. The inset in (A) shows the distribution $p(\Delta \theta_s)$ from layer l to 4 in MH.

FIG. S33. Average fiber length $\bar{f}^{(l,0)}$ in layer 0 of links outside supernodes in layer l, where supernodes are defined by the anatomical coarse-graining in the empirical curve (symbols) or the similarity coarse-graining in the GR case (lines).

FIG. S34. Empirical vs theoretical probability of connection. Results for HCP subject No. 15. (A) Empirical connection probabilities $p^{(l)}(x_{ij}^{(l)})$ in Euclidean space. Euclidean distances x_{ij} are binned, and for each bin the ratio of the number of connected node pairs to the total number of pairs falling within the bin is shown. Inset shows the empirical connection probabilities $p^{(l)}(x_{res}^{(l)})$ as a function of rescale distances $x_{res}^{(l)} = x^{(l)}/a^{(l)}$ in the MH connectome, where the $a^{(l)} =$ [1.0, 1.5, 2.6, 3.8, 4.0] for different layer l. (B) Empirical versus theoretical connection probability $p^{(l)}(\lambda_{ij}^{(l)})$ in the GR shell as a function of hyperbolic distance $\lambda_{ij}^{(l)}$. (C) Complementary cumulative degree distribution $P_c(k)$. Modularity Q, as measured by the Louvain method, is shown in the inset. (D)Degree dependent clustering coefficient $\bar{c}(k)$. Inset: degree-degree correlations $\bar{k}_{nn,n}(k)$. The filled symbols correspond to the empirical connectome of Subject No. 15. Green dashed lines are generated using the S¹ model with Euclidean distances ($\beta = 2.31, \mu = 0.0030$), and red lines correspond to the standard S¹ model ($\beta = 1.87, \mu = 0.0039$).

FIG. S35. Empirical connection probabilities $p^{(l)}(x_{ij}^{(l)})$ for each subject in HCP dataset. The whole range of Euclidean distances x_{ij} is binned, and for each bin the ratio of the number of connected connectome pairs to the total number of connectome pairs falling within this bin is shown.

FIG. S36. Empirical versus theoretical connection probability $p^{(l)}(\lambda_{ij}^{(l)})$ within a given range of $\lambda_{ij}^{(l)}$ on GR shell for each subject in HCP dataset. Symbols are the connection probability of GR networks within a given range of $\lambda_{ij}^{(l)}$ and the gray lines shows the theoretical curves.

FIG. S37. Navigability of MH and GR maps at different resolutions. (A) average success rate (B) and average stretch for all HCP subjects. The error bars show the 2σ confidence interval around the expected values.

III. COMPARISON OF SIMILARITY DISTANCES WITH EUCLIDEAN DIS-TANCES AND HOMOPHILY

FIG. S38. Similarity distance vs Euclidean distance and homophily. (a)-(d) show results for subject No. 10 in the UL dataset and (e)-(h) for subject No. 15 in the HCP dataset. (a) and (e), Similarity distance $(d_{ij} = R\Delta\theta_{ij})$ vs Euclidean distance (E_{ij}) for all pairs of nodes in the connectome. (b) and (f), Similarity distance (d_{ij}) vs Euclidean (E_{ij}) for connected pairs of nodes. (c) and (g), similarity distance (d_{ij}) vs matching index (MI). (d) and (h) hyperbolic distance (H_{ij}) vs matching index (MI). The matching index is a normalized measure of overlap in two nodes' neighborhoods (ratio between the number of common neighbors and the total number of neighbors of the two discounting the pair), as defined in Ref. [3]. In each plot, we show a binned statistic with 15 equal-width bins. Each symbol shows the mean value in the bin and error bar indicates 1 standard deviation around the average value.

IV. STATISTICS FOR SUBJECTS IN THE UL AND THE HCP DATASETS

TABLE S1. Overview of the 40 connectomes in the UL dataeset. The number of nodes (N), the number of links (L), the density of links $(\rho_l = 2L/N(N-1))$, its average degree $(\langle k \rangle = 2L/N)$, the average local clustering coefficient $(\langle c \rangle)$, the average fiber length $(f^{(l)} \text{ (mm)})$, and corresponding ± 1 standard error interval around the mean (SEM), the assortativity coefficient (r_c) , the modularity (Q), the number of the communities (Nc), and the hyperbolic embedding parameter β and μ .

Subject	Layer	N	L	$ ho_l$	$\langle k \rangle \pm \text{SEM}$	$\langle c \rangle \pm \text{SEM}$	$f^{(l)} \pm \text{SEM}$	r_c	Q	N_c	β	μ
	0	1009	14470	0.03	28.68 ± 0.669	0.43 ± 0.005	65.82 ± 43.675	-0.016	0.55	5	1.96	0.011
	1	461	7177	0.07	31.14 ± 0.825	0.47 ± 0.006	68.82 ± 44.082	0.005	0.48	5	2.22	0.011
No. 0	2	233	3586	0.13	$30.78 {\pm} 0.937$	$0.50 {\pm} 0.008$	72.74 ± 45.021	0.031	0.42	5	2.41	0.012
	3	128	1744	0.21	27.25 ± 1.031	$0.56 {\pm} 0.012$	$74.80{\pm}46.285$	0.040	0.32	3	2.63	0.014
	4	82	962	0.29	$23.46{\pm}1.102$	$0.62{\pm}0.016$	$74.39{\pm}47.996$	0.021	0.31	3	3.08	0.018
	0	1010	14406	0.03	$28.53 {\pm} 0.729$	$0.42{\pm}0.005$	$66.38{\pm}44.958$	-0.003	0.52	5	1.93	0.011
	1	461	7195	0.07	$31.21 {\pm} 0.944$	$0.46 {\pm} 0.006$	$70.46{\pm}45.278$	0.003	0.45	6	2.11	0.011
No. 1	2	233	3893	0.14	$33.42 {\pm} 1.158$	$0.50 {\pm} 0.008$	$76.44{\pm}46.113$	-0.012	0.35	3	2.26	0.011
	3	128	1992	0.25	$31.12{\pm}1.257$	$0.57 {\pm} 0.010$	$80.33 {\pm} 47.629$	-0.039	0.28	3	2.48	0.012
	4	82	1129	0.34	$27.54{\pm}1.328$	$0.63 {\pm} 0.013$	$83.11{\pm}50.287$	-0.080	0.23	4	2.78	0.015
	0	1014	13671	0.03	$26.96 {\pm} 0.638$	$0.44{\pm}0.005$	$62.45 {\pm} 42.759$	0.008	0.58	6	2.00	0.012
	1	462	6833	0.06	$29.58 {\pm} 0.812$	$0.46 {\pm} 0.006$	$67.32{\pm}43.889$	0.027	0.50	5	2.19	0.012
No. 2	2	233	3599	0.13	$30.89 {\pm} 0.954$	$0.49{\pm}0.008$	$73.01{\pm}45.070$	0.056	0.42	4	2.41	0.012
	3	128	1806	0.22	$28.22{\pm}1.031$	$0.55{\pm}0.011$	$74.95{\pm}45.415$	0.043	0.34	4	2.63	0.014
	4	82	978	0.29	$23.85{\pm}1.131$	$0.63 {\pm} 0.015$	$75.12{\pm}47.046$	-0.035	0.30	3	3.23	0.018
	0	1011	12991	0.03	$25.70 {\pm} 0.648$	$0.41{\pm}0.005$	61.51 ± 43.188	0.003	0.54	7	1.89	0.012
	1	462	6642	0.06	28.75 ± 0.842	$0.45 {\pm} 0.006$	$64.32{\pm}43.813$	0.029	0.46	4	2.08	0.011
No. 3	2	233	3581	0.13	$30.74{\pm}1.016$	$0.49 {\pm} 0.008$	$69.07 {\pm} 45.923$	0.046	0.40	5	2.26	0.012
	3	128	1888	0.23	$29.50{\pm}1.135$	$0.55 {\pm} 0.011$	$74.38{\pm}49.242$	0.049	0.31	3	2.48	0.013
	4	82	1074	0.32	$26.20{\pm}1.302$	$0.63 {\pm} 0.015$	$79.49{\pm}53.949$	0.005	0.23	2	2.78	0.015
	0	1014	15879	0.03	$31.32 {\pm} 0.778$	$0.41 {\pm} 0.005$	72.32 ± 50.544	0.014	0.51	6	1.85	0.009
	1	462	7896	0.07	$34.18 {\pm} 0.999$	$0.46 {\pm} 0.006$	$76.98{\pm}52.410$	0.036	0.44	4	2.08	0.010
No. 4	2	233	4069	0.15	$34.93{\pm}1.165$	$0.50 {\pm} 0.008$	81.56 ± 53.710	0.057	0.33	4	2.26	0.010
	3	128	2077	0.26	32.45 ± 1.254	$0.57 {\pm} 0.010$	$83.79 {\pm} 54.812$	0.042	0.29	3	2.63	0.012
	4	82	1177	0.35	28.71 ± 1.408	$0.66 {\pm} 0.013$	$86.85{\pm}58.033$	-0.027	0.24	3	2.93	0.014
	0	1014	14340	0.03	28.28 ± 0.698	$0.41 {\pm} 0.005$	$65.30{\pm}42.579$	-0.013	0.54	5	1.89	0.011
	1	462	7175	0.07	$31.06 {\pm} 0.900$	$0.45 {\pm} 0.006$	$69.23 {\pm} 43.346$	-0.003	0.44	5	2.11	0.011
No. 5	2	233	3719	0.14	$31.92{\pm}1.043$	$0.48 {\pm} 0.007$	$73.64{\pm}43.925$	0.008	0.38	4	2.22	0.011
	3	128	1919	0.24	$29.98{\pm}1.141$	$0.55 {\pm} 0.009$	$76.85{\pm}45.317$	0.004	0.30	4	2.48	0.013
	4	82	1137	0.34	27.73 ± 1.260	$0.63 {\pm} 0.012$	$79.36{\pm}47.597$	-0.021	0.25	3	2.78	0.014
	0	1013	12660	0.02	25.00 ± 0.653	$0.44{\pm}0.005$	57.01 ± 38.389	-0.012	0.59	6	1.96	0.013
	1	462	6519	0.06	28.22 ± 0.865	$0.48 {\pm} 0.007$	$61.16 {\pm} 39.025$	-0.006	0.50	5	2.26	0.013
No 6	2	233	3375	0.12	28.97 ± 1.009	$0.53 {\pm} 0.009$	64.87 ± 39.810	-0.014	0.43	4	2.52	0.013
1.01 0	3	128	1712	0.21	26.75 ± 1.080	$0.57 {\pm} 0.012$	$68.31 {\pm} 41.896$	-0.014	0.33	3	2.78	0.015
	4	82	1000	0.30	24.39 ± 1.196	$0.62 {\pm} 0.015$	$71.27 {\pm} 45.710$	-0.017	0.26	4	3.00	0.017
	0	1014	13474	0.03	26.58 ± 0.702	0.42 ± 0.005	64.45 ± 43.876	-0.023	0.56	6	1.89	0.011
	1	462	6955	0.07	30.11 ± 0.902	$0.46 {\pm} 0.006$	$68.69 {\pm} 45.530$	-0.012	0.47	4	2.11	0.011
No 7	2	233	3651	0.14	$31.34{\pm}1.019$	$0.50 {\pm} 0.007$	73.55 ± 47.353	-0.006	0.40	3	2.41	0.012
No. 7	3	128	1934	0.24	30.22 ± 1.079	$0.56 {\pm} 0.010$	78.72 ± 50.132	0.000	0.32	4	2.63	0.013
	4	82	1076	0.32	$26.24{\pm}1.201$	$0.62 {\pm} 0.014$	$81.38 {\pm} 53.156$	-0.041	0.26	3	2.86	0.015

$ \begin{array}{c} 50.05(2, 120) \\ \hline 0.012 130) 0.013 27.72\pm 0.652 0.4\pm 0.007 72.07\pm 0.540 0.017 0.53 5 1.89 0.011 \\ \hline 1 462 7041 0.07 30.48\pm 0.845 0.44\pm 0.007 72.07\pm 0.547 0.007 0.34 4 2.04 0.011 \\ \hline 1 462 0.013 0.013 27.72\pm 0.54\pm 0.010 82.08\pm 0.065 0.025 0.28 3 2.41 0.012 \\ \hline 4 82 1124 0.34 27.4\pm 1.317 0.62\pm 0.005 76.47\pm 1.736 0.007 0.34 5 1.89 0.011 \\ \hline 4 82 1124 0.34 27.4\pm 1.317 0.62\pm 0.006 76.47\pm 1.073 0.007 0.34 5 1.89 0.011 \\ \hline 0 1010 13496 0.03 26.72\pm 0.632 0.4\pm 0.006 76.32\pm 2.026 0.000 0.37 3 2.26 0.001 \\ \hline 0 1010 13496 0.03 26.72\pm 0.632 0.4\pm 0.006 66.13\pm 2.236 0.000 0.07 4 2.08 0.011 \\ \hline 0 1010 13496 0.03 26.72\pm 0.632 0.4\pm 0.006 66.13\pm 2.236 0.000 0.07 4 2.08 0.011 \\ \hline 0 1014 1522 0.03 30.2\pm 0.675 0.4\pm 0.008 71.00\pm 4.3525 0.010 0.37 3 2.26 0.012 \\ \hline 4 82 977 0.22 23.34\pm 1.47 0.6\pm 0.006 75.74\pm 4.929 0.010 0.013 3 2.56 0.014 \\ \hline 4 82 977 0.22 23.34\pm 1.47 0.6\pm 0.006 75.74\pm 4.929 0.010 0.48 4 2.19 0.011 \\ \hline 0 1014 1522 0.03 30.2\pm 0.675 0.4\pm 0.007 7.35\pm 0.761 0.004 0.31 3 2.56 0.010 \\ \hline 1 462 7414 0.73 2.10\pm 0.55 0.46\pm 0.007 63.42\pm 4.299 0.010 0.48 4 2.19 0.011 \\ \hline \Lambda 0 113 14065 0.03 20.01\pm 0.076 0.24\pm 0.007 63.42\pm 4.291 0.001 0.43 3 2.48 0.011 \\ \hline \Lambda 0 113 14065 0.03 20.01\pm 0.076 0.24\pm 0.007 63.42\pm 4.291 0.001 0.43 3 2.48 0.011 \\ \hline 1 462 7577 0.07 32.80\pm 0.81 0.046\pm 0.007 68.64\pm 4.197 0.010 0.43 3 2.48 0.011 \\ 1 462 7577 0.07 32.80\pm 0.81 0.46\pm 0.007 68.64\pm 4.197 0.010 0.43 3 2.48 0.011 \\ 1 42 233 3872 0.14 33.24\pm 1.000 0.51\pm 0.009 7.3\pm 0.463 0.010 0.33 3 2.48 0.011 \\ 1 42 233 3872 0.14 33.24\pm 1.146 0.64\pm 0.015 7.44\pm 2.013 0.030 2.23 3 .46 0.016 \\ 0 1013 13403 0.03 2.78\pm 0.465 0.044\pm 0.006 8.86\pm 0.474 0.010 0.33 3 2.48 0.011 \\ 1 42 233 3872 0.14 33.24\pm 1.140 0.065\pm 0.011 9.27\pm 0.4325 0.000 0.35 4 2.234 0.011 \\ 1 42 233 3872 0.14 33.24\pm 1.000 0.51\pm 0.008 8.86\pm 0.473 0.001 0.35 3 2.34 0.011 \\ 1 42 233 3880 0.14 32.0\pm 1.140 0.055\pm 0.011 82.524 0.002 0.03 3 4 2.34 0.011 \\ 1 42 233 3890 0.14 32.0\pm 1.140 0.055\pm 0.011 8.25\pm 0.010 0.054 5 2.19 0.011 \\ 1 42 233 3890 0.14 32.0\pm 1.140 0.055\pm 0.011 0.058 0.012 0.35 4 2.19 0.011 \\$	Subject	Lovor	M	T	01	$\langle k \rangle + \text{SFM}$	$\langle c \rangle + SFM$	$f(l) \pm \text{SFM}$	m	0	\overline{N}	ß	
	Subject		1002	12010	$\frac{p_l}{0.02}$	$\frac{(\kappa) \pm 51501}{27.76 \pm 0.652}$	$\frac{\langle c \rangle \pm \text{SEM}}{0.41 \pm 0.005}$	$\frac{1}{67.65 \pm 45.004}$	$\frac{1_{c}}{0.017}$	0.52	5	μ 1.90	$\frac{\mu}{0.011}$
		0	1002	7041	0.05	21.10 ± 0.032	0.41 ± 0.003	07.03 ± 43.004	0.017	0.33	3	1.69	0.011
No. 8 2 233 31.30 0.143 0.141 141.43.10 0.0067 0.383 2.141 0.017 4 82 1124 0.024 0.024 1.0024 1.010 1.140 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.011 0.010 1.340 0.010 0.346 0.010 0.533 1.24 0.010 0.533 0.010 0.533 1.242 0.010 0.37 2.248 0.014 No. 9 2 2333 3520 0.133 0.245 0.000 0.37 2.246 0.017 0 1014 1522 0.013 0.141 0.013 2.246 0.013 0.39 4.234 0.014 No. 10 2 233 3754 0.133 0.342 0.011 0.530 5.042 0.031 0.394 4.234 0.011 No. 11 422 0.333 0.32 2.041		1	402	1041	0.07	30.40 ± 0.040	0.44 ± 0.007	72.07 ± 40.047	0.031	0.45	4	2.04	0.011
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	No. 8	2	233	3723	0.14	31.90 ± 1.003	0.49 ± 0.008	(0.41 ± 41.310)	0.007	0.30	4	2.19	0.011
$ \begin{array}{c} 4 & 82 & 1124 & 0.44 & 27.41 \pm 1.317 & 0.62 \pm 0.013 & 85.38 \pm 94.202 & 0.005 & 0.21 & 4 & 2.48 & 0.014 \\ \hline 0 & 1010 & 1346 & 0.03 & 6.67.24 + 6.63 & 0.41 \pm 0.005 & 6.013 \pm 42.236 & 0.000 & 0.47 & 4 & 2.08 & 0.011 \\ \hline 1 & 462 & 6658 & 0.06 & 28.82 \pm 0.980 & 0.44 \pm 0.008 & 71.00 \pm 43.255 & 0.010 & 0.37 & 3 & 2.26 & 0.012 \\ \hline 3 & 128 & 1774 & 0.22 & 27.72 \pm 1.022 & 0.54 \pm 0.011 & 74.12 \pm 45.548 & 0.004 & 0.31 & 3 & 2.56 & 0.014 \\ \hline 4 & 82 & 977 & 0.22 & 23.83 \pm 1.147 & 0.061 \pm 0.015 & 71.29 \pm 48.238 & 0.004 & 0.57 & 6 & 1.96 & 0.010 \\ \hline 1 & 462 & 7144 & 0.07 & 32.10 \pm 0.675 & 0.41 \pm 0.005 & 77.29 \pm 48.238 & 0.004 & 0.57 & 6 & 1.96 & 0.010 \\ \hline 1 & 462 & 7144 & 0.07 & 32.10 \pm 0.675 & 0.41 \pm 0.005 & 77.29 \pm 48.238 & 0.006 & 0.32 & 3 & 2.60 & 0.013 \\ \hline 1 & 462 & 7144 & 0.07 & 32.10 \pm 0.72 & 0.042 \pm 0.005 & 75.74 \pm 49.299 & 0.019 & 0.48 & 4 & 2.19 & 0.011 \\ \hline 3 & 128 & 1954 & 0.24 & 30.53 \pm 1.037 & 0.54 \pm 0.010 & 75.04 \pm 4.861 & -0.010 & 0.33 & 3 & 2.48 & 0.011 \\ \hline 3 & 128 & 1954 & 0.24 & 30.53 \pm 1.037 & 0.54 \pm 0.010 & 75.04 \pm 4.861 & -0.010 & 0.43 & 3 & 2.48 & 0.011 \\ \hline 1 & 462 & 7577 & 0.07 & 32.80 \pm 0.81 & 0.46 \pm 0.007 & 75.40 \pm 4.861 & -0.010 & 0.43 & 3 & 2.48 & 0.011 \\ \hline 1 & 462 & 7577 & 0.07 & 30.29 \pm 0.870 & 0.46 \pm 0.005 & 74.49 \pm 4.97 & 0.011 & 0.48 & 4 & 2.19 & 0.011 \\ \hline 1 & 460 & 7112 & 0.07 & 30.92 \pm 0.870 & 0.46 \pm 0.005 & 74.40 \pm 4.57 & 71 & 1.96 & 0.011 \\ \hline 1 & 460 & 7112 & 0.07 & 30.92 \pm 0.870 & 0.46 \pm 0.008 & 74.40 \pm 577 & 71 & 1.96 & 0.011 \\ \hline 1 & 460 & 7128 & 0.032 & 25.59 \pm 1.368 & 0.65 \pm 0.014 & 9.67 + 71 & 1.94 \pm 2.230 & 3.045 & 0.14 & 3.077 + 0.344 & 0.074 & 0.077 & 0.344 & 2.24 & 0.011 \\ \hline 1 & 420 & 7302 & 0.07 & 32.97 \pm 0.034 & 0.041 \pm 0.008 & 6.06 \pm 6.2238 & 0.081 & 0.38 & 4 & 2.44 & 0.011 \\ \hline 1 & 420 & 7302 & 0.07 & 32.97 \pm 0.014 & 0.454 & 0.076 & 73.45 \pm 4.285 & 0.007 & 0.33 & 4 & 2.43 & 0.011 \\ \hline 1 & 420 & 7302 & 0.07 & 31.36 \pm 0.054 & 0.014 & 0.075 & 74.04 \pm 0.37 & 0.014 \\ \hline 1 & 420 & 7302 & 0.07 & 31.36 \pm 0.054 & 0.014 & 0.067 & 74.04 \pm 7.78 & 0.014 \\ \hline 1 & 422 & 7302 & 0.07 & 31.36$		3	128	1960	0.24	30.02 ± 1.177	0.54 ± 0.010	82.08 ± 50.685	0.056	0.28	্য ₄	2.41	0.012
$ 0 1010 13496 0.03 26.72\pm 0.622 0.41\pm 0.005 63.02\pm 41.763 -0.007 0.34 5 1.89 0.011 \\ No. 9 2 233 3552 0.13 30.32\pm 0.938 0.44\pm 0.006 61.33\pm 42.236 0.010 0.37 4 2.08 0.011 \\ 4 82 977 0.29 23.83\pm 1.147 0.61\pm 0.016 70.36\pm 47.999 -0.052 0.27 4 2.78 0.017 \\ $		4	82	1124	0.34	27.41 ± 1.317	0.62 ± 0.013	85.38 ± 54.262	0.005	0.20	4	2.48	0.014
		0	1010	13496	0.03	26.72 ± 0.632	0.41 ± 0.005	63.02 ± 41.763	-0.007	0.54	5	1.89	0.011
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1	462	6658	0.06	28.82 ± 0.802	0.44 ± 0.006	66.13 ± 42.236	0.000	0.47	4	2.08	0.011
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	No. 9	2	233	3532	0.13	30.32 ± 0.938	0.48 ± 0.008	71.00 ± 43.525	0.010	0.37	3	2.26	0.012
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3	128	1774	0.22	27.72 ± 1.022	0.54 ± 0.011	74.12 ± 45.548	0.004	0.31	3	2.56	0.014
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$		4	82	977	0.29	23.83 ± 1.147	0.61 ± 0.016	76.36 ± 47.999	-0.052	0.27	4	2.78	0.017
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0	1014	15222	0.03	30.02 ± 0.675	0.41 ± 0.005	71.29 ± 48.238	0.004	0.57	6	1.96	0.010
No. 10 2 233 3754 0.14 32.22±0.943 0.49±0.008 79.97±50.254 0.003 9.4 2.34 0.011 4 82 1102 0.33 26.88±1.213 0.62±0.013 87.45±57.162 0.015 0.26 3 2.60 0.013 1 462 7577 0.07 32.84±0.80 0.64±0.007 68.4±4.419 0.010 0.43 3 2.48 0.011 3 128 2023 0.25 31.61±1.053 0.58±0.011 75.29±4.61.42 0.010 0.43 3 2.48 0.011 3 128 2023 0.25 31.61±1.053 0.58±0.011 75.29±4.61.42 0.010 0.43 3 2.48 0.011 1 460 7112 0.07 30.27.84±0.663 0.43±0.005 74.40±57.807 0.041 0.3 2.78 0.011 1 462 7409 0.07 2.07±0.994 0.47±0.005 64.02±139 0.011 0.45 1.90<0.011		1	462	7414	0.07	32.10 ± 0.855	0.46 ± 0.006	75.74 ± 49.299	0.019	0.48	4	2.19	0.011
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	No. 10	2	233	3754	0.14	32.22 ± 0.943	0.49 ± 0.008	79.97 ± 50.254	0.043	0.39	4	2.34	0.011
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		3	128	1954	0.24	30.53 ± 1.037	0.54 ± 0.010	85.00 ± 52.882	0.060	0.32	3	2.60	0.013
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4	82	1102	0.33	26.88 ± 1.213	0.62 ± 0.013	87.45 ± 57.162	0.015	0.26	3	2.78	0.015
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0	1013	14695	0.03	29.01 ± 0.702	0.42 ± 0.005	63.42 ± 42.951	-0.030	0.54	6	1.93	0.011
No. 11 2 233 3872 0.14 33.24±1.000 0.51±0.009 72.30±44.861 0.010 0.43 3 2.48 0.011 4 82 1088 0.33 26.54±1.146 0.64±0.015 74.97±47.933 0.002 0.32 3 3.45 0.016 0 1001 13933 0.03 27.84±0.663 0.43±0.005 74.49±57.807 0.044 0.57 7 1.96 0.011 1 460 7112 0.07 3.092±0.870 0.46±0.008 86.96±6.2239 0.081 0.38 4 2.34 0.012 3 128 1875 0.23 2.30±1.174 0.58±0.011 92.78±66.547 0.071 0.30 3 2.78 0.014 4 82 1049 0.32 25.59±1.368 0.65±0.014 96.71±7.598 -0.014 0.54 2.19 0.010 No. 13 2 233 3845 0.14 33.09±1.170 0.45±0.09 0.027 0.33 2.24		1	462	7577	0.07	$32.80 {\pm} 0.891$	$0.46 {\pm} 0.007$	68.64 ± 44.197	-0.021	0.48	4	2.19	0.011
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	No. 11	2	233	3872	0.14	33.24 ± 1.000	$0.51 {\pm} 0.009$	$72.30{\pm}44.861$	-0.010	0.43	3	2.48	0.011
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		3	128	2023	0.25	31.61 ± 1.053	$0.58 {\pm} 0.011$	75.29 ± 46.142	0.013	0.36	3	2.93	0.013
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		4	82	1088	0.33	$26.54{\pm}1.146$	$0.64{\pm}0.015$	$74.97{\pm}47.933$	0.002	0.32	3	3.45	0.016
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	1001	13933	0.03	$27.84{\pm}0.663$	$0.43 {\pm} 0.005$	$74.40{\pm}57.807$	0.044	0.57	7	1.96	0.011
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	460	7112	0.07	$30.92{\pm}0.870$	$0.46 {\pm} 0.006$	$80.62{\pm}60.153$	0.080	0.46	5	2.19	0.011
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	No. 12	2	233	3655	0.14	$31.37{\pm}1.031$	$0.50{\pm}0.008$	$86.96 {\pm} 62.239$	0.081	0.38	4	2.34	0.012
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3	128	1875	0.23	$29.30{\pm}1.174$	$0.58 {\pm} 0.011$	$92.78{\pm}66.547$	0.071	0.30	3	2.78	0.014
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4	82	1049	0.32	$25.59{\pm}1.368$	$0.65 {\pm} 0.014$	$96.71{\pm}71.598$	-0.014	0.26	3	3.08	0.016
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0	1013	14409	0.03	28.45 ± 0.771	$0.44{\pm}0.005$	64.03 ± 43.296	-0.011	0.54	6	1.93	0.011
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1	462	7409	0.07	$32.07 {\pm} 0.994$	$0.47 {\pm} 0.006$	$68.46{\pm}43.863$	0.002	0.46	4	2.11	0.010
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	No. 13	2	233	3845	0.14	$33.00{\pm}1.143$	$0.51 {\pm} 0.008$	$72.39{\pm}43.825$	0.009	0.38	5	2.34	0.011
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3	128	2009	0.25	$31.39{\pm}1.275$	$0.57 {\pm} 0.010$	$75.90{\pm}45.009$	-0.027	0.30	4	2.63	0.012
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4	82	1163	0.35	$28.37 {\pm} 1.400$	$0.65 {\pm} 0.014$	$77.41{\pm}46.731$	-0.087	0.24	4	2.78	0.014
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0	1013	14959	0.03	$29.53 {\pm} 0.713$	$0.43 {\pm} 0.005$	$67.63{\pm}45.728$	0.001	0.53	5	1.96	0.011
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	462	7382	0.07	$31.96 {\pm} 0.890$	$0.46 {\pm} 0.007$	$72.39{\pm}47.018$	0.011	0.45	4	2.19	0.011
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	No. 14	2	233	3808	0.14	$32.69{\pm}1.025$	$0.49 {\pm} 0.008$	$76.85{\pm}47.985$	0.013	0.38	3	2.34	0.011
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3	128	1952	0.24	$30.50{\pm}1.104$	$0.55 {\pm} 0.010$	$81.09{\pm}50.685$	0.027	0.33	3	2.63	0.013
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4	82	1071	0.32	$26.12{\pm}1.264$	$0.63 {\pm} 0.014$	$84.18{\pm}54.978$	0.014	0.26	3	3.08	0.016
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0	1007	16208	0.03	$32.19 {\pm} 0.749$	$0.43 {\pm} 0.005$	76.68 ± 53.253	0.001	0.54	5	1.96	0.010
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1	462	8003	0.08	$34.65 {\pm} 0.966$	$0.47 {\pm} 0.006$	$83.08 {\pm} 55.373$	0.022	0.46	3	2.19	0.010
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	No. 15	2	233	4102	0.15	35.21 ± 1.119	$0.51 {\pm} 0.008$	88.97 ± 57.472	0.043	0.40	4	2.41	0.011
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.0. 10	3	128	2092	0.26	32.69 ± 1.202	$0.58 {\pm} 0.011$	$94.04{\pm}60.183$	0.037	0.34	3	2.78	0.012
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4	82	1150	0.35	28.05 ± 1.384	$0.67 {\pm} 0.014$	$97.63 {\pm} 65.524$	-0.025	0.27	3	3.26	0.015
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	1014	14539	0.03	28.68 ± 0.738	$0.42{\pm}0.005$	$68.14 {\pm} 46.715$	-0.004	0.55	5	1.89	0.010
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	462	7352	0.07	$31.83 {\pm} 0.958$	$0.46 {\pm} 0.006$	$71.78 {\pm} 47.023$	0.004	0.46	4	2.11	0.011
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	No 16	2	233	3801	0.14	32.63 ± 1.124	$0.50 {\pm} 0.008$	76.22 ± 48.008	0.014	0.38	3	2.34	0.011
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	110. 10	3	128	1999	0.25	31.23 ± 1.259	$0.57 {\pm} 0.010$	$81.28 {\pm} 50.587$	0.029	0.29	3	2.48	0.012
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4	82	1198	0.36	29.22 ± 1.448	$0.65 {\pm} 0.012$	86.73 ± 55.434	0.015	0.22	3	2.78	0.014
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0	1014	13901	0.03	27.42 ± 0.683	$0.43 {\pm} 0.005$	62.44 ± 43.569	-0.011	0.55	6	1.96	0.011
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	462	7030	0.07	$30.43 {\pm} 0.861$	$0.46 {\pm} 0.006$	66.20 ± 43.898	-0.005	0.47	4	2.19	0.011
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	No 17	2	233	3642	0.13	$31.26 {\pm} 0.987$	$0.50 {\pm} 0.009$	$70.61 {\pm} 44.926$	0.001	0.39	3	2.34	0.012
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1101 11	3	128	1821	0.22	28.45 ± 1.061	$0.55 {\pm} 0.011$	$74.07 {\pm} 46.623$	0.017	0.33	3	2.63	0.014
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4	82	994	0.30	$24.24{\pm}1.166$	$0.61 {\pm} 0.015$	73.95 ± 47.219	-0.015	0.26	4	2.78	0.017
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0	1014	12418	0.02	24.49 ± 0.653	0.43 ± 0.005	57.36 ± 40.798	-0.029	0.56	5	1.96	0.013
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	462	6510	0.06	28.18 ± 0.837	$0.47 {\pm} 0.007$	62.05 ± 41.924	-0.024	0.51	4	2.22	0.012
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	No 18	2	233	3497	0.13	30.02 ± 0.969	$0.51 {\pm} 0.008$	67.22 ± 42.933	-0.014	0.42	3	2.48	0.013
$4 \qquad 82 \qquad 1008 \qquad 0.30 24.59 \pm 1.140 0.62 \pm 0.015 71.06 \pm 45.854 -0.044 0.26 2 3.08 0.017$	110, 10	3	128	1847	0.23	28.86 ± 1.052	$0.56 {\pm} 0.011$	71.59 ± 44.098	-0.025	0.34	4	2.78	0.014
		4	82	1008	0.30	24.59 ± 1.140	$0.62 {\pm} 0.015$	71.06 ± 45.854	-0.044	0.26	2	3.08	0.017

Subject	Layer	N	L	ρ_l	$\langle k \rangle \pm \text{SEM}$	$\langle c \rangle \pm \text{SEM}$	$f^{(l)} \pm \text{SEM}$	r_c	Q	N_c	β	μ
	0	1011	14883	0.03	29.44 ± 0.708	$0.40 {\pm} 0.005$	$69.15 {\pm} 46.830$	0.017	0.53	6	1.85	0.010
	1	462	7633	0.07	$33.04 {\pm} 0.932$	$0.44{\pm}0.007$	$74.46{\pm}49.017$	0.033	0.45	4	2.04	0.010
No. 19	2	233	4042	0.15	34.70 ± 1.130	$0.49 {\pm} 0.008$	80.35 ± 51.407	0.034	0.36	4	2.22	0.010
1101 10	3	128	2032	0.25	31.75 ± 1.246	$0.56 {\pm} 0.010$	84.05 ± 54.276	0.033	0.27	3	2.48	0.012
	4	82	1117	0.34	27.24 ± 1.412	$0.64{\pm}0.013$	$86.97 {\pm} 58.517$	-0.000	0.23	3	2.48	0.014
	0	1011	13201	0.03	26.11 ± 0.654	$0.42 {\pm} 0.005$	62.04 ± 42.881	-0.013	0.53	5	1.89	0.011
	1	462	6749	0.06	29.22 ± 0.852	$0.47 {\pm} 0.007$	$66.28 {\pm} 43.375$	-0.008	0.49	4	2.19	0.012
No. 20	2	233	3589	0.13	$30.81 {\pm} 0.967$	$0.49 {\pm} 0.008$	$70.82{\pm}44.369$	0.020	0.40	4	2.34	0.012
	3	128	1816	0.22	$28.38{\pm}1.037$	$0.55 {\pm} 0.012$	$72.81{\pm}44.735$	0.021	0.33	4	2.63	0.014
	4	82	975	0.29	$23.78 {\pm} 1.170$	$0.62{\pm}0.016$	$74.04{\pm}46.391$	0.002	0.26	2	2.93	0.017
	0	1012	12004	0.02	23.72 ± 0.636	$0.47 {\pm} 0.006$	55.45 ± 38.946	-0.044	0.59	6	2.08	0.014
	1	462	6241	0.06	$27.02 {\pm} 0.806$	$0.50 {\pm} 0.007$	$59.01{\pm}38.968$	-0.022	0.52	6	2.37	0.014
No. 21	2	233	3200	0.12	$27.47 {\pm} 0.923$	$0.53 {\pm} 0.009$	$62.35 {\pm} 39.676$	-0.020	0.42	3	2.63	0.014
	3	128	1576	0.19	$24.62 {\pm} 0.967$	$0.56{\pm}0.013$	$64.41{\pm}41.296$	0.008	0.37	3	2.78	0.016
	4	82	859	0.26	$20.95{\pm}1.068$	$0.62 {\pm} 0.017$	$65.83{\pm}43.853$	0.022	0.33	3	3.04	0.020
	0	1014	13519	0.03	26.66 ± 0.657	$0.42 {\pm} 0.005$	64.29 ± 44.784	-0.013	0.54	6	1.93	0.011
	1	462	6669	0.06	$28.87 {\pm} 0.819$	$0.46 {\pm} 0.006$	$67.28 {\pm} 45.278$	0.002	0.50	5	2.17	0.012
No. 22	2	233	3429	0.13	$29.43 {\pm} 0.941$	$0.49{\pm}0.008$	$71.49{\pm}45.832$	0.015	0.43	4	2.34	0.012
1101 ==	3	128	1758	0.22	$27.47 {\pm} 0.982$	$0.55 {\pm} 0.011$	$74.21{\pm}47.045$	0.023	0.36	3	2.63	0.014
	4	82	989	0.30	24.12 ± 1.079	$0.62{\pm}0.014$	$76.73 {\pm} 49.833$	-0.028	0.32	3	3.15	0.017
	0	1014	14709	0.03	$29.01 {\pm} 0.701$	$0.43 {\pm} 0.005$	70.15 ± 50.763	0.006	0.57	5	1.96	0.011
	1	462	7147	0.07	$30.94{\pm}0.887$	$0.47 {\pm} 0.006$	75.22 ± 52.027	0.017	0.48	4	2.19	0.011
No. 23	2	233	3783	0.14	$32.47 {\pm} 1.059$	$0.51 {\pm} 0.008$	$81.64{\pm}53.650$	0.036	0.40	4	2.41	0.011
110. 20	3	128	1864	0.23	29.12 ± 1.148	$0.57 {\pm} 0.012$	85.15 ± 56.933	0.022	0.33	4	2.71	0.014
	4	82	1031	0.31	25.15 ± 1.288	$0.65 {\pm} 0.015$	$85.76 {\pm} 59.914$	-0.047	0.28	3	3.23	0.017
	0	1014	13661	0.03	$26.94 {\pm} 0.660$	$0.40 {\pm} 0.005$	$63.30{\pm}40.449$	-0.005	0.54	5	1.85	0.011
	1	462	6868	0.06	$29.73 {\pm} 0.849$	$0.45 {\pm} 0.006$	$66.30{\pm}40.190$	0.009	0.47	4	2.08	0.011
No. 24	2	233	3587	0.13	$30.79 {\pm} 0.970$	$0.48 {\pm} 0.008$	$69.28{\pm}40.086$	0.031	0.40	4	2.22	0.011
1101 -1	3	128	1858	0.23	29.03 ± 1.072	$0.53 {\pm} 0.010$	$72.08 {\pm} 42.551$	0.029	0.33	3	2.41	0.013
	4	82	1033	0.31	25.20 ± 1.216	$0.61 {\pm} 0.014$	$73.88 {\pm} 45.514$	-0.036	0.28	3	2.78	0.016
	0	1013	14802	0.03	29.22 ± 0.737	$0.44{\pm}0.005$	$69.53 {\pm} 50.198$	0.015	0.52	6	1.96	0.011
	1	462	7428	0.07	$32.16 {\pm} 0.979$	$0.47 {\pm} 0.006$	$75.38 {\pm} 52.684$	0.012	0.43	5	2.15	0.011
No. 25	2	233	3893	0.14	33.42 ± 1.185	$0.51 {\pm} 0.008$	$81.90 {\pm} 55.150$	-0.002	0.36	5	2.26	0.011
1101 20	3	128	2039	0.25	$31.86{\pm}1.297$	$0.56 {\pm} 0.011$	$88.28 {\pm} 59.237$	-0.010	0.27	4	2.48	0.012
	4	82	1200	0.36	29.27 ± 1.422	$0.64{\pm}0.014$	$93.61 {\pm} 63.824$	-0.050	0.20	3	2.63	0.013
	0	1013	12942	0.03	25.55 ± 0.673	$0.44{\pm}0.005$	$56.78 {\pm} 40.265$	-0.020	0.55	5	1.96	0.012
	1	462	6709	0.06	$29.04 {\pm} 0.857$	$0.47 {\pm} 0.007$	$61.63 {\pm} 41.598$	0.000	0.49	5	2.19	0.012
No. 26	2	233	3445	0.13	$29.57 {\pm} 0.995$	$0.51 {\pm} 0.009$	$66.80{\pm}43.586$	0.009	0.41	4	2.41	0.013
110. 20	3	128	1732	0.21	27.06 ± 1.056	$0.55 {\pm} 0.012$	$69.83{\pm}46.121$	0.004	0.31	3	2.63	0.014
	4	82	975	0.29	23.78 ± 1.176	$0.62 {\pm} 0.015$	72.24 ± 50.272	-0.008	0.26	3	2.93	0.017
	0	1014	12483	0.02	24.62 ± 0.619	$0.40 {\pm} 0.005$	60.51 ± 41.126	-0.004	0.51	5	1.85	0.012
	1	462	6352	0.06	$27.50 {\pm} 0.798$	$0.44{\pm}0.006$	$62.96{\pm}41.281$	0.009	0.46	4	2.08	0.012
No. 27	2	233	3308	0.12	$28.39 {\pm} 0.946$	$0.47 {\pm} 0.008$	$67.63 {\pm} 42.449$	0.018	0.40	5	2.22	0.012
1101 -1	3	128	1766	0.22	$27.59 {\pm} 1.051$	$0.54{\pm}0.011$	$71.06 {\pm} 44.524$	0.034	0.33	4	2.48	0.014
	4	82	981	0.30	$23.93 {\pm} 1.179$	$0.61 {\pm} 0.015$	$73.43 {\pm} 47.249$	-0.021	0.29	3	2.78	0.017
	0	1012	14812	0.03	29.27 ± 0.774	$0.43 {\pm} 0.005$	71.18 ± 52.646	0.000	0.53	6	1.93	0.010
	1	462	7440	0.07	$32.21{\pm}1.024$	$0.48 {\pm} 0.007$	$76.57 {\pm} 54.983$	-0.001	0.44	5	2.19	0.011
No. 28	2	233	3995	0.15	34.29 ± 1.243	$0.52{\pm}0.009$	$84.86 {\pm} 59.155$	-0.012	0.35	4	2.34	0.011
110. 20	3	128	2039	0.25	$31.86 {\pm} 1.333$	$0.58 {\pm} 0.012$	$90.38 {\pm} 61.600$	-0.026	0.27	3	2.56	0.012
	4	82	1151	0.35	28.07 ± 1.442	$0.65 {\pm} 0.015$	$95.31{\pm}65.566$	-0.039	0.22	3	2.78	0.014
	0	1012	13601	0.03	26.88 ± 0.670	$0.43 {\pm} 0.005$	62.88 ± 41.839	-0.016	0.58	6	1.96	0.012
	1	462	6998	0.07	30.29 ± 0.852	$0.46 {\pm} 0.006$	67.22 ± 42.522	-0.010	0.48	4	2.19	0.011
No. 29	2	233	3694	0.14	31.71 ± 0.952	$0.50 {\pm} 0.008$	71.09 ± 42.622	-0.000	0.39	3	2.41	0.012
1101 20	3	128	1813	0.22	$28.33 {\pm} 1.011$	$0.57 {\pm} 0.011$	72.42 ± 43.307	0.021	0.36	3	2.78	0.014
	4	82	966	0.29	$23.56{\pm}1.116$	$0.64{\pm}0.016$	$73.09 {\pm} 45.577$	-0.002	0.33	3	3.38	0.018

Subject	Layer	N	L	ρ_l	$\langle k \rangle \pm \text{SEM}$	$\langle c \rangle \pm \text{SEM}$	$f^{(l)} \pm \text{SEM}$	r_c	Q	N_c	β	
	0	1013	14177	0.03	27.99 ± 0.711	$0.43 {\pm} 0.005$	67.36 ± 47.975	-0.008	0.55	5	1.96	0.011
	1	462	7246	0.07	31.37 ± 0.911	0.46 ± 0.006	72.35 ± 49.696	0.022	0.47	5	2.15	0.011
No. 30	2	233	3778	0.14	32.43 ± 1.067	$0.50 {\pm} 0.008$	77.23 ± 50.352	0.016	0.38	3	2.32	0.011
110. 00	3	128	1960	0.24	30.62 ± 1.130	$0.56 {\pm} 0.011$	81.62 ± 52.396	0.028	0.33	3	2.63	0.013
	4	82	1131	0.34	27.59 ± 1.287	$0.65 {\pm} 0.014$	84.91 ± 56.072	-0.004	0.28	3	3.08	0.015
	0	1014	15641	0.03	30.85 ± 0.760	$0.41 {\pm} 0.005$	71.71 ± 51.033	0.014	0.55	6	1.85	0.009
	1	462	7983	0.07	$34.56 {\pm} 0.994$	$0.46 {\pm} 0.006$	77.72 ± 54.036	0.026	0.47	4	2.11	0.010
No. 31	2	233	4220	0.16	36.22 ± 1.132	$0.50 {\pm} 0.007$	83.75 ± 57.298	0.051	0.38	4	2.34	0.010
110. 01	3	128	2141	0.26	33.45 ± 1.216	$0.56 {\pm} 0.010$	88.56 ± 59.873	0.032	0.30	3	2.56	0.011
	4	82	1231	0.37	30.02 ± 1.386	$0.63 {\pm} 0.012$	$94.13 {\pm} 65.808$	0.002	0.21	3	2.48	0.013
	0	1013	12875	0.03	25.42 ± 0.673	0.43 ± 0.005	62.54 ± 46.293	-0.001	0.57	6	1.96	0.012
	1	462	6409	0.06	$27.74 {\pm} 0.867$	$0.48 {\pm} 0.007$	$66.40{\pm}47.918$	0.009	0.48	6	2.22	0.013
No. 32	2	233	3351	0.12	28.76 ± 1.052	$0.50 {\pm} 0.009$	73.08 ± 51.161	0.034	0.37	4	2.26	0.012
110. 02	3	128	1795	0.22	28.05 ± 1.174	$0.55 {\pm} 0.011$	78.25 ± 53.290	0.028	0.28	4	2.41	0.013
	4	82	1031	0.31	25.15 ± 1.271	$0.62 {\pm} 0.015$	80.85 ± 55.859	0.005	0.25	3	2.78	0.016
	0	1014	14510	0.03	28.62 ± 0.714	$0.44{\pm}0.005$	$66.73 {\pm} 46.049$	-0.008	0.53	5	1.96	0.011
	1	462	7427	0.07	32.15 ± 0.929	$0.47 {\pm} 0.007$	$71.73 {\pm} 46.530$	0.002	0.46	4	2.19	0.011
No. 33	2	233	3876	0.14	$33.27 {\pm} 1.066$	$0.50 {\pm} 0.008$	$77.93 {\pm} 47.755$	0.009	0.38	3	2.34	0.011
	3	128	2004	0.25	31.31 ± 1.138	$0.56 {\pm} 0.010$	$81.38 {\pm} 49.065$	0.016	0.32	3	2.63	0.012
	4	82	1106	0.33	26.98 ± 1.292	$0.64{\pm}0.015$	$82.64{\pm}51.067$	-0.043	0.26	3	3.08	0.015
	0	1012	14344	0.03	28.35 ± 0.706	$0.41 {\pm} 0.005$	$69.04 {\pm} 45.713$	-0.001	0.53	5	1.85	0.010
	1	461	7292	0.07	$31.64 {\pm} 0.904$	$0.45 {\pm} 0.006$	$73.20{\pm}45.988$	0.020	0.47	5	2.04	0.010
No. 34	2	233	3814	0.14	$32.74{\pm}1.025$	$0.48 {\pm} 0.007$	$78.36{\pm}47.041$	0.035	0.38	4	2.19	0.011
	3	128	1921	0.24	$30.02{\pm}1.047$	$0.54{\pm}0.011$	$81.64{\pm}48.906$	0.024	0.31	4	2.56	0.013
	4	82	1053	0.32	$25.68{\pm}1.197$	$0.63{\pm}0.015$	$81.33 {\pm} 50.079$	-0.015	0.28	3	3.08	0.016
	0	1009	12460	0.02	$24.70 {\pm} 0.665$	$0.42{\pm}0.005$	$59.69 {\pm} 41.052$	-0.001	0.54	6	1.89	0.012
	1	462	6467	0.06	$28.00 {\pm} 0.867$	$0.46{\pm}0.006$	$64.31{\pm}42.744$	0.012	0.45	5	2.11	0.012
No. 35	2	233	3439	0.13	$29.52{\pm}1.035$	$0.50{\pm}0.008$	$69.39{\pm}43.860$	0.012	0.39	5	2.34	0.012
	3	128	1808	0.22	$28.25 {\pm} 1.136$	$0.55{\pm}0.010$	$74.81{\pm}46.898$	0.015	0.31	3	2.48	0.013
	4	82	1064	0.32	$25.95 {\pm} 1.276$	$0.61{\pm}0.014$	$79.37{\pm}50.431$	-0.040	0.23	3	2.48	0.015
	0	1014	13978	0.03	$27.57 {\pm} 0.693$	$0.43 {\pm} 0.005$	$66.11 {\pm} 45.586$	-0.011	0.55	6	1.96	0.011
	1	462	7053	0.07	$30.53 {\pm} 0.891$	$0.47 {\pm} 0.007$	$70.12{\pm}46.290$	-0.006	0.49	4	2.19	0.011
No. 36	2	233	3775	0.14	$32.40{\pm}1.052$	$0.50{\pm}0.008$	$74.40{\pm}46.276$	-0.004	0.40	3	2.34	0.011
	3	128	1915	0.24	$29.92{\pm}1.157$	$0.55 {\pm} 0.011$	77.52 ± 48.562	0.009	0.32	3	2.48	0.013
	4	82	1083	0.33	26.41 ± 1.288	$0.63 {\pm} 0.015$	$78.34{\pm}51.617$	-0.034	0.22	2	2.93	0.016
	0	1014	14282	0.03	$28.17 {\pm} 0.693$	$0.40 {\pm} 0.005$	64.59 ± 43.099	-0.004	0.54	5	1.88	0.011
	1	462	7216	0.07	31.24 ± 0.898	$0.45 {\pm} 0.006$	68.52 ± 43.720	-0.006	0.44	4	2.11	0.011
No. 37	2	233	3783	0.14	32.47 ± 1.036	$0.49 {\pm} 0.008$	73.59 ± 44.947	-0.009	0.39	4	2.30	0.011
	3	128	1940	0.24	30.31 ± 1.132	$0.55 {\pm} 0.010$	77.60 ± 47.272	-0.024	0.27	3	2.52	0.013
	4	82	1105	0.33	26.95 ± 1.282	0.62 ± 0.013	82.25 ± 52.116	-0.044	0.25	3	2.71	0.015
	0	1011	14001	0.03	27.70 ± 0.679	$0.43 {\pm} 0.005$	68.35 ± 47.067	0.025	0.53	6	1.93	0.011
	1	462	7129	0.07	$30.86 {\pm} 0.909$	$0.46 {\pm} 0.006$	74.59 ± 49.171	0.040	0.45	5	2.08	0.011
No. 38	2	233	3788	0.14	32.52 ± 1.086	$0.49 {\pm} 0.008$	80.76 ± 51.217	0.045	0.38	4	2.26	0.011
	3	128	1952	0.24	30.50 ± 1.235	$0.55 {\pm} 0.010$	86.29 ± 54.329	0.033	0.28	4	2.34	0.012
	4	82	1115	0.34	27.20 ± 1.378	$0.62 {\pm} 0.012$	90.79 ± 59.115	-0.019	0.21	4	2.48	0.014
	0	1013	12599	0.02	24.87 ± 0.695	$0.44 {\pm} 0.005$	$60.71 {\pm} 40.883$	-0.031	0.56	5	1.96	0.013
	1	462	6468	0.06	28.00 ± 0.902	$0.47 {\pm} 0.007$	63.92 ± 40.596	-0.028	0.49	5	2.19	0.012
No. 39	2	233	3433	0.13	29.47 ± 1.053	$0.50 {\pm} 0.008$	68.99 ± 41.314	-0.027	0.42	5	2.34	0.012
	3	128	1808	0.22	28.25 ± 1.162	0.57 ± 0.011	72.21 ± 42.214	-0.027	0.30	3	2.71	0.014
	4	82	1026	0.31	25.02 ± 1.262	0.63 ± 0.015	74.63 ± 44.861	-0.075	0.25	3	2.93	0.016

TABLE S2. Overview of the 44 connectomes in the HCP dataeset. The number of nodes (N), the number of links (L), the density of links $(\rho_l = 2L/N(N-1))$, its average degree $(\langle k \rangle = 2L/N)$, the average local clustering coefficient $(\langle c \rangle)$, the average fiber length $(f^{(l)} \pmod{n})$, and corresponding ± 1 standard error interval around the mean (SEM), the assortativity coefficient (r_c) , the modularity (Q), the number of the communities (Nc), and the hyperbolic embedding parameter β and μ .

Subject	Layer	N	L	ρ_l	$\langle k \rangle \pm \text{SEM}$	$\langle c \rangle \pm \text{SEM}$	$f^{(l)} \pm \text{SEM}$	r_c	Q	N_c	β	μ
	0	1014	37910	0.07	74.77±1.509	0.41 ± 0.004	58.31±43.175	-0.021	0.40	5	1.83	0.004
	1	462	18024	0.17	78.03 ± 1.758	$0.47 {\pm} 0.004$	$66.92{\pm}44.813$	-0.005	0.33	3	2.02	0.004
No. 0	2	233	8540	0.32	$73.30{\pm}1.765$	$0.55 {\pm} 0.006$	$73.51 {\pm} 45.896$	-0.016	0.25	3	2.19	0.005
110. 0	3	128	3871	0.48	$60.48 {\pm} 1.617$	$0.65 {\pm} 0.007$	78.20 ± 47.528	-0.052	0.19	3	3.02	0.007
	4	82	1873	0.56	$45.68 {\pm} 1.591$	$0.74{\pm}0.010$	$77.00{\pm}49.433$	-0.098	0.15	2	3.58	0.010
	0	1014	39210	0.08	$77.34{\pm}1.661$	$0.42 {\pm} 0.004$	60.77 ± 44.773	-0.036	0.39	3	1.83	0.004
	1	462	18776	0.18	$81.28 {\pm} 1.910$	$0.48 {\pm} 0.005$	$69.51 {\pm} 45.948$	-0.035	0.33	3	2.00	0.004
No. 1	2	233	8875	0.33	$76.18{\pm}1.851$	$0.57 {\pm} 0.006$	$76.93{\pm}47.307$	-0.041	0.26	3	2.37	0.005
	3	128	4029	0.50	$62.95{\pm}1.608$	$0.67 {\pm} 0.006$	$82.16{\pm}48.826$	-0.047	0.19	2	2.67	0.006
	4	82	1990	0.60	$48.54 {\pm} 1.531$	$0.75{\pm}0.008$	$81.97{\pm}50.412$	-0.090	0.15	2	3.61	0.009
	0	1014	39609	0.08	$78.12{\pm}1.539$	$0.42{\pm}0.004$	$56.38{\pm}40.686$	-0.028	0.38	4	1.92	0.004
	1	462	18603	0.17	$80.53 {\pm} 1.754$	$0.48 {\pm} 0.005$	$64.62{\pm}41.902$	-0.025	0.33	3	2.16	0.004
No. 2	2	233	8671	0.32	$74.43{\pm}1.710$	$0.57 {\pm} 0.005$	$71.26{\pm}43.164$	-0.023	0.27	3	2.54	0.005
	3	128	3791	0.47	$59.23 {\pm} 1.545$	$0.66 {\pm} 0.007$	$75.33{\pm}44.626$	-0.036	0.22	2	3.60	0.007
	4	82	1857	0.56	$45.29{\pm}1.419$	$0.73 {\pm} 0.009$	$74.19{\pm}45.822$	-0.073	0.18	2	3.82	0.010
	0	1014	40309	0.08	$79.50{\pm}1.711$	$0.44{\pm}0.004$	$58.96{\pm}43.097$	-0.041	0.41	4	1.91	0.004
	1	462	19158	0.18	$82.94{\pm}1.965$	$0.49{\pm}0.005$	$68.01 {\pm} 44.740$	-0.041	0.32	3	2.02	0.004
No. 3	2	233	9033	0.33	$77.54{\pm}1.903$	$0.58{\pm}0.006$	$75.47{\pm}46.003$	-0.054	0.23	3	2.39	0.005
	3	128	4078	0.50	$63.72{\pm}1.660$	$0.68{\pm}0.007$	$80.71 {\pm} 48.110$	-0.062	0.18	2	2.92	0.006
	4	82	1986	0.60	$48.44{\pm}1.512$	$0.75 {\pm} 0.009$	$80.13 {\pm} 49.525$	-0.097	0.13	2	3.70	0.009
No. 4	0	1014	43276	0.08	$85.36{\pm}1.687$	$0.41{\pm}0.004$	$57.41 {\pm} 41.454$	-0.040	0.41	4	1.81	0.003
	1	462	20470	0.19	$88.61 {\pm} 1.886$	$0.47{\pm}0.004$	$66.27{\pm}43.139$	-0.033	0.32	4	1.97	0.004
	2	233	9609	0.36	82.48 ± 1.812	$0.57 {\pm} 0.005$	$73.54{\pm}44.661$	-0.043	0.23	3	2.37	0.004
	3	128	4431	0.55	69.23 ± 1.575	$0.68 {\pm} 0.005$	$79.81{\pm}46.430$	-0.042	0.14	3	3.08	0.006
	4	82	2142	0.64	52.24 ± 1.520	$0.77 {\pm} 0.006$	80.09 ± 48.261	-0.065	0.12	2	3.20	0.008
	0	1014	40165	0.08	79.22 ± 1.546	$0.41{\pm}0.004$	$63.63 {\pm} 45.504$	-0.032	0.42	4	1.85	0.004
	1	462	19100	0.18	$82.68 {\pm} 1.769$	$0.47 {\pm} 0.005$	$71.98{\pm}46.051$	-0.032	0.34	3	2.06	0.004
No. 5	2	233	9093	0.34	78.05 ± 1.721	$0.56 {\pm} 0.005$	79.75 ± 47.253	-0.041	0.26	3	2.52	0.005
	3	128	4114	0.51	64.28 ± 1.550	$0.67 {\pm} 0.006$	84.40 ± 48.945	-0.059	0.18	3	3.13	0.007
	4	82	2033	0.61	49.59 ± 1.454	$0.75 {\pm} 0.008$	84.01 ± 51.240	-0.095	0.14	2	4.31	0.009
	0	1014	39638	0.08	$78.18 {\pm} 1.571$	$0.42{\pm}0.004$	57.13 ± 41.277	-0.042	0.42	4	1.89	0.004
	1	462	18692	0.18	80.92 ± 1.784	$0.48 {\pm} 0.005$	65.01 ± 42.186	-0.042	0.34	3	2.10	0.004
No. 6	2	233	8821	0.33	75.72 ± 1.749	$0.57 {\pm} 0.006$	71.37 ± 43.120	-0.048	0.27	3	2.53	0.005
	3	128	3958	0.49	61.84 ± 1.562	$0.66 {\pm} 0.007$	75.59 ± 44.708	-0.054	0.19	3	2.84	0.007
	4	82	1942	0.58	47.37 ± 1.481	0.74 ± 0.009	75.67 ± 46.882	-0.094	0.14	3	2.81	0.008
	0	1014	44089	0.09	86.96 ± 1.696	$0.43 {\pm} 0.004$	56.98 ± 39.373	-0.033	0.42	4	1.94	0.004
	1	462	20383	0.19	88.24 ± 1.900	0.49 ± 0.004	64.92 ± 40.040	-0.020	0.29	3	2.14	0.004
No. 7	2	233	9312	0.34	79.93 ± 1.822	0.58 ± 0.005	71.32 ± 40.703	-0.023	0.23	2	2.45	0.005
	3	128	4186	0.52	65.41 ± 1.598	$0.68 {\pm} 0.006$	76.46 ± 42.401	-0.049	0.18	2	3.00	0.006
	4	82	2044	0.62	49.85 ± 1.474	0.76 ± 0.008	76.05 ± 44.288	-0.094	0.14	2	3.33	0.009
	0	1014	36557	0.07	72.10 ± 1.633	$0.46 {\pm} 0.005$	49.29 ± 35.917	-0.044	0.41	4	1.97	0.004
	1	462	17316	0.16	74.96 ± 1.831	0.50 ± 0.005	56.69 ± 37.010	-0.042	0.33	3	2.18	0.005
No. 8	2	233	8296	0.31	71.21 ± 1.772	0.57 ± 0.006	62.83 ± 37.979	-0.036	0.26	3	2.49	0.005
	3	128	3746	0.46	58.53 ± 1.570	$0.66 {\pm} 0.007$	66.68 ± 39.094	-0.037	0.21	2	2.84	0.007
	4	82	1851	0.56	45.15 ± 1.475	$0.73 {\pm} 0.009$	$65.79{\pm}40.188$	-0.062	0.18	2	3.41	0.010

Subject	Layer	N	L	ρ_l	$\langle k \rangle \pm \text{SEM}$	$\langle c \rangle \pm \text{SEM}$	$f^{(l)} \pm \text{SEM}$	r_c	Q	N_c	β	μ
	0	1014	38249	0.07	75.44±1.613	0.43 ± 0.004	55.86 ± 40.591	-0.045	0.40	4	1.83	0.004
	1	462	18352	0.17	79.45 ± 1.858	$0.48 {\pm} 0.005$	$63.77 {\pm} 41.589$	-0.043	0.33	3	2.03	0.004
No. 9	2	233	8702	0.32	$74.70{\pm}1.850$	$0.56 {\pm} 0.006$	$70.08 {\pm} 42.715$	-0.045	0.26	3	2.19	0.005
	3	128	3960	0.49	$61.88{\pm}1.712$	$0.66 {\pm} 0.007$	$73.82{\pm}44.027$	-0.061	0.18	3	2.48	0.006
	4	82	1922	0.58	$46.88 {\pm} 1.625$	$0.75 {\pm} 0.009$	$72.11 {\pm} 43.995$	-0.105	0.13	2	2.84	0.009
	0	1014	39578	0.08	78.06 ± 1.493	$0.41 {\pm} 0.004$	62.41 ± 43.797	-0.024	0.35	3	1.90	0.004
	1	462	18410	0.17	$79.70{\pm}1.721$	$0.48 {\pm} 0.005$	$71.58{\pm}45.113$	-0.022	0.33	3	2.19	0.004
No. 10	2	233	8589	0.32	$73.73{\pm}1.694$	$0.57 {\pm} 0.006$	$78.76{\pm}46.197$	-0.022	0.27	3	2.48	0.005
	3	128	3831	0.47	$59.86{\pm}1.552$	$0.66{\pm}0.007$	$83.60{\pm}47.906$	-0.033	0.21	3	3.23	0.007
	4	82	1865	0.56	$45.49{\pm}1.430$	$0.73 {\pm} 0.009$	$82.79 {\pm} 50.090$	-0.080	0.18	2	3.51	0.010
	0	1013	34436	0.07	$67.99{\pm}1.343$	$0.41{\pm}0.004$	$56.10{\pm}41.192$	-0.025	0.38	4	1.90	0.004
	1	462	16289	0.15	$70.52{\pm}1.542$	$0.46{\pm}0.004$	$63.75 {\pm} 42.384$	-0.015	0.36	4	2.12	0.005
No. 11	2	233	7718	0.29	$66.25 {\pm} 1.546$	$0.54{\pm}0.006$	$70.16{\pm}43.299$	-0.017	0.28	4	2.36	0.006
	3	128	3527	0.43	$55.11{\pm}1.433$	$0.63{\pm}0.007$	$74.03{\pm}44.312$	-0.036	0.22	3	2.80	0.007
	4	82	1733	0.52	$42.27{\pm}1.412$	$0.70 {\pm} 0.009$	$73.19{\pm}45.508$	-0.067	0.18	2	3.03	0.010
	0	1014	39631	0.08	$78.17 {\pm} 1.541$	$0.42{\pm}0.004$	$55.80{\pm}40.787$	-0.029	0.40	4	1.84	0.004
	1	462	18863	0.18	$81.66 {\pm} 1.741$	$0.47{\pm}0.004$	$63.98{\pm}42.180$	-0.013	0.34	3	2.00	0.004
No. 12	2	233	8793	0.33	$75.48{\pm}1.749$	$0.56{\pm}0.006$	$70.85{\pm}43.667$	-0.023	0.27	3	2.46	0.005
	3	128	3960	0.49	$61.88{\pm}1.583$	$0.66{\pm}0.007$	$76.09{\pm}45.451$	-0.043	0.20	2	2.99	0.007
	4	82	1944	0.59	$47.41 {\pm} 1.516$	$0.74{\pm}0.009$	$75.56{\pm}46.732$	-0.090	0.15	2	2.99	0.009
	0	1014	40358	0.08	$79.60 {\pm} 1.692$	$0.44{\pm}0.004$	$58.05{\pm}40.581$	-0.044	0.40	4	1.97	0.004
	1	462	19173	0.18	$83.00 {\pm} 1.886$	$0.49 {\pm} 0.005$	$66.29{\pm}41.941$	-0.042	0.32	4	2.13	0.004
No. 13	2	233	9043	0.33	77.62 ± 1.846	$0.57 {\pm} 0.006$	$73.68{\pm}43.391$	-0.042	0.23	3	2.56	0.005
	3	128	4042	0.50	63.16 ± 1.714	$0.68 {\pm} 0.007$	77.88 ± 44.575	-0.037	0.17	3	2.64	0.006
	4	82	1999	0.60	48.76 ± 1.592	$0.76 {\pm} 0.008$	76.36 ± 45.471	-0.076	0.12	2	3.58	0.009
	0	1014	40821	0.08	80.51 ± 1.583	$0.44{\pm}0.004$	$54.98 {\pm} 38.809$	-0.040	0.43	4	1.98	0.004
	1	462	19050	0.18	82.47 ± 1.788	$0.50 {\pm} 0.005$	$62.97 {\pm} 40.035$	-0.043	0.35	4	2.19	0.004
No. 14	2	233	8767	0.32	75.25 ± 1.749	$0.57 {\pm} 0.006$	69.72 ± 41.571	-0.042	0.25	3	2.59	0.005
	3	128	3934	0.48	61.47 ± 1.583	$0.66 {\pm} 0.007$	74.57 ± 43.268	-0.060	0.18	3	3.18	0.007
	4	82	1938	0.58	47.27 ± 1.521	$0.74 {\pm} 0.009$	$74.58 {\pm} 45.075$	-0.100	0.12	3	3.24	0.009
	0	1014	37896	0.07	74.75 ± 1.563	0.41 ± 0.004	61.60 ± 43.403	-0.039	0.43	4	1.87	0.004
	1	462	18119	0.17	78.44 ± 1.823	$0.47 {\pm} 0.005$	70.46 ± 44.242	-0.040	0.35	4	2.05	0.004
No. 15	2	233	8732	0.32	74.95 ± 1.802	$0.56 {\pm} 0.006$	77.63 ± 45.368	-0.042	0.26	3	2.47	0.005
	3	128	4011	0.49	62.67 ± 1.602	0.66 ± 0.006	82.71 ± 46.851	-0.047	0.18	3	2.98	0.007
	4	82	2035	0.61	49.63 ± 1.501	0.75 ± 0.007	83.78 ± 48.511	-0.074	0.13	2	3.60	0.009
	0	1014	39589	0.08	78.08 ± 1.617	0.43 ± 0.004	60.62 ± 43.139	-0.046	0.41	4	1.95	0.004
	1	462	18938	0.18	81.98 ± 1.837	0.49 ± 0.005	69.34 ± 43.964	-0.051	0.34	3	2.11	0.004
No. 16	2	233	9018	0.33	77.41 ± 1.792	0.57 ± 0.006	76.09 ± 44.730	-0.055	0.26	3	2.43	0.005
	3	128	4068	0.50	63.56 ± 1.545	0.66 ± 0.006	80.33 ± 46.104	-0.066	0.19	3	2.80	0.006
	4	82	2008	0.60	48.98 ± 1.383	0.74 ± 0.007	79.31 ± 47.395	-0.086	0.16	2	3.24	0.009
	0	1014	38009	0.07	74.97 ± 1.591	0.44 ± 0.004	53.98 ± 38.401	-0.026	0.43	4	1.95	0.004
	1	462	17734	0.17	76.77 ± 1.784	0.49 ± 0.005	61.72 ± 39.467	-0.020	0.35	4	2.21	0.005
No. 17	2	233	8280	0.31	71.07 ± 1.758	0.57 ± 0.006	67.56 ± 40.191	-0.037	0.28	3	2.62	0.005
	3	128	3815	0.47	59.61 ± 1.525	0.65 ± 0.007	71.55 ± 41.296	-0.052	0.20	3	3.07	0.007
	4	82	1910	0.58	46.59 ± 1.443	0.73 ± 0.009	(2.47±43.781	-0.100	0.16	2	3.64	0.009
	0	1014	46070	0.09	90.87 ± 1.707	0.41 ± 0.003	62.24 ± 43.523	-0.033	0.37	3	1.90	0.003
	1	462	21730	0.20	94.07±1.881	0.49 ± 0.004	(1.29 ± 44.918)	-0.021	0.30	3	2.09	0.004
No. 18	2	233	10019	0.37	86.00 ± 1.759	0.58 ± 0.005	79.50 ± 46.687	-0.030	0.24	3	2.56	0.004
	3	128	4435	0.55	69.30 ± 1.475	0.68 ± 0.005	85.99±48.874	-0.052	0.18	2	3.15	0.006
	4	82	2155	0.65	52.56 ± 1.385	0.76 ± 0.007	86.68 ± 51.335	-0.103	0.14	2	2.59	0.007

Subject	Layer	N	L	ρ_l	$\langle k \rangle \pm \text{SEM}$	$\langle c \rangle \pm \text{SEM}$	$f^{(l)} \pm \text{SEM}$	r_c	Q	N_c	β	μ
	0	1014	41676	0.08	82.20±1.639	0.42 ± 0.004	57.88±40.396	-0.035	0.39	3	1.87	0.004
	1	462	19773	0.19	85.60 ± 1.871	$0.48 {\pm} 0.004$	$65.85{\pm}40.966$	-0.031	0.32	3	2.11	0.004
No. 19	2	233	9225	0.34	$79.18 {\pm} 1.837$	$0.57 {\pm} 0.005$	$72.99 {\pm} 42.182$	-0.042	0.24	3	2.29	0.005
	3	128	4226	0.52	$66.03 {\pm} 1.615$	$0.68 {\pm} 0.006$	$78.64{\pm}43.673$	-0.065	0.17	3	3.00	0.006
	4	82	2066	0.62	$50.39 {\pm} 1.556$	$0.76 {\pm} 0.008$	$78.10{\pm}45.409$	-0.112	0.12	2	3.42	0.009
	0	1013	41727	0.08	82.38 ± 1.620	$0.43 {\pm} 0.004$	52.87 ± 37.651	-0.039	0.40	4	1.95	0.004
	1	462	19757	0.19	$85.53 {\pm} 1.800$	$0.48 {\pm} 0.005$	$60.55 {\pm} 38.512$	-0.032	0.31	3	2.15	0.004
No. 20	2	233	9241	0.34	$79.32{\pm}1.723$	$0.57 {\pm} 0.006$	$67.10{\pm}39.748$	-0.034	0.26	3	2.55	0.005
	3	128	4076	0.50	$63.69{\pm}1.549$	$0.67 {\pm} 0.006$	$71.76{\pm}41.387$	-0.048	0.19	2	3.09	0.007
	4	82	1972	0.59	$48.10 {\pm} 1.455$	$0.74{\pm}0.008$	$70.69{\pm}43.019$	-0.087	0.15	2	3.58	0.009
	0	1014	36659	0.07	$72.31{\pm}1.553$	$0.43{\pm}0.004$	$55.79{\pm}40.647$	-0.041	0.43	4	1.89	0.004
	1	462	17485	0.16	$75.69 {\pm} 1.793$	$0.48{\pm}0.005$	$63.86{\pm}41.672$	-0.047	0.33	3	2.07	0.004
No. 21	2	233	8392	0.31	$72.03{\pm}1.760$	$0.56{\pm}0.006$	$70.54{\pm}42.918$	-0.058	0.26	3	2.35	0.005
	3	128	3884	0.48	$60.69 {\pm} 1.557$	$0.65{\pm}0.006$	$75.36{\pm}44.246$	-0.083	0.17	3	2.71	0.007
	4	82	1995	0.60	$48.66 {\pm} 1.407$	$0.73 {\pm} 0.007$	$76.37 {\pm} 46.385$	-0.103	0.13	2	2.72	0.008
	0	1014	38855	0.08	$76.64{\pm}1.514$	$0.40{\pm}0.004$	$65.81{\pm}46.676$	-0.034	0.41	4	1.78	0.004
	1	462	18783	0.18	$81.31{\pm}1.746$	$0.46{\pm}0.004$	$75.07{\pm}47.732$	-0.031	0.29	3	2.02	0.004
No. 22	2	233	9072	0.34	$77.87 {\pm} 1.721$	$0.56{\pm}0.005$	$82.94{\pm}48.893$	-0.048	0.23	3	2.31	0.005
	3	128	4037	0.50	$63.08 {\pm} 1.590$	$0.67{\pm}0.006$	$87.39 {\pm} 50.584$	-0.052	0.18	3	2.90	0.006
	4	82	1966	0.59	$47.95 {\pm} 1.553$	$0.75{\pm}0.008$	$86.89{\pm}52.990$	-0.091	0.12	3	2.79	0.008
	0	1014	37235	0.07	$73.44{\pm}1.444$	$0.40{\pm}0.004$	$60.43{\pm}43.800$	-0.039	0.42	4	1.87	0.004
	1	462	17532	0.16	$75.90{\pm}1.645$	$0.46{\pm}0.004$	$68.93 {\pm} 44.649$	-0.039	0.34	3	2.06	0.004
No. 23	2	233	8467	0.31	$72.68{\pm}1.607$	$0.54{\pm}0.005$	$76.18{\pm}45.622$	-0.049	0.27	3	2.39	0.005
	3	128	3906	0.48	$61.03 {\pm} 1.388$	$0.64{\pm}0.005$	$80.67{\pm}46.705$	-0.056	0.20	3	2.95	0.007
	4	82	1929	0.58	$47.05 {\pm} 1.286$	$0.71 {\pm} 0.007$	$80.18 {\pm} 48.393$	-0.091	0.17	2	3.66	0.009
	0	1014	38407	0.07	$75.75 {\pm} 1.534$	$0.41{\pm}0.004$	$59.11 {\pm} 42.707$	-0.040	0.39	3	1.90	0.004
	1	462	18295	0.17	$79.20{\pm}1.749$	$0.47 {\pm} 0.004$	$67.13{\pm}43.616$	-0.034	0.33	3	2.08	0.004
No. 24	2	233	8666	0.32	$74.39{\pm}1.687$	$0.56{\pm}0.005$	$73.38{\pm}44.184$	-0.042	0.26	3	2.48	0.005
	3	128	3926	0.48	$61.34{\pm}1.465$	$0.65{\pm}0.006$	$78.14{\pm}46.105$	-0.049	0.19	2	3.08	0.007
	4	82	1919	0.58	$46.80 {\pm} 1.385$	$0.73{\pm}0.008$	$76.37{\pm}46.714$	-0.096	0.16	2	3.57	0.009
	0	1014	43631	0.08	$86.06 {\pm} 1.659$	$0.42{\pm}0.003$	$57.71 {\pm} 40.073$	-0.033	0.42	4	1.90	0.004
	1	462	20366	0.19	$88.16 {\pm} 1.833$	$0.49{\pm}0.004$	$65.79 {\pm} 41.023$	-0.021	0.30	3	2.10	0.004
No. 25	2	233	9329	0.35	$80.08 {\pm} 1.812$	$0.58{\pm}0.006$	$72.29{\pm}41.947$	-0.027	0.25	3	2.56	0.005
	3	128	4144	0.51	$64.75 {\pm} 1.651$	$0.69 {\pm} 0.007$	$77.46 {\pm} 43.752$	-0.047	0.18	3	3.33	0.007
	4	82	2033	0.61	$49.59 {\pm} 1.543$	$0.76 {\pm} 0.009$	$76.84{\pm}45.405$	-0.100	0.14	2	3.76	0.009
	0	1014	42351	0.08	$83.53 {\pm} 1.634$	$0.42{\pm}0.004$	$57.06{\pm}40.212$	-0.021	0.40	4	1.90	0.004
	1	462	20154	0.19	87.25 ± 1.843	$0.48 {\pm} 0.004$	$65.47{\pm}41.238$	-0.010	0.32	3	2.11	0.004
No. 26	2	233	9465	0.35	$81.24{\pm}1.745$	$0.57{\pm}0.005$	$72.29 {\pm} 42.137$	-0.011	0.23	3	2.50	0.005
	3	128	4203	0.52	$65.67 {\pm} 1.511$	$0.67 {\pm} 0.005$	$77.28 {\pm} 43.793$	-0.023	0.17	3	3.01	0.006
	4	82	2090	0.63	$50.98{\pm}1.412$	$0.75 {\pm} 0.007$	77.41 ± 45.244	-0.095	0.14	2	2.82	0.008
	0	1014	37875	0.07	$74.70{\pm}1.469$	$0.42{\pm}0.004$	$60.28{\pm}44.013$	-0.025	0.43	4	1.91	0.004
	1	462	17836	0.17	$77.21 {\pm} 1.660$	$0.47 {\pm} 0.004$	$69.29{\pm}45.337$	-0.020	0.31	3	2.14	0.004
No. 27	2	233	8418	0.31	$72.26{\pm}1.619$	$0.56{\pm}0.006$	$75.70{\pm}45.756$	-0.035	0.28	3	2.53	0.005
	3	128	3834	0.47	$59.91{\pm}1.434$	$0.65{\pm}0.007$	$80.85{\pm}47.362$	-0.047	0.22	2	2.96	0.007
	4	82	1889	0.57	$46.07 {\pm} 1.366$	$0.73 {\pm} 0.009$	$79.79{\pm}49.279$	-0.086	0.18	2	3.25	0.009
	0	1014	35737	0.07	$70.49 \pm 1.47 \overline{8}$	0.42 ± 0.004	56.48 ± 41.154	-0.040	0.43	4	1.86	0.004
	1	462	16984	0.16	$73.52{\pm}1.708$	$0.47 {\pm} 0.005$	$64.04{\pm}42.062$	-0.039	0.33	3	2.10	0.005
No. 28	2	233	8227	0.30	$70.62{\pm}1.707$	$0.54{\pm}0.006$	$70.74{\pm}43.134$	-0.042	0.26	3	2.36	0.005
	3	128	3714	0.46	58.03 ± 1.579	$0.65 {\pm} 0.007$	$74.93{\pm}44.203$	-0.042	0.18	2	2.97	0.007
	4	82	1844	0.56	$44.98 {\pm} 1.547$	$0.73 {\pm} 0.009$	$74.89{\pm}45.887$	-0.077	0.14	3	3.37	0.010

Subject	Layer	N	L	ρ_l	$\langle k \rangle \pm \text{SEM}$	$\langle c \rangle \pm \text{SEM}$	$f^{(l)} \pm \text{SEM}$	r_c	Q	N_c	β	μ
	0	1014	39125	0.08	77.17±1.492	0.42 ± 0.004	53.54±38.013	-0.033	0.45	4	1.86	0.004
	1	462	18508	0.17	80.12 ± 1.681	$0.48 {\pm} 0.004$	$61.19 {\pm} 39.093$	-0.030	0.34	3	2.19	0.004
No. 29	2	233	8648	0.32	$74.23 {\pm} 1.640$	$0.57 {\pm} 0.006$	$67.30{\pm}40.065$	-0.048	0.26	3	2.66	0.005
1101 20	3	128	3898	0.48	60.91 ± 1.427	$0.65 {\pm} 0.007$	$71.73 {\pm} 41.755$	-0.054	0.21	2	3.02	0.007
	4	82	1934	0.58	47.17 ± 1.354	$0.72 {\pm} 0.008$	$71.67 {\pm} 43.399$	-0.099	0.16	2	3.40	0.009
	0	1014	41041	0.08	80.95 ± 1.596	$0.43 {\pm} 0.004$	$55.82{\pm}40.595$	-0.033	0.40	3	1.94	0.004
	1	462	19264	0.18	$83.39 {\pm} 1.793$	$0.48 {\pm} 0.004$	$64.27 {\pm} 41.937$	-0.030	0.34	3	2.11	0.004
No. 30	2	233	9012	0.33	$77.36 {\pm} 1.736$	$0.57 {\pm} 0.006$	71.01 ± 43.245	-0.037	0.27	3	2.45	0.005
	3	128	4097	0.50	$64.02{\pm}1.548$	$0.66{\pm}0.006$	$76.38{\pm}44.786$	-0.059	0.20	2	3.09	0.007
	4	82	2034	0.61	$49.61 {\pm} 1.457$	$0.75{\pm}0.008$	$76.21{\pm}46.418$	-0.096	0.15	2	2.78	0.008
	0	1014	39813	0.08	$78.53 {\pm} 1.582$	$0.42{\pm}0.004$	$61.38{\pm}43.914$	-0.036	0.40	4	1.84	0.004
	1	462	18826	0.18	$81.50 {\pm} 1.805$	$0.47{\pm}0.004$	$70.46{\pm}45.286$	-0.022	0.32	3	2.06	0.004
No. 31	2	233	8861	0.33	$76.06 {\pm} 1.811$	$0.57{\pm}0.006$	$77.90{\pm}46.474$	-0.030	0.24	2	2.50	0.005
	3	128	3949	0.49	$61.70 {\pm} 1.655$	$0.67 {\pm} 0.007$	$82.78{\pm}47.844$	-0.051	0.19	2	3.16	0.007
	4	82	1914	0.58	$46.68 {\pm} 1.539$	$0.75 {\pm} 0.009$	$81.71 {\pm} 50.231$	-0.081	0.15	2	3.79	0.010
	0	1013	39161	0.08	$77.32{\pm}1.574$	$0.43{\pm}0.004$	$61.96{\pm}43.540$	-0.033	0.43	4	1.91	0.004
	1	462	18393	0.17	$79.62{\pm}1.795$	$0.49{\pm}0.005$	$70.68{\pm}44.698$	-0.027	0.30	3	2.20	0.004
No. 32	2	233	8649	0.32	$74.24{\pm}1.768$	$0.57 {\pm} 0.006$	$78.46{\pm}46.346$	-0.030	0.27	3	2.72	0.005
	3	128	3827	0.47	$59.80{\pm}1.607$	$0.66 {\pm} 0.007$	82.92 ± 48.538	-0.058	0.20	2	2.99	0.007
	4	82	1931	0.58	47.10 ± 1.472	$0.74{\pm}0.008$	84.74 ± 52.183	-0.096	0.15	2	3.22	0.009
	0	1014	40400	0.08	$79.68 {\pm} 1.602$	$0.41 {\pm} 0.004$	60.92 ± 43.352	-0.034	0.41	4	1.90	0.004
	1	462	19127	0.18	82.80 ± 1.801	$0.47 {\pm} 0.004$	$69.55 {\pm} 44.780$	-0.026	0.29	3	2.04	0.004
No. 33	2	233	9119	0.34	78.27 ± 1.754	$0.56 {\pm} 0.005$	77.32 ± 46.285	-0.028	0.26	3	2.29	0.005
	3	128	4058	0.50	63.41 ± 1.579	$0.66 {\pm} 0.006$	82.08 ± 47.901	-0.041	0.18	3	2.74	0.006
	4	82	1988	0.60	48.49 ± 1.507	0.75 ± 0.008	82.25 ± 49.821	-0.072	0.15	2	2.73	0.008
	0	1014	44274	0.09	87.33 ± 1.689	0.42 ± 0.003	57.56 ± 39.889	-0.036	0.40	3	1.87	0.003
	1	462	20590	0.19	89.13 ± 1.871	0.49 ± 0.004	65.60 ± 40.953	-0.025	0.33	3	2.11	0.004
No. 34	2	233	9377	0.35	80.49 ± 1.811	0.58 ± 0.005	72.08 ± 41.786	-0.032	0.26	3	2.49	0.005
	3	128	4226	0.52	66.03 ± 1.547	0.68 ± 0.006	77.22 ± 43.408	-0.037	0.18	3	3.22	0.006
	4	82	2073	0.62	50.56 ± 1.417	0.76 ± 0.008	76.60 ± 45.167	-0.084	0.14	2	3.78	0.009
	0	1014	46025	0.09	90.78 ± 1.718	0.42 ± 0.004	59.63 ± 41.389	-0.039	0.42	4	1.92	0.003
	1	462	21758	0.20	94.19 ± 1.866	0.49 ± 0.005	67.87 ± 42.403	-0.028	0.32	4	2.19	0.004
No. 35	2	233	10004	0.37	85.87±1.779	0.58 ± 0.005	75.13 ± 43.948	-0.026	0.23	3	2.32	0.004
	3	128	4407	0.54	68.86 ± 1.552	0.68 ± 0.005	80.19 ± 45.905	-0.030	0.15	4	2.85	0.006
	4	82	2082	0.63	50.78 ± 1.475	0.76 ± 0.007	78.59 ± 47.181	-0.079	0.14	2	3.11	0.008
	0	1014	37237	0.07	73.45 ± 1.452	0.40 ± 0.004	66.00 ± 47.148	-0.034	0.42	4	1.84	0.004
	1	462	18008	0.17	77.96 ± 1.669	0.46 ± 0.004	74.83 ± 47.827	-0.032	0.33	3	2.06	0.004
No. 36	2	233	8043	0.32	(4.19 ± 1.670)	0.55 ± 0.006	81.89±48.483	-0.037	0.24	ა ე	2.34	0.005
	3	128	3839	0.47	59.98 ± 1.594	0.66 ± 0.007	85.54 ± 49.430	-0.059	0.18	ა ი	3.25	0.007
	4	02	1002	0.07	43.90 ± 1.373	0.74 ± 0.010	64.32 ± 30.915	-0.105	0.14	2	3.89	0.010
	0	1014	40012	0.09	89.77 ± 1.754	0.43 ± 0.003	02.17 ± 43.233	-0.034	0.37	ა ე	1.90	0.003
N7 0 5	1	402	21300	0.20	92.21 ± 1.907	0.49 ± 0.004	71.01 ± 44.028	-0.021	0.33	ა ი	2.14	0.004
No. 37	2	200 100	9110	0.50	63.93 ± 1.777	0.39 ± 0.005	19.40 ± 40.037	-0.030	0.20	ა ი	2.49	0.005
	3 4	120	4529	0.00	07.04 ± 1.022	0.08 ± 0.005	64.30 ± 47.621	-0.045	0.19	2	2.97	0.000
	4	02	∠001 40200	0.03	50.70 ± 1.403	0.10 ± 0.001	62.20 ± 44.098	-0.083	0.10	2	4.09	0.009
	1	1014	40209 10004	0.00	13.31 ± 1.000 82 66 ± 1.010	0.41 ± 0.004 0.47 ±0.004	02.00 ± 44.408 71 19 \pm 45 019	-0.034	0.39	ა ი	1.00 2.05	0.004
No. 38	1 9	404 922	0035	0.10	52.00 ± 1.010 77 58 ± 1.794	0.47 ± 0.004 0.55 ± 0.005	70.05 ± 47.40	-0.029	0.00 [] 99	ა ე	2.00 2.20	0.004
	2 3	200 198	2000 2024	0.55	62.88 ± 1.606	0.00 ± 0.000	84 41+40 408	-0.029	0.22	⊿ 3	2.59 2.81	0.003
	4	82	1970	0.50	48.05 ± 1.000	0.75 ± 0.008	84 05+51 966	-0.052	0.14	2	2.01 2.87	0.008
	-	<u> </u>	-010			J J _ 0.000	- <u></u>	0.004	~· • • •	-		0.000

Subject	Layer	N	L	$ ho_l$	$\langle k \rangle \pm { m SEM}$	$\langle c \rangle \pm \text{SEM}$	$f^{(l)} \pm \text{SEM}$	r_c	Q	N_c	β	μ
	0	1014	34947	0.07	$68.93{\pm}1.521$	$0.43{\pm}0.004$	$56.48{\pm}40.483$	-0.047	0.44	4	1.89	0.004
	1	462	16844	0.16	$72.92{\pm}1.755$	$0.48{\pm}0.005$	$64.16{\pm}41.220$	-0.041	0.36	4	2.09	0.005
No. 39	2	233	8121	0.30	$69.71 {\pm} 1.767$	$0.56{\pm}0.006$	$70.91{\pm}42.134$	-0.051	0.25	3	2.33	0.005
	3	128	3703	0.46	$57.86{\pm}1.619$	$0.65{\pm}0.008$	$74.79{\pm}43.341$	-0.062	0.18	3	2.87	0.007
	4	82	1877	0.57	$45.78 {\pm} 1.542$	$0.73 {\pm} 0.009$	$73.59{\pm}44.114$	-0.090	0.13	3	3.23	0.009
	0	1014	38384	0.07	$75.71{\pm}1.547$	$0.41{\pm}0.004$	$55.33{\pm}40.100$	-0.037	0.41	4	1.85	0.004
	1	462	18201	0.17	$78.79 {\pm} 1.786$	$0.47{\pm}0.005$	$63.53 {\pm} 41.379$	-0.032	0.29	3	2.02	0.004
No. 40	2	233	8652	0.32	$74.27{\pm}1.753$	$0.56{\pm}0.005$	$70.13{\pm}42.407$	-0.032	0.26	3	2.42	0.005
	3	128	3892	0.48	$60.81 {\pm} 1.611$	$0.66{\pm}0.007$	$73.98{\pm}43.283$	-0.040	0.19	2	2.95	0.007
	4	82	1916	0.58	$46.73{\pm}1.541$	$0.74{\pm}0.009$	$72.01{\pm}43.377$	-0.079	0.15	2	3.00	0.009
	0	1014	35161	0.07	$69.35{\pm}1.455$	$0.42{\pm}0.004$	$56.84{\pm}41.915$	-0.037	0.42	4	1.90	0.004
No. 41	1	462	16812	0.16	$72.78{\pm}1.695$	$0.46{\pm}0.005$	$64.84{\pm}43.044$	-0.036	0.30	4	1.96	0.004
	2	233	8086	0.30	$69.41 {\pm} 1.727$	$0.55{\pm}0.006$	$71.68{\pm}44.498$	-0.050	0.26	3	2.32	0.005
	3	128	3751	0.46	$58.61{\pm}1.603$	$0.65{\pm}0.007$	$75.60{\pm}45.089$	-0.058	0.19	3	2.77	0.007
	4	82	1886	0.57	$46.00 {\pm} 1.542$	$0.74{\pm}0.009$	$75.09{\pm}46.191$	-0.100	0.13	3	2.98	0.009
	0	1014	40731	0.08	$80.34{\pm}1.544$	$0.42{\pm}0.004$	$58.24{\pm}42.013$	-0.037	0.42	4	1.90	0.004
	1	462	19399	0.18	$83.98 {\pm} 1.731$	$0.47{\pm}0.005$	$66.42{\pm}43.086$	-0.033	0.34	3	2.13	0.004
No. 42	2	233	9190	0.34	$78.88 {\pm} 1.677$	$0.56{\pm}0.006$	$73.32{\pm}43.902$	-0.035	0.27	3	2.53	0.005
	3	128	4147	0.51	$64.80 {\pm} 1.537$	$0.67{\pm}0.006$	$79.48 {\pm} 46.699$	-0.052	0.19	3	3.08	0.006
	4	82	2057	0.62	$50.17 {\pm} 1.447$	$0.76{\pm}0.008$	$80.02{\pm}49.576$	-0.070	0.15	2	4.14	0.009
	0	1014	37845	0.07	$74.64{\pm}1.535$	$0.43{\pm}0.004$	$56.27{\pm}40.721$	-0.034	0.44	4	1.95	0.004
	1	462	17927	0.17	$77.61{\pm}1.744$	$0.49{\pm}0.005$	$64.87{\pm}42.105$	-0.034	0.32	3	2.19	0.004
No. 43	2	233	8449	0.31	$72.52{\pm}1.728$	$0.57{\pm}0.006$	$71.61{\pm}43.110$	-0.047	0.27	4	2.64	0.005
NO. 45	3	128	3869	0.48	$60.45 {\pm} 1.536$	$0.66{\pm}0.007$	$77.54{\pm}44.988$	-0.057	0.16	3	2.81	0.007
	4	82	1898	0.57	$46.29 {\pm} 1.416$	$0.73 {\pm} 0.008$	$76.80{\pm}46.405$	-0.088	0.12	2	3.39	0.009

TABLE S3. The dispersion between empirical subjects for degrees, number of triangles of nodes, and sum of the degrees of neighbors in layer 0 for UL dataset. For each brain region, we calculate the mean and standard deviation σ of the three quantites over all subjects. Then we obtain the pearson correlation coefficient ρ and the χ^2 test ($\chi^2 = \sum_{i}^{N} (\frac{value_{real} - value_{group}}{\sigma_{group}})^2$) between specific subject and the average in the cohort. The quantity ζ corresponds to the fraction of nodes for which the value measured on the specific network lies outside the 2σ confidence interval around the average.

G 1 ·		degree		num	ber of tri	angles	sum degree of neighbors		
Subject	ρ	χ^2/N	ζ	ρ	χ^2/N	ζ	ρ	χ^2/N	ζ
0	0.812	1.034	0.056	0.817	1.117	0.067	0.789	0.865	0.037
1	0.826	1.018	0.050	0.847	1.075	0.062	0.787	1.170	0.066
2	0.795	0.959	0.037	0.825	0.916	0.044	0.773	0.835	0.026
3	0.823	0.862	0.028	0.853	0.692	0.015	0.820	0.716	0.007
4	0.852	1.031	0.060	0.891	1.084	0.064	0.841	1.352	0.088
5	0.859	0.850	0.032	0.890	0.719	0.025	0.831	0.823	0.037
6	0.818	0.916	0.032	0.835	0.841	0.034	0.763	0.864	0.024
7	0.853	0.909	0.033	0.874	0.849	0.033	0.815	0.870	0.035
8	0.770	1.121	0.061	0.799	1.080	0.055	0.756	1.033	0.051
9	0.845	0.737	0.024	0.856	0.676	0.019	0.822	0.659	0.011
10	0.813	0.983	0.055	0.817	1.106	0.066	0.789	0.926	0.043
11	0.784	1.154	0.056	0.810	1.181	0.057	0.735	1.175	0.060
12	0.780	1.044	0.049	0.804	1.079	0.057	0.756	0.977	0.045
13	0.812	1.118	0.055	0.840	1.228	0.067	0.783	1.240	0.070
14	0.830	1.057	0.052	0.846	1.194	0.076	0.815	1.080	0.062
15	0.818	1.271	0.077	0.844	1.726	0.121	0.787	1.499	0.106
16	0.849	0.895	0.036	0.878	0.891	0.040	0.818	0.994	0.049
17	0.831	0.907	0.036	0.844	0.850	0.038	0.795	0.844	0.032
18	0.834	0.906	0.026	0.850	0.762	0.026	0.792	0.806	0.021
19	0.805	1.153	0.067	0.837	1.119	0.072	0.779	1.202	0.071
20	0.759	1.181	0.058	0.784	1.043	0.047	0.724	1.002	0.036
21	0.757	1.229	0.051	0.761	1.060	0.043	0.695	1.025	0.026
22	0.834	0.798	0.028	0.849	0.698	0.023	0.814	0.699	0.019
23	0.793	1.116	0.058	0.784	1.362	0.081	0.744	1.125	0.062
24	0.825	0.910	0.041	0.841	0.823	0.038	0.797	0.850	0.030
25	0.838	0.982	0.045	0.847	1.152	0.068	0.801	1.293	0.077
26	0.796	1.163	0.058	0.791	1.137	0.045	0.717	1.118	0.043
27	0.808	0.848	0.026	0.830	0.718	0.016	0.777	0.768	0.014
28	0.822	1.079	0.055	0.831	1.268	0.073	0.775	1.391	0.084
29	0.814	0.912	0.028	0.839	0.837	0.036	0.785	0.790	0.022
30	0.848	0.875	0.035	0.879	0.891	0.051	0.816	0.912	0.043
31	0.815	1.231	0.074	0.842	1.474	0.090	0.778	1.580	0.114
32	0.807	0.958	0.033	0.811	0.874	0.027	0.751	0.942	0.032
33	0.821	1.075	0.055	0.847	1.169	0.062	0.813	1.037	0.049
34	0.815	1.088	0.057	0.831	1.055	0.054	0.789	1.104	0.058
35	0.851	0.809	0.025	0.863	0.706	0.018	0.816	0.785	0.013
36	0.832	0.958	0.043	0.837	0.988	0.058	0.814	0.924	0.044
37	0.834	0.908	0.035	0.852	0.812	0.037	0.808	0.899	0.038
38	0.804	1.021	0.048	0.838	0.983	0.049	0.792	0.968	0.033
39	0.848	0.937	0.029	0.881	0.773	0.022	0.806	0.860	0.026

TABLE S4. The dispersion between empirical subjects for degrees, number of triangles of nodes, and sum of the degrees of neighbors in layer 0 for HCP dataset. For each brain region, we calculate the mean and standard deviation σ of the three quantites over all subjects. Then we obtain the pearson correlation coefficient ρ and the χ^2 test ($\chi^2 = \sum_{i}^{N} (\frac{value_{real} - value_{group}}{\sigma_{group}})^2$) between specific subject and the average in the cohort. The quantity ζ corresponds to the fraction of nodes for which the value measured on the specific network lies outside the 2σ confidence interval around the average.

Cubicot		degree		num	ber of tria	angles	sum degree of neighbors		
Subject	ρ	χ^2/N	ζ	ρ	χ^2/N	ζ	ρ	χ^2/N	ζ
0	0.875	0.937	0.035	0.913	0.805	0.017	0.873	0.858	0.022
1	0.909	0.859	0.027	0.938	0.779	0.025	0.899	0.796	0.029
2	0.904	0.802	0.023	0.942	0.713	0.019	0.897	0.712	0.016
3	0.894	1.037	0.044	0.929	1.017	0.050	0.888	0.988	0.044
4	0.888	1.180	0.068	0.932	1.240	0.079	0.875	1.353	0.084
5	0.869	1.093	0.059	0.922	1.047	0.053	0.853	0.981	0.051
6	0.897	0.864	0.028	0.936	0.803	0.022	0.881	0.763	0.026
7	0.899	1.131	0.065	0.942	1.421	0.105	0.892	1.388	0.088
8	0.888	1.064	0.034	0.918	0.952	0.030	0.870	0.934	0.026
9	0.866	1.208	0.060	0.905	1.097	0.047	0.840	1.075	0.049
10	0.889	0.880	0.026	0.935	0.771	0.022	0.882	0.737	0.017
11	0.886	0.933	0.027	0.927	0.841	0.010	0.881	1.159	0.034
12	0.888	0.969	0.039	0.932	0.886	0.037	0.883	0.829	0.024
13	0.895	1.005	0.043	0.928	1.033	0.049	0.882	0.967	0.046
14	0.873	1.052	0.058	0.910	1.086	0.062	0.855	0.948	0.045
15	0.888	0.975	0.044	0.932	0.846	0.025	0.870	0.842	0.022
16	0.899	0.882	0.029	0.934	0.820	0.029	0.876	0.799	0.019
17	0.889	0.976	0.039	0.913	0.965	0.037	0.877	0.916	0.030
18	0.860	1.616	0.116	0.906	2.177	0.170	0.858	2.041	0.175
19	0.884	1.060	0.056	0.929	1.083	0.064	0.872	1.069	0.061
20	0.881	1.032	0.052	0.924	1.094	0.054	0.870	0.995	0.050
21	0.884	1.024	0.039	0.922	0.888	0.025	0.865	0.923	0.025
22	0.893	0.851	0.023	0.934	0.747	0.020	0.880	0.724	0.011
23	0.891	0.829	0.018	0.931	0.719	0.009	0.874	0.797	0.019
24	0.897	0.837	0.024	0.932	0.744	0.020	0.884	0.732	0.020
25	0.896	1.082	0.062	0.940	1.242	0.085	0.886	1.224	0.076
26	0.884	1.077	0.052	0.926	1.151	0.069	0.885	1.124	0.061
27	0.894	0.832	0.023	0.928	0.731	0.014	0.884	0.773	0.012
28	0.892	0.913	0.019	0.929	0.804	0.009	0.878	0.914	0.020
29	0.883	0.885	0.034	0.928	0.773	0.019	0.875	0.725	0.017
30	0.891	0.956	0.038	0.928	0.974	0.055	0.872	0.927	0.031
31	0.895	0.852	0.026	0.934	0.772	0.023	0.886	0.734	0.019
32	0.894	0.903	0.028	0.934	0.815	0.029	0.884	0.788	0.021
33	0.894	0.943	0.036	0.936	0.860	0.037	0.880	0.858	0.027
34	0.901	1.144	0.061	0.944	1.353	0.088	0.893	1.382	0.084
35	0.884	1.494	0.095	0.925	2.074	0.167	0.870	2.204	0.185
36	0.872	0.942	0.029	0.915	0.851	0.016	0.852	0.889	0.022
37	0.885	1.383	0.095	0.926	2.008	0.141	0.878	1.977	0.159
38	0.893	0.951	0.042	0.932	0.948	0.048	0.880	0.887	0.032
39	0.915	0.885	0.020	0.946	0.782	0.013	0.899	0.874	0.013
40	0.890	0.866	0.029	0.932	0.744	0.019	0.877	0.749	0.016
41	0.894	0.938	0.025	0.929	0.839	0.010	0.879	0.981	0.015
42	0.880	0.963	0.042	0.918	0.940	0.042	0.860	0.875	0.036
43	0.888	0.897	0.028	0.924	0.764	0.019	0.882	0.789	0.017

TABLE S5. The goodness of fit between the predictions of our model and real values for degrees, number of triangles of nodes, and sum of the degrees of neighbors in layer 0 for UL dataset. The Pearson correlation coefficient ρ , the χ^2 test ($\chi^2 = \sum_{i}^{N} (\frac{x_{original} - x_{inferred}}{\sigma})^2$), the quantity ζ corresponds to the fraction of nodes for which the value measured on the original network lies outside the 2σ confidence interval.

Subject	degree			number of triangles			sum degree of neighbors		
	ρ	χ^2/N	ζ	ρ	χ^2/N	ζ	ρ	χ^2/N	ζ
0	1.000	0.011	0.000	0.977	0.944	0.049	0.963	1.419	0.082
1	1.000	0.010	0.000	0.979	0.932	0.053	0.963	1.728	0.127
2	1.000	0.010	0.000	0.981	0.824	0.034	0.964	1.465	0.096
3	1.000	0.010	0.000	0.985	0.769	0.033	0.955	1.721	0.116
4	1.000	0.010	0.000	0.980	0.888	0.034	0.968	1.736	0.123
5	1.000	0.011	0.000	0.983	0.832	0.038	0.959	1.545	0.088
6	1.000	0.011	0.000	0.983	0.751	0.029	0.956	1.647	0.110
7	1.000	0.010	0.000	0.983	0.843	0.041	0.956	1.662	0.116
8	1.000	0.010	0.000	0.980	0.877	0.040	0.964	1.547	0.089
9	1.000	0.011	0.000	0.976	0.713	0.022	0.960	1.545	0.076
10	1.000	0.010	0.000	0.973	1.092	0.064	0.966	1.328	0.073
11	1.000	0.010	0.000	0.979	1.094	0.067	0.965	1.352	0.087
12	1.000	0.010	0.000	0.974	1.016	0.052	0.968	1.496	0.104
13	1.000	0.010	0.000	0.989	0.833	0.045	0.969	1.562	0.105
14	1.000	0.010	0.000	0.982	0.787	0.035	0.967	1.461	0.089
15	1.000	0.009	0.000	0.983	0.823	0.034	0.968	1.416	0.080
16	1.000	0.009	0.000	0.985	0.894	0.041	0.966	1.482	0.104
17	1.000	0.010	0.000	0.983	0.749	0.032	0.970	1.265	0.074
18	1.000	0.010	0.000	0.986	0.653	0.024	0.960	1.387	0.086
19	1.000	0.010	0.000	0.983	0.811	0.036	0.962	1.723	0.114
20	1.000	0.011	0.000	0.987	0.584	0.013	0.965	1.299	0.072
21	1.000	0.010	0.000	0.985	0.665	0.017	0.950	1.865	0.120
22	1.000	0.010	0.000	0.978	0.898	0.040	0.958	1.508	0.091
23	1.000	0.010	0.000	0.987	0.731	0.025	0.967	1.526	0.091
24	1.000	0.011	0.000	0.981	0.698	0.030	0.964	1.351	0.081
25	1.000	0.010	0.000	0.989	0.656	0.028	0.969	1.649	0.103
26	1.000	0.010	0.000	0.986	0.712	0.022	0.963	1.360	0.089
27	1.000	0.010	0.000	0.983	0.669	0.022	0.958	1.439	0.091
28	1.000	0.010	0.000	0.982	1.038	0.059	0.968	1.603	0.113
29	1.000	0.011	0.000	0.979	0.762	0.033	0.960	1.621	0.102
30	1.000	0.011	0.000	0.982	0.732	0.028	0.963	1.540	0.103
31	1.000	0.010	0.000	0.986	0.948	0.057	0.970	1.625	0.103
32	1.000	0.011	0.000	0.984	0.980	0.053	0.963	1.582	0.104
33	1.000	0.011	0.000	0.984	0.912	0.047	0.961	1.629	0.109
34 25	1.000	0.010	0.000	0.982	0.892	0.044	0.964	1.581	0.102
35 20	1.000	0.010	0.000	0.987	0.710	0.032	0.956	1.704	0.135
36	1.000	0.010	0.000	0.977	0.939	0.051	0.961	1.623	0.106
37	1.000	0.010	0.000	0.980	0.946	0.048	0.962	1.430	0.084
38	1.000	0.010	0.000	0.986	0.738	0.033	0.966	1.791	0.110
39	1.000	0.010	0.000	0.985	0.862	0.044	0.941	1.916	0.145

TABLE S6. The goodness of fit between the predictions of our model and real values for degrees, number of triangles of nodes, and sum of the degrees of neighbors in layer 0 for HCP dataset. The Pearson correlation coefficient ρ , the χ^2 test ($\chi^2 = \sum_{i}^{N} (\frac{x_{original} - x_{inferred}}{\sigma})^2$), the quantity ζ corresponds to the fraction of nodes for which the value measured on the original network lies outside the 2σ confidence interval.

Subject	degree			number of triangles			sum degree of neighbors		
	ρ	χ^2/N	ζ	ρ	χ^2/N	ζ	ρ	χ^2/N	ζ
0	1.000	0.010	0.000	0.987	1.396	0.079	0.983	1.476	0.100
1	1.000	0.010	0.000	0.991	1.205	0.055	0.988	1.200	0.069
2	1.000	0.011	0.000	0.989	1.252	0.066	0.986	1.232	0.067
3	1.000	0.011	0.000	0.991	1.232	0.071	0.988	1.145	0.061
4	1.000	0.011	0.000	0.988	1.498	0.104	0.989	1.047	0.047
5	1.000	0.010	0.000	0.990	1.212	0.064	0.986	1.158	0.066
6	1.000	0.010	0.000	0.991	1.105	0.049	0.987	1.073	0.055
7	1.000	0.010	0.000	0.991	1.240	0.073	0.989	1.077	0.053
8	1.000	0.011	0.000	0.991	1.280	0.078	0.989	1.152	0.052
9	1.000	0.010	0.000	0.989	1.217	0.071	0.987	1.136	0.058
10	1.000	0.011	0.000	0.987	1.583	0.093	0.985	1.260	0.066
11	1.000	0.010	0.000	0.986	1.117	0.052	0.981	1.341	0.084
12	1.000	0.010	0.000	0.988	1.368	0.085	0.984	1.330	0.076
13	1.000	0.011	0.000	0.992	0.955	0.035	0.991	0.931	0.037
14	1.000	0.010	0.000	0.990	1.417	0.084	0.990	0.934	0.038
15	1.000	0.010	0.000	0.990	1.103	0.060	0.983	1.480	0.099
16	1.000	0.010	0.000	0.993	0.985	0.045	0.987	1.129	0.061
17	1.000	0.010	0.000	0.981	1.949	0.094	0.987	1.265	0.074
18	1.000	0.010	0.000	0.988	1.479	0.107	0.988	1.097	0.053
19	1.000	0.010	0.000	0.990	1.229	0.069	0.987	1.107	0.060
20	1.000	0.010	0.000	0.992	1.037	0.047	0.989	0.991	0.040
21	1.000	0.010	0.000	0.992	1.156	0.061	0.988	1.026	0.050
22	1.000	0.011	0.000	0.992	1.020	0.036	0.987	1.051	0.058
23	1.000	0.010	0.000	0.989	1.238	0.074	0.981	1.425	0.084
24	1.000	0.011	0.000	0.989	1.189	0.072	0.981	1.470	0.100
25	1.000	0.011	0.000	0.992	1.114	0.066	0.989	0.971	0.047
26	1.000	0.011	0.000	0.991	1.061	0.054	0.990	1.016	0.046
27	1.000	0.010	0.000	0.987	1.294	0.076	0.984	1.327	0.087
28	1.000	0.010	0.000	0.992	1.088	0.060	0.986	1.058	0.049
29	1.000	0.010	0.000	0.991	1.231	0.077	0.990	0.834	0.030
30	1.000	0.010	0.000	0.990	1.063	0.058	0.988	1.045	0.055
31	1.000	0.011	0.000	0.992	1.224	0.068	0.987	1.067	0.053
32	1.000	0.011	0.000	0.988	1.788	0.142	0.984	1.437	0.095
33	1.000	0.010	0.000	0.991	1.176	0.057	0.983	1.536	0.110
34	1.000	0.010	0.000	0.991	1.178	0.065	0.989	0.986	0.035
35	1.000	0.010	0.000	0.986	1.548	0.100	0.988	1.122	0.053
36	1.000	0.010	0.000	0.990	0.998	0.047	0.988	0.970	0.042
37	1.000	0.010	0.000	0.988	1.647	0.119	0.988	1.182	0.062
38	1.000	0.011	0.000	0.994	0.930	0.036	0.986	1.204	0.060
39	1.000	0.010	0.000	0.991	1.144	0.060	0.986	1.064	0.051
40	1.000	0.011	0.000	0.987	1.494	0.077	0.984	1.282	0.076
41	1.000	0.010	0.000	0.990	1.183	0.066	0.985	1.172	0.065
42	1.000	0.010	0.000	0.991	1.008	0.046	0.988	0.998	0.041
43	1.000	0.010	0.000	0.990	1.385	0.088	0.985	1.409	0.097

- G. García-Pérez, M. Boguñá, and M. Á. Serrano, "Multiscale unfolding of real networks by geometric renormalization," Nature Physics 14, 583 (2018).
- [2] G. García-Pérez, A. Allard, M. Á Serrano, and M. Boguñá, "Mercator: uncovering faithful hyperbolic embeddings of complex networks," New Journal of Physics 21, 123033 (2019).
- [3] Richard F Betzel, Andrea Avena-Koenigsberger, Joaquín Goñi, Ye He, Marcel A De Reus, Alessandra Griffa, Petra E Vértes, Bratislav Mišic, Jean-Philippe Thiran, Patric Hagmann, et al., "Generative models of the human connectome," Neuroimage 124, 1054–1064 (2016).