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Supplementary Information

S| Materials and Methods
Plant material and growth conditions

Homozygous cslc4-1 (SALK_146718), cslc4-3 (SAIL_837B10), cslc5-1 (SAIL_187G09), cslc6-1
(SALK_088720-11), cslc8 (WiscDsLox_497-02H) and cslc12-2 (SAIL_168F02) T-DNA-insertion
lines were used in this study after confirmation by PCR based genotyping with specific primers
(Table S5). As controls, Arabidopsis wild type (Col-0) and xxt1 xxt2 mutant were used. Sterilized
Arabidopsis seeds were grown on %2 Murashige and Skoog medium (MS with vitamins) with or
without 1% sucrose at 23 °C in the dark. Seven-day-old etiolated hypocotyls were collected for
transcriptomics (with sucrose), neutral sugar composition (without sucrose), and IP and glycosidic
linkage (without sucrose on agar media) analyses. To monitor plant growth, plants were grown at
16 h/ 8 h light/dark (120 pmol/mz/s) at 22 °C.

Transcriptomics and qRT-PCR analyses

RNA was extracted using plant RNA extraction kit (www.mn-net.com). After RNA isolation, total
RNA from 7-day old etiolated hypocotyls of wild type and cslc456 and cslc456812 mutant were
sent to the Research Technology Support Facility at Michigan State University for generating
RNAseq libraries and sequencing the libraries using lllumina platform (paired 125 bp). The
RNAseq reads were analyzed with CLC Genomics Workbench version 8.5
(www.giagenbioinformatics.com/products/clc-genomics-workbench/). Adapter sequence and low-
quality regions were removed using the Trim Sequences tool (quality limit: 0.05). Trimmed reads
were mapped onto the Arabidopsis thaliana reference genome (TAIR10) and alignments over
gene regions were quantified using the RNA-Seq Analysis tool (length fraction: 0.8, similarity
fraction: 0.8). The resulting read mappings and RPKM normalized expression values were
imported into a custom database for further analysis. Total read counts for each gene were
analyzed using DESeq2 (1).

For gRT-PCR or RT-PCR of CSLC family genes, 1 ug of total RNA was used to investigate
expression of CSLC genes during Arabidopsis development. gqRT-PCR and RT-PCR was
performed using CSLC gene-specific primers (Table S$5) as described previously (2). Ubiquitin
was used to normalize the expression level of CSLC genes. Two to three biological replicates

were tested, and a similar pattern of CSLC expression was observed among biological replicates.

Root hair measurements and pollination assays.

For root hair measurements, seedlings were grown for 1 week on plates containing 2 MS with
1% sucrose containing 0.7% agar at 16 h/ 8 h light/ dark (120 pmol/mZ/s) at 22 °C. The images of
root hairs from seedlings were obtained using Zeiss-Axio imager (www.zeiss.com). Images were

analysed using ImageJ software to measure the length of root hairs.



Pollination assays were performed as described previously (3), except that floral buds were
processed for microscopy exactly 1 hour after pollination. For each assay, wild-type stigmas were
saturated with pollen from wild type or each of the various mutant plants. Pollen tubes were
visualized using a Nikon A1 laser scanning confocal microscope by exciting with a 405-nm laser
and collecting emission at 525 nm with the green band-pass filter channel. In order to both
increase contrast between the pistil tissue and the pollen tubes and emphasize gradations in
signal intensities, the “Rainbow Dark” LUT setting was applied to the captured images using NIS-
Elements AR software. Pollen tubes that had penetrated the style of each wild-type pistil (n = 6
pistils for each pollen genotype) were counted, and treatments (mutants) that were statistically
significantly different from the wild-type control were determined by Dunnett’s test (P < 0.05)

using Prism software.

Glycan array

Glycan array was performed as described previously (4) with slight modification. Two mg of de-
starched AIR from Col-0, cslc456-2, cslc456812, and xxt1 xxt2 was sequentially extracted with
200 pl of 1 M and 4 M KOH with 20 mM NaBH, using a ball mill with two glass balls for 5 min at
30 Hz. The released materials were neutralized with 50% of glacial acetic acid. After generating 5
successive 2-fold dilutions with 0.8 M KOH containing 2.5 mg/ml of oat beta-glucan, 3 pl of each

dilution was spotted on a positively charged nylon membrane (www.sigmaaldrich.com) and dried

overnight. For immunoblotting the membrane was blocked in PBS with 5% non-fat dairy milk for
15 min. Primary antibodies (LM6, 1:250 dilution; LM15, 1:330 dilution) in PBS with 0.5% non-fat
dairy milk and secondary antibody (Goat anti-rat conjugated with HRP, 1:1000 dilution) in PBS
with 0.5% non-fat dairy milk were used for the immunoblotting. The blot was developed by
chemiluminescence using the SuperSignal West Femto Maximum Sensitivity substrate

(www.thermofisher.com). Signals from the blot was obtained using ChemiDoc™ MP and Image

Lab software (www.biorad.com).

Xyloglucan Oligosaccharide mass profiling (OLIMP)

OLIMP analysis was performed according to the published protocol (5). Briefly, AIR material was
isolated from seven-day-old etiolated Arabidopsis hypocotyls grown in the dark. AIR was
suspended in 25 mM ammonium formate buffer, pH 4.5 and digested using 0.2 U of a xyloglucan
specific endoglucanase (6) at 37 "C for 16 hours. The digested material was analyzed with
MALDI-TOF (Bruker rapifleX) using dihydroxy benzoic acid (DHB) as a matrix. Spectra were
recorded in positive reflectron mode with an accelerating voltage of 20000V. The spectra from the

samples were analyzed using the flexanalysis software (Bruker Daltonics).

Driselase digestion of alcohol-insoluble residue (AIR), and HPAEC and LC/ Qtof MS analyses



The driselase enzyme mix (www.sigmaaldrich.com) was partially purified as previously reported
(7). AIR was prepared using 7-day-old etiolated hypocotyls as described (5). Approximately 1.3
mg of AIR obtained from the etiolated hypocotyls were digested with 300 pl of 0.03% of driselase
enzyme mix (25 mM NaAc, pH 5.0) at 37 °C for 48 hours, and the reaction was stopped by
heating the samples at 95 °C for 5 min. For HPAEC analysis, maltose was added as an internal
standard for IP quantification. The digest was analysed using a modified procedure (8). The
carbohydrates were separated using a Carbo Pac PA200 column with a linear gradient of 2-10
mM NaOH for 5 min, followed by 10-355 mM NaOH for 20 min. Eluting compounds were detected
by pulsed amperometric detection (PAD). For LC/MS analyses, 233 ul of methanol was added to
the driselase digest (100 ul) and incubated in 4 °C for 20 min. After centrifugation at 11k x g for
10 min, the supernatant containing digested sugars were dried and resuspended in 50%
acetonitrile containing 2 ug/ml of 3C-labelled sucrose (monitoring matrix effect) as an internal
standard for quantification. IP quantification was done using a Waters Xevo G2-XS Qtof mass
spectrometer interfaced with a Waters Acquity UPLC. Samples were injected onto a Waters
Acquity BEH-Amide UPLC column (2.1x100 mm) and a 20-min gradient was run as follows: initial
conditions were 5% solvent A (10 mM ammonium acetate in water), 95% B (acetonitrile) and held
for 1 min, followed by a ramp to 35% A/ 65% B at 14 min, hold at 35% A until 16 min, return to
5% A/ 95% B at 16.01 min and hold until 20 min. Flow rate was 0.3 ml/min and column
temperature was 40 °C. Data were acquired using electrospray ionization in negative-ion mode
with a target enhancement function (m/z 325). Peak areas for IP (M-H) and 3C sucrose were

processed using Quanlynx (Masslynx software).

Complementation of the cslc456812 quintuple mutant

To generate Gateway technology-compatible vector containing the Arabidopsis CSLC4 promoter,
amplification of the CSLC4 promoter (1719 bp) was performed using CLSC4 promoter-specific
primers. The amplified product was introduced in the pEarlygate100 vector using the Infusion
system (www.takarabio.com) (9). Full-length coding sequences of CSLC family genes with N-
terminal T7 tags were synthesized from Thermo-Fisher (www.thermofisher.com). The resulting
synthesized genes in the pDONOR221 plasmid were used to generate the final constructs
containing CSLC4pro::T7-CSLC4, 5, 6, 8, 12 in the pEarlygate100 plasmid backbone.
Arabidopsis transformation by vacuum infiltration was performed to create complementation lines
of the ¢slc456812 quintuple mutants as previously reported (8). The transformed seedlings were
screened by observing root hair growth restoration. Due to difficulty of screening successful
complementation lines by CSLC8 and CSLC12 with this method, we created 35Spro::T7-CSLC8
or CSLC12in pGWB2 via the LR reaction in order to screen transformants using antibiotics

(hygromycin). The CSLC8 or CSLC12 transformed seedlings were screened on 2 Murashige and



Skoog medium (MS with vitamins) with 0.1% sucrose and 20 ug/ml hygromycin. Primers used are
listed in Table S3.



Fig. S1. Protein sequence alignment and percent identity among CSLC family members.
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Sequence ldentity (%)
CSLC4 CSLCh CSLC6 CSLC8 | CSLC12

CSLC4 100 67.25 61 66.38 63.02
CSLC5 66.57 100 61.97 87.3 65.78
CSLC6 61 61.97 100 61.14 60.69
CSLC8 66.38 88.31 61.14 100 64.43
CSLC12 62.59 65.92 60.69 64.2 100

(A) Protein model of all five CSLC members. Key domains: D,DxD,D,QxxRW domains are
highlighted in green; putative transmembrane domains are indicated in magenta;
conserved amino acids are indicated in dark blue (conserved in all 5 CSLCs) and blue
(conserved in at least three CSLCs).

(B) Sequence identity (%) among CSLC proteins calculated using the BLASTp algorithm.



Fig. S2. Expression pattern of CSLC genes in Arabidopsis
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The expression data of CSLCs was obtained from Arabidopsis eFP Browser

(http://bar.utoronto.ca/efp2/Arabidopsis/Arabidopsis_eFPBrowser2.html). Mature pollen was
combined with seed development to facilitate display of the data.

(A) Major plant parts and organs

(B) Mature pollen, and Seed development

(C) Leaf parts and development

(D) Flower parts during development

(E) Shoot development

(F) Root development

(G) Layout of x-axis (position of zones) indicated in panel F



Fig. S3. qRT-PCR of CSLC gene expression in various plant parts and various
developmental stages of Arabidopsis.
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Fig. S4. Confirmation of the lack of full-length transcripts in the cs/c456812 quintuple
mutant.
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box).
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Fig. S5. Growth phenotype of Col-0, cs/c and xxt1 xxt2 mutants.
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(A) Images of 4.5-week-old rosettes.



(B) Images of 9-week-old plants
(C) Measurements of projected leaf areas at 4.5 weeks (supports Panel A), n = 4, £ SD.
(D-F) Measurements of inflorescence stem height during development (supports Panel B), n
=8, SD.
Asterisks indicate statistically significant differences from Col-0 (* P < 0.05, ** P < 0.01, *™* P <
0.001, **** P < 0.0001 by student’s t-test).
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Fig. S6. Root-hair lengths, and pollen-tube numbers from pollination assays, of various
cell wall mutants.
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(A) Lengths of root hairs from 1-week-old seedlings (n > 40, + SD). One-way ANOVA (Tukey’s
test, P < 0.05) was used to determine statistical differences of root-hair length among genotypes.
Each statistical group was labeled with lower-case letters (a, b, and c).

(B) Numbers of pollen tubes that have penetrated the styles of Col-0 pistils, 1 hour after
pollination with pollen from each of the indicated genotypes (n = 6, + SEM). Asterisks denote
treatments (mutants) that are statistically significantly different from the Col-0 control (Dunnett’s
test, *P < 0.05).
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Fig. S7. Isoprimeverose profiling of wall preparations from Col-0 and Arabidopsis cslc and
xxt1 xxt2 mutants using HPAEC-PAD
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The AIR material obtained from the etiolated hypocotyls of Arabidopsis wild type and different

mutants were digested with driselase. The digested material was analysed by HPAEC. The IP
present in the digest was quantified using maltose as an internal standard.
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Fig. S8. Glycosidic linkage analysis of compounds eluting at the retention time of IP.
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Driselase-digested AIR was subjected to HPAEC (see Fig. 4, Fig. S7) and the compounds eluting
at the retention time of IP (approximately 10 min) were collected. To account for the significant
reduction in IP abundance in the xxt7 xxt2 and cslc456812 mutants (see Fig. 4, Fig. S7), 10 times
the amount of driselase digest of the corresponding AIR material was subjected to HPAEC
analysis and collected. The collected material was subjected to methylation analysis followed by
acid hydrolysis, reduction, and acetylation to yield partially methylated alditol acetates. These
were analysed by gas chromatography (panel A) fitted with an electron impact quadrupole
detector (GC-MS). An IP standard subjected to this procedure (separation by HPAEC, collection
and analysis by GC-MS) results in two peaks that based on their ion fragmentation patterns
represent terminal xylose (T-Xylose), and 6-linked glucose (6-Glucose). These two peaks, at 12.3
minutes and 17.6 minutes, respectively, were also visible in the driselase-digested AIR from Col-
0. They gave fragmentation patterns characteristic of terminal xylose and 6-linked glucose (panel
B). However, similar peaks were not seen in the GC traces of the cslc quintuple mutant and the
xxt1 xxt2 mutant (panel A) and the characteristic fragmentation pattern of these two glycosyl-
moieties could not be detected in the mass spectra of the material eluting at the appropriate
retention times (panels C and D), even though 10 times the material was used for analysis.
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Fig. S9. Glycan arrays of XyG and RG-l in XyG mutants.
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AIR was prepared from 7-day-old etiolated hypocotyls of Col-0, cslc456-2, cslc456812, and xxt1

xxt2 and sequentially extracted with 1 M and 4 M KOH with 20mM NaBH,. A series of 2 fold

dilutions of the released material was spotted onto a nylon membrane. LM15 and LM6 antibodies

were used to detect XyG (XXXG) and RG-I ((1-5)-a-L arabinan), respectively.
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Fig. $10. XyG oligosaccharide mass profiling.
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AIR materials were prepared from 7-day-old etiolated hypocotyls of Col-0, cslc456-1, and
cslc456812, and digested with a xyloglucan-specific endoglucanase. The released

oligosaccharides were analyzed by MALDI-TOF mass spectroscopy. The m/z (M+K")" of known

XyG oligosaccharides are labelled with their respective one-letter code nomenclature (10, 11).
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Fig. S11. Verification of complementation lines of the ¢slc456812 mutant using RT-PCR.
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Extracted RNA from each complementation line was used for RT-PCR using CSLC-specific
primers. UBQ10 primers were used for the loading control. As positive and negative controls,
RNA from Col-0 and the cslc quintuple mutant was used to show the specificity of primer sets
used in this experiment.
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Table S1. Neutral sugar composition of AIR from 7-day-old etiolated seedlings.

Monosaccharides (ug per mg AIR)

Crystalline
Genotype | Rhamnose| Fucose Arabinose | Xylose Mannose |Galactose | Glucose | cellulose
19.12 3.82% 18.82 36.61 £ [6.94 * 2399 % 1425+ |227.07
Col-0 0.36 0.19 0.41 1.74 0.35 1.46 0.39 10.35
2015 % 3.90 % 19.11 % 3240+ |[8.12% 24,09 14.08 + |226.00
cslc4-1 0.32 0.08 0.20 1.22 0.27 0.22 0.75 3.95
20.96 3.87% 18.48 3034+ |7.87% 2489 % 16.19+ |231.28 *
cslc4-3 0.14 0.08 0.27 0.95 0.26 0.59 0.40* 0.47
19.77 3.79% 18.11 3487+ |7.71% 2516 % 15.77+ 24153 %
cslcd 0.82 0.14 0.15 0.36 0.08 0.36 0.73 2.70
19.83 342% 18.87 31.03+ |[8.08% 2455 % 1479+ |213.34 %
cslcé 0.39 0.12 0.73 0.32* 0.15* 0.90 1.12 2.38
20.70 £ 415%* 18.75 3391+ |7.85% 25.66 15.46+ |245.39%
cslc8 0.85 0.13 0.57 0.71 0.19 1.33 0.40 3.45
19.76 417 * 18.66 3577+ |7.52% 2445 % 15.43+ 24522+
cslc12 0.43 0.08 0.32 0.37 0.08 0.20 0.60 2.1
20.01 % 241 % 18.57+ (24.25* |8.08% 20.76 11.43* |204.95%
cslc456-1 10.69 0.05 0.08 0.34** 0.12* 0.20 0.25** 5.44
19.67 1.76 * 19.60+ (20.84* |8.29% 21.55% 10.19+* [189.81%*
cslc456-2 10.74 0.10** 0.27 0.81** 0.21* 0.45 0.40** 9.79
21.36 % 1.67 20.08+ |20.88+ |[8.38+ 23.35% 10.26 * |186.99 *
cslc4568 11.13 0.06** 0.64 0.65** 0.11* 1.82 0.16** 6.01*
2010 % 184+ 20.56+ [21.88% |[8.53% 23.03 % 10.68 * [194.31%
cslc45612 10.24 0.07** 0.11* 0.68** 0.23* 0.80 0.35** 2.31*
19.82 1.62 20.31+ [20.09%+ |[8.48+ 21.23 % 9.76 * 185.52
cslc456812]0.98 0.11** 0.17* 0.45** 0.14* 0.89 0.31** 1.65*
18.50 1.57 20.01 % 18.10* (8.54% 20.72 % 12.21+ |176.66
xxt1 xxt2 [0.38 0.05** 0.34 0.56** 0.06* 0.50 0.27* 2.28**

Means and standard errors of 3 biological replicates with 3 technical replicates are presented

(only two biological replicates, each with 3 technical replicates, were used for csic4-3).
Significance was based on student’s t-test (* P < 0.05 - yellow shade, ** P < 0.01- orange shade).
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Table S2. Glycosidic linkage analysis of AIR from 7-day-old etiolated seedlings.

Residue® Col-0 xxt1 xxt2 cslc456812
T-Fucp 0.4+0.1 0.4+0.1 0.3+0.1
2-Rhap 3.7+0.5 3.4+0.1 4.0+0.9
T-Araf 0.5+0.1 0.5+0.1 0.5+0.1
3-Araf 1.5+0.1 *1.3+0.1 1.4+0.2
5-Araf 3.0+£0.8 21+0.2 22+0.2
T-Arap 1.9+04 1.6+0.3 1.8+0.1
T-Xylp 25104 **0.9+ 0.1 **0.9+ 0.1
4-Xylp 6.2+0.5 55%+0.8 6.2+2.3
2,4-Xylp 25%0.1 24+0.3 25+0.5
4,6-Manp 1.2+0.1 1.3+0.1 1.2+0.2
T-Galp 2.3+0.2 2.3+0.2 25+0.2
2-Galp 2.3+0.5 *1.1+01 *1.1+01
3-Ga|pb 21.0+1.7 *34.2+5.0 27.9+14.1
4-Galp 1.9+0.5 1.6+0.1 1.5+0.1
3,6-Galp 0.6 +0.1 0.6 +0.1 0.7+0.1
4.6-Galp 0.9+0.1 1.0+0.1 0.9+0.1
T-Manp 1.6+0.1 *1.3+0.1 1.7+0.2
2-Manp 1.6+0.4 1.6+0.2 1.4+0.2
2,4-Manp 0.6 +0.1 0.4+0.1 0.4+0.1
T-Glcp 0.9+0.1 1.1+0.1 1.2+0.2
4-Glcp 345+24 31.1+4.0 348+11.4
6-Glcp 1.5+0.2 1.8+0.1 21204
4,6-Glcp 6.9+0.1 **2.5+0.3 **2.7+0.4

a Glycosyl residues are expressed as percentage of the total glycosyl peak areas. Averages and
standard deviations of the biological replicates (n = 3) are presented. Significance was based on
student’s t-test (* P < 0.05, yellow; ** P < 0.01, orange).

b Non-plant cell wall component due to contamination of the agar growth medium.
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Table S3. Primers used in this study.

Allele ;I;;IIZNA insertion Sequences
FP TTCAGCACATGATCCTCGTC
cslcd-1 | Salk_146718 RP ATGTACGACCATTCGACAAGC
. FP CAGGGTAATCCAGAGCTAGGG
cslcd-3 | Sail_837B10 RP GATGATCTCCCGGTTTTCTTC
. FP AAGTTGGCTCAGCTCCAAAA
csle5-1 | Sail_187G09 RP TTGACCCGTCTTCAGAACATC
FP ACGCTCTTCTGCGTCATTCT
cslc6-1 | Salk_088720-11 —op GTCTTTGGAATCCTCTCCGAC
cslcg | WiscDsLox_497- | FP CACCTAGCCTGAACCAGACC
02H RP TTGAGATCCAGAGCTTGCTT
. FP AGCTCAGCTTCGGGTACAAA
cslc12-2 | Sail_168F02 RP TACGAATTCGTTGCGATTTTC
T-DNA RB for ATTTTGCCGATTTCGGAAC
Salk line
;;:ZNA RB for Sail| )\ GCATCTGAATTTCATAACCAATCTCGATACAC
T-DNA RB for AACGTCCGCAATGTGTTATTAAGTTGTC
WiscDsLox line

For cloning
complementation| Sequences
line

FP | TAGGAAGGAAGTTCGAATACTGTTCTAATTTAATCCTGCATC

CSLC4 promoter

RP | AACTTGTGATCTCGAGAAGTAAATAAAGAGGAGAGGAGAAG

For gRT-PCR | Sequences

FP | GCGAGTTGCCAGAGTCTTATGA

csLe4 RP | GGAAGGCATAACCGGAACAG
CSLC5 FP | TCCTGAGTCCTACGAGGCATATAA
RP | TAGAGGTCAAGATTGAACCAAGACA
CSLC6 FP | CGGAGTCCTATGAGGCATATAAAAA
RP | GCACAAACGGAACAGTTGCA
csLC8 FP | CATACAAGAAGCAGCAACATCGA
RP | GTCAAGATTGATCGCAGACACAA
CSLC12 FP | GAGATCTTGCTGCGTTAGTCGAA
RP| TCCTCTTAGTCTTTTCCGCCTTT
UBQ10 FP | CGCTTCGTTTTTATTATCTGTGCTT

RP| TCGCAGAACTGCACTAAACAGAGT

For RT-PCR Sequences

FP | GGAGCAGCTTCACAACTTGA

csLc4 RP| AGCTGCATAGGACCGGAATG
CSLC5 FP | TTGAGGTGGAGCAGCAAGTG
RP| ATCCACTCGTAAGAGCTACCC
CSLC6 FP | GAGTGCTGCCAAGAAAGCAAA
RP| CTGACCTGTTCCCCGATCAAA
CSLC8 FP | GCCGAGAATCGATGAAGAGCA
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RP| TTCCTCAAGGGCTTTAATTCTCCA
CSLC12 FP | TTGGTTCAAGCTAGGTGGTCT
RP| GGTACGGGACGATAAACGGA
UBQ10 FP | TCAATTCTCTCTACCGTGATCAAGATGCA
RP | GGTGTCAGAACTCTCCACCTCAAGAGTA
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Dataset S1. List of differentially expressed genes (DEGs) in the cs/c456-2 and cs/c456812
mutants.

DEGs (|log,FC|>1) are summarized in the table after a pair-wise comparison between the csic

mutant and wild-type plants. The averages of RPKM and standard deviations (n = 4) are
presented. Any values showing |log,FC|>1 are highlighted.
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Dataset S2. Expression levels of genes involved in cell wall synthesis.

Expression levels of genes coding for enzymes involved in cell wall synthesis are summarized.
XyG, Xyloglucan; HG, Homogalacturonan; RG-I/lIl, Rhamnogalacturonan-I/1l; XGA,
Xylogalacturonan. Averages and standard deviations of biological replicates (n = 4) are

presented.
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