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Fig. S1. Gelsolin/cofilin-like proteins in Asgard archaea. (A) Domain architectures and GenBank
accession numbers of Thor proteins from this study. The genes encoding these proteins and actin
do not form an operon in the genome assemblies. Homologous protein architectures from (B)
Heimdall, (C) Loki and (D) Odin. Actin and profilin are also found in each of these phyla. (E) SDS
PAGE gel demonstrating the purity of the recombinant Thor proteins. Concentrations and solution
conditions are a detailed in Fig. 1. (F) Characteristics of the Thor proteins, including source
species, molecular weight (MW), number of amino acids (AAs) and pl. (G) Percentage identity
between the Thor 2DGels. (H) Surface plasmon resonance binding studies of Thor proteins to
rActin. Direct binding assays were performed by covalent linkage of rActin to the sensor chip and
injecting a dilution series of Thor proteins.
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Fig. S2. Actin regulation by 2DGel2 and 2DGel3 and control experiments for Fig. 1B-I.
Concentrations and solution conditions are a detailed in Fig. 1.
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Fig. S3. Actin regulation by ProGel. (A,B) Actin regulation by ProGel in 0.3 mM Ca®*, control
experiments for Fig. 1J-K. Concentrations and solution conditions are a detailed in Fig. 1. (C)
Pyrene-actin polymerization profiles of 2 uM actin (dashes) or 2 uM actin with 128 uM ProGel
(dots) in the presence (red) or absence (blue) of actin filament seeds. The delay in fluorescence
increase could be overcome by adding actin filament seeds. These data suggest that ProGel may
have partial profilin-like properties, as observed for the Asgard profilins (1), in supporting filament
elongation, but suppressing spontaneous actin nucleation, or may have low-level monomer
sequestering or filament capping properties, and these properties are not under calcium control.
However, the effects on rabbit actin are weak and Thor actin is required to confirm whether these
are genuine properties of ProGel.
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Fig. S4. F-actin in the presence of Thor proteins. (A,B) Sedimentation studies followed by
SDS PAGE analysis of the effects of ProGel (A) or 2DGels (B) on F-actin. S = soluble fraction, P
= pellet. Low speed centrifugation pellets actin filament bundles. High speed centrifugation pellets
F-actin single filaments and filament bundles. ProGel pellets actin at low speed indicating bundle
formation and some ProGel is observed in the pellet indicating filament binding. 2DGels and
1DGelX do not bundle filaments under these conditions and do not sediment with F-actin.
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Fig. S5. Effects of ProGel and 1DGelX on actin polymerization. Time course of polymerization of
1.5 uM actin in the presence of (A) various concentrations of ProGel or human profilin (16 pM),
(B) various concentrations of 1DGelX. The figures were generated from Movies S1 and S2,

respectively. The scale bar represents 20 uM.
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Fig. S6. Effects of 2DGel, 2DGel2 and 2DGel3 on actin depolymerization. Time course of
depolymerization of 1.5 uM actin in the presence of 32 uM 2DGel proteins in 0.3 mM CaCl,. The
figure was generated from Movie S5. The scale bar represents 20 uM.
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Fig. S7. Comparison of the structures of 2DGel and 2DGel3 in complex with actin. (A) The
2DGel, 2DGel3 (a 2DGel ortholog) and T4 (PDB code 4PL7) structures in complex with actin.
Actin is shown as surfaces and binding partners are shown in schematic representation. The red
box indicates the position of the “LKKT” WH2-like motif on the thymosin-p4 structure. D1, D2, N,
C and numbers indicate domain 1, domain 2, N-terminus, C-terminus, and the subdomains of
actin, respectively. (B) Side on views of the 2DGel/rActin complexes. |, Il and novel refer to Type
I, Type Il or the novel calcium-binding sites, respectively. These Type | and Type Il calcium-
binding sites are conserved in human gelsolin. D2 from 2DGel packs more closely to the surface
of actin than D2 form 2DGel3 (indicated by the arrow), possibly providing a structural basis for the
difference in activities of these proteins (Fig. S6). (C) Model of the structure of domain X from
1DGelX generated by I-TASSER, with statistics that suggest that the model is of low confidence

(2).
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Fig. S8. Sequence alignments of (A) Asgard and human actin, (B) Thor 2DGels and human
gelsolin, and (C) the gelsolin/cofilin domain from Thor ProGel and 1DGelX. (A) The binding sites
of Thor ProGel and 2DGel on actin overlap with the cofilin and gelsolin binding sites (stars, refer
to key) and these residues are largely conserved between Asgard actins and human actin. (B)
Secondary structure is shown above the alignment, domain 1 (red), linker (black), domain 2
(mustard). Blue triangles = calcium-binding residues, green stars = residues in the actin-binding
side that vary among 2DGel, 2DGel2 and 2DGel3. “WH2” indicates the WH2-like central motif.
(C) Alignment of ProGel with 1DGelX. Red stars = actin-binding residues on ProGel. These are
largely conserved in the 1DGelX sequence. (D) Percentage identities between the core D1s from
the Thor proteins and human cofilin and gelsolin from structure-based sequence alignment (Fig.

4H).
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Fig. S9. The DWG motif and calcium-binding sites. (A) The DWG motif. The location of the DWG
motif, in which the aspartic acid forms a hydrogen bond to the tryptophan which sterically
occludes residues larger than glycine. This is present in all domains of human gelsolin (PDB code
3FFN) but absent from the cofilin fold, such as mouse twinfilin D2 (PDB code 3DAW). (B) The
OMIT map electron density (contour level 1 ) is shown around the DWG motifs from the Thor
gelsolins. (C) The terbium anomalous difference map (contour level 6-8 ¢) showing density at
each of the metal ion binding sites in the 2DGel/actin complex. Actin residues are shown in
yellow, 2DGel in cyan, Tb* as black spheres and waters as light green or cyan spheres.
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Human 2DGel 2DGel3 TB4 2DGel
gelsolin G1-G3 on cofilin actin

Fig. $10. Models of the Thor gelsolins bound to two subunits from F-actin. (A) The models were
created by superimposing the actin to which each Asgard gelsolin is bound onto the cryoEM
structure of the bare actin filament (PDB 3J8A) or (B) the cryoEM structure of the cofilin actin
filament (PDB 5YU8), in each case focusing on the first domains. (C) Focusing on the second
domains. The arrows point towards steric clashes with F-actin, indicating that these proteins are
incompatible with binding F-actin in these conformations. (A) Predicts that G-actin bound ProGel
or 2DGel/2DGel3 will be unable to join the pointed end of F-actin, while (C) predicts that G-actin
bound 2DGel/2DGel3 will not be able to bind to the barbed end of F-actin. This is consistent with
profilin-like inhibition of nucleation or barbed end capping for ProGel, and with monomer
sequestration for 2DGel/2DGel3. All Thor gelsolins show at least some steric clash with the side
of an actin filament, suggesting that some flexibility in the binding sites is required for severing,
capping or bundling of actin filaments.
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Fig. S11. Phylogenetic analysis of gelsolin/cofilin protein core sequences. The non-actin binding
protein family Sec21 is an outgroup. ProGel and 1DGelX are intermingled between Asgard phyla,

but are consistent within phyla, and branch close to eukaryotic cofilins. 2DGels branch with the
eukaryotic gelsolin family. The support values are not statistically significant for many branches
this tree. Thus, we do not take this tree to be direct evidence for evolutionary relationships. The

in

lack of robustness in this phylogenetic analysis may stem from several sources. These are short,

diverse sequences for which, in most cases, it is unknown if distantly related sequences really
represent actin or ARP interacting proteins, since their functions are untested. Distantly related
sequences are subject to sequence alignment errors, which skew phylogenetic analyses.
Furthermore, the actin/ARP sequences are also diverse between Asgard phyla (1). Thus, we

speculate that the structure/function signature patterns are weak within these sequences leading

to the lack of robustness in phylogenetic analysis.
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Table S1. X-ray diffraction data collection and refinement statistics.

ProGel/rActin 2DGel/rActin 2DGel3/rActin
(PDB code 7C2F) (PDB code 7C2G) (PDB code 7C2H)
Data collection
Crystal P212121 P21 P21
a,b,c(A) 57.4,108.6, 167.5 52.9,101.3,55.8 49.9, 98.6, 62.5
a B,y (©) 90.0, 90.0, 90.0 90.0, 96.6, 90.0 90.0, 94.0, 90.0
Wavelength (A) 1.0 1.0 1.0
Resolution (A)* 91.1-2.03 (2.08-2.03) 20.0-1.71 (1.73-1.70) 31.2-2.35(2.44-2.35)
Rinerge 11.5(79.0) 10.0 (92.3) 13.5 (58.4)
Rineas 12,5 (85.6) 10.8 (108.0) 14.4 (64.3)
Rpim 4.8 (32.7) 4.2 (45.5) 5.5(26.3)
V/s10)) 8.6 (1.8) 20.1 (1.8) 17.3 (2.3)
CCp 0.998 (0.785) 0.926 (0.632) 0.946 (0.862)
Completeness (%) 99.5 (93.0) 98.0 (92.5) 92.4 (81.4)
Redundancy 6.7 (6.6) 6.6 (4.5) 6.8 (5.5)
Refinement
Resolution (A) 48.6-2.03 (2.10-2.03) 20-1.71 (1.74-1.70) 31.2-2.35(2.48-2.35)
No. reflections 68184 (6521) 58175 (1354) 23279 (2562)
Ryork / Rree 20.0/23.0 (27.1/29.45) 16.9/20.3 (22.4/26.4) 20.2/23.8 (29.6/34.2)
No. atoms*
Protein 5704 (A)/1428 (G) 2943 (A)/1620 (G) 2823 (A)/1615 (G)
Ligand/ion 116 (LatB, ATP)/2 (Mg>") 31 (ATP)/7 (Ca™") 31 (ATP)/6 (Ca’)
Water 567 557 124
B factors
Protein 42.3/82.1# 33.5/37.0 45.2/52.4
Ligand/ion 26.0/21.7 26.0/18.9 36.2/45.2
Water 43.1 36.9 48.6
r.m.s deviations
Bond lengths (A) 0.003 0.007 0.009
Bond angles (°) 0.75 0.88 1.05
Ramachandran Plot
Favoured (%) 97.7 97 98
Outliers (%) 0.11 0 0

* ProGel/rActin has 2 complexes in the asymmetric unit.
# The B-factors of ProGel are approximately 2 times that of rActin in this complex. This is likely the product of fewer
crystal contacts and the poor affinity of ProGel for rActin, resulting in clearer electron density for rActin relative to

ProGel.
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Movie S1 (separate file). Time course of polymerization of 1.5 uM actin supplemented by buffer,
ProGel (24 uM), ProGel (48 uM) or ProGel (96 uM). ProGel (24 uM) shows slightly reduced
polymerization relative to the control. ProGel at 48 uM and 96 uM shows bundling and annealing.
All movies are sped up 200 times.

Movie S2 (separate file). Time course of the polymerization of 1.5 uM actin in the presence of
buffer, 1DGelX (100 nM), 1DGelX (1 uM), or 1DGelX (4 uM). 1DGelX at 100 nM shows filament
nucleation. 1DGelX at 1 uM and 4 uM show increasing levels of bundling.

Movie S3 (separate file). Time course of the polymerization of 1.5 uM actin in the presence of
buffer, 2DGel (32 uM) and 1 mM EGTA, or 2DGel (32 uM) and 1 mM CaCl,. 2DGel in the 1 mM
CaCl, shows reduced polymerization and bundling in comparison to the presence of 1 mM EGTA.

Movie S4 (separate file). Disassembly of polymerized actin (1.5 uM) produced by 1DGelX (4
puM) in comparison to the buffer control. 1DGelX shows single filament severing, bundling
followed by bundle severing.

Movie S5 (separate file). Polymerized actin (1.5 uM) in the presence of 0.3 mM CaCl,
supplemented by buffer, 2DGel (32 uM), 2DGel2 (32 uM) or 2DGel3 (32 uM). 2DGel shows
bundling, 2DGel2 shows single filament severing, and 2DGel3 shows single filament severing
followed by bundling.
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