Optimization of a β -sheet-cap for long loop closure

Jordan M. Anderson, Alexander A. Shcherbakov, Brandon L. Kier, Jackson Kellock, Irene Shu, Aimee L. Byrne and Niels H. Andersen*

Department of Chemistry, University of Washington, Seattle WA 98195

Supporting Information.

All relevant ¹H NMR data used to produce this manuscript is stored in a publicly accessible Chemical Shift Database (CSDb). In order to access, search for the CSDb ascension number or name at the website: http://andersenlab.chem.washington.edu/CSDb/. In addition to acting as a depository for this data, the website contains the algorithm^{1–4} used to calculate CSD values and contains a graphical program for comparing histograms of different peptides.

Table 1. Peptide List

Entry #	System	Loop Length	Sequence cap – β -strand – loop – β -strand – cap'	Ref.	CSDb Ascension Name
1		10	Ac-WVTI - G ₃ GKKGG ₃ - KKIWTG-NH ₂	603	GLHP
2		10	Pr-WVCK - G ₃ GKKGG ₃ -VCKWTGPK-NH ₂	703	Superloop
3	B2	2	Ac-WITVTI - GG - KKIRVWTG-NH ₂	780	cap@6 GG
4	B2	4	Ac-WITVTI – GGGG - KKIRVWTG-NH ₂	784	GGGG
19	B2	6	Ac-WITVTI-GGGGGGG-KKIRVWTG-NH2	870	Cap @ 6c G6
5	B2	10	Ac-WITVTI - G_3GKKGG_3 - $KKIRVWTG$ - NH_2	739	cap@6 superloop
20	B2	6	Ac-WITVTI-(GIpGKG)-KKIRVWTG-NH ₂	806	GIpGKG
22	B2	10	Ac-WITVTI-(G ₃ IpGKG ₃)-KKIRVWTG-NH ₂	815	3G-IpGK
21	B2	8	Ac-WITVTI-(GNPATGKG)-KKIRVWTG-NH ₂	808	GNPATKG
6	B4	10	Ac-WITVRIW-G ₃ GKKGG ₃ -WKTIRVWTG-NH ₂	833	W4G4K2G4
7	B4	2/4	Ac-WITVRIW - SNGK - WKTIRVWTG-NH ₂	824	W4SNGK
8	C2 R1H	10	HWITVTI - G ₃ GKKGG ₃ – KKIRVWE	803	Superloop HWWE
9	C2	2	RWITVTI - GG - KKIRVWE	984	R-GG-E
10	C2	4	RWITVTI - GGGG - KKIRVWE	901	RGGGGE

23	C2	6	RWITVTI – GGGGGG - KKIRVWE	1065	R-GGGGGG-E
11	C2	10	RW ITVTI - (G ₃ GKK)GG ₃ - KKIRV WE	922	R-Superloop-E
12	C2	16	RW ITVTI - (G ₃ GKK) ₂ GG ₃ - KKIRV WE	951	R-(GGGGKK)3-E
13	C2	22	RW ITVTI - (G ₃ GKK) ₃ GG ₃ - KKIRV WE	967	R-(GGGGKK)4-E
24	C2	6	RWITVTI - GIpGKG - KKIRVWE	1095	R-GIpGK-E
25	C2	6	RWITVTI - GIPGKG - KKIRVWE	1109	R-GIPGKG-E
26	C2	8	RWITVTI - GNPATGKG - KKIRVWE	1112	R-GNPATGKG-E
27	C2	10	RW ITVTI - G ₃ I pGKG ₃ - KKIRV W E	1094	R-G3IpGKG3-E
28	C2	10	RW ITVTI - G ₃ IPGK G ₃ - KKIRV WE	1122	R-G3IPGKG3-E
29	C2	16	RW ITVTI - G ₆ I pGKG ₆ - KKIRV WE	1106	R-G6IpGKG6-E
30	C2	16	RW ITVTI - G ₆ IPGK G ₆ - KKIRV WE	1127	R-G6IPGKG6-E
31	C2	16	$\mathbf{RW} ITVTI - \mathbf{G}_{5} \mathbf{NPATGK} \mathbf{G}_{5} - \mathbf{KK} \mathbf{IRVWE}$	1178	R-GNPATGKG5-E
14	C4	2/4	RWITVRIW - IGGK - WKTIRVWE	1364	RWW-IGGK
15	C4	10	RW ITVRI <mark>W</mark> - G ₃ GKKGG ₃ - <mark>W</mark> KTIRV WE	1055	RWW-10loop- WWE
16	C4	16	RWITVRIW- (G ₃ GKK) ₂ GG ₃ - W KTIRV WE	1156	RWW-16Loop- WWE
16Y		16	RW ITVRI Y - (G ₃ GKK) ₂ GG ₃ - W KTIRV W E	1409	RWY-16loop- WWE
17	C4	22	RWITVRIW- (G ₃ GKK) ₃ GG ₃ - W KTIRV WE	NMR data not available.	
18	C4	28	RWITVRIW- (G ₃ GKK) ₄ GG ₃ - W KTIRV WE	NMR data not available.	

Fraction Folded Calculation (χ_F)

Fraction folded populations were calculated using an average of CSDs from backbone H α s S-6, S-4, S+4 and H_Ns S-5, S-3, S+3, S+5 with additional probes from the sidechain of the Tryptophan in the edge position, H β 3, H ζ 3, and H ϵ 3 for each Trp/Trp aryl cluster. Additionally, systems B2 and B4 also include the diagnostic C-terminal Gly H_N.

Figure S1. Backbone H_N CSDs of the peptides used as fully folded baselines, at 280-320K. Little to no melting is observed upon heating.

Figure S2. RWITVRIW^{Flank} – Loop – WKTIRVW^{Cap}E Comparison of the position specific fraction folded of the termini and residues near the loop.

Figure S3. CD spectra was taken from 6.25-100 μ M to verify the exciton couplet observed is from a monomeric species. (A) Raw CD spectra. (B) Signal at 228 nm vs. Peptide concentration.

Figure S4. Concentration dependent NMR spectra of Peptide **17** (system C4-22 loop): NMR spectra of the aromatic and amide H_N region, taken at 30 (red) and 700 μ M (blue). Peak position and broadening appear similar. The broadening seen, particularly at highly shifted resonances, is due to slow exchange between the folded and unfolded states.

Figure S5. CSDs of the diagnostic probes within the added turn-region (H_N of Ile and Lys in the turn, underlined in each sequence) of different length loops.

Peptide **24:** RWITVTI-G<u>I</u>pG<u>K</u>G-KKIRVWE Peptide **27:** RWITVTI-GGG<u>I</u>pG<u>K</u>GGG-KKIRVWE Peptide **29:** RWITVTI-GGGGGGG<u>I</u>pG<u>K</u>GGGGGG-KKIRVWE

References

(1) Fesinmeyer, R. M., Hudson, F. M., and Andersen, N. H. (2004) Enhanced Hairpin Stability through Loop Design: The Case of the Protein G B1 Hairpin. *J. Am. Chem. Soc. 126*, 7238–7243. (2) Andersen, N. H., Cao, B., and Chen, C. (1992) Peptide/Protein Structure Analysis Using the Chemical Shift Index Method: Upfield α -CH Values Reveal Dynamic Helices and α_L Sites. *Biochem. Biophys. Res. Commun. 184*, 1008–1014.

(3) Andersen, N. H., and Tong, H. (1997) Empirical parameterization of a model for predicting peptide helix/coil equilibrium populations. *Protein Sci. 6*, 1920–1936.

(4) Eidenschink, L., Kier, B. L., Huggins, K. N. L., and Andersen, N. H. (2009) Very short peptides with stable folds: Building on the interrelationship of Trp/Trp, Trp/cation, and Trp/backbone-amide interaction geometries. *Proteins Struct. Funct. Bioinforma. 75*, 308–322.