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I. ONE-MODE APPROXIMATION

In this section, we show the derivation of Eq. (3) and Eq. (4) in the main text using the Fourier-Galerkin method [1].

A. General form of mode equations

Let us start from the 1D version of Eq. (1),

∂φA
∂t

=∂x
[(
χA + φ2A − γA∂2x

)
∂xφA

]
+ κAB∂

2
xφB , (S1a)

∂φB
∂t

=∂x (χB∂xφB) + κBA∂
2
xφA. (S1b)

Here, we’ve ignored φ2B − γB∂
2
x as in the main text. To apply the Fourier-Galerkin method, we express φµ as a

superposition of Fourier modes:

φµ(x, t) =

∞∑
j=−∞

φ̂jµ(t)eiqjx, (S2)

where the wave number qj = 2πj/L, and

φ̂jµ(t) =
1

L

∫ L

0

φµ(x, t)e−iqjxdx, (S3)

are the complex amplitudes of the Fourier modes. The dynamical equations for the Fourier modes obtained from
Eq. S1 then are [1]:

dφ̂jA(t)

dt
=− q2j

[(
χA + γAq

2
j

)
φ̂jA + κABφ̂

j
B

]
−
∑
j1,j2

(
q2j1 + 2qj1qj2

)
φ̂j1A φ̂

j2
A φ̂

j−j1−j2
A , (S4a)

dφ̂jB(t)

dt
=− q2j

(
χBφ̂

j
B + κBAφ̂

j
A

)
. (S4b)

By solving for the mode amplitudes φ̂jµ(t) and transforming the results back to physical space with Eq. (S2), one can
obtain the dynamics of φµ(x, t). This method is usually referred to as the spectral method [1]. For the particular
system at hand, numerical solutions of the full theory show that the first mode is dominant in determining the
dynamical steady states discussed in the main text (Fig. S1). This is our motivation for considering a reduced theory
for our system by truncating the Fourier-Galerkin representation at the level of the first mode.

B. One-mode approximation

Since φA and φB are conserved quantities, both φ̂0A and φ̂0B are time independent. Setting φ̂jµ = 0 for |j| > 1, and
qj = j, Eq. S4a reduces to

dφ̂1A(t)

dt
= −

(
αA + |φ̂1A|2

)
φ̂1A − (κ− δ)φ̂1B , (S5)
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Fig. S1. Amplitudes of Fourier modes |φ̂jµ| at the steady (a) static and (b) traveling states. We used χA = −0.05 and (a)
δ = κ and (b) δ = 3κ.

where αA = χA + γA + (φ0A)2. Similarly, for φ̂1B , we have

dφ̂1B(t)

dt
= −αBφ̂1B − (κ+ δ)φ̂1A, (S6)

where αB = χB . These are Eq. (3) in the main text and constitute the one mode approximation for our full theory.

Expressing the complex quantities φ̂1µ in terms of their amplitude and phase, φ̂1µ = ρµe
iθµ , Eqs. (S5) and (S6) can

be recast as

dρA
dt

=− (αA + ρ2A)ρA − (κ− δ)ρB cos θ, (S7a)

dρB
dt

=− αBρB − (κ+ δ)ρA cos θ, (S7b)

dθ

dt
=
[
(κ− δ)ρ−1A ρB + (κ+ δ)ρAρ

−1
B

]
sin θ, (S7c)

dΦ

dt
=
[
(κ− δ)ρ−1A ρB − (κ+ δ)ρAρ

−1
B

]
sin θ, (S7d)

with Φ = θA + θB and θ = θA − θB . These are Eq. (4) in the main text.

II. STEADY STATES AND THEIR STABILITY

In this section, we identify the steady states in the one-mode approximation, and study their stability.

a. Steady states. The steady states are obtained as the fixed points of Eqs. (S7a)-(S7c). Note that Φ is slaved
by the other three quantities. The solution ρA = 0 and ρB = 0 corresponds to the homogeneous state, and is referred
to as the trivial fixed point FH in the main text. In this case, the phases are not well defined.

A second fixed point is obtained when sin θ = 0 or θ = 0, π. Since Eq. (S7b) yields ρB = −α−1B (κ+ δ)ρA cos θ and
the amplitudes ρµ must be positive the only acceptable solution is θ = π. The second fixed point, FS , is then given
by

ρsA =
[
(κ2 − δ2)/αB − αA

]1/2
, (S8a)

ρsB =(κ+ δ)ρsA/αB , (S8b)

θs =π, (S8c)

In order for FS to exist as a physical state of the system, the argument of the square root in Eq. (S8a) must be real,
which requires κ2 − δ2 > αBαA, as given in the main text.

Finally, when sin θ 6= 0 one can have a third solution FT with Φ̇ finite, corresponding to spatial modulations that
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travel at the fixed velocity v = Φ̇/2. This requires
[
(κ− δ)ρ−1A ρB + (κ+ δ)ρAρ

−1
B

]
= 0 and it is given by

ρtA = (−αA − αB)
1/2

, (S9a)

ρtB =
√

(δ + κ)/(δ − κ) ρtA, (S9b)

θt =arccos

−
√

α2
B

δ2 − κ2

 . (S9c)

The requirement that the arguments of all square roots be positive and the argument of arccos(·) have an absolute
value no larger than 1 yields the conditions of existence for FT as

αA < −αB , (S10a)

δ2 − κ2 ≥ α2
B . (S10b)

As we will see below, the first one describes the instability of the stationary spatial modulation FS , while the second
one demands that nonreciprocity to be strong enough for the traveling pattern to appear.

b. Linear stability. Now we examine the stability of the fixed points, which is controlled by the eigenvalues of
the Jacobian matrix evaluated at the fixed points:

M ≡


∂ρ̇A
∂ρA

∂ρ̇A
∂ρB

∂ρ̇A
∂θ

∂ρ̇B
∂ρA

∂ρ̇B
∂ρB

∂ρ̇B
∂θ

∂θ̇
∂ρA

∂θ̇
∂ρB

∂θ̇
∂θ

 =

 −αA − 3ρ2A −(κ− δ) cos θ (κ− δ)ρB sin θ
−(κ+ δ) cos θ −αB (κ+ δ)ρA sin θ(

κ+δ
ρB
− (κ−δ)ρB

ρ2A

)
sin θ

(
κ−δ
ρA
− (κ+δ)ρA

ρ2B

)
sin θ

(
(κ−δ)ρB

ρA
+ (κ+δ)ρA

ρB

)
cos θ

 . (S11)

With our convention, an instability corresponds to a positive real part of the largest eigenvalue.
At the trivial fixed point, FH , the phases are undetermined and one can simply examine the stability of Eqs. (S5)

and (S6). The corresponding Jacobian matrix at FH is

MH =

[
−αA −κAB
−κBA −αB

]
, (S12)

with eigenvalues

λh± =
1

2

[
−(αA + αB)±

√
(αA − αB)2 + 4(κ2 − δ2)

]
. (S13)

As discussed in the main text, the trivial fixed point FH can become unstable through different routes, depending on
the sign of the argument of the square root in Eq. (S13). When (αA − αB)2 + 4(κ2 − δ2) > 0, λh± are real (Fig. S2),

Fig. S2. Real (blue lines) and imaginary (red lines) parts of eigenvalues λh± as functions of δ for χA = −0.06 showing the
change from diffusive to propagating modes. An instability is signaled by Re[λ] > 0.
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and the homogeneous state becomes unstable via a diffusive instability when λh+ becomes positive for κ2−δ2 > αAαB .

On the other hand, if (αA − αB)2 + 4(κ2 − δ2) < 0, λh± are complex conjugate (Fig. S2), and the system becomes

unstable via an oscillatory instability when Re[λh±] becomes positive for αA < −αB .
To investigate the stability of FS , we evaluate the Jacobian matrix given in Eq. (S11) at the fixed point, with the

result

MS =

2αA − 3κ
2−δ2
αB

κ− δ 0

κ+ δ −αB 0

0 0 −αB − κ2−δ2
αB

 (S14)

Fluctuations in ρA and ρB are coupled. Their relaxation is controlled by the eigenvalues

λs± =
1

2

[
2αA − αB − 3

κ2 − δ2

αB

]
± 1

2

√[
2αA + αB − 3

κ2 − δ2
αB

]2
+ 4(κ2 − δ2) (S15)

which always have a negative real part in the region of parameters where FS exists, hence are stable. On the other
hand, fluctuations in the relative phase θ are controlled by

λsθ = −δ
2
c − δ2

αB
, (S16)

where δc =
√
κ2 + α2

B . The eigenvalue is real and positive for δ > δc, signaling the growth of phase fluctuations that
destabilize the stationary demixed state, giving rise to traveling patterns. Finally, the eigenvalues of M at FT are too
complicated to be instructive. It can, however, be demonstrated numerically, that they are always negative, so the
traveling patterns corresponding to this fixed point are always stable, in the region of parameters where it exists.

III. CRITICAL POINT AS AN EXCEPTIONAL POINT

As mentioned in the main text, the drift bifurcation induced by the nonreciprocal interspecies interaction belongs
to a generic class of phase transitions which has been studied in optical and quantum systems [2–4], and more recently
in nonreciprocally interacting polar active fluids [5]. This type of phase transitions is known to occur at a so-called
exceptional point that separates a PT-symmetric phase from a phase with broken PT symmetry [3, 5].

To clarify these concepts, let us return to the compact form of our one-mode model written in terms of complex
Fourier amplitudes, as given in Eq. (3) of the main text,

d

dt

[
φ̂A
φ̂B

]
=

[
−αA − |φ̂A|2 −(κ− δ)
−(κ+ δ) −αB

] [
φ̂A
φ̂B

]
≡ D[φ̂A]

[
φ̂A
φ̂B

]
, (S17)

where we have dropped the mode superscript 1 to simplify the notation. The 2 × 2 non-Hermitian matrix D[φ̂A] in

Eq. (S17) controls the system’s dynamics. The stationary fixed point FS is obtained by solving D[φ̂A] = 0 and it is
given by

us ≡
[
φ̂sA
φ̂sB

]
=

[√
(κ2 − δ2)/αB − αA eiθ0

−α−1B (κ+ δ)φ̂sA

]
, (S18)

where θ0 is an undetermined phase indicating translation of φµ in space. Since φ̂sB ∼ −φ̂sA, the two complex fields are
out of phase and this fixed point corresponds exactly to the out-of-phase static patterns described in the main text.

Let us now assume that there exists a stationary nontrivial solution that solves D[φ̂0A]

[
φ̂0A
φ̂0B

]
= 0 and evaluate

eigenvalues and eigenvectors of D0 ≡ D[φ̂0A] and then examine their behavior at the stationary fixed point given in
(S18). These are given by

λ± = −1

2

(
αB + αA + |φ̂0A|2

)
± 1

2

√
∆ , (S19)

where ∆ =
(
αB − αA − |φ̂0A|2

)2
+ 4(κ2 − δ2) and

u± = C±

[
−(λ± + αB)

κ+ δ

]
(S20)
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where C± are normalization constants. If ∆ > 0, the eigenvalues are real. If stable, the solutions will be stationary
in this regime. Note the matrix D0 is in general different form the linear matrix that controls the stability of fixed
points. If ∆ < 0, the eigenvalues are complex conjugate, signaling the onset of an oscillatory solutions. The point

∆ = 0 corresponds to δ2 = κ2 + (αB − αA − |φ̂0A|2)2/4. Substituting φ0A = φsA, we find that the modes change from

real to complex conjugates at δ = δc =
√
κ2 + α2

B . At this point, solutions change from stationary to oscillatory.
We also note that when evaluated at the fixed point FS the eigenvalues become

λ± = − 1

2αB

(
(δ2c − δ2)± |δ2c − δ2|

)
, (S21)

or

λs1 =0 , (S22)

λs2 =− δ2c − δ2

αB
(S23)

At the critical point δ = δc, the two eigenvalues are equal and the eigenvectors become co-linear. In addition, the
solutions change from stationary to oscillatory. This is what is referred to as an exceptional point [6]. This behavior

is also associated with the fact that the matrix D[φ̂A] evaluated at the steady state (S18) is given by

Ds ≡ D[φ̂sA] =

[
−(κ2 − δ2)/αB −(κ− δ)
−(κ+ δ) −αB

]
(S24)

hence det[Ds] = 0.
More precisely, to elucidate the nature of the drift instability as an exceptional point, we examine the matrix that

controls the linear stability of the stationary density modulated state FS . We show below that the instability occurs
when one of the eigenmodes of such a matrix coalesces with the Goldstone mode associated with spontaneously broken
translational symmetry of the modulated state [4, 5]. To demonstrate this, we linearize (S17) about the static fixed

point FS to obtain coupled equations for the complex fluctuations δφ̂µ of the phase fields, given by

dδu

dt
= L · δu, (S25)

where

δu =


δφ̂A
δφ̂B
δφ̂∗A
δφ̂∗B

 (S26)

and

L =


−αA − 2|φ̂sA|2 −(κ− δ) −(φ̂sA)2 0
−(κ+ δ) −αB 0 0

−(φ̂s∗A )2 0 −αA − 2|φ̂sA|2 −(κ− δ)
0 0 −(κ+ δ) −αB

 (S27)

is the matrix controlling the linear stability of the fixed point. We note that Eqs. (S17) are invariant under an

arbitrary global translation φ̂µ → φ̂µe
iδθ. The breaking of translational symmetry associated with the emergence of

the spatially-modulated de-mixed stationary state from the homogeneous state is accompanied by the appearance of
a zero mode associated with fluctuations in the total phase of the complex field amplitudes which is the Goldstone
mode of the transition. The second PT-breaking transition to the traveling state occurs when another eigenmode of
L coalesces with the Goldstone mode at the exceptional point.

The linear matrix L has four eigenvalues

λ±1 =
1

2

[
−αB − (κ2 − δ2)/αB ±

√
∆1

]
(S28a)

λ±2 =
1

2

[
−αB + 2αA − 3(κ2 − δ2)/αB ±

√
∆2

]
(S28b)
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Fig. S3. (a) Eigenvalues and the (b) first and (c) third elements of eigenvectors of the matrix L evaluated at the static
modulated state FS . The blue lines corresponds to the Goldstone mode u+

1 , while the red line shows the mode u−1 , which
coalesces with the Goldstone mode at δ = δc.

with the corresponding eigenmodes

u±1 =


1
2

[
αB − (κ2 − δ2)/αB ±

√
∆1

]
−(κ+ δ)

− 1
2

[
αB − (κ2 − δ2)/αB ±

√
∆1

]
(κ+ δ)

 , u±2 =


− 1

2

[
αB + 2αA − 3(κ2 − δ2)/αB ±

√
∆2

]
(κ+ δ)

− 1
2

[
αB + 2αA − 3(κ2 − δ2)/αB ±

√
∆2

]
(κ+ δ)

 , (S29)

where

∆1 =
[
αB + (κ2 − δ2)/αB

]2
(S30a)

∆2 =
[
αB + 2αA − 3(κ2 − δ2)/αB

]2
+ 4

(
κ2 − δ2

)
(S30b)

For δ < δc, λ
+
1 = 0 (blue line in Fig. S3a), hence u+

1 corresponds to the Goldstone mode arising from the spontaneous
breaking of translational symmetry. At δ = δc, ∆1 = 0 and λ−1 vanishes and u−1 becomes colinear with the eigenvector
u+
1 of the Goldstone mode (Fig. S3b–S3c), giving rise to the PT breaking transition or drift bifurcation, which

corresponds to an exceptional point [4, 5].

IV. TWO-DIMENSIONAL CASE

We show here that a static-to-traveling transition driven by nonreciprocal interactions also occurs in two dimensional
systems, albeit with a richer dynamics. The detailed analysis is left for future work. The goal of this section is to
highlight that the qualitatve behavior remains the same. We have integrated numerically Eq. (1) from the main
text in a two-dimensional periodic box of size L × L, with L = 2π and the same parameter values as in the main
text: χA = −0.05, χB = 0.005, γA = 0.04, γB = 0, κ = 0.005, φ0A = φ0B = 0. We have then examined the effect of
nonreciprocity by increasing δ.

As in one dimension, we observe a transition from static to traveling modulations with increasing nonreciprocity,
as shown in Figs. S4a–S4d and Movie S1-S2. The orientation of the band is determined by random fluctuations
and by the initial concentration. The expression for drift velocity obtained in one dimension, v = ±

√
δ2 − δ2c , with

δc =
√
κ2 + α2

B , gives an excellent parameter-free fit to the velocity of the traveling pattern in 2D, as shown in Fig.
S4g. In addition to traveling modulations of the fields, in 2D we also observe oscillatory patterns that are absent in
the 1D system. This consists of high/low concentration region of each species that periodically split and merge (Figs.
S4e–S4f and and Movie S3). The oscillatory state also originates from the nonreciprocal interactions, as evidenced by
the fact that it only appears when δ > δc, and the oscillating frequency increases with nonreciprocity (Fig. S4h). In
the parameter region we have explored, the traveling and oscillatory states are both stable, and the state is selected
by the initial condition.
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Fig. S4. Pattern formations in two-dimensional systems at the (a–b) static, (c–d) traveling, and (e–f) oscillatory states.
Panels (a,c,e) show φA, while (b,d,f) φB , highlighting the phase relation of the two fields. In the stationary demixed state (a–b,
δ = κ), φA and φB are out-of-phase, while in the traveling state (c–d, δ = 3κ) φA and φB have a constant phase shift different
from π, and the pattern is traveling from left to right. In the oscillatory state(e–f, δ = 3κ), the high concentration regions of
both φA and φB periodically split and merge. Panels (g) and (h) shows the travellng speed and oscillating frequency of the
traveling and oscillatory patterns, respectively. Both increases monotonically with the nonreciprocity δ. In panel (g), the solid

line corresponds to v =
√
δ2 − δ2c , with δc =

√
κ2 + α2

B .

V. BI-SUPERCRITICAL SYSTEMS

In the main text, we have considered the case when field A is supercritical, but field B is subcritical and its dynamics
is purely relaxational. To demonstrate the generality of our findings, we have also considered the case where both
fields are supercritical, as obtained when χA < 0 and χB < 0. In this case, restoring the term φ2B − γB∂

2
x, the

equations become

∂φA
∂t

=∂x
[(
χA + φ2A − γA∂2x

)
∂xφA

]
+ κAB∂

2
xφB , (S31a)

∂φB
∂t

=∂x
[(
χB + φ2B − γB∂2x

)
∂xφB

]
+ κBA∂

2
xφA. (S31b)

Numerical integration of Eq. (S31) yields again stationary demixed states that transition to traveling ones with
increasing nonreciprocity, as shown in Fig. S5.

Following the procedure described above, we can obtain the one-mode approximation for Eq. (S31) as

dφ̂1A(t)

dt
=−

(
αA + |φ̂1A|2

)
φ̂1A − (κ− δ)φ̂1B , (S32a)

dφ̂1B(t)

dt
=−

(
αB + |φ̂1B |2

)
φ̂1B − (κ+ δ)φ̂1A, (S32b)
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Fig. S5. Drift instability in bi-supercritical systems. (a–b) Spatiotemporal patterns of φA in (a) static (δ = κ) and (b)
traveling states (δ = 2κ). (c) Speed of the traveling modulation as a function of nonreciprocity δ/κ. The red line is a fit to
the mean-field theory with v =

√
δ2 − δ2c , where δc = 1.5κ is extracted from the best fit to the data. All results shown are for

χA = χB = −0.05, γA = γB = 0.04, κ = 0.005, and L = 2π.

where αµ = χµ + γµ + (φ0µ)2. In the amplitude-phase space, Eq. S32 can be rewritten as

dρA
dt

=− (αA + ρ2A)ρA − (κ− δ)ρB cos θ, (S33a)

dρB
dt

=− (αB + ρ2B)ρB − (κ+ δ)ρA cos θ, (S33b)

dθ

dt
=
[
(κ− δ)ρ−1A ρB + (κ+ δ)ρAρ

−1
B

]
sin θ, (S33c)

dΦ

dt
=
[
(κ− δ)ρ−1A ρB − (κ+ δ)ρAρ

−1
B

]
sin θ . (S33d)

While a detailed analysis of fixed points and their stability is more challenging in this case and is left for future work,
the structure of the amplitude and phase equations is clearly very similar to the one discussed in the main text. In
particular, a traveling modulation will again correspond to a solutions with sin θ 6= 0 and[

(κ− δ)ρ−1A ρB + (κ+ δ)ρAρ
−1
B

]
= 0 , (S34)[

(κ− δ)ρ−1A ρB − (κ+ δ)ρAρ
−1
B

]
6= 0 (S35)

to guarantee a finite value of v = Φ̇/2. These conditions immediately give v = ±
√
δ2 − δ2c , which provides an excellent

fit to the velocity obtained from simulations, as shown in Fig. S5c.

VI. EXAMPLES ON NONRECIPROCITY IN PHYSICAL SYSTEMS

The generic theory described in the main text suggests that nonreciprocity provides a generic mechanism for a
static-to-traveling transition in a field theory of coupled scalar fields that exhibit spatial domains or patterns. In this
section we provide two examples of how this generic behavior can emerge from specific microscopic models.

A. Example 1 : microscopic nonreciprocity

Let us consider a mixture of particles where the microscopic interactions between the two species are nonreciprocal.
Instances of this include mixtures of chemically interacting colloids that are known to exhibit nonreciprocal effective
interactions [7, 8] and chase-and-run dynamics in predator-prey systems [9, 10]. Let us assume that such nonrecip-
rocal interactions can be captured by pairwise additive short ranged central forces. Under such circumstances, the

microdynamics of the particles’ positions {rµi }
Nµ
i=1, with µ = A,B, is governed by equations of the form

∂tr
µ
i =

Nµ∑
j=1

Fµµ(rµi , r
µ
j ) +

Nν∑
j=1

Fµν(rµi , r
ν
j ) + ηµi . (S36)
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Here, ηµi (t) is uncorrelated white noise with zero mean and variance = 〈ηµiα(t)ηνjβ(t′)〉 =
√

2D δijδµνδαβδ(t−t′), where

α, β denote Carthesian components. Fµµ(rµi , r
µ
j ) and Fµν(rµi , r

ν
j ) are the intra- and inter-species interactions of the

form:

Fµµ(rµi , r
µ
j ) = krΘ

(
σr, r

µµ
ij

)
r̂µµij + kµµΘ

(
σµµ, r

µµ
ij

)
r̂µµij , (S37a)

Fµν(rµi , r
ν
j ) = krΘ

(
σr, r

µν
ij

)
r̂µνij + kµνΘ

(
σµν , r

µν
ij

)
r̂µνij , (S37b)

where rµνij = rµi − rνj and rµνij = |rµνij |. The first terms on the right-hand side of(S37) are excluded-volume forces of
strenght kr > 0 and range σr. The second terms represent longer-range repulsive or attractive interactions of strength
kµµ, and kµν and corresponding range σµµ, σµν . All forces are piecewise linear, with Θ (σ, rij) = 0 for rij > σ and
Θ (σ, rij) = σ − rij when rij < σ. We assume that particles A are attracted to other A particles (kAA < 0), so that
species A can self-aggregate and form a dense cluster. This qualitatively mimics the aggregation driven by a negative
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Fig. S6. Transition from static (left panels: a, c, e) to traveling (right panels: b, d, f) states in a binary mixture of
attractive-repulsive particles. We use kAB = −1 for the left panels, and kAB = −2 for the right panels. The red and blue
particles represent species A and B, respectively. (a,b) Snapshots of particles at different time points. See also Movies S4-S5 for
animation. (c,d) Distributions of particle densities in x at the (c) static and (d) traveling states. The inset in (d) highlights the
breaking of reflection symmetry of the blue line. The three different types of lines corresponds to the above three snapshots:
solid–t = 100, dashed–t = 350, and dotted–t = 800. We use red and blue lines to indicate densities of species A and B,
respectively. (e–f) Spatiotemporal patterns of φA(x) at the (e) static and (f) traveling states. In (c–f), each data point is
obtained by measuring the density in a rectangle of width ∆x = 2, spanning the entire vertical direction, and centered at x,
i.e. φµ(x) = Nµ(x)/(∆xLy), where Nµ is the number of µ particles whose x-positions are within (x−∆x/2, x+ ∆x/2].
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χA in the model B discussed in the main text. To enforce nonreciprocity, we set kAB < 0 and kBA > 0, so species A
(B) is attracted (repelled) by species B (A). As a proof of concept, we have simulated a mixture of NA = NB = 525
particles in a periodic box of dimension 120×30. The simulation parameters are: σr = 1, σAB = σBA = 3, kr = 2000,
D = 1, kAA = −2, kBA = kBB = 1, and vary kAB to study the pattern formation. Representative examples shown in
Fig. (S6) and Movies S4-S5 indicate that this microscopic model does indeed exhibit the phenomenology discussed in
the main body of the paper.

In order to sketch the connection between this microscopic model and the generic theory considered in the main
text, let us neglect the noise term in Eq. (S36) and consider the deterministic overdamped microdynamics. The low

density dynamics of the density fields φµ(r, t) =
∑Nµ
i=1 δ(r− rµi (t)), will generically be of the form

∂tφµ (r, t) = −∇r · [〈Fµ (r, t)〉φµ (r, t)]

where 〈F〉 is the mean field force, which can be estimated as

〈Fµ〉 =

∫
dr′ (krΘ (σr, |r− r′|) + kµµΘ (σµµ, |r− r′|)) r− r′

|r− r′|
φµ (r′, t)

+

∫
dr′ (krΘ (σr, |r− r′|) + kµνΘ (σµν , |r− r′|)) r− r′

|r− r′|
φν (r′, t)

Using the piecewise linear form of the forces, to lowest order in gradients of the density, the mean field force can be
evaluated to give

〈F〉 = −Rµµ∇φµ (r, t)−Rµν∇φν (r, t)

where

Rµν =
(
krσ

4
r + kµνσ

4
µν

) π
6

Therefore, the equations of motion for the macrodynamics of this system are

∂tφµ (r, t) = ∇ · [Rµµφµ (r, t)∇φµ (r, t)] + ∇ · [Rµνφµ (r, t)∇φν (r, t)]

Focussing on the cross diffusion coefficient, note that in this model, the analog of the reciprocal part of the cross
diffusion coefficient is κµν = krσ

4
r
π
6φµ, set by the pairwise repulsive interactions and the analog of the nonreciprocal

part is δµν = kµνσ
4
µν

π
6φµ and scales with the microscopic nonreciprocal interaction strength. Thus, this microscopic

model yields a continuum theory that is closely analogous to the generic theory we considered in the main text and,
as shown in Fig. (S6), exhibits the static to traveling pattern transition that is our central result.

B. Example 2 - Emergent nonreciprocity in mixtures of active and passive particles

As a second illustration of a microscopic model giving rise to the phenomenology discussed in this work, we consider
a mixture of active (A) and passive (P) Brownian particles [11, 12].

In the absence of interactions, the dynamics of each each Active Brownian Particle (ABP) is described by

∂tr = v0û (S38)

where v0 is the propulsion speed, û = cos θx̂+sin θŷ is the direction of active motion which itself undergoes rotational
diffusion, i.e., ∂tθ =

√
2DRξ (t) with ξ (t) is a delta-function correlated white noise of unit variance. The ballistic

motion exhibited at short times by Eq. (S38) becomes diffusive at long times due to the rotational diffusion of the
propulsion direction û with a characteristic diffusion coefficient v20/2DR. In the presense of short range repulsive
interactions given by some pairwise additive central potential UAA, a collection of ABPs undergoes a well-studied
athermal liquid-gas like phase separation into a dense phase and a low density phase that has been dubbed MIPS
(motility induced phase separation) [13]. While the inherently nonequilibrium nature of this phase transition manifests
itself in different interfacial phenomena [14, 15], the bulk phenomenology nevertheless is approximately characterized
by a supercritical Model B [16, 17].

The second component of our mixture consists of passive Brownian particles that exhibit diffusive dynamics and
interact with each other through a short range repulsive potential UPP . This component by itself will form a Brownian
gas and its dynamics can be reasonably modeled by a subcritical Model B dynamics [18, 19]. We additionally assume
that the two species are coupled through short range repulsive interactions given by a central potential of the form
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Fig. S7. (a) State diagram of the active-passive mixture spanned by v0 and ρ0A obtained from numerical simulations of
Eq. (S39). As in the model presented in the main text, the AP mixture exhibits three states: a homogeneous state where active
and passive particles are mixed (gray, circles), static state where active passive particles are concentrated in different spatial
regions, hence demixed (cyan, rectangles), and a state of demixed traveling domains (pink, triangles). (b) Examples of spatial
variations of ρA(x) (solid lines) and ρP (x) (dashed lines) in the static (blue) and traveling states (red). (c–d) Spatiotemporal
patterns of ρA(x, t) in the (c) static and (d) traveling states. In (b–d), we have used ρ0A = 0.6 and (c) v0 = 60 and (d) v0 = 70.

UAP . Precisely such a model was studied through Brownian dynamics simulation in [11] and it was shown that the
active and passive particles phase separate and in certain regions of parameter space, the interface between the two
species spontaneously starts to move. We demonstrate below that this phenomenon falls within the generic paradigm
described in this work.

We stress that at the microscopic level, all interactions in the AP mixture are reciprocal. The corresponding
coarse-grained equations as derived in [12] are given by

∂ρA
∂t

=∇ · [DAA∇ρA +DAP∇ρP ]− κ∇4ρA , (S39a)

∂ρP
∂t

=∇ · [DPA∇ρA +DPP∇ρP ]− κ∇4ρP , (S39b)

with diffusion coefficients

DAA =aAA1 ρA +
v

2DR

(
v − aAA0 v0ρA

)
(S40a)

DAP =aAP1 ρA −
v

2DR
aAP0 v0ρA (S40b)

DPA =aPA1 ρP , (S40c)

DPP =aPP1 ρP , (S40d)

Here, v = v0(1− aAA0 ρA − aAP0 ρP ) is the effective motility of active particles and aµνi coefficients depend on the pair
potentials Uµν and the statistics of interparticle collisions. While there are subtle difference in the form of the direct
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diffusion coefficients of this model as compared to our generic Model B, note that the direct diffusion coefficient of

species A can be written in the form DAA ∼ v2(ρA,ρP )
2DR

, where v (ρA, ρP ) = v0(1 − aAA0 ρA − aAP0 ρP ) is the effective
density dependent motility of the active particles that are slowed down by collisions with both themselves and with
the passive particles. Therefore MIPS driven here by the change in sign of DAA corresponds to the Hopf-bifurcation
discussed in our generic theory and can be controlled by the density of either species. Importantly, the cross diffusion
coefficients calculated by [12] are indeed nonreciprocal. This nonreciprocity is emergent, in that it arises due to
the statistics of the collisions rather than from nonreciprocity of interparticle interactions [12, 20]. The strength
of nonreciprocity is controlled by v0. Even though changing this parameter influences both the direct and cross
diffusivities, v0 can be considered analogue to δ in the generic model considered in the main text. Further, the Hopf
bifurcation that controls MIPS rendering the field ρA supercritical is now controlled by both the mean densities ρ0A
and ρ0P . We have studied numerically Eqs. (S39) using DR = 3, aAA0 = 1, aAP0 = 0.7, aAA1 = aAP1 = aPA1 = aPP1 = 25,
and κ = 1000. We have fixed ρ0P = 0.3 and tuned ρ0A and v0, which serve respectively as the analog of the control
parameter χA and δ in the coupled Model B considered in the main text. The phase behavior of this system is shown
in Fig. S7 which reproduces the phenomenology discussed in the main body of the paper. Specifically, by increasing
the degree of nonreciprocity v0, one can see a transition from static out-of-phase pattern (blue rectangles in Fig. S7a,
blue lines in Fig. S7b, Fig. S7c) to a steady traveling pattern with broken parity (red triangles in Fig. S7a, red lines
in Fig. S7b, Fig. S7d).
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Captions to supplemental movies

S1. Static.mp4. Development of static state in the two-dimensional system, corresponding to Fig. S4a-S4b. The
color indicates local concentration as displayed in the color-bar on the right of each panel. The video is obtained
by integrating Eq. (1) in the main text in a periodic square box L × L with L = 2π, but ignoring the φ2B term in
the self-diffusivity of species B. The parameters are the same as those in the main text: χA = −0.05, χB = 0.005,
γA = 0.04, γB = 0, κ = 0.005. The degree of nonreciprocity δ = κ.

S2. Traveling.mp4. Development of traveling state in the two-dimensional system, corresponding to Fig. S4c-S4d.
The setting is identical to that in Static.mp4, but the degree of nonreciprocity is δ = 3κ.

S3. Oscillatory.mp4. Development of oscillatory state in the two-dimensional system, corresponding to Fig.
S4e-S4f. The high concentration region of each species periodically splits and merges, performing a run-and-chase
game in the two-dimensional space. The setting is the same as that in Traveling.mp4, but starts from a different
random initial condition.

S4. Static-AR.mp4. Static state in the binary mixture of attractive-repulsive particles, corresponding to Fig.
S6a. The video is obtained by simulating 525 + 525 particles with Eqs. (S36)-(S37) in a periodic box of size
120 × 30. At the beginning of the simulation, we place a dense cluster of red particles (i.e. species A). As the system
evolves, the red cluster remains the same lane formation, but the lane as a whole exhibits diffusive dynamics in the
horizontal direction. The parameters are: σr = 1, σAB = σBA = 3, kr = 2000, kAA = −2, kAB = −1, kBA = kBB = 1.

S5. Traveling-AR.mp4. Traveling state in the binary mixture of attractive-repulsive particles, corresponding to
Fig. S6b. The setting is the same as that in Static-AR.mp4, but with kAB = −2.


