
eAppendix 2: Technical modeling details

Simulation and model likelihood

To simulate the model, we fixed values of κ1 and κ2 to resolve the non-identifiability of the other parameters;

we have verified that all simulations and model outcomes do not depend on these values, only on the values

of the identifiable parameter combinations. Initial conditions for the latent L, prodromal P , and jaundiced J

compartments of the Southeast Michigan population were chosen so that they were initially in equilibrium with

initial condition for the presymptomatic infectious compartment Ii(0) = I0. That is, L1(0) = σI0/ν, P1(0) =

ρνI0/µ, J1(0) = ρνI0/γ. The susceptible and recovered fractions were set to S1(0) = 1−L1(0)−I1(0)−P1(0)−J1(0)

and R1(0) = 0. The rest of the state was assumed to be disease-free initially, that is S2(0) = 1 and L2(0) = I2(0) =

P2(0) = J2(0) = 0.

We modeled the data with a negative binomial distribution to account for overdispersion of the case data zi(tj) [4].

Here, the likelihood, which measures the goodness of fit of the model to the data as a function of model parameters

θ, is given by

L(θ) =
∏
i,j

1

zi(tj)!

Γ(zi(tj) + 1/αi)

Γ(1/αi)

(
yi(tj ; θ)

yi(tj ; θ) + 1/αi

)zi(tj)(
1 +

yi(tj ; θ)

1/αi

)−1/αi

, (1)

where αi is the overdispersion parameter for population i. As α → 0, the distribution becomes Poisson; when

α = 1, the distribution is geometric; and as α→∞, the distribution becomes logarithmic.

The 95% likelihood thresholds are given by

− logL(θ̂)± 1

2
χ2(0.05,m) (2)

where χ2(0.05,m) is the χ2 distribution with level of significance 0.05 and number of parameters m=9. There

is a region in m-dimensional parameter space that corresponds to model outputs that fit the data within these

95% likelihood thresholds. The profile likelihoods are transects through this confidence region. To find the

95% confidence intervals for the model output trajectories, we simulated the model at points along each profile

likelihood, finding the range of model outputs at each time point in this set of simulated trajectories.
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Seasonality

We model potential seasonal transmission with logistic functions, which are functions that smoothly transition

from 0 to 1; a difference of these functions (as in Eq. (3)) has a smooth, bump-like shape. Parameter δ controls

the ratio of peak transmission rate to baseline rate β0, π1 controls how steepness of transition, and π2 and π3 give

the time at which the constituent logistic functions are at their median values. This approach is more flexible than

using sinusoidal functions. We then model transmission rates as functions of the calendar week τ ,

βi(τ) = βi,0 · δ
(

1

1 + exp(−2π1(τ − π2))
− 1

1 + exp(−2π1(τ − π3))

)
. (3)

The existence of seasonal variation in the magnitude of transmission is supported by measures of model fit (dif-

ference of 44 in Akaike Information Criterion (AIC) between the best-fit models with and without seasonality).

However, a wide range of the seasonality parameters representing the steepness of seasonal transition and the tran-

sition timing (π1, π2, π3) were found to be consistent with the data. Thus, we selected parameters representative

of the best-fit region for use in the main model, corresponding to increased transmission when the temperature in

Southeast Michigan is above 50◦F, approximately April through October, with the greatest transition in transmis-

sion magnitude occurring over about one month. The main model and the model without seasonal transmission

are compared in Figure 1.

Table 1: Seasonality parameters for the Michigan hepatitis A outbreak model

Parameter Type Value Units Definition

π1 Fixed 0.34 — Steepness of seasonal change parameter

π2 Fixed 22 weeks Seasonal increase in transmission timing parameter

π3 Fixed 35 weeks Seasonal decrease in transmission timing parameter

δ Estimated 1.6 (1.4–1.7) — Magnitude of seasonal variation in transmission
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Figure 1: Comparison of model fits with and without seasonal transmission in the Michigan hepatitis A outbreak a) within

Southeast Michigan and b) outside of Southeast Michigan.
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Figure 2: Seasonal variation in transmission of hepatitis A. Each line represents a point in parameter space corresponding to

model fits that are within the 95% likelihood-based confidence interval. The dotted line corresponds to the parameters listed

in Table 1.

We performed sensitivity analysis on the seasonality parameters by generating test values of π1, π2, and π3 through

Latin hypercube sampling with the lhs package [1]. We used a classification algorithm and regression tree (CART)

method within the rpart package [5] to better understand the regions of seasonality parameter space correspond-

ing to model fits within 95% confidence limits. We plot the magnitudes of the seasonal variation in transmission

for each of the Latin hypercube samples generated in our sensitivity analysis in Figure 2. The CART algorithm

indicated that π1, the steepness parameter, was largely unimportant for determining whether a seasonality pro-

file fell within the confidence region. The timing parameters were more important. The classification algorithm

indicates that good fits have π2 < 29 and π3 > 29. Moreover, if π3 > 41, then π2 < 26, but if π3 < 41, then

π2 > 16. Although these values do not have straightforward direct interpretations (due to the functional form of a

difference in logistic functions), we can see in Figure 2 that these results indicate a wide range of seasonal patterns

are possible, although increased seasonal transmission is unlikely before April and after November.

Previous evidence for seasonality of hepatitis A has been mixed. Incidence in the U.S. is not considered to follow a

seasonal pattern [2]. However, globally, there is some evidence for increased transmission in spring and summer

months [3]. In the Michigan 2016–19 outbreak, we found that the outbreak trajectory was more consistent with

increased transmission (up to around 155% of baseline) during warmer months than with no seasonal pattern

to transmission. It may be that person-to-person transmission varies more strongly with temperature than trans-

mission via point sources like food. Moreover, seasonality may only be evident in climates where certain baseline

temperatures are not met year-round. Hence, evidence of seasonality may be masked when considering aggregate

incidence. It remains to be seen whether there will be evidence of seasonality in other outbreak states.
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