Supporting information

Correlations between molecular structure and biological activity in "logical series" of dietary chromone derivatives

Short title: Structure and biological activity of chromone derivatives

Włodzimierz Lewandowski 1, 1, Hanna Lewandowska 2, Aleksandra Golonko 3, Grzegorz Świderski 1, Renata Świsłocka 1, Monika Kalinowska 1, 1

1. Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Bialystok, Poland

2. Institute of Nuclear Chemistry and Technology, Centre for Radiation Research and Technology, Warsaw, Poland

3. Department of Microbiology, Institute of Agricultural and Food Biotechnology, Warsaw, Poland;

* Corresponding authors

E-mail: w-lewando@wp.pl (WL); m.kalinowska@pb.edu.pl (MK)

Funding: This work was funded by the National Science Centre, Poland under the research project number 2015/17/B/NZ9/03581 and work number WZ/WB-IIS/5/2020 financed from funds for the education of the Ministry of Science and Higher Education.

Fig S1. The energy of the most stable conformers of the studied compounds in relation to the energy of chromone.

Fig S2. The ¹H NMR spectra of chromone derivatives.

Fig S3. The ¹³C NMR spectra of chromone derivatives.

Fig S4. The IR spectra of chromone derivatives registered in the range of 400-4000 cm⁻¹.

Fig S5. The Raman spectra of chromone derivatives registered in the range of 400-4000 cm⁻¹.

Table S1. Selected bond lengths [Å] and angles [°] of 3-dihydroxyflavone conformers (atom numbering in Fig. 4)

	Conformers of	3-dihydroxyflavone
Bond lenghts [Å]	1	2
C2-C1'	1,476	1,472
C2-C3	1,363	1,363
C3-O3	1,360	1,355
O3-H3	0,965	0,975
C3-C4	1,472	1,458
C4=O4	1,222	1,232
C4-C10	1,475	1,463
C9-C10	1,398	1,400
C8-C9	1,399	1,399
C7-C8	1,384	1,384
C6-C7	1,405	1,406
C5-C6	1,382	1,382
C1'-C2'	1,404	1,403
C2'-C3'	1,490	1,391
C3'-C4'	1,395	1,394
C4'-C5'	1,393	1,394
C5'-C6'	1,404	1,391
C6'-C1'	1,404	1,402
C6-O1	1,363	1,393
O1-C5	1,370	1,369
Hydrogen bonds [Å]		
O1H2'	2,591	2,469
O1H8	2,557	2,556
O4H5	2,565	2,633
O3H3	-	2,057
О2-Н6'	2,691	2,397

		Conformers of 3	-dihydroxyflavone
Ring	Atom	1	2
Α	C8	-0,235	-0,233
	C9	0,341	0,346
	C10	-0,182	-0,183
	C5	-0,144	-0,144
	C6	-0,214	-0,213
	C7	-0,171	-0,169
Total	charge	-0,605	-0,596
С	01	-0,489	-0,481
	C2	0,270	0,303
	C3	0,203	0,200
	C4	0,466	0,455
	C10	-0,182	-0,183
	C9	0,341	0,346
Total	charge	0,609	0,640
В	3'C	-0,199	-0,209
	4'C	-0,189	-0,188
	5'C	-0,201	-0,207
	6'C	-0,198	-0,151
	C1'	-0,099	-0,097
	C2'	-0,157	-0,159
Total	charge	-1,043	-1,011
	01	-0,489	-0,481
	O3	-0,652	-0,674
	O4	-0,564	-0,619

Table S2. The NBO atomic charges [e] calculated for 3-dihydroxyflavone conformers (atom numbering in Fig. 4)

Table S3. Selected bond lengths [Å] and angles [°] of 3,7-dihydroxyflavone conformers (atom numbering in Fig. 4)

	Conformers of 3,7-dihydroxyflavone					
Bond lenghts [Å]	1	2	3	4		
C1'-C7	1,475	1,468	1,468	1,475		
C2-C3	1,361	1,366	1,365	1,361		
C3-O3	1,360	1,353	1,352	1,359		
O3-H3	0,965	0,979	0,978	0,965		
C2-C4	1,474	1,462	1,463	1,475		
C4=O4	1,223	1,238	1,238	1,223		
C4-C10	1,470	1,451	1,450	1,470		
C9-C10	1,401	1,403	1,400	1,397		
C8-C9	1,395	1,395	1,398	1,398		
C7-C8	1,387	1,387	1,388	1,388		
C7-O7	1,363	1,362	1,361	1,363		
O7-H7	0,963	0,963	0,963	0,963		
C6-C7	1,409	1,410	1,410	1,408		
C5-C6	1,380	1,378	1,376	1,377		
C5-C10	1,405	1,406	1,410	1,408		
C1'-C2'	1,404	1,408	1,408	1,404		
C2'-C3'	1,390	1,389	1,390	1,390		
C3'-C4'	1,395	1,394	1,394	1,396		
C4'-C5'	1,393	1,393	1,393	1,393		
C5'-C6'	1,393	1,391	1,391	1,393		
C6'-C1'	1,404	1,408	1,408	1,404		
C9-O1	1,361	1,356	1,356	1,361		
O1-C2	1,373	1,376	1,377	1,374		
Hydrogen bonds [Å]						
O4H3	-	1,978	1,974	-		
O3H6'	2,678	2,157	2,157	2,688		
O1H2'	2,578	2,309	2,313	2,590		
H8O7	2,581	2,576	2,702	2,704		
O1H8	2,569	2,571	2,551	2,550		
O4H5	2,572	2,653	2,658	2,577		

		Conform	ners of 3,7	-dihydrox	yflavone
Ring	Atom	1	2	3	4
Α	C8	-0,291	-0,295	-0,322	-0,324
	C9	0,363	0,376	0,377	0,364
	C10	-0,208	-0,208	-0,222	-0,208
	C5	-0,123	-0,122	-0,110	-0,124
	C6	-0,285	-0,284	-0,261	-0,255
	C7	0,344	0,347	0,350	0,347
Total	charge	-0,200	-0,186	-0,188	-0,200
С	O1	-0,489	-0,485	-0,488	-0,492
	C2	0,266	0,311	0,312	0,268
	C3	0,205	0,210	0,198	0,207
	C4	0,467	0,448	0,461	0,465
	C10	-0,208	-0,208	-0,222	-0,208
	C9	0,363	0,376	0,377	0,364
Total	charge	0,604	0,652	0,638	0,599
В	C3'	-0,199	-0,201	-0,201	-0,199
	C4'	-0,190	-0,189	-0,190	-0,190
	C5'	-0,201	-0,206	-0,205	-0,201
	C6'	-0,199	-0,159	-0,159	-0,199
	C1'	-0,093	-0,115	-0,114	-0,098
	C2'	-0,157	-0,174	-0,176	-0,158
Total	charge	-1,039	-1,044	-1,045	-1,045
	03	-0,652	-0,679	-0,679	-0,652
	O4	-0,570	-0,634	-0,631	-0,569
	70	-0,663	-0,660	-0,659	-0,662

Table S4. The NBO atomic charges [e] calculated for 3,7-dihydroxyflavone conformers (atom numbering in Fig. 4)

		Conformers of galangin						
Bond lenghts [Å]	1	2	3	4	5	6	7	8
СЗ-ОН	1,359	1,360	1,360	1,364	1,359	1,350	1,354	1,354
H3-O3	0,965	0,965	0,965	0,966	0,965	0,982	0,977	0,977
C4=O4	1,242	1,242	1,241	1,233	1,219	1,235	1,255	1,256
C5-OH	1,338	1,338	1,338	1,356	1,352	1,351	1,340	1,341
H5-O5	0,993	0,993	0,991	0,966	0,964	0,964	0,985	0,986
C7-OH	1,361	1,361	1,361	1,358	1,362	1,361	1,360	1,360
C1'-C2	1,475	1,475	1,475	1,475	1,475	1,467	1,467	1,467
C2-C3	1,362	1,362	1,362	1,358	1,356	1,361	1,367	1,367
C3-C4	1,465	1,465	1,466	1,472	1,482	1,471	1,453	1,452
C4-C10	1,448	1,448	1,449	1,465	1,476	1,454	1,432	1,433
C10-C5	1,424	1,424	1,427	1,426	1,420	1,423	1,425	1,422
Hydrogen bonds [Å]	-							
С4=0НО-С5	1,702	1,702	1,710	-	-	-	1,778	1,771
C3-OHO=C4	-	-	-	-	-	1,920	2,006	2,011

Table S5. Selected bond lengths [Å] and angles [°] of galangin conformers (atom numbering in Fig. 4)

Table S6. The NBO atomic charges [e] calculated for galangin conformers (atom numbering in Fig. 4)

				Cor	formers	s of galar	ngin		
Ring	Atom	1	2	3	4	5	6	7	8
	C8	-0,332	-0,332	-0,363	-0,347	-0,323	-0,352	-0,360	-0,329
	C9	0,380	0,380	0,381	0,383	0,381	0,394	0,393	0,391
	C10	-0,265	-0,265	-0,264	-0,257	-0,255	-0,254	-0,269	-0,270
Α	C5	0,404	0,404	0,403	0,401	0,408	0,389	0,402	0,398
	C6	-0,352	-0,352	-0,352	-0,352	-0,384	-0,334	-0,321	-0,337
	C7	0,369	0,369	0,369	0,368	0,360	0,360	0,372	0,366
Total	charge	-0,265	-0,265	-0,264	-0,257	-0,255	-0,254	-0,269	-0,270
С	01	-0,483	-0,483	-0,485	-0,483	-0,489	-0,491	-0,486	-0,481
	C2	0,280	0,280	0,277	0,289	0,261	0,290	0,313	0,327
	C3	0,207	0,206	0,208	0,197	0,210	0,206	0,202	0,198
	C4	0,463	0,463	0,463	0,465	0,463	0,462	0,456	0,455
	C10	-0,265	-0,265	-0,264	-0,257	-0,255	-0,254	-0,269	-0,270
	C9	0,380	0,380	0,381	0,383	0,381	0,394	0,393	0,391
Total	charge	0,582	0,581	0,580	0,594	0,571	0,607	0,609	0,620
В	C3'	-0,198	-0,198	-0,199	-0,204	-0,199	-0,200	-0,208	-0,203
	C4'	-0,188	-0,188	-0,188	-0,190	-0,192	-0,192	-0,186	-0,186
	C5'	-0,201	-0,201	-0,201	-0,204	-0,201	-0,206	-0,206	-0,206
	C6'	-0,198	-0,198	-0,197	0,194	-0,196	-0,163	-0,160	-0,157
	C1'	-0,101	-0,101	-0,101	-0,109	-0,112	-0,099	-0,104	-0,118
	C2'	-0,156	-0,156	-0,156	-0,161	-0,156	-0,167	-0,162	-0,172
Total	charge	-1,042	-1,042	-1,042	-1,062	-1,056	-1,027	-1,026	-1,042
	01	-0,483	-0,483	-0,485	-0,483	-0,489	-0,491	-0,486	-0,481
	03	-0,652	-0,652	-0,651	-0,681	-0,652	-0,680	-0,676	-0,676
	O4	-0,621	-0,621	-0,619	-0,635	-0,541	-0,607	-0,685	-0,687
	05	-0,670	-0,670	-0,667	-0,657	-0,625	-0,628	-0,665	-0,668
	<u>07</u>	-0,660	-0,660	-0,658	-0,674	-0,660	-0,660	-0,655	-0,657

 $e = \overline{1,602*10^{-19}} C$

-	Conformers of kaempherol						
Bond lenghts [Å]	1	2	3	4	5		
C4'-OH	1,363	1,364	1,364	1,364	1,364		
СЗ-ОН	1,361	1,357	1,356	1,356	1,356		
C4=O	1,243	1,257	1,256	1,256	1,256		
C5-OH	1,338	1,341	1,341	1,340	1,340		
C7-OH	1,361	1,360	1,360	1,361	1,361		
C1'-C2	1,472	1,463	1,463	1,463	1,463		
Hydrogen bonds [Å]	-						
С4=0НО-С5	1,700	1,768	1,771	1,767	1,774		
C3-OHO=C4	-	2,017	2,012	2,018	2,014		

Table S7. Selected bond lengths [Å] and angles [°] of ka empherol conformers (atom numbering in Fig. 4)

Table S8. The NBO atomic charges [e] calculated for kaempherol conformers (atom numbering in Fig. 4)

			Conform	ers of kae	mpherol	
Ring	Atom	1	2	3	4	5
Α	C8	-0.223	-0.334	-0.349	-0.330	-0.361
	C9	0.380	0.390	0.386	0.390	0.392
	C10	-0.265	-0.262	-0.261	-0.269	-0.268
	C5	0.404	0.396	0.401	0.403	0.402
	C6	-0.353	-0.337	-0.321	-0.351	-0.321
	C7	0.368	0.365	0.367	0.370	0.371
Total	charge	0.311	0.218	0.223	0.213	0.215
С	01	-0.484	-0.484	-0.488	-0.484	-0.489
	C2	0.286	0.330	0.326	0.333	0.318
	C3	0.200	0.204	0.205	0.190	0.194
	C4	0.464	0.438	0.439	0.453	0.454
	C9	0.380	0.390	0.386	0.390	0.392
	C10	-0.265	-0.262	-0.261	-0.269	-0.268
Total	charge	0.581	0.616	0.607	0.613	0.601
В	C1'	-0.133	-0.147	-0.147	-0.146	-0.133
	C2'	-0.133	-0.149	-0.150	-0.159	-0.138
	C3'	-0.246	-0.247	-0.247	-0.262	-0.287
	C4'	0.329	0.332	0.332	0.327	0.331
	C5'	-0.283	-0.285	-0.285	-0.253	-0.254
	C6'	-0.171	-0.134	-0.134	-0.135	-0.137
Total	charge	-0.637	-0.630	-0.631	-0.628	-0.618
	01	-0.484	-0.484	-0.488	-0.484	-0.489
	O3	-0.656	-0.682	-0.680	-0.680	-0.679
	O4	-0.626	-0.692	-0.690	-0.690	-0.688
	O5	-0.670	-0.669	-0.665	-0.668	-0.666
	O7	-0.660	-0.658	-0.657	-0.658	-0.656
	O4'	-0.663	-0.664	-0.664	-0.664	-0.664

Bond lenghts [Å]		Conf	ormers	of quer	cetin	
	1	2	3	4	5	6
O3-H3	0,977	0,977	0,977	0,966	0,982	0,965
03-C3	1,355	1,356	1,355	1,360	1,352	1,359
C3-C4	1,449	1,450	1,450	1,463	1,467	1,481
C4=O4	1,256	1,257	1,256	1,246	1,236	1,220
C4-C10	1,434	1,433	1,434	1,449	1,456	1,476
C10-C5	1,422	1,422	1,425	1,424	1,420	1,420
C5-O5	1,340	1,341	1,340	1,338	1,352	1,352
O5-H5	0,987	0,987	0,986	0,993	0,964	0,964
Hydrogen bonds [Å]						
H3O4	2,019	2,012	2,014	-	1,929	-
O4H5	1,766	1,769	1,772	1,699	-	-
Н6О5	2,589	2,590	2,608	2,582	2,641	2,629
Н6О7	2,684	2,682	2,560	2,685	2,673	2,673

Table S9. Selected bond lengths [Å] and angles [°] of quercetin conformers (atom numbering Fig. 4)

Table S10. The NBO atomic charges [e] calculated for quercetin conformers (atom numbering Fig. 4)

	_		Con	formers	of quer	cetin	
Ring		1	2	3	4	5	6
Α	C8	-0,318	-0,317	-0,350	-0,334	-0,322	-0,324
	C9	0,385	0,387	0,385	0,380	0,393	0,379
	C10	-0,262	-0,270	-0,261	-0,265	-0,254	-0,247
	C5	0,403	0,403	0,402	0,404	0,390	0,388
	C6	-0,351	-0,351	-0,321	-0,350	-0,362	-0,362
	C7	0,366	0,366	0,366	0,368	0,357	0,354
Total	charge	0,223	0,218	0,221	0,203	0,202	0,188
С	01	-0,491	-0,487	-0,494	-0,490	-0,497	-0,497
	C2	0,314	0,320	0,311	0,283	0,297	0,254
	C3	0,208	0,195	0,210	0,204	0,198	0,214
	C4	0,437	0,453	0,438	0,463	0,460	0,462
	C9	0,385	0,387	0,385	0,380	0,393	0,379
	C10	-0,262	-0,270	-0,261	-0,265	-0,254	-0,247
Total	charge	0,853	0,868	0,850	0,840	0,851	0,812
B	C1'	-0,114	-0,109	-0,113	-0,111	-0,109	-0,107
	C2'	-0,229	-0,201	-0,231	-0,225	-0,234	-0,227
	C3'	0,248	0,274	0,248	0,256	0,248	0,255
	C4'	0,295	0,265	0,294	0,291	0,289	0,287
	C5'	-0,243	-0,271	-0,242	-0,238	-0,242	-0,238
	C6'	-0,160	-0,167	-0,161	-0,202	-0,164	-0,203
Total	charge	-0,203	-0,209	-0,205	-0,229	-0,212	-0,233
	01	-0,491	-0,487	-0,494	-0,490	-0,497	-0,497
	03	-0,679	-0,679	-0,679	-0,653	-0,682	-0,652
	O4	-0,688	-0,691	-0,686	-0,622	-0,610	-0,545
	05	-0,668	-0,669	-0,665	-0,670	-0,627	-0,624
	07	-0,659	-0,658	-0,657	-0,661	-0,659	-0,661
	03'	-0,706	-0,671	-0,706	-0,701	-0,707	-0,703
	O4'	-0,663	-0,699	-0,663	-0,662	-0,666	-0,665

Compound	Parameters	Cell lines	Ref.
Chromone	-	-	-
Flavone	IC50 > 50.000 nM	A549	[1]
3-Hydroxyflavone	LC50=40.4 μM LC50= 64.0 μM	TIG-1 HUVEC	[2]
	$IC50 = 20 \pm 2 \mu M$	B16 melanoma cells/ Lewis lung cells	[3]
	GI50=17.4 ± 2.0µM	MCF-7	
3,7-Dihydroxyflavone	$GI50=15.4 \pm 1.2 \mu M$	NCI-H460	[4]
	$GI50=23.0 \pm 1.0 \mu M$	A375-C5	
	$IC50 = 48 \pm 4 \mu M$	B16 melanoma cells/ Lewis lung cells	[3]
Galangin	IC50=275.48 µM	V79	[5]
	IC50=145.0 µmol/L ^a	B16F10	[6]
	LC50=221 µM	TIG-1	[2]
Kaenpferol	LC50=167 µM	HUVEC	[2]
	$IC50 = 51 \pm 5 \mu M$	B16 melanoma cells/ Lewis lung cells	[3]
	IC50= 31 ± 8 µM	EAhy 926 endothelial cells	191
	IC50=30.92 ±0.05 μM	HepG2	
	IC50=88.02 ±001µM	CT26	[7]
	IC50=70.62 ±0.05 μM	B16F1	
	LC50=4.45mM	RAW264.7	[8]
	IC50=118.1±5.55 μM ^a	CT-26	
	IC50=110.7±4.30 μM ^a	LNCaP	
	IC50>120 μM μM ^a	PC3	
	IC50=99.3±6.11 μM ^a	PC12	
	IC50=105.4±5.2 μM ^a	MCF-7	[9]
	IC50=64.9±3.5 μM ^a	MOLT-4	
	IC50=54.3±4.5 μM ^a	U266B1	
Oursetin	IC50=66.5±3.57 μM ^a	Raji	
Querceun	IC50=>120 μM ^a	СНО	
	IC50=50 µM	PC3	[10]
	IC50=50 µM	LNCaP	
	IC50= 35.5±1.1 μM	HeLa	[11]
	IC50=20.9±0.9 μM	NIH-3T3	[**]
	LC50= 303 μM	TIG-1	121
	LC50= 61.0 µM	HUVE	[2]
	$IC50=26 \pm 4 \mu M$	B16 melanoma cells/ Lewis lung cells	[2]
	IC50= $36 \pm 2 \mu M$	EAhy 926 endothelial cells	[2]

Table S11. The cytotoxic activity of studied	compounds in relation to different cancer cell lines
--	--

^afor 24h

- 1. Bible KC, Kaufmann SH. Flavopiridol: a cytotoxic flavone that induces cell death in noncycling A549 human lung carcinoma cells. Cancer Res. 1996;56: 4856–61. Available: http://www.ncbi.nlm.nih.gov/pubmed/8895733
- Matsuo M, Sasaki N, Saga K, Kaneko T. Cytotoxicity of flavonoids toward cultured normal human cells. Biol Pharm Bull. 2005;28: 253–9. Available: http://www.ncbi.nlm.nih.gov/pubmed/15684479
- Touil YS, Fellous A, Scherman D, Chabot GG. Flavonoid-induced morphological modifications of endothelial cells through microtubule stabilization. Nutr Cancer. 2009;61: 310–21. doi:10.1080/01635580802521346
- 4. Neves MP, Cidade H, Pinto M, Silva AMS, Gales L, Damas AM, et al. Prenylated derivatives of baicalein and 3,7-dihydroxyflavone: Synthesis and study of their effects on tumor cell lines growth, cell cycle and apoptosis. Eur J Med Chem. 2011;46: 2562–2574. doi:10.1016/J.EJMECH.2011.03.047

- Bacanlı M, Başaran AA, Başaran N. The antioxidant, cytotoxic, and antigenotoxic effects of galangin, puerarin, and ursolic acid in mammalian cells. Drug Chem Toxicol. 2017;40: 256– 262. doi:10.1080/01480545.2016.1209680
- Zhang W, Lan Y, Huang Q, Hua Z. Galangin induces B16F10 melanoma cell apoptosis via mitochondrial pathway and sustained activation of p38 MAPK. Cytotechnology. 2013;65: 447–55. doi:10.1007/s10616-012-9499-1
- Wang J, Fang X, Ge L, Cao F, Zhao L, Wang Z, et al. Antitumor, antioxidant and antiinflammatory activities of kaempferol and its corresponding glycosides and the enzymatic preparation of kaempferol. Pizzo S V, editor. PLoS One. 2018;13: e0197563. doi:10.1371/journal.pone.0197563
- Murakami Y, Kawata A, Ito S, Katayama T, Fujisawa S. Radical-scavenging and Antiinflammatory Activity of Quercetin and Related Compounds and Their Combinations Against RAW264.7 Cells Stimulated with Porphyromonas gingivalis Fimbriae. Relationships between Anti-inflammatory Activity and Quantum Chemical Par. In Vivo. 2015;29: 701–10. Available: http://www.ncbi.nlm.nih.gov/pubmed/26546527
- 9. Hashemzaei M, Delarami Far A, Yari A, Heravi RE, Tabrizian K, Taghdisi SM, et al. Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo. Oncol Rep. 2017;38: 819–828. doi:10.3892/or.2017.5766
- Shenouda NS, Zhou C, Browning JD, Ansell PJ, Sakla MS, Lubahn DB, et al. Phytoestrogens in Common Herbs Regulate Prostate Cancer Cell Growth in Vitro. Nutr Cancer. 2004;49: 200–208. doi:10.1207/s15327914nc4902_12
- 11. Danihelová M, Veverka M, Sturdík E, Jantová S. Antioxidant action and cytotoxicity on HeLa and NIH-3T3 cells