Supporting Information

Discovery, Radiolabeling, and Evaluation of Subtype-Selective Inhibitors for Positron Emission Tomography Imaging of Brain Phosphodiesterase-4D

Yuichi Wakabayashi,^{1*} Sanjay Telu^{1*}, Rachel M. Dick¹, Masahiro Fujita¹, Maarten Ooms¹, Cheryl L. Morse¹, Jeih-San Liow¹, Jinsoo S Hong¹, Robert L. Gladding,¹ Lester S. Manly¹, Sami S. Zoghbi¹, Xuesheng Mo², Emily C. D'Amato², Janice A. Sindac², Richard A. Nugent², Brian E. Marron², Mark E. Gurney^{2§}, Robert B. Innis¹, Victor W. Pike^{1§}

¹National Institute of Mental Health, Bethesda, MD, USA

²Tetra Therapeutics, Grand Rapids, MI, USA

• Equal authorship priority

Table of Contents

Торіс	Display	Page
	item	
Time-sequence for reduction in clog <i>P</i> across the different chemical series	Figure S1	S3
Syntheses of desmethyl precursors 7–10	Scheme 1	S4
Radioligand HPLC purification conditions	Table S1	S6
Radioligand HPLC analysis conditions	Table S2	S6
[¹¹ C] 3 ([¹¹ C]T1953) HPLC Chromatograms	Figure S2	S7
[¹¹ C]4 ([¹¹ C]T2525) HPLC Chromatograms	Figure S3	S8
[¹¹ C] 5 ([¹¹ C]T1660) HPLC Chromatograms	Figure S4	S9
[¹¹ C]6 ([¹¹ C]T1650) HPLC Chromatograms	Figure S5	S10
[¹¹ C]6 ([¹¹ C]T1650) HPLC Chromatograms for production in a CGMP	Figure S6	S11
laboratory		
Yields and $A_{\rm m}$ of PDE4D radioligands evaluated in monkey	Table S3	S12
Measured lipophilicities (mlog $D_{7,4}$) and monkey and human plasma free	Table S4	S12
fractions $(f_{\rm P})$ at baseline for tested radioligands.		
Data from PET experiments with [¹¹ C]4 ([¹¹ C]T2525) in monkey	Figure S7	S14
Data from PET experiments with [¹¹ C] 3 ([¹¹ C]T1953) in monkey	Figure S8	S15
Data from PET experiments with [¹¹ C]5 ([¹¹ C]T1660) in monkey	Figure S9	S16
Data from PET experiments with [¹¹ C]6 ([¹¹ C]T1650) in monkey	Figure S10	S16
HPLC analyses of the radiometabolites of [¹¹ C]6 ([¹¹ C]T1650) generated over	Figure S11	S17
30 min in various tissues		
Time-course of radioactive species in human plasma following intravenous	Figure S12	S18
administration of [¹¹ C]6 ([¹¹ C]T1650)		
Average AUC for SUV from 60 to 120 minutes for two human participants	Figure S13	S19
Appendix 1: Characterization data for compounds 3–10	NMR	S20
	spectra, MS	
	spectra,	
	HPLC data	

Figure S1. Time-sequence for reduction in clog*P* across the different chemical series. Compounds evaluated in monkey PET studies are named. The PDE4D inhibitory potency is shown by the size of the symbol.

Syntheses of desmethyl precursors 7–10

(See Appendix 1 for characterization data: HPLC analyses, mass, and ¹H- and ¹³C-NMR spectra).

Preparation of 2-(3-chlorophenyl)-3-hydroxy-6-[(pyridin-4-yl)methyl]pyridine (7; T2009). Compound **3** (T1953; 55 mg, 0.18 mmol) was dissolved in AcOH (2 mL) and treated with 48% HBr (3 mL). The vial was heated to 120 °C for 48 h. The reaction mixture was condensed and then neutralized carefully with NaHCO₃ solution. The product was extracted 3 times with ethyl acaetate, dried with Na₂SO₄, and concentrated, and then purified by silica gel chromatography (EtOAc/DCM, 1:1) to give **7** as a white solid: 44 mg (0.15 mmol, 82%); ¹H NMR (DMSO-*d*₆, 400 MHz) δ 10.2 (s, 1H), 8.47 (d, *J* = 5.6 Hz, 2H), 8.05 (m, 3H), 7.96 (m, 1H), 7.44 (m, 2H), 7.31 (m, 3H), 7.17 (d, *J* = 8.3 Hz, 2H), 4.08 (s, 2H); TOF MS ES⁺ *m/z* 297.0 [M+H]⁺; HPLC Method A, *t*_R = 2.23 min.

Preparation of 3-hydroxy-2-(3-nitrophenyl)-6-[(pyridin-4-yl)methyl]pyridine (9; T1842). Using the method of compound 7 and purification by silica gel chromatography (5% MeOH/DCM) gave **9** as a white solid: (56%); ¹H NMR (DMSO- d_6 , 400 MHz) δ 10.51 (s, 1H), 8.93 (t, J = 1.9 Hz, 1H), 8.54 (d, J = 8.0 Hz, 1H), 8.47 (d, J = 5.9 Hz, 1H), 8.22 (m, 1 H), 7.74 (t, J = 8.1 Hz, 1H), 7.34 (m, 3H), 7.23 (d, J = 8.0 Hz, 1H), 4.11 (s, 2H); TOF MS ES⁺ m/z 308.1 [M+H]⁺; HPLC Method A, $t_R = 2.25$ min.

Preparation of 2-(3-nitrophenyl)-3-hydroxy-6-[(1*H*-pyrazol-4-yl)methyl]pyridin-3-ol (10; T1720). Using the method of compound 7 and purification by silica gel chromatography (3–10% MeOH/DCM) gave 10 as a white solid: (45%); ¹H NMR (DMSO- d_6 , 400 MHz) δ 12.59 (s, 1H),

10.37 (s, 1H), 8.96 (t, J = 1.9 Hz, 1H), 8.57 (dt, J = 8.0, 1.2 Hz, 1H), 8.22 (ddd, 8.2 Hz, 2.3 Hz, 1.0 Hz, 1 H), 7.75 (t, J = 8.1 Hz, 1H), 7.55 (br s, 2H), 7.34 (d, J = 8.3 Hz, 1H), 7.14 (d, J = 8.3 Hz, 1 H), 3.92 (s, 2H); TOF MS ES⁺ m/z 296.9 [M+H]⁺; HPLC Method B, $t_{\rm R} = 2.37$ min.

Preparation of 2-(3-chlorophenyl)-3-(difluoromethoxy)-6-[(1*H*-pyrazol-4-yl)methyl]pyridine (8; T2517)

2-(3-Chlorophenyl)-3-(difluoromethoxy)-6-[(1-ethoxyethyl-1H-pyrazol-4-yl)methyl]pyridine. In a 25-mL round bottom flask, 6-(bromomethyl)-2-(3-chlorophenyl)-3-difluoromethoxypyridine (**15**; 490 mg, 1.41 mmol) was dissolved in 1,4-dioxane:water (4:1, 6 mL) and then treated with 1-(1-ethoxyethyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-pyrazole (750 mg, 2.82 mmol), K₃PO₄ (600 mg, 2.83 mmol), and Pd(dppf)Cl₂ (110 mg, 0.15 mmol). Argon was bubbled through the solution for 5 min, then the flask was sealed under argon and heated at 90 °C for 12 h. The reaction mixture was concentrated under reduced pressure and the residue partitioned between ethyl acetate and water. The layers were separated, and the organic phase dried with Na₂SO₄ and concentrated. The crude product was purified by silica gel chromatography using 100% DCM to give the product as a white solid: 150 mg (0.39 mmol, 28%).

2-(3-Chlorophenyl)-3-(difluoromethoxy)-6-[(1H-pyrazol-4-yl)methyl]pyridine (**8**; T2517): To a solution of 2-(3-chlorophenyl)-3-(difluoromethoxy)-6-[(1-ethoxyethyl-1*H*-pyrazol-4-yl)methyl]pyridine (140 mg, 0.37 mmol) in MeOH (2 mL) was added water (50 μ L) and 4 M HCl in 1,4-dioxane (200 μ L). After stirring the mixture at room temperature for 18 h, the solvent was removed and the residue chromatographed on silica gel using 2% EtOAc/DCM to give **8**: 110 mg (0.32 mmol, 87%); ¹H NMR (CDCl₃, 400 MHz) δ 7.89 (m, 1H), 7.78 (m, 1H), 7.54 (m, 3H), 7.42 (m, 3H), 7.14 (d, *J* = 8.4 Hz, 1H), 6.49 (t, *J* = 72 Hz, 1H), 4.13 (s, 2H); TOF MS ES⁺ *m*/z 336.2 [M+H]⁺, 377.1 [M+ACN+H]⁺; HPLC Method A, *t*_R = 3.41 min.

Radioligand	Column ^a	Mobile phase (v/v)	t _R (min) ^b
[¹¹ C] 3 ([¹¹ C]T1953)	Luna C18(2),10 µm	MeCN-H ₂ O (62/38)	9.4
[¹¹ C] 4 ([¹¹ C]T2525)	Luna C18(2),10 µm	MeCN-0.1 M aq. HCO ₂ NH ₄ (55/45)	11.8
[¹¹ C] 5 ([¹¹ C]T1660)	Luna C18(2),10 µm	MeCN-H ₂ O (60/40)	8.0
[¹¹ C] 6 ([¹¹ C]T1650)	Luna C18, 10 µm	MeCN-0.1 M aq. HCO ₂ NH ₄ (45/55)	9.9
¹¹ C]6 ([¹¹ C]T1650) ^c	Luna C18, 5 µm	MeCN-0.1 M aq. HCO ₂ NH ₄ (45/55)	10.6

 Table S1: Radioligand HPLC purification conditions.

^a All HPLC columns had dimensions of 10 mm o.d. \times 250 mm and were eluted at 6 mL/min.

^b Carrier for each radioligand elutes slightly earlier because UV absorbance and radioactivity detectors are in series. ^c For human productions.

Table S2: Radioligand HPLC analysis conditions.

Radioligand	Column ^a	Mobile phase (v/v)	t _R (min) ^b
[¹¹ C] 3 ([¹¹ C]T1953)	Luna C18, 10 µm	MeCN-H ₂ O (60/40)	7.9
[¹¹ C] 4 ([¹¹ C]T2525)	Luna C18, 10 µm	MeCN-0.1 M aq. HCO ₂ NH ₄ (60/40)	5.1
[¹¹ C] 5 ([¹¹ C]T1660)	Luna C18, 10 µm	MeCN-0.1 M aq. HCO ₂ NH ₄ (60/40)	5.4
[¹¹ C]6 ([¹¹ C]T1650)	Luna C18(2), 10 µm	MeCN-0.1 M aq. HCO ₂ NH ₄ (50/50)	4.0

^a All the HPLC columns had dimensions of 4.6 mm o.d. × 250 mm and were eluted at 2.0 mL/min.

^b Carrier for each radioligand elutes slightly earlier because UV absorbance and radioactivity detectors are in series.

All the formulated radioligands were chemically and radiochemically stable for at least 1 h by radio-HPLC analysis.

Figure S2. [¹¹C]**3** ([¹¹C]T1953) HPLC chromatograms. **A**: Preparative HPLC chromatogram. **B**: Analytical HPLC chromatogram.

Figure S3. [¹¹C]**4** ([¹¹C]T2525) HPLC Chromatograms. **A**: Preparative HPLC chromatogram. **B**: Analytical HPLC chromatogram.

Figure S4. [¹¹C]**5** ([¹¹C]T1660) HPLC Chromatograms. **A**: Preparative HPLC chromatogram. **B**: Analytical HPLC chromatogram.

Figure S5. [¹¹C]**6** ([¹¹C]T1650) HPLC Chromatograms: **A**: Preparative HPLC chromatogram. **B**: Analytical HPLC chromatogram.

Figure S6. HPLC Chromatograms for [¹¹C]**6** ([¹¹C]T1650) production in a CGMP laboratory. **A**: Preparative HPLC chromatogram. **B**: Analytical HPLC chromatogram.

Dadialigand	Yield ^a	$A_{\rm m}{}^{\rm b}$
Kaulonganu	(%)	(GBq/µmol at EOS)
[¹¹ C] 3 ([¹¹ C]T1953)	$13 \pm 2 \ (n = 4)$	$309 \pm 90 \ (n = 4)$
[¹¹ C] 4 ([¹¹ C]T2525)	$17 \pm 4 \ (n = 7)$	$228 \pm 31 \ (n = 7)$
[¹¹ C] 5 ([¹¹ C]T1660)	$16 \pm 5 \ (n = 5)$	$354 \pm 93 \ (n=3)$
[¹¹ C] 6 ([¹¹ C]T1650)	$20 \pm 6 \ (n = 7)$	$229 \pm 91 \ (n = 6)$

Table S3: Yields and A_m values for PDE4D radioligands evaluated in monkey.

^a Estimated from starting cyclotron-produced [¹¹C]carbon dioxide. Some productions were used only for logD measurements; all others were used for PET imaging.

^b Measured only for those productions used for PET imaging.

For human PET experiments [¹¹C]**6** ([¹¹C]T1650) was obtained in yields of 6.5 ± 2.5 GBq at end of synthesis (EOS) with molar activities of 265 ± 137 GBq/µmol (n = 4) from the amount of cyclotron-produced [¹¹C]carbon dioxide obtained from irradiation of the cyclotron target with a proton beam (16.5 MeV, 45 µA) for 40 min.

Table S4. Measured lipophilicities (mlog $D_{7.4}$) and monkey and human plasma free fractions (f_P) at baseline for tested radioligands.

		Plasma free fraction (f _P)		
Radioligand	mLogD _{7.4} ª	Monkey ^b	Human control	
	(n = 6)		standard plasma	
[¹¹ C] 3 ([¹¹ C]T1953)	3.45 ± 0.09	0.0115 & 0.0160	0.0077 & 0.0093	
[¹¹ C] 4 ([¹¹ C]T2525)	3.07 ± 0.24	0.0144 & 0.0141	0.0109 & 0.0102	
[¹¹ C] 5 ([¹¹ C]T1660)	3.38 ± 0.05	0.0498 & 0.0779	0.0271 & 0.0406	
[¹¹ C] 6 ([¹¹ C]T1650)	2.89 ± 0.03	$0.0666 \pm 0.0067^{\circ}$	0.0341 ± 0.0044^{b}	

^a Measured with a method based on partition of formulated radioligand between *n*-octanol and sodium phosphate buffer (0.15 M; pH 7.4), as described previously (1).

^b Values for particular monkey PET experiments are given in the main text.

^c The average SD from 6 separate studies

Notes:

- 1. Plasma free fraction was simultaneously determined in the experimental monkey plasma and in human control standards.
 - a. Monkey plasma: Plasma was prepared by centrifugation of blood taken from the experimental monkey before its injection with the radioligand.
 - b. Human control standard: pooled human plasma that had been aliquoted into Eppendorf tubes and individually stored at -70 °C.
- 2. Plasma free fraction was measured by the addition of radiochemically pure radioligand (1.11 2.22 kBq) to 650 µL of non-radioactive plasma. After mixing and incubation for 10 min at room temperature, the free fraction was determined by ultrafiltration (Centrifree; Millipore, Billerica, Massachusetts) as previously described (2).

3. In order to eliminate inter-monkey variability, we used the free fraction values as determined by using the frozen human plasma, to better highlight the differences between the free fractions of the various radioligands.

References

- 1. Zoghbi SS, Anderson KB, Jenko KJ, Luckenbaugh DA, Innis RB and Pike VW. On quantitative relationships between drug-like compound lipophilicity and plasma free fraction in monkey and human. *J Pharm Sci* 2012; *101*, 1028–1039.
- Gandelman MS, Baldwin RM, Zoghbi SS, Zea-Ponce Y, Innis RB. Evaluation of ultrafiltration for the free-fraction determination of single photon emission computed tomography (SPECT) radiotracers: β-CIT, IBF, and iomazenil. *J Pharm Sci* 1994; 83: 1014–1019.

Figure S7. Data from PET experiments with [¹¹C]4 ([¹¹C]T2525) in monkey. Time-activity curves for whole brain at baseline and in a subsequent experiment in which rolipram (0.1 mg.kg) was administered intravenously at 5 min before [¹¹C]4 to preblock PDE4D enzyme (**A**). Time course of unchanged [¹¹C]4 in plasma during the baseline and rolipram preblock experiment (**B**). For these experiments, a single male monkey (13.9 kg) was injected intravenously with [¹¹C]4 (321 MBq, $A_m = 216 \text{ GBq/}\mu\text{mol}$) at baseline and with [¹¹C]4 (283 MBq, $A_m = 275 \text{ GBq/}\mu\text{mol}$) for the rolipram pre-block experiment.

Figure S8. Data from PET experiments with $[^{11}C]\mathbf{3}$ ($[^{11}C]T1953$) in monkey. Time-activity curves for whole brain at baseline and in a subsequent experiment in which rolipram (0.5 mg.kg) was administered intravenously at 5 minutes before $[^{11}C]\mathbf{3}$ to preblock PDE4D enzyme (**A**). Time course of unchanged $[^{11}C]T1953$ in plasma during the baseline and rolipram preblock experiment (**B**). For these experiments, a single male monkey (13.8 kg) was injected intravenously with $[^{11}C]\mathbf{3}$ (248 MBq; $A_{\rm m} = 185$ GBq/µmol) at baseline and with $[^{11}C]\mathbf{3}$ (289 MBq, $A_{\rm m} = 162$ GBq/µmol) for the rolipram pre-block experiment.

Figure S9. Data from PET experiments with [¹¹C]**5** ([¹¹C]T1660) in monkey. Time-activity curves for whole brain at baseline and in a subsequent experiment in which rolipram (1.0 mg/kg) was administered intravenously at 5 minutes before [¹¹C]**5** to preblock PDE4D enzyme (**A**). Time course of unchanged [¹¹C]**5** in plasma during the baseline and rolipram preblock experiment (**B**). Brain regional $V_{\rm T}$ values at baseline and after rolipram preblock (**C**). For these experiments, a single male monkey (10.9 kg) was injected intravenously with [¹¹C]**5** (321 MBq, $A_{\rm m} = 216$ GBq/µmol) at baseline and with [¹¹C]**5** (283 MBq, $A_{\rm m} = 275$ GBq/µmol) for the rolipram pre-block experiment.

Figure S10. Data from PET experiments with [¹¹C]6 ([¹¹C]T1650) in monkey. Time-activity curves for whole brain at baseline and in a subsequent experiment in which rolipram (1.0 mg/kg) was administered intravenously at 5 minutes before [¹¹C]6 to preblock PDE4D enzyme (**A**). Time course of unchanged [¹¹C]6 in plasma during the baseline and rolipram preblock experiment (**B**). Brain regional $V_{\rm T}$ values at baseline and after rolipram preblock (**C**). For these experiments, a single male monkey (12.9 kg) was injected intravenously with [¹¹C]6 (316 MBq, $A_{\rm m} = 65$ GBq/µmol) at baseline and with [¹¹C]6 (349 MBq, $A_{\rm m} = 108$ GBq/µmol) for the rolipram pre-block experiment.

Figure S11. HPLC analyses of the radiometabolites of $[^{11}C]6([^{11}C]T1650)$ generated over 30 min in various tissues: plasma sampled during PET experiments in rat (**A**), monkey (**B**), and human (**C**), rat brain *ex vivo* (**D**), and fresh rat brain homogenate *in vitro* (**E**). Rat brain *in vitro* gave a similar radiometabolite profile to rat brain *ex vivo* but did not produce radiometabolite $[^{11}C]B$. Rat brain radiometabolites therefore had both peripheral and central origin. $[^{11}C]B$ " was observed in human plasma. Radiometabolite profiles for rat, monkey, and human plasma, sampled during PET experiments, were quite similar.

Figure S12. Time-courses for radioactive species in plasma of a single human subject following intravenous administration of $[^{11}C]6$ ($[^{11}C]T1650$) at baseline (**A**) and in a BPN14770 preblock experiment (**B**). Under each condition, $[^{11}C]6$ declines quite rapidly, the group of polar radiometabolites $[^{11}C]A$ ", rise, and the lipophilic radiometabolite $[^{11}C]B$ ", which may penetrate the blood-brain barrier, stays relatively low and constant.

Figure S13. Average area (\pm range) of *AUC* for SUV from 60 to 120 minutes for two human participants. A significant difference (p < 0.05) was observed between the baseline and BPN14770 blocked scan.

Appendix 1. Characterization data for compounds 3–10.

			=====		Compound 3
Last changed Method Info	: 10/17/2019 4:57:20 PM by Tetra Di : Standard method for small molecul	scovery separa	Partr	ners	
	Sequence Method)		*		
Method	: C:\USERS\PUBLIC\DOCUMENTS\AGILENT	1100\STD	SEO	2020-01	-09 08-31-52\STD_MTD.M (
Sequence File	: C:\Users\Public\Documents\Agilent	1100\STD	SEO	2020-01	-09 08-31-52\STD SEO.S
injection bate	. 1/5/2020 0.52.45 AM	Volume	. 5 (
Injection Date	• 1/9/2020 8•32•43 MM	Tni	. 1		
Acq. Instrument	: Instrument 1	ocation	: Via	1 21	
Acq. Operator	: Tetra Discovery Partners Se	q. Line	: 1	L	

Signal 2: DAD1 D, Sig=230,16 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	뭥
1	0.539	BB	0.1015	8646.67383	1452.00574	64.4963
2	2.567	BB	0.0515	4459.79590	1318.84167	33.2660
3	2.905	BB	0.0395	12.81956	5.43780	0.0956
4	3.201	BB	0.0457	242.38814	84.03511	1.8080
5	3.616	BB	0.0512	16.99269	5.05645	0.1268
6	3.751	BB	0.0648	5.77079	1.27546	0.0430
7	3.967	BB	0.0491	22.01890	6.91523	0.1642
Total	s:			1.34065e4	2873.56746	

Area Percent Report

Sorted By	:	Signal	
Multiplier:		:	1.0000
Dilution:		:	1.0000
Use Multiplier a	& Dilution	Factor wit	h ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	0.551	BB	0.0447	28.58870	9.07978	2.7681
2	3.060	BB	0.0488	11.43199	3.62749	1.1069
3	3.633	BB	0.0427	943.83051	359.08966	91.3854
4	3.722	BB	0.0327	14.17191	7.29682	1.3722
5	3.995	BB	0.0418	7.87900	3.08767	0.7629
6	4.120	BB	0.0422	7.94757	3.07515	0.7695
7	4.303	BB	0.0724	18.95312	3.66206	1.8351

Sample Name: T-2525 Acq. Operator : Tetra Discovery Partners Seq. Line : 4 Acq. Instrument : Instrument 1 Location : Vial 24 Injection Date : 1/9/2020 8:50:34 AM Inj: 1 Inj Volume : 5.0 µl Sequence File : C:\Users\Public\Documents\Agilent1100\STD_SEQ 2020-01-09 08-31-52\STD_SEQ.S Method : C:\USERS\PUBLIC\DOCUMENTS\AGILENT1100\STD_SEQ 2020-01-09 08-31-52\STD_MTD.M (Sequence Method) Last changed : 10/17/2019 4:57:20 PM by Tetra Discovery Partners Method Info : Standard method for small molecule separation **Compound 4** _____

 Peak RetTime Type Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

 ----|------|-------|-------|
 ------|-------|-------|
 %

 Totals :
 1032.80279
 388.91863

Signal 2: DAD1 D, Sig=230,16 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	0.536	BB	0.0806	4568.00830	976.36768	67.8306
2	2.913	BB	0.0404	10.30285	4.22576	0.1530
3	3.060	вв	0.0469	37.43121	12.50152	0.5558
4	3.335	BB	0.0528	9.98064	2.72056	0.1482
5	3.518	BB	0.0431	7.71517	2.89877	0.1146
6	3.634	BB	0.0428	2017.14099	763.22974	29.9526
7	3.720	вв	0.0315	15.51579	8.40579	0.2304
8	3.996	BB	0.0582	19.94030	5.03152	0.2961
9	4.127	BB	0.0438	11.70332	4.29360	0.1738
10	4.305	BB	0.0592	36.70059	9.07931	0.5450

Totals :

6734.43916 1788.75425

Sorted By		:	Sigr	nal	
Multiplier:			:	1.0000	д
Dilution:			:	1.0000	д
Use Multiplier	&	Dilution	Factor	with ISTD	5

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	0.550	BB	0.0451	29.94461	9.40484	1.2259
2	0.643	BB	0.0432	7.40898	2.45612	0.3033
3	2.471	BB	0.0497	2367.99854	733.60571	96.9457
4	3.039	BB	0.0443	7.79230	2.81743	0.3190
5	3.284	BB	0.0501	15.08457	4.62256	0.6176
6	3.406	BB	0.0458	14.37478	4.95661	0.5885

Sample Name: T-1660 Acq. Operator : Tetra Discovery Partners Seq. Line : 3 Location : Vial 23 Acq. Instrument : Instrument 1 Injection Date : 1/9/2020 8:44:35 AM Inj: 1 Inj Volume : 5.0 µl Sequence File : C:\Users\Public\Documents\Agilent1100\STD_SEQ 2020-01-09 08-31-52\STD_SEQ.S Method : C:\USERS\PUBLIC\DOCUMENTS\AGILENT1100\STD_SEQ 2020-01-09 08-31-52\STD_MTD.M (Sequence Method) Last changed : 10/17/2019 4:57:20 PM by Tetra Discovery Partners Method Info : Standard method for small molecule separation **Compound 5**

Signal 2: DAD1 D, Sig=230,16 Ref=360,100

Totals :

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	0.535	BB	0.0724	5576.53760	1114.38977	62.1930
2	2.471	BB	0.0497	3153.35059	975.58374	35.1681
3	2.942	вв	0.0628	9.83256	2.45083	0.1097
4	3.038	вв	0.0420	7.50536	2.92268	0.0837
5	3.285	BB	0.0435	196.45462	72.80782	2.1910
6	3.406	BB	0.0436	9.71770	3.58381	0.1084
7	3.630	вв	0.0529	13.10033	3.73795	0.1461
Total	s :			8966.49877	2175.47659	

*** End of Report ***

2442.60379 757.86327

1	0.546	BB	0.0411	27.30640	9.06798	0.5705
2	0.642	BB	0.0512	20.85920	5.63690	0.4358
3	2.848	BB	0.0300	9.02666	5.84961	0.1886
4	2.960	BB	0.0530	4497.88916	1343.84485	93.9666
5	3.273	BB	0.0499	215.06854	66.22860	4.4931
6	3.701	BB	0.0456	16.53905	5.73654	0.3455
Totals	÷			4786.68901	1436.36447	

Acq. Operator	: Tetra Discovery Partners Seq. Line : 2
Acq. Instrument	: Instrument 1 Location : Vial 2
Injection Date	: 1/13/2020 5:09:16 PM Inj: 1
	Inj Volume : 5.0 µl
Sequence File	: C:\Users\Public\Documents\Agilent1100\STD_SEQ 2020-01-13 17-01-50\STD_SEQ.S
Method	: C:\USERS\PUBLIC\DOCUMENTS\AGILENT1100\STD_SEQ 2020-01-13 17-01-50\STD_MTD.M (Sequence Method)
Last changed	: 10/17/2019 4:57:20 PM by Tetra Discovery Partners
Method Info	: Standard method for small molecule separation

Signal 2: DAD1 D, Sig=230,16 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	95
1	0.549	BB	0.0408	24.67207	8.26218	0.3006
2	0.645	BB	0.0390	10.77763	4.05573	0.1313
3	2.239	BB	0.0839	8027.73975	1563.24561	97.7997
4	2.585	BB	0.0402	11.27485	4.67100	0.1374
5	2.656	BB	0.0860	8.81802	1.66064	0.1074
6	2.819	BB	0.0521	15.90209	4.62795	0.1937
7	2.917	BB	0.0405	104.07726	42.66168	1.2679
8	3.222	BB	0.0480	5.08581	1.74383	0.0620

Totals : 8208.34748 1630.92862

Acq. Op Acq. Ir Injecti									
	perator nstrument ion Date	: Tetra D : Instrum : 1/13/20	iscovery Par ent 1 20 4:25:25 P	tners M	Seq. Line Location Inj	: 1 : Vial 1 : 1			
Sequeno Method	ce File	: C:\User : C:\USER Sequenc	s\Public\Doc S\PUBLIC\DOC e Method)	uments\Agil UMENTS\AGII	ent1100\STD ENT1100\STD	SEQ 2020-01-13 SEQ 2020-01-13	3 16-24- 3 16-24-	33\STD_SEQ. 33\STD_MTD.1	S M (
Last ch Method	hanged Info	: 10/17/2 : Standar	019 4:57:20 d method for	PM by Tetra small mole	Discovery l cule separat	Partners tion			
======							Col	mpound	3 8
-	DAD1 A, Sig	=254,4 Ref=360,	100 (001-0101.D)				80		
120 100 80 60	a de la contracta de						3.40		
40	and the second se	48				8	.510	93	
20	4	0.6				2.79	3	3.7	
0	0	0.5	1	.5 2	2.5	3	3.5	4	
- 411	DAD1 D, Sig	=230,16 Ref=36	0,100 (001-0101.D)						
800 600		0.53							
400		11					408		
400							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
200		14				2.794	3.508	3.796	
0	1								
	0	0.5	1 4	.5 2	2.5	3	3.5	4	
======			Area Percent	Report					
======									
Sorted	By	:	Signal	1 0000					
Dilutic	on:		:	1.0000					
Use Mul	ltiplier 8	5 Dilution	Factor with	ISTDs					
Signal	1: DAD1 #	A, Sig=254	,4 Ref=360,1	00					
Peak Re #	etTime Typ [min]	be Width [min]	Area [mAU*s]	Height [mAU]	Area %				
	0.548 BB	0.0464	27.47399	8.35339	5.8340				
1	0.648 BB	0.0414	7.44672	2.45165	1.5813				
1 2	2.793 BB	0.0709	9.88186	1.95694	2.0984				
1 2 3	2 400 00	0 0400	398.36/46	149.02811	64.5920				
1 2 3 4 5	3.408 BB 3.510 BB	0.0432	21.82435	11.79237	4.6343				
1 2 3 4 5 6	3.408 BB 3.510 BB 3.793 BB	0.0432 0.0336 0.0545	21.82435 5.93382	11.79237 1.62932	4.6343 1.2600				

Sample Name: T-2517 ==================		
Acq. Operator	: Tetra Discovery Partners Seq. Line : 1	
Acq. Instrument	: Instrument 1 Location : Vial 1	
Injection Date	: 1/13/2020 4:25:25 PM Inj : 1	
	Inj Volume : 5.0 µl	
Sequence File	: C:\Users\Public\Documents\Agilent1100\STD SEQ 2020-01-13 16-24-33\STD SEQ.	S
Method	: C:\USERS\PUBLIC\DOCUMENTS\AGILENT1100\STD_SEQ 2020-01-13 16-24-33\STD_MTD. Sequence Method)	М (
Last changed	: 10/17/2019 4:57:20 PM by Tetra Discovery Partners	
Method Info	: Standard method for small molecule separation	
	Compound	8

-

Signal 2: DAD1 D, Sig=230,16 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	0.530	BB	0.0693	4468.31348	909.69635	83.9057
2	2.794	BB	0.0489	15.79040	4.99276	0.2965
3	3.408	BB	0.0432	820.19733	306.69583	15.4016
4	3.508	BB	0.0235	15.11948	15.29594	0.2839
5	3.796	BB	0.0561	5.97869	1.58137	0.1123
Total	s:			5325.39938	1238.26225	

Area Percent Report

Sort	ted By	Signal				
Mult	tiplier:	:		1.0000		
Dil	ution:			:		1.0000
Use	Multiplier	8	Dilution	Factor	with	ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	95
1	0.552	BB	0.0443	19.45042	6.25359	0.4405
2	2.250	BB	0.0527	4386.11084	1320.84546	99.3406
3	2.796	BB	0.0737	9.66268	1.82679	0.2188

Totals : 4415.22394 1328.92584

CIUCOI	: Tetra D	iscovery Par	rtners	Seq. Line	:	1						
strument	: Instrum	ent l		Location	: 1	Vial	1					
on Date	: 1/13/20	20 5:03:09 1	PM	Inj	:	1						
				Inj Volume	: 1	5.0	μl					
e File	: C:\User	s\Public\Do	cuments\Agil	ent1100\STI	D SI	EQ 2	020-	01-1	3 17	-01-50	0\STD	SEQ.S
	: C:\USER Sequenc	S\PUBLIC\DOG e Method)	CUMENTS\AGIL	ENT1100\STI	D_SI	EQ 2	020-	01-1	3 17	-01-50	0\STD	MTD.M
anged	: 10/17/2	019 4:57:20	PM by Tetra	Discovery	Par	rtne	rs					
Info	: Standar	d method for	r small mole	cule separa	atio	on						
										-		
=========		===========		==========						ror	1po	una
											-	
2: DAD1 I), Sig=230	,16 Ref=360,	,100									
2: DAD1 I), Sig=230	,16 Ref=360,	,100									
2: DAD1 I tTime Typ), Sig=230 De Width	,16 Ref=360, Area	,100 Height	Area								
2: DAD1 I tTime Typ min]), Sig=230 De Width [min]	,16 Ref=360, Area [mAU*s]	,100 Height [mAU]	Area %								
2: DAD1 I tTime Tyg min]), Sig=230 be Width [min]	,16 Ref=360, Area [mAU*s]	,100 Height [mAU]	Area %								
2: DAD1 I tTime Typ min]), Sig=230 be Width [min] 0.0438	,16 Ref=360, Area [mAU*s] 24.93855	,100 Height [mAU] 8.13513	Area ج 0.4693								
2: DAD1 I min] 0.550 BB 0.650 BB), Sig=230 be Width [min] 0.0438 0.0427	,16 Ref=360, Area [mAU*s] 24.93855 9.65048	,100 Height [mAU] 8.13513 3.24490	Area % 0.4693 0.1816								
2: DAD1 I tTime Typ min] 0.550 BB 0.650 BB 2.251 BB	0, Sig=230 0e Width [min] 	,16 Ref=360, Area [mAU*s] 24.93855 9.65048 5273.07471	,100 Height [mAU] 8.13513 3.24490 1532.46899	Area % 0.4693 0.1816 99.2205								
2: DAD1 I tTime Typ min] 0.550 BB 0.650 BB 2.251 BB 2.796 BB), Sig=230 pe Width [min] 0.0438 0.0427 0.0541 0.0576	,16 Ref=360, Area [mAU*s] 1 24.93855 9.65048 5273.07471 6.83724	,100 Height [mAU] 	Area % 0.4693 0.1816 99.2205 0.1287								
	on Date e File anged Info	on Date : 1/13/20 e File : C:\User : C:\USER Sequenc anged : 10/17/2 Info : Standar	on Date : 1/13/2020 5:03:09 e File : C:\Users\Public\Doo : C:\USERS\PUBLIC\Doo Sequence Method) anged : 10/17/2019 4:57:20 Info : Standard method fo	on Date : 1/13/2020 5:03:09 PM e File : C:\Users\Public\Documents\Agil : C:\USERS\PUBLIC\DOCUMENTS\AGIL Sequence Method) anged : 10/17/2019 4:57:20 PM by Tetra Info : Standard method for small mole	on Date : 1/13/2020 5:03:09 PM Inj Inj Volume e File : C:\Users\Public\Documents\Agilent1100\STI : C:\USERS\PUBLIC\DOCUMENTS\AGILENT1100\STI Sequence Method) anged : 10/17/2019 4:57:20 PM by Tetra Discovery Info : Standard method for small molecule separa	on Date : 1/13/2020 5:03:09 PM Inj : Inj Volume : 1 e File : C:\Users\Public\Documents\Agilent1100\STD_SI : C:\USERS\PUBLIC\DOCUMENTS\AGILENT1100\STD_SI Sequence Method) anged : 10/17/2019 4:57:20 PM by Tetra Discovery Par Info : Standard method for small molecule separation	on Date : 1/13/2020 5:03:09 PM Inj : 1 Inj Volume : 5.0 e File : C:\Users\Public\Documents\Agilent1100\STD_SEQ 2 : C:\USERS\PUBLIC\DOCUMENTS\AGILENT1100\STD_SEQ 2 Sequence Method) anged : 10/17/2019 4:57:20 PM by Tetra Discovery Partne Info : Standard method for small molecule separation	on Date : 1/13/2020 5:03:09 PM Inj : 1 Inj Volume : 5.0 µ1 e File : C:\Users\Public\Documents\Agilent1100\STD_SEQ 2020- : C:\USERS\PUBLIC\DOCUMENTS\AGILENT1100\STD_SEQ 2020- Sequence Method) anged : 10/17/2019 4:57:20 PM by Tetra Discovery Partners Info : Standard method for small molecule separation	<pre>on Date : 1/13/2020 5:03:09 PM Inj : 1 Inj Volume : 5.0 µl e File : C:\Users\Public\Documents\Agilent1100\STD_SEQ 2020-01-1 : C:\USERS\PUBLIC\DOCUMENTS\AGILENT1100\STD_SEQ 2020-01-1 Sequence Method) anged : 10/17/2019 4:57:20 PM by Tetra Discovery Partners Info : Standard method for small molecule separation</pre>	on Date : 1/13/2020 5:03:09 PM Inj : 1 Inj Volume : 5.0 µl e File : C:\Users\Public\Documents\Agilent1100\STD_SEQ 2020-01-13 17 : C:\USERS\PUBLIC\DOCUMENTS\AGILENT1100\STD_SEQ 2020-01-13 17 Sequence Method) anged : 10/17/2019 4:57:20 PM by Tetra Discovery Partners Info : Standard method for small molecule separation	on Date : 1/13/2020 5:03:09 PM Inj : 1 Inj Volume : 5.0 µl e File : C:\Users\Public\Documents\Agilent1100\STD_SEQ 2020-01-13 17-01-50 : C:\USERS\PUBLIC\DOCUMENTS\AGILENT1100\STD_SEQ 2020-01-13 17-01-50 Sequence Method) anged : 10/17/2019 4:57:20 PM by Tetra Discovery Partners Info : Standard method for small molecule separation 	on Date : 1/13/2020 5:03:09 PM Inj : 1 Inj Volume : 5.0 µl e File : C:\Users\Public\Documents\Agilent1100\STD_SEQ 2020-01-13 17-01-50\STD_ : C:\USERS\PUBLIC\DOCUMENTS\AGILENT1100\STD_SEQ 2020-01-13 17-01-50\STD_ Sequence Method) anged : 10/17/2019 4:57:20 PM by Tetra Discovery Partners Info : Standard method for small molecule separation Compo

S48

Sample Name: T-1720 140-57-011

Area Percent Report

.

Sorted By		:	Sig	nal	
Multiplier		: 1.0000			
Dilution		:	1.00	000	
Use Multiplier	æ	Dilution	Factor	with	ISTDs

Compound 10

Signal 1: DAD1 B, Sig=210,8 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	1.754	BV	0.0142	7.35588	6.50598	0.2876
2	1.915	BB	0.0123	5.81374	6.40295	0.2273
3	2.262	BV	0.0195	12.87690	7.89297	0.5034
4	2.369	VB	0.0247	2499.27222	1441.28113	97.6996
5	2.707	BB	0.0158	10.80134	8.67032	0.4222
6	2.883	BV	0.0265	13.45817	6.81933	0.5261
7	2.978	BB	0.0223	8.54099	5.15849	0.3339

Totals : 2558.11924 1482.73116

Signal 2: DAD1 C, Sig=254,16 Ref=off Signal has been modified after loading from rawdata file!

Peak R #	etTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area ۴
-						
1	1.754	BB	0.0196	2.37219	1.49159	0.2413
2	1.912	BB	0.0203	3.18693	1.98156	0.3242
3	2.369	BB	0.0235	966.31439	570.21277	98.3069
4	2.706	BB	0.0236	5.94882	3.10076	0.6052
5	2.881	BB	0.0228	3.38616	1.80849	0.3445
6	2.975	BB	0.0159	1.74863	1.37248	0.1779
Totals	:			982.95712	579.96765	