Supporting Information for

Synthesis of Core-Modified Third-Generation Light-Driven Molecular Motors

José Augusto Berrocal,^a Lukas Pfeifer,^a Dorus Heijnen,^a Ben L. Feringa^{a*}

^a Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

* to whom correspondence should be addressed: b.l.feringa@rug.nl

Table of contents

List of all synthesized compounds	SI 3
¹ H NMR and ¹³ C NMR spectra	SI 14
Isomeric ratio and degree of unidirectionality of motors 2-8	SI 44
UV-Vis spectra of motors 1-9	SI 45
FT-IR spectra	SI 48
Crystal Structure of motors 2, 4 and 5	SI 54
TD- ¹ H NMR experiments with motor 6	SI 57
¹ H NMR <i>in situ</i> irradiation experiments at -80 °C with motor 6	SI 58
References	SI 59

List of all synthesized compounds

dimethyl 4,5-dimethoxyphthalate (11)

(white solid). ¹H-NMR (CDCl₃, 600 MHz, δ): 7.15 (s, 2H), 3.90 (s, 6H), 3.84 (s, 6H). ¹³C-NMR {¹H} (CDCl₃, 150 MHz, δ): 167.89, 150.75, 125.19, 111.42, 56.23, 52.60. FT-IR (dry powder) (cm⁻¹): 3018 (*C*-*H*), 2955 (*C*-*H*), 1709 (*C*=*O*). HR-MS (*m*/*z*): [M+Na]⁺ calcd for C₁₂H₁₄O₆Na 276.0683; found 276.0680 (0.8 ppm). M_p 86.2-87.1 °C.

Compound 12 was previously characterized.^{S1}

dimethyl 4,5-dichlorophthalate (13)

(white solid). CI \sim ¹H-NMR (CDCl₃, 600 MHz, δ): 7.78 (s, 2H), 3.88 (s, 6H). **13** ¹³C-NMR {¹H}(CDCl₃, 150 MHz, δ): 166.04, 135.82, 131.44, 130.99, 53.08. FT-IR (dry powder) (cm⁻¹): 3096 (*C*-*H*), 3037 (*C*-*H*), 2956 (*C*-*H*), 1720 (*C*=*O*). HR-MS (*m*/*z*): [M+H]⁺ calcd for C₁₀H₉Cl₂O₄ 262.9872; found 262.9873 (0.2 ppm). M_p 44.5-46 °C.

dimethyl 4,5-dibromophthalate (14)

(white solid). ¹H-NMR (CDCl₃, 600 MHz, δ): 7.96 (s, 2H), 3.91 (s, 6H). ¹³C-NMR {¹H} (CDCl₃, 150 MHz, δ): 166.13, 134.08, 132.03, 128.38, 53.17. FT-IR (dry powder) (cm⁻¹): 2953 (*C*-*H*), 2923 (*C*-*H*), 2852 (*C*-*H*), 1730 (*C*=*O*). HR-MS (*m*/*z*): [M+H]⁺ calcd for C₁₀H₉Br₂O₄ 352.8842; found 352.8841 (0.2 ppm). M_p 72.6-74.3 °C.

dimethyl [1,1':2',1''-terphenyl]-4',5'-dicarboxylate (15)

Synthesized with general method G. (off-white solid). ¹H-NMR (CDCl₃, 600 MHz, δ): 7.80 (s, 2H), 7.24-7.23 (m, 6H), 7.15-7.13 (m, 4H), 3.94 (s, 6H).

仌

SI 3

CI CO₂CH₃ CI CO₂CH₃

H₃CO.

¹³C-NMR {¹H} (CDCl₃, 150 MHz, δ): 167.98, 143.57, 139.71, 131.39, 130.89, 129.76, 128.28, 127.55, 52.84.

FT-IR (dry powder) (cm⁻¹): 2955 (*C*-*H*), 1721 (*C*=*O*).

HR-MS (m/z): [M+Na]⁺ calcd for C₂₂H₁₈O₄Na 369.1097; found 369.1094 (0.9 ppm). M_p 108.8-110.1 °C.

dimethyl 4,4''-dimethoxy-[1,1':2',1''-terphenyl]-4',5'-dicarboxylate H_3^{CO} (16)

(off-white solid).

¹H-NMR (CDCl₃, 600 MHz, δ): 7.74 (s, 2H), 7.07-7.06 (AA'BB' system, 4H), 6.79-6.77 (AA'BB' system, 4H), 3.93 (s, 6H), 3.78 (s, 6H).

¹³C-NMR {¹H} (CDCl₃, 150 MHz, δ): 168.10, 159.08, 143.04, 132.23, 131.32, 130.89, 130.47, 113.81, 55.34, 52.77.

FT-IR (dry powder) (cm⁻¹): 2955 (*C*-*H*), 2841 (*C*-*H*), 1722 (*C*=*O*).

HR-MS (m/z): [M+Na]⁺ calcd for C₂₄H₂₂O₆Na 429.1309; found 429.1303 (1.4 ppm).

M_p 113.6-115.1 °C.

dimethyl 4,4''-bis((tert-butyldimethylsilyl)oxy)-[1,1':2',1''- TBDMSO terphenyl]-4',5'-dicarboxylate (17)

(transparent oil).

(white solid).

¹H-NMR (CDCl₃, 600 MHz, δ): 7.75 (s, 2H), 6.99-6.98 (AA'BB' system, 4H), 6.71-6.69 (AA'BB' system, 4H), 3.93 (s, 6H), 0.97 (s, 18H), 0.18 (s, 12H).

¹³C-NMR {¹H} (CDCl₃, 150 MHz, δ): 168.16, 155.29, 143.23, 132.89, 131.18, 130.91, 130.45, 120.85, 119.99, 116.04, 52.78, 25.85, 25.81, 18.39, -4.28.

FT-IR (dry liquid) (cm⁻¹): 2954 (C-H), 2930 (C-H), 2858 (C-H), 1728 (C=O), 1244 (Si-O).

HR-MS (*m/z*): [M+H]⁺ calcd for HR-MS C₃₄H₄₇O₆Si₂ 607.2906; found 607.2887 (3.1 ppm).

tetramethyl benzene-1,2,4,5-tetracarboxylate (18)

 $H_{3}CO_{2}C$ $H_{3}CO_{2}C$ $CO_{2}CH_{3}$ $CO_{2}CH_{3}$ $CO_{2}CH_{3}$ $CO_{2}CH_{3}$

CO₂CH₂

17

TROMSO

¹H-NMR (CDCl₃, 600 MHz, δ): 8.07 (s, 2H), 3.94 (s, 12H).

¹³C-NMR {¹H} (CDCl₃, 150 MHz, δ): 166.47, 134.38, 129.79, 53.22.

FT-IR (dry powder) (cm⁻¹): 2956 (*C*-*H*), 1720 (*C*=*O*).

HR-MS (m/z): [M+Na]⁺ calcd for C₁₄H₁₄O₈Na 333.0581; found 333.0579 (0.6 ppm). M_p 137.1-138.9 °C. Compound **19** was previously reported^{S2} and characterized (synthesized in 75% yield).

5,6-dimethoxy-2-methyl-2-phenyl-1H-indene-1,3(2H)-dione (20) (off-white solid). ¹H-NMR (CDCl₃, 600 MHz, δ): 7.32 (s, 2H), 7.28-7.15 (m, 5H), 3.96 (s, 6H), 1.63 (s, 3H). ¹³C-NMR {¹H} (CDCl₃, 150 MHz, δ): 201.02, 156.41, 138.42, 136.47, 129.42, 128.82, 128.80, 128.77, 127.57, 126.75, 103.95, 57.63, 56.84, 19.97. FT-IR (dry powder) (cm⁻¹): 3012 (*C*-*H*), 2979 (*C*-*H*), 2959 (*C*-*H*), 1688 (*C*=*O*). HR-MS (*m*/*z*): [M+H]⁺ calcd for C₁₈H₁₈O₄ 297.1121; found 297.1120 (0.5 ppm). M_p 168.2-170.7 °C.

2-methyl-2-phenyl-1H-cyclopenta[b]naphthalene-1,3(2H)-dione (21)

(off-white solid). ¹H-NMR (CDCl₃, 600 MHz, δ): 8.58 (s, 2H), 8.12-8.11 (m, 2H), 7.73-7.71 (m, ²H), 7.39-7.38 (m, 2H), 7.31-7.23 (m, 3H), 1.78 (s, 3H). ¹³C-NMR {¹H} (CDCl₃, 150 MHz, δ): 202.30, 138.22, 136.87, 136.32, 130.71, 129.84, 128.95, 127.70, 126.88, 125.20, 59.65, 20.26. FT-IR (dry powder) (cm⁻¹): 2979 (*C*-*H*), 2934 (*C*-*H*), 2867 (*C*-*H*), 1688 (*C*=*O*). HR-MS (*m*/*z*): [M+H]⁺ calcd for C₂₀H₁₆O₂ 287.1067; found 287.1065 (0.5 ppm). M_p 113.1-115.6 °C.

5,6-dichloro-2-methyl-2-phenyl-1H-indene-1,3(2H)-dione (22)

(off-white solid).

¹H-NMR (CDCl₃, 600 MHz, δ): 8.07 (s, 2H), 7.28-7.21 (m, 5H), 1.66 (s, 3H).

¹³C-NMR {¹H} (CDCl₃, 150 MHz, δ): 199.73, 141.64, 140.07, 137.17, 129.12, 128.07, 126.67, 125.74, 58.46, 20.27.

FT-IR (dry powder) (cm⁻¹): 2929 (*C*-*H*), 1709 (*C*=*O*).

HR-MS (m/z): $[M+H]^+$ calcd for C₁₆H₁₂Cl₂O₂ 305.0131; found 305.0129 (0.4 ppm). M_p 104.9-106.8 °C.

5,6-dibromo-2-methyl-2-phenyl-1H-indene-1,3(2H)-dione (23)

(off-white solid).

¹H-NMR (CDCl₃, 600 MHz, δ): 8.25 (s, 2H), 7.27-7.21 (m, 5H), 1.66 (s, 3H).

22

¹³C-NMR {¹H} (CDCl₃, 150 MHz, δ): 199.81, 140.52, 137.14, 134.46, 129.13, 129.12, 128.96, 128.08, 126.68, 58.44, 20.25.
FT-IR (dry powder) (cm⁻¹): 3072 (*C*-*H*), 2934 (*C*-*H*), 1707 (*C*=*O*).
HR-MS (*m*/*z*): [M+H]⁺ calcd for C₁₆H₁₂Br₂O₂ 392.9120; found 392.9189 (0.4 ppm).
M_p 145.6-147.1 °C.

2-methyl-2,5,6-triphenyl-1H-indene-1,3(2H)-dione (24)

(off-white solid).

¹H-NMR (CDCl₃, 600 MHz, δ): 8.07 (s, 2H), 7.41-7.39 (m, 2H), 7.34-7.31 (m,

2H), 7.27-7.23 (m, 7H), 7.16-7.14 (m, 4H), 1.76 (s, 3H).

 $^{13}\text{C-NMR}$ {¹H} (CDCl₃, 150 MHz, δ): 201.83, 149.19, 140.28, 139.66, 138.07, 129.71, 128.99,

128.44, 128.06, 127.78, 126.88, 125.89, 58.58, 20.26.

FT-IR (dry powder) (cm⁻¹): 3060 (*C*-*H*), 1707 (*C*=*O*).

HR-MS (m/z): $[M+H]^+$ calcd for C₂₂H₂₂O₂ 389.1536; found 389.1534 (0.4 ppm).

M_p 195.3-197.2 °C.

5,6-bis(4-methoxyphenyl)-2-methyl-2-phenyl-1H-indene-1,3(2H)-

dione (25)

(off-white solid).

¹H-NMR (CDCl₃, 600 MHz, δ): 8.02 (s, 2H), 7.40-7.39 (m, 2H), 7.34-

7.31 (m, 2H), 7.27-7.25 (m, 1H), 7.10-7.09 (AA'BB' system, 4H), 6.82-6.80 (AA'BB' system, 4H), 3.80 (s, 6H), 1.75 (s, 3H).

¹³C-NMR {¹H} (CDCl₃, 150 MHz, δ): 201.94, 159.51, 148.74, 139.99, 138.21, 132.17, 130.96,

128.96, 127.72, 126.88, 125.72, 114.00, 58.54, 55.39, 20.19.

FT-IR (dry powder) (cm⁻¹): 3059 (C-H), 2961 (C-H), 1701 (C=O).

HR-MS (m/z): $[M+H]^+$ calcd for C₃₀H₂₅O₄ 449.1747; found 449.1738 (2.0 ppm). M_p 196.2-198.7 °C.

${\bf 5,6-bis} (4-((tert-butyl dimethyl silyl) oxy) phenyl)-2-methyl-2-$

phenyl-1H-indene-1,3(2H)-dione (26)

(off-white solid).

¹H-NMR (CDCl₃, 600 MHz, δ): 8.02 (s, 2H), 7.40-7.39 (m, 2H), 7.34-

7.31 (m, 2H), 7.27-7.25 (m, 1H), 7.02-7.01 (AA'BB' system, 4H), 6.74-6.73 (AA'BB' system, 4H), 1.75 (s, 3H), 0.98 (s, 18H), 0.19 (s, 12H).

24

¹³C-NMR {¹H} (CDCl₃, 150 MHz, δ): 201.95, 155.80, 148.91, 140.01, 138.23, 132.85, 130.97, 129.65, 128.96, 128.87, 127.72, 126.89, 125.60, 120.18, 58.55, 25.81, 20.20, 18.41, -4.26. FT-IR (dry powder) (cm⁻¹): 2931 (*C*-*H*), 2858 (*C*-*H*), 1703 (*C*=*O*), 1266 (*Si*-*O*). HR-MS (*m*/*z*): [M+H]⁺ calcd for C₄₀H₄₉O₄Si₂ 649.3164; found 649.3147 (2.6 ppm). M_p 134.2-136.5 °C.

dimethyl 2-isopropyl-2-methyl-1,3-dioxo-2,3-dihydro-1H-indene-5,6dicarboxylate (27)

(yellow solid).

¹H-NMR (CDCl₃, 600 MHz, δ): 8.25 (s, 2H), 3.96 (s, 6H), 2.16 (h, *J* = 6 Hz, 1H), 1.27 (s, 3H), 0.91 (d, *J* = 6 Hz, 6H).

¹³C-NMR {¹H} (CDCl₃, 150 MHz, δ): 203.53, 166.45, 142.70, 138.64, 123.94, 57.52, 53.40, 34.67, 18.12, 17.37.

FT-IR (dry powder) (cm⁻¹): 2957 (*C*-*H*), 2876 (*C*-*H*), 1729 (*C*=*O*), 1710 (*C*=*O*). HR-MS (*m*/*z*): [M+H]⁺ calcd for C₁₇H₁₉O₆ 319.1176; found 319.1175 (0.4 ppm). M_p 92.2-94.6 °C.

5,6-dimethoxy-2-phenyl-1H-indene-1,3(2H)-dione (29)

(off-white solid).

¹H-NMR (CDCl₃, 600 MHz, δ): 7.40 (s, 2H), 7.34-7.28 (m, 3H), 7.18-7.16 (m, 2H), 4.20 (s, 1H), 4.04 (s, 6H).

¹³C-NMR {¹H} (CDCl₃, 150 MHz, δ): 197.45, 156.35, 137.98, 133.94, 129.08, 128.79, 127.86, 103.81, 59.59, 56.90.

FT-IR (dry powder) (cm⁻¹): 3006 (*C*-*H*), 2946 (*C*-*H*), 1686 (*C*=*O*).

HR-MS (*m*/*z*): [M+H]⁺ calcd for C₁₇H₁₅O₄ 283.0965; found 283.0961 (1.3 ppm).

M_p 101.2-103.5 °C.

(off-white solid).

2-octadecyl-2-phenyl-1H-indene-1,3(2H)-dione (30)

29

¹H-NMR (CDCl₃, 600 MHz, δ): 8.03-8.02 (m, 2H), 7.86-

7.85 (m, 2H), 7.42-7.40 (m, 2H), 7.30-7.28 (m, 2H), 7.24-7.22 (m, 1H), 2.25 (t, *J* = 9 Hz, 2H), 1.30-1.13 (m, 35H), 0.88 (t, *J* = 6 Hz, 3H).

¹³C-NMR {¹H} (CDCl₃, 150 MHz, δ): 202.17, 142.25, 137.41, 136.00, 128.89, 127.70, 126.97, 123.67, 62.48, 36.51, 32.07, 30.13, 29.84, 29.80, 29.76, 29.74, 29.69, 29.62, 29.51, 29.30, 25.38, 22.84, 14.26. FT-IR (dry powder) (cm⁻¹): 2949 (C-H), 2916 (C-H), 2850 (C-H), 1705 (C=O). HR-MS (m/z): $[M+H]^+$ calcd for C₃₃H₄₇O₂ 475.3571; found 475.3557 (2.9 ppm).

M_p 63.2-64.3 °C.

5,6-dimethoxy-2-methyl-2-phenyl-1H-indene-1,3(2H)-dithione (32)

(green solid). ¹H-NMR (CDCl₃, 300 MHz, δ): 7.40 (s, 2H), 7.21-7.17 (m, 5H), 4.09 (s, 6H), 1.92 (s, 3H).

2-methyl-2-phenyl-1H-cyclopenta[b]naphthalene-1,3(2H)-dithione (33)

(green solid). ¹H-NMR (CDCl₃, 300 MHz, δ): 8.63 (s, 2H), 8.15-8.12 (m, 2H), 7.72-7.69 (m, 2H), 7.22-7.12 (m, 5H), 2.00 (s, 3H).

5,6-dichloro-2-methyl-2-phenyl-1H-indene-1,3(2H)-dithione (34)

(green solid). ¹H-NMR (CDCl₃, 400 MHz, δ): 8.15 (s, 2H), 7.24-7.15 (m, 5H), 1.91 (s, 3H).

2-methyl-2,5,6-triphenyl-1H-indene-1,3(2H)-dithione (35)

(green solid). ¹H-NMR (CDCl₃, 400 MHz, δ): 8.14 (s, 2H), 7.31-7.29 (m, 10H), 7.25-7.22 (m, 5H), 2.01 (s, 3H).

5,6-bis(4-methoxyphenyl)-2-methyl-2-phenyl-1H-indene-1,3(2H)-

dithione (36)

(green solid).

¹H-NMR (CDCl₃, 400 MHz, δ): 8.05 (s, 2H), 7.28-7.21 (m, 5H), 7.16-

7.14 (AA'BB'system, 4H), 6.83-6.80 (AA'BB'system, 4H), 3.81 (s, 6H), 1.96 (s, 3H).

32

phenyl-1H-indene-1,3(2H)-dione (37) (green solid).

5,6-bis(4-((tert-butyldimethylsilyl)oxy)phenyl)-2-methyl-2-

¹H-NMR (CDCl₃, 400 MHz, δ): 8.06 (s, 2H), 7.25-7.20 (m, 5H), 7.08-

7.06 (AA'BB' system, 4H), 6.75-6.73 (AA'BB' system, 4H), 1.97 (s, 3H), 0.98 (s, 18H), 0.19 (s, 12H).

2-octadecyl-2-phenyl-1H-indene-1,3(2H)-dithione (38)

Synthesized with general method D. The compound was obtained in a ternary mixture (860 mg) composed by 15%

desired product 38, 46% starting indanedione 30, and 39% product of single conversion. This material was used in the next step without further purification, adjusting the amount of 9diazo9H-fluorenone necessary in the B-K olefination.

dimethyl 2-isopropyl-2-methyl-1,3-dioxo-2,3-dihydro-1H-indene-5,6dicarboxylate (27) (green solid). 39 ¹H-NMR (CDCl₃, 400 MHz, δ): 8.27 (s, 2H), 3.96 (m, 6H), 2.41 (h, J = 7 Hz, 1H), 1.52 (s, 3H), 0.86 (d, J = 7 Hz, 6H).

Reference motor **1** was previously reported^{S2} and characterized.

(deep red solid).

(2)

¹H-NMR (Cl₂DCCDCl₂, 500 MHz, 90 °C, δ) (signals of the main isomer): 8.41 (d, J = 6 Hz, 2H), 7.80 (d, J = 6 Hz, 2H), 7.72 (d, J = 6 Hz, 2H), 7.68 (d, J = 6 Hz, 2H), 7.65 (s, 2H), 7.30 (t, J = 6Hz, 3H), 7.27 (t, J = 6Hz, 3H),7.18 (t, *J* = 6Hz, 3H), 7.13 (t, *J* = 6Hz, 3H), 3.86 (s, 6H), 2.44 (s, 3H).

¹³C-NMR {¹H} (CDCl₃, 125 MHz, -45 °C, δ): 160.69, 157.25, 154.35, 152.20, 150.17, 149.70, 142.21, 140.95, 140.39, 140.12, 139.58, 139.54, 138.86, 137.61, 137.38, 137.32, 132.95, 130.44, 128.69, 128.60, 127.97, 127.53, 127.28, 127.17, 127.04, 126.83, 126.73, 126.67, 126.58, 126.20, 126.05, 125.77, 123.61, 119.92, 119.60, 119.53, 119.39, 110.67, 105.38, 71.39, 68.75, 56.91, 56.70, 56.57, 23.38, 19.44.

HR-MS (*m/z*): [M+H]⁺ calcd for C₄₄H₃₄O₂ 593.2475; found 593.2461 (2.3 ppm).

38

2

UV-Vis (CH₂Cl₂) λ_{max} , nm (ϵ): 247 (149200), 471 (69400).

M_p 260-262 °C.

Single crystals for XRD were obtained from slow diffusion of hexane (antisolvent) into a saturated solution of 1,2-dichloroethane (solvent).

(3)

(orange solid).

¹H-NMR (Cl₂DCCDCl₂, 500 MHz, 90 °C, δ): 8.72 (s, 2H), 8.64 (d, J = 6 Hz, (2H), 7.84-7.82 (m, 4H), 7.80-7.78 (m, 2H), 7.71 (d, J = 6 Hz, 2H), 7.68-7.67 (m, 2H), 7.57-7.55 (m, 4H), 7.73 (t, J = 6 Hz, 3H), 7.29-7.26 (m, 3H), 7.15-7.12 (m, 5H), 2.48 (s, 3H).

3

HR-MS (*m*/*z*): [M+H]⁺ calcd for C₄₆H₃₁ 583.2420; found 583.2410 (1.8 ppm).

UV-Vis (CH₂Cl₂) λ_{max} , nm (ϵ): 244 (239352), 400 (94064).

 $M_p > 300 \ ^{\circ}C.$

(4)

(orange solid).

¹H-NMR (Cl₂DCCDCl₂, 500 MHz, 90 °C, δ) (signals of the main isomer): 8.35 (d, *J* = 6 Hz, 2H), 8.32 (s, 2H), 7.73-7.68 (m, 5H), 7.63 (d, *J* = 6 Hz, 2H), 7.34 (t, *J* = Hz, 3H), 7.26 (t, *J* = 6 Hz, 3H), 7.21 (t, *J* = 6 Hz, 3H), 7.10 (t, *J* = 6 Hz, 3H), 2.42 (s, 3H).

¹³C-NMR {¹H} (CDCl₃, 125 MHz, -45 °C, δ): 157.14, 154.41, 154.16, 147.21, 144.65, 140.84, 140.39, 140.26, 140.18, 139.83, 139.65, 138.46, 138.41, 137.13, 135.31, 135.01, 134.41, 133.97, 133.10, 132.71, 130.74, 130.41, 129.64, 128.76, 128.33, 128.16, 128.07, 127.88, 127.74, 127.46, 126.61, 126.44, 125.42, 125.32, 124.40, 123.51, 123.27, 122.81, 120.35, 120.25, 119.80, 119.65, 119.54, 119.05, 70.71, 68.49, 19.70, 18.91.

HR-MS (*m*/*z*): [M+H]⁺ calcd for C₄₂H₂₇Cl₂ 601.1484; found 601.1481 (0.5 ppm).

UV-Vis (CH₂Cl₂) λ_{max}, nm (ε): 241 (156766), 441 (59518).

M_p 269-271 °C.

Single crystals for XRD were obtained from slow diffusion of hexane (antisolvent) into a saturated solution of 1,2-dichloroethane (solvent).

(5)

(red solid).

¹H-NMR (Cl₂DCCDCl₂, 500 MHz, 90 °C, δ) (signals of the main isomer): 8.63 (d, *J* = 6 Hz, 2H), 8.30 (s, 2H), 7.80 (d, *J* = 6 Hz, 3H), 7.69-7.64 (m, 6H), 7.31-7.11 (m, 20H), 2.50 (s, 3H).

5

¹³C-NMR {¹H} (CDCl₃, 125 MHz, -45 °C, δ): 159.78, 156.61, 147.01, 144.58, 141.53, 141.29, 140.53, 140.25, 140.07, 140.00, 139.97, 139.79, 139.58, 139.15, 137.51, 135.63, 133.19, 132.73, 131.90, 131.40, 129.81, 129.76, 129.31, 128.88, 128.68, 128.50, 128.29, 127.99, 127.74, 127.64, 127.57, 127.51, 127.26, 127.05, 126.90, 126.65, 126.35, 126.26, 126.14, 125.10, 123.67, 123.34, 119.57, 119.40, 118.91, 70.73, 68.57, 19.88, 19.42. HR-MS (*m*/*z*): [M+H]⁺ calcd for C₅₄H₃₇ 685.2890; found 685.2881 (1.3 ppm). UV-Vis (CH₂Cl₂) λ_{max} , nm (ε): 246 (209192), 391 (63390), 449 (86394). M_p > 300 °C.

Single crystals for XRD were obtained from slow diffusion of hexane (antisolvent) into a saturated solution of 1,2-dichloroethane (solvent).

(6)

(red solid).

¹H-NMR (Cl₂DCCDCl₂, 500 MHz, 90 °C, δ) (signals of the main isomer): 8.62 (d, *J* = 6 Hz, 2H), 8.25 (s, 2H), 7.79 (d, *J* = 6 Hz, 2H), 7.68 (d, *J* = 6 Hz, 2H), 7.64 (d, *J* = 6 Hz, 2H), 7.29 (t, *J* = Hz, 3H), 7.25 (t, *J* = 6 Hz, 3H), 7.18 (t, *J* = 6 Hz, 3H), 7.15 (d, *J* = 6 Hz, 4H), 7.12 (t, *J* = 6 Hz, 3H), 6.80 (d, *J* = 6 Hz, 4H), 3.82 (s, 6H), 2.49 (s, 3H).

¹³C-NMR {¹H} (CDCl₃, 125 MHz, -45 °C, δ): 160.05, 158.10, 158.00, 156.86, 146.64, 144.25, 141.39, 141.05, 140.82, 140.60, 139.90, 139.72, 139.51, 139.21, 137.53, 135.65, 132.82, 132.75, 132.57, 132.38, 131.70, 130.97, 130.90, 130.54, 128.66, 127.62, 127.40, 127.21, 126.68, 126.30, 126.22, 125.06, 123.67, 123.33, 119.54, 119.37, 113.18, 70.64, 68.49, 55.29, 19.85, 19.47.

HR-MS (*m/z*): $[M+H]^+$ calcd for C₅₆H₄₁O₂ 745.3101; found 745.3088 (1.7 ppm). UV-Vis (CH₂Cl₂) λ_{max} , nm (ϵ): 244 (206000), 395 (69400), 450 (84200). M_p 268-270 °C. (7)

(red solid). TBDMSO ¹H-NMR (Cl₂DCCDCl₂, 500 MHz, 90 °C, δ) (signals of the main isomer): 8.62 (d, J = 6 Hz, 2H), 8.26 (s, 2H), 7.79 (d, J = 6 Hz, 2H), TBDMSO 7.68 (d, J = 6 Hz, 2H), 7.65 (d, J = 6 Hz, 2H), 7.30 (t, J = Hz, 3H), 7.25 (t, J = 6 Hz, 3H), 7.18 (t, J = 6 Hz, 3H), 7.12 (t, J = 6 Hz, 3H), 7 7.09 (d, J = 6 Hz, 4H), 6.72 (d, J = 6 Hz, 4H), 2.49 (s, 3H), 1.03 (s, 18 H), 0.23 (s, 12H). ¹³C-NMR {¹H} (CDCl₃, 125 MHz, -45 °C, δ): 160.11, 156.93, 154.44, 154.31, 146.64, 144.21, 141.33, 141.09, 140.65, 139.93, 139.87, 139.72, 139.47, 139.25, 137.55, 135.65, 133.48, 133.32, 132.79, 132.35, 131.54, 130.99, 130.91, 128.66, 127.56, 127.39, 127.21, 126.65, 126.22, 123.36, 119.71, 119.53, 119.36, 70.72, 68.55, 29.89, 25.60, 19.85, 19.56, 18.24, -4.41. HR-MS (m/z): $[M+H]^+$ calcd for C₆₆H₆₅O₂Si₂ 945.4518; found 945.4505 (1.4 ppm). UV-Vis (CH₂Cl₂) λ_{max} , nm (ϵ): 246 (178420), 396 (59400), 451 (72400). M_p 248-251.6 °C.

(8)

(orange solid).

¹H-NMR (CDCl₃, 500 MHz, -45 °C, δ): 8.45 (d, *J* = 8.0 Hz, 2H), 8.24-8.22 (m, 2H), 7.75 (d, *J* = 8.0 Hz, 2H), 7.71-7.67 (m, 4H), 7.39-7.25 (m, 11H), 7.15 (t, *J* = 8 Hz, 2H), 7.19 (t, *J* = 8 Hz, 2H), 3.04 (m, 2H), 1.23 (m, 20H), 1.01 (m,

2H), 0.87 (m, 5H), 0.74 (m, 2H), 0.67 (m, 2H), 0.56 (m, 2H), 0.44 (m, 2H), 0.34 (m, 2H).

¹³C-NMR {¹H} (CDCl₃, 125 MHz, -45 °C, δ): 155.08, 148.67, 141.04, 140.01, 139.78, 138.83, 137.38, 133.29, 130.46, 129.14, 128.49, 127.53, 127.45, 127.36, 126.79, 126.09, 126.00, 123.55, 119.38, 119.30, 72.06, 32.06, 30.72, 29.95, 29.93, 29.88, 29.85, 29.65, 29.62, 29.54, 29.02, 28.92, 27.87, 24.74, 22.91, 14.51.

HR-MS (*m*/*z*): [M+H]⁺ calcd for C₅₉H₆₃ 771.4924; found 771.4913 (1.5 ppm).

UV-Vis (CH₂Cl₂) λ_{max} , nm (ϵ): 241 (105922), 453 (40224).

M_p 194.2-196.6 °C.

(9)

(orange solid).

¹H-NMR (CDCl₃, 600 MHz, 25 °C, δ): 8.44 (s, 2H), 8.20 (d, *J* = 6 Hz, 2H), 8.01 (d, *J* = 6 Hz, 2H), 7.77 (d, *J* = 6 Hz, 2H), 7.73 (d, *J* = 6 Hz, 2H), 7.39 (t, *J* = 6 Hz, 2H), 7.34-7.30 (m, 6H), 7.13 (t, *J* = 6 Hz, 2H), 3.89 (s, 6H), 3.01 (h,

J = 6 Hz, 1H), 2.39 (s, 3H), 1.07 (d, J = 6 Hz, 6H). [HMPA present in the

sample due to a strong interaction with the compound; the doublet at 2.65 in the ¹H-NMR spectrum belongs to HMPA]

¹³C-NMR {¹H} (CDCl₃, 125 MHz, -45 °C, δ): 167.84, 155.82, 150.23, 145.21, 140.95, 139.72, 139.60, 138.08, 136.10, 134.32, 131.15, 129.09, 128.94, 128.30, 128.17, 127.82, 127.35, 126.72, 126.36, 125.18, 123.53, 120.05, 119.74, 119.63, 75.05, 69.98, 53.35, 39.88, 28.84, 24.17.

HR-MS (*m/z*): [M+H]⁺ calcd for C₄₃H₃₅O₄ 615.2530; found 615.2517 (2.0 ppm).

UV-Vis (CH₂Cl₂) λ_{max} , nm (ϵ): 238 (196366), 374 (49228), 440 (65830).

 $M_p > 300 \ ^{\circ}C.$

¹H and ¹³C NMR spectra

Figure S1. ¹H NMR spectrum (600 MHz, CDCl₃, 25 °C) of 11.

Figure S2. ¹³C NMR spectrum (150 MHz, CDCl₃, 25 °C) of 11.

Figure S3. ¹H NMR spectrum (600 MHz, CDCl₃, 25 °C) of 13.

Figure S4. ¹³C NMR spectrum (150 MHz, CDCl₃, 25 °C) of 13.

Figure S5. ¹H NMR spectrum (600 MHz, CDCl₃, 25 °C) of 14.

Figure S6. ¹³C NMR spectrum (150 MHz, CDCl₃, 25 °C) of 14.

Figure S7. ¹H NMR spectrum (600 MHz, CDCl₃, 25 °C) of 15.

Figure S8. ¹³C NMR spectrum (150 MHz, CDCl₃, 25 °C) of 15.

Figure S9. ¹H NMR spectrum (600 MHz, CDCl₃, 25 °C) of 16.

Figure S10. ¹³C NMR spectrum (150 MHz, CDCl₃, 25 °C) of 16.

Figure S11. ¹H NMR spectrum (600 MHz, CDCl₃, 25 °C) of 17.

Figure S12. ¹³C NMR spectrum (150 MHz, CDCl₃, 25 °C) of 17.

Figure S13. ¹H NMR spectrum (600 MHz, CDCl₃, 25 °C) of 18.

Figure S14. ¹³C NMR spectrum (150 MHz, CDCl₃, 25 °C) of 18.

Figure S15. ¹H NMR spectrum (600 MHz, CDCl₃, 25 °C) of 20.

Figure S16. ¹³C NMR spectrum (150 MHz, CDCl₃, 25 °C) of 20.

Figure S17. ¹H NMR spectrum (600 MHz, CDCl₃, 25 °C) of 21.

Figure S18. ¹³C NMR spectrum (150 MHz, CDCl₃, 25 °C) of 21.

Figure S19. ¹H NMR spectrum (600 MHz, CDCl₃, 25 °C) of 22.

Figure S20. ¹³C NMR spectrum (150 MHz, CDCl₃, 25 °C) of 22.

Figure S21. ¹H NMR spectrum (600 MHz, CDCl₃, 25 °C) of 23.

Figure S22. ¹³C NMR spectrum (150 MHz, CDCl₃, 25 °C) of 23.

Figure S23. ¹H NMR spectrum (600 MHz, CDCl₃, 25 °C) of 24.

Figure S24. ¹³C NMR spectrum (150 MHz, CDCl₃, 25 °C) of 24.

Figure S25. ¹H NMR spectrum (600 MHz, CDCl₃, 25 °C) of 25.

Figure S26. ¹³C NMR spectrum (150 MHz, CDCl₃, 25 °C) of 25.

Figure S27. ¹H NMR spectrum (600 MHz, CDCl₃, 25 °C) of 26.

Figure S28. ¹³C NMR spectrum (150 MHz, CDCl₃, 25 °C) of 26.

Figure S29. ¹H NMR spectrum (600 MHz, CDCl₃, 25 °C) of 27.

Figure S30. ¹³C NMR spectrum (150 MHz, CDCl₃, 25 °C) of 27.

Figure S31. ¹H NMR spectrum (600 MHz, CDCl₃, 25 °C) of 29.

Figure S32. ¹³C NMR spectrum (150 MHz, CDCl₃, 25 °C) of 29.

Figure S33. ¹H NMR spectrum (600 MHz, CDCl₃, 25 °C) of 30.

Figure S34. ¹³C NMR spectrum (150 MHz, CDCl₃, 25 °C) of 30.

Figure S35. ¹H NMR spectrum (300 MHz, CDCl₃, 25 °C) of 32.

Figure S36. ¹H NMR spectrum (400 MHz, CDCl₃, 25 °C) of 33.

Figure S37. ¹H NMR spectrum (400 MHz, CDCl₃, 25 °C) of 34.

Figure S38. ¹H NMR spectrum (400 MHz, CDCl₃, 25 °C) of 35 (impure compound).

Figure S39. ¹H NMR spectrum (400 MHz, CDCl₃, 25 °C) of 36.

Figure S40. ¹H NMR spectrum (400 MHz, CDCl₃, 25 °C) of 37.

Figure S41. ¹H NMR spectrum (400 MHz, CDCl₃, 25 °C) of the 15:39:47 ternary mixture of 38, 30 and singly converted product, respectively.

Figure S42. ¹H NMR spectrum (400 MHz, CDCl₃, 25 °C) of 39.

Figure S43. ¹H NMR spectrum (500 MHz, Cl₂DCCDCl₂, 90 °C) of 2.

Figure S44. ¹³C NMR spectrum (125 MHz, CDCl₃, -45 °C) of 2.

Figure S45. ¹H NMR spectrum (500 MHz, CDCl₃, -45 °C) of 3.

Figure S46. ¹H NMR spectrum (500 MHz, Cl₂DCCDCl₂, 90 °C) of 3.

Figure S47. ¹³C NMR spectrum (125 MHz, CDCl₃, -45 °C) of 3.

Figure S48. ¹H NMR spectrum (500 MHz, Cl₂DCCDCl₂, 90 °C) of 4.

Figure S49. ¹³C NMR spectrum (125 MHz, CDCl₃, -45 °C) of 4.

Figure S50. ¹H NMR spectrum (500 MHz, Cl₂DCCDCl₂, 90 °C) of 5.

Figure S51. ¹³C NMR spectrum (125 MHz, CDCl₃, -45 °C) of 5.

Figure S52. ¹H NMR spectrum (500 MHz, Cl₂DCCDCl₂, 90 °C) of 6.

Figure S53. ¹³C NMR spectrum (125 MHz, CDCl₃, -45 °C) of 6.

Figure S54. ¹H NMR spectrum (500 MHz, Cl₂DCCDCl₂, 90 °C) of 7.

Figure S55. ¹³C NMR spectrum (125 MHz, CDCl₃, -45 °C) of 7.

Figure S56. ¹H NMR spectrum (600 MHz, CDCl₃, 25 °C) of 8.

Figure S57. ¹H NMR spectrum (500 MHz, CDCl₃, -45 °C) of 8.

Figure S58. ¹³C NMR spectrum (125 MHz, CDCl₃, -45 °C) of 8.

Figure S59. ¹H NMR spectrum (600 MHz, CDCl₃, 25 °C) of 9.

Figure S60. ¹³C NMR spectrum (125 MHz, CDCl₃, -45 °C) of 9.

Isomeric ratio and degree of unidirectionality of motors 2-8

Figure S61. ¹H NMR spectra (500 MHz, CDCl₃, -45 °C) of motors 8, 7, 6, 5, 4, 3 and 2 (from top to bottom). Integration of the signals allowed determining the ratio between isomers and degree of unidirectional rotary motion for these motors at the given temperature (see Table S1).

Table S1. Determination of the ratio between *r*- and *s*-isomer of motors 2-8, and their consequent degree of unidirectionality, in CDCl₃ at -45 °C. Integral values and chemical shifts were obtained from analysis of the ¹H NMR spectra shown in Figure S61.

Motor	<i>r</i> -isomer	<i>r</i> -isomer	s-isomer	s-isomer	Degree of
	chemical	percentage	chemical	percentage	unidirectionality
	shift (ppm)		shift (ppm)		
2	3.22	17%	3.04	83%	66%
3	2.30	25%	2.52	75%	50%
4	2.31	34%	2.43	66%	32%
5	2.43	42%	2.48	58%	16%
6	2.41	38%	2.46	62%	24%
7	2.41	38%	2.45	62%	24%
8	3.22	11%	3.04	89%	78%

UV-vis spectra of motors 1-9

Figure S62. UV-vis spectrum (CH₂Cl₂, 5×10^{-6} M, 25 °C) of 1.

Figure S63. UV-vis spectrum (CH₂Cl₂, 5×10^{-6} M, 25 °C) of 2.

Figure S64. UV-vis spectrum (CH₂Cl₂, 5 × 10⁻⁶ M, 25 °C) of 3.

Figure S65. UV-vis spectrum (CH₂Cl₂, 5 × 10⁻⁶ M, 25 °C) of 4.

Figure S66. UV-vis spectrum (CH₂Cl₂, 5×10^{-6} M, 25 °C) of 5.

Figure S67. UV-vis spectrum (CH₂Cl₂, 5 × 10⁻⁶ M, 25 °C) of 6.

Figure S68. UV-vis spectrum (CH₂Cl₂, 5×10^{-6} M, 25 °C) of 7.

Figure S69. UV-vis spectrum (CH₂Cl₂, 5×10^{-6} M, 25 °C) of 8.

Figure S70. UV-vis spectrum (CH₂Cl₂, 5 × 10⁻⁶ M, 25 °C) of 9.

IR spectra

Figure S71. FT-IR spectrum of 11.

Figure S72. FT-IR spectrum of 13.

Figure S73. FT-IR spectrum of 14.

Figure S74. FT-IR spectrum of 15.

Figure S75. FT-IR spectrum of 16.

Figure S76. FT-IR spectrum of 17.

Figure S77. FT-IR spectrum of 18.

Figure S78. FT-IR spectrum of 20.

Figure S79. FT-IR spectrum of 21.

Figure S80. FT-IR spectrum of 22.

Figure S81. FT-IR spectrum of 23.

Figure S82. FT-IR spectrum of 24.

Figure S83. FT-IR spectrum of 25.

Figure S84. FT-IR spectrum of 26.

Figure S85. FT-IR spectrum of 27.

Figure S86. FT-IR spectrum of 29.

Figure S87. FT-IR spectrum of 30.

Crystal structures

Single-Crystal X-Ray Structures

Single-crystals were obtained by slow diffusion of hexane into saturated solutions of **2**, **4** and **5** in DCE. Figure S87 shows displacement ellipsoid plots of the refined structures.

Figure S88. Single-crystal X-ray structures of compounds **2**, **4** and **5**. Displacement ellipsoid plot drawn at 50% probability; hydrogens and solvent molecules are omitted for clarity.

Table S2 shows a summary of critical parameters of single-crystal X-ray structures of compounds 2, 4 and 5.

Table S2. Summary of critical parameters of single-crystal X-ray structures of compounds 2,4 and 5.

Nr.	2	4	5
	9,9'-(5,6-Dimethoxy-2-	9,9'-(5,6-Dichloro-2-	9,9'-(2-Methyl-2,5,6-
Name	indene-1.3(2H)-	indene-1.3(2H)-	1.3(2H)-
	diylidene)bis(9H-	diylidene)bis(9H-	diylidene)bis(9H-
	fluorene)	fluorene)	fluorene)
Formula	$C_{44}H_{32}O_2$	C42H26Cl2	C54H36, C2H4Cl2
Molecular Weight	592.69	601.53	783.78
Crystal System	monoclinic	monoclinic	monoclinic
T [K]	100(2)	100(2)	100(2)
Space Group	P 21/c	P 21/n	P 21/n
a [Å]	14.1264(3)	15.4794(4)	13.4014(3)
b [Å]	11.2302(5)	11.3565(3)	16.7991(4)
c [Å]	20.1932(5)	17.3278(4)	17.6974(4)
α [°]	90	90	90
β [°]	108.1510(10)	100.2820(10)	94.0590(10)
γ [°]	90	90	90
V [Å ³]	3044.08(13)	2997.17(13)	3974.25(16)
Z	4	4	4
$D_{calc} [g \cdot cm^{-3}]$	1.293	1.333	1.310
F(0 0 0)	1248	1248	1640
h _{min} , h _{max}	-17, 17	-19, 19	-16, 16
k _{min} , k _{max}	-12, 14	-14, 14	-20, 20
lmin, lmax	-25, 25	-21, 21	-21, 22
μ [mm ⁻¹]	0.602	2.172	1.765
Crystal Size [mm]	0.20 x 0.20 x 0.10	0.20 x 0.20 x 0.15	0.24 x 0.20 x 0.18
Colour, Shape	clear_pale_red plate	clear_pale_red block	clear_pale_orange block
R _{int}	0.0320	0.0537	0.0598
$\theta_{\min}, \theta_{\max}$ [°]	3.292, 79.075	3.529, 77.368	3.632, 74.493
Total Reflections (before merge)	31122	61550	72237
Data (I>3 x sigma(I)) [Reflections,Restraints,Parameters]	6492, 438, 0	6345, 398, 0	8113, 561, 5
S (=GooF)	1.027	1.007	1.053
Min. Residual Density [e/Å ³]	-0.239	-0.310	-0.595
Max. Residual Density [e/Å3]	0.353	0.638	0.821
Threshold Expression	I>2sigma(I)	I>2sigma(I)	I>2sigma(I)
R1	0.0479	0.0437	0.0578
wR ₂	0.1059	0.0938	0.1296

Figure S89. Front (left), back (middle) and side view of single-crystal X-ray structure of **2**. Hydrogens are omitted for clarity.

Figure S90. Front (left), back (middle) and side view of single-crystal X-ray structure of **4**. Hydrogens are omitted for clarity.

Figure S91. Front (left), back (middle) and side view of single-crystal X-ray structure of **5**. Hydrogens are omitted for clarity.

TD-¹H NMR experiments with motor 6

Figure S92. ¹H-NMR (CD₂Cl₂, 500 MHz) spectra of motor 6 at: a) 25 °C; b) 0 °C; c) -20 °C; d) -40 °C; e) -60 °C; f) -80 °C.

Figure S93. *In situ* ¹H-NMR (CD₂Cl₂, 500 MHz, -80°C) irradiation experiment on motor 6. Traces: a) 6 at -80 °C; b) while irradiating with 365 nm light; c) 1 minute after irradiation with 365 nm light; d) while irradiating with 395 nm light; e) 1 minute after irradiation with 395 nm light; f) while irradiating with 455 nm light; g) 1 minute after irradiation with 455 nm light.

References

- S1 Buckle, D. R.; Morgan, N. J.; Ross, J. W.; Smith, H.; Spicer, B. A. Antiallergic Activity of 2-Nitroindan-1,3-Diones. J. Med. Chem. **1973**, *16* (12), 1334–1339.
- S2 Kistemaker, J. C. M.; Štacko, P.; Roke, D.; Wolters, A. T.; Heideman, G. H.; Chang, M. C.; Van Der Meulen, P.; Visser, J.; Otten, E.; Feringa, B. L. Third-Generation Light-Driven Symmetric Molecular Motors. *J. Am. Chem. Soc.* 2017, *139* (28), 9650–9661.