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1 Additional simulation details

We used the critical temperature and pressure as well as the acentric factor tabulated in

l.81

Leachman et al.5! as an input for the Peng-Robinson equation of state,? to compute the

chemical potential for the GCMC calculations.

1.1 Modifications to the RASPA code

We modified the variable RDFHistogramSize[i] in the input.c file of the RASPA code

to increase the default limit for the cutoff for radial distribution functions from 12 A to

20A.

1.2 Switching potential

By default, RASPA uses a polynomial switching function (cf. Figure S1) that smooths
the truncation effect over a window (roy,7.) to ensure that both interaction potential
and force (i.e., the potential’s derivative) are zero at the cutoff r. in order to avoid a
discontinuity. Therefore, the order of the polynomial has to be sufficiently high. The

following potential fulfills this condition5354

u(rij) Tij < Ton
2 2)\2(. 2 2 o2
u(rij) u(ﬁ]) (TC - )(rgicr—gz; 3TOH) Ton < Tij S Te (1)
0 Tij > Te.

By default, the switching potential is turned on at r,, = 0.97.. Note that this correction
is applied when the “truncated” general rule is used. This shifted potential is different
from the “shifted” rule that, as the name suggests, shifts the whole potential by the value
of the potential at the cutoff, i.e., the potential is ushitea(74;) = w(r45) — u(re) for ri; < re,
and zero beyond the cutoff. We used the default options for the switching potential to
represent the most common use-case of RASPA for adsorption studies in porous materials.

Our main conclusions on the applicability of tail-corrections are anyway still valid when
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using a sharp truncation of the potential at the cutoff.
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Figure S1: Lennard-Jones potential with and without switching potential for r.uop = 20
and rop, = 0.97..

2 Sampling details

2.1 Preprocessing note

To avoid that some features get an unreasonable high weight due to their scale or units,

the structure_comp package standardizes the features prior to clustering (by default).®

2.2 Visualization of sampling efficiency

In the following section we visualize the spread of the knn sampling in lower-dimensionality

plots, to prove the diversity of the structures we selected for this study.

2.2.1 Two-dimensional representations

To better understand our sampling process, we visualized the sampling results both with
principal component analysis (PCA) and metric multidimensional scaling (MDS) on a
larger space of properties than the one considered for the clustering. Both PCA and
MDS were performed with the sklearn python package,%® where we used the Euclidean
distance metric for MDS.

For both PCA and MDS, we included the following properties to span the feature space:
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The accessible surface area, the density, the largest free sphere, the largest included sphere,
the largest included free sphere, the non-accessible surface area, the number of channels,
the number of pockets, the pore accessible volume fraction and the pocket surface area.
All these properties were computed using the Zeo++ code using a probe diameter of
1.86 A and atomic radii corresponding to half of the Lennard-Jones’s ¢ parameter of the
force field.S7

A feature importance analysis also guided our decision for the initial selection of
features used to span the feature space, and the skew-plot for the PCA (Figure S2) shows
that seven principal components are enough to describe most of the variance in the feature

space.
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Figure S2: Skew plot for the PCA analysis.

But this also means that a two-dimensional representation, as shown in Figure S3,
cannot contain all the information considered in the clustering process. Figure S3 still
shows that our sampling performs well in covering most of the space of geometrical
properties. Note that red points (samples considered in our studies) are mostly close in
the plots because we separately sampled for MOFs, COFs and zeolites to make sure we

have ten examples from each group.
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Figure S3: Projection of the feature space onto the first two principal components.

MDS is particularly interesting to compare the similarity of sample points as it tries

to conserve the pairwise distances by minimizing the so-called stress function

Sm(21, 22,0y 2n) = Z (dir — ||z — Zz"||)2

i

(2)

(also known as Kruskal-Shephard scaling), where the d;; are the pairwise distances between

samples 21, Zo, ..., xy and the 21, 29,..., 2y € R¥ are the points MDS tries to produce. 5
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Figure S4: Two dimensional MDS projection of the feature space.

Also the MDS analysis (cf. Figure S4) shows that our sampling performs reasonably

well. Red points (samples considered in this study) close in the plot are again due to the

fact that we sampled separately for COFs, MOFs and zeolites.
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2.2.2 Spread of Henry coefficients

Figure S5 compares the spread of Henry coefficients for a set of randomly selected structures

with the set of structures obtained after knn-clustering in pore-property space.
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Figure S5: Distribution of the calculated Henry coefficients Ky in the different structure
sets compared to random sampling.

First, one can observe that we cover a large range of Henry coefficients (already simply
due to the fact that we sample from three large databases) and second, one can, as
discussed above, observe that our sampling approach potentially performs better than
random sampling. This is also indicated by the fact that we sampled the zeolite with the

largest known cavity diameter (TSC).



3 Numeric examples

For the numeric examples we evaluated the Lennard-Jones (12-6)-potential and the analytic
tail-correction on a grid for a radial distribution function described by the parametrization

of Matteolia et al.5!° (cf. Listing 1).

Listing 1: Python function for the parametrization of the radial distribution function used
in this work

def rdf_model(r: float, sigma: float=1, h:float=1.070, m: float=6.0, gd:
float =1.62, lamb: float=0.3084, alpha:float=2.817, beta:float=>5.186,

theta:float=70.90) —> float:

N

d = h % sigma

gamma = r / d

if gamma >= 1:
8 g = gamma *x (—m) x (gd — 1 — lamb) + ((gamma — 1 + lamb) / gamma)
g *= np.exp(—alpha * (gamma — 1)) * np.cos(beta x (gamma —1))

10 g +=1

12 if gamma < 1:
g = gd % np.exp(—theta * (gamma — 1) xx 2)
14

return g

Listing 2: Python function for the perturbed parametrization of the radial distribution
function used in this work

def rdf_model_inhomogenous(r: float , sigma: float=1, h:float=1.070, m: float
=6.0, gd: float=1.62, lamb: float=0.3084, alpha:float=2.817, beta:float
=5.186, theta:float=70.90) —> float:

V]

d = h % sigma
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14

16

20

gamma = r / d
if gamma >= 1:
g = gamma ** (—m) * (gd — 1 — lamb) + ((gamma — 1 + lamb) / gamma)

g *= np.exp(—alpha/8 % (gamma — 1)) * (0.5 #np.cos(beta x (gamma

— 1 % np.cos(l * beta x (gamma —1))

+ 0.8 *np.cos(0.1 * beta * (gamma —3))

+ 0.6 xnp.cos (0.8 % beta * (gamma — 0.5) )
+ 1 *np.cos (0.8 *x beta * (gamma — 2))

+ 1 #*np.cos (0.3 * beta * (gamma)))

g +=1

if gamma < 1:

g = gd x np.exp(—theta * (gamma — 1) xx 2)

return g

The errors we provide in the plots are given byS!!

Etc. = '2/;0 dr mr?g(r)u(r) — g (1)

and

Etrun, = |2 Oodrm“Qg(T)u(T) , (4)
2.

where we set N = p =1 for simplicity.
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4 Convergence of loadings at different pressures

The convergence of the loading with respect to the cutoff distance at a pressure of 5.8 bar,
35 bar and 65 bar is shown in Figure S6. We can observe that the simulations with non-
corrected truncation generally lead to an underestimation of the loading. On the other
hand, the results from simulations with tail-correction are less sensitive to the truncation

radius r..
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5 Simulations without pore blocking

Several of the structures from our sample (13030N2, 17120N2, ZIF-4, SBMOF-1, ZIF-8,
PAU, AFT, TSC, GOO, UEI, XOJWID, TUDJIM, PTHNUQ, BENXUP, YUJNIB, cf.
section 9 for the nomenclature) have a negligible accessible void faction (i.e., less than
1 x 107°). We excluded those structures from the discussion in the full text because

512 gince the methane

the simulations are not relevant when compared to experiments
molecules can not permeate in these pores (under the assumption of perfectly rigid
structures) However, they are still interesting to analyze, in order to understand the
impact of the use of tail-corrections.

The convergence of the relative error in the deliverable capacity, as shown in Figure
S7, and of the Henry coefficient, as shown in Figure S8, shows the same trend as the one

discussed in the full text. The same holds true for the loadings at different pressures as

shown in Figure S9.
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Figure S7: Convergence of deliverable capacities DCg 5 101 par, 5.8bar 88 @ function of the
cutoff distance with and without tail-corrections for simulations without pore blocking

One of the zeolites with comparatively high errors when using tail-corrections at low
cutoffs (relative error > 0.25 at 7. = 8 A in Figure S8) is TSC, whose radial distribution
function is actually the only one that shows values < 0.5 at some r (cf. Figure S10).

This leads to a large value for frio dr (g(r) — 1)*|. Additionally, due its large spherical

pore (diameter approx. 16 A), with more concentric cylindrical layers (cf. Figure S11), the
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Figure S8: Convergence of the Henry coefficient Ky as a function of the cutoff distance
with and without tail-corrections for simulations without pore blocking. We show the
relative error due to the large spread of Henry coefficients.

potential in its center is non-interacting for cutoff distances r. < 8 A. The other zeolite
with comparatively high relative error is EMT which exhibits a similar pore structure
with a large spherical pore (diameter > 12 A).

Note that only in one material, the zeolite Tschortnerite (TSC), we observe that
g(r) < 0.5, which is the threshold we derived in the main text. The pore geometry of this
material is an extreme case: TSC is the zeolite with the largest known cavity diameter
(approx. 16 A),Sg and this large pores are connected by small windows, with the largest
free sphere diameter of the structure being 3.68 A—i.e., to small to fit a methane bead
with a Lennard-Jones parameter of o = 3.73 A (see Figure S11).

In the main text we considered blocking spheres, as computed from Zeo++, for the
following structures: EMT, 15072N2, 16083N2, 18091N2. Note that these structures have
both accessible and non-accessible pores and blocking sphere prevent the insertion of

methane molecules in the second ones, to make them comparable with experimental data.
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Figure S9: Absolute values for loading 6 and Henry coefficients Ky as a function of cutoff
r. with and without tail-correction for simulations without pore blocking.
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Figure S11: Visualization of the pore geometry of TSC. Golden ball in the large cavity,
green ball with diameter of methane in the small cavity
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6 Water adsorption in aluminum fumarate

As an additional test we considered the case of water adsorption in aluminum fumarate. For
this, we performed a cell optimization using the Gaussian-plane wave method implemented
in the CP2K code, 513515 where we used the PBE exchange correlation functional®'® with
the DFT-D3(BJ) dispersion correction.5!” We described the framework using the UFF
force field5'® and DDEC charges®'? and used the TIP4P-2005 model®2° to describe water.
To calculate the Henry coefficient, we performed 6.0 x 10° Widom insertions with the

RASPA code.5%!

|\I I/M
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Henry coefficient / molkg ! Pa ™!

10 12 14 16 18 20
cutoff radius / A

Figure S12: Henry coefficients Ky as a function of cutoff radius r. with and without
tail-correction for the case of TIP4P-2005 water in aluminium fumarate.

Also for this case, we find that the simulations with tail-corrections show a more
desirable convergence behavior with respect to the cutoff radius than simulations without

tail-corrections (cf. Figure S12).
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7 Adsorption of alkanes

As an additional test and more direct comparison to the simulations of Macedonia

22 we also considered the adsorption of ethane, n-butane and n-heptane

and Maginn®
in some archetypal materials (MFI, SF'S, IRMOF-1, HKUST-1, UiO-66 and 15072N2)
using the TraPPE united atom model for the alkanes,?* the DREIDING model for the
frameworks,%?* where we added the missing parameters from the UFF force field,5'® and
Lorentz-Berthelot mixing rules for the interaction terms. We determined ideal Rosenbluth
weights using 6.0 x 10* cycles in a 30 A x 30 A x 30A box. To expedite the simulations
of the longer chains, we calculated the Henry coefficient at 570 K using 5.0 x 10* cycles of

insertions. The results are shown in Figure S13 and show the same trends as the ones

discussed in the main text.
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Figure S13: Relative errors (w.r.t. to the values at 24 A) of Henry coefficients of linear
alkanes in different porous materials at 570 K as a function of the cutoff radius for
simulations with and without tail-corrections.
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8 Generalization to summation over atom types

In general, the system consists of a collection of different pairs p € S x S, where S is the

set of (pseudo-)atoms, for which case the error terms have the following form

e = |32 [ ARG €R) [ dru, (i) (5)
peS? |r|=rc
and
o= |2 [ar P R - 1) [ aru (). )
r|=r¢
peS?

Let us rewrite the expressions by introducing

o= [ RGP (ER) 7)

and

b= [ dru (). ®)

r|=rc

with which we can write

Etrunc. — E Qp bp

pES?

S0, Y ab (9)

p,p',p#£p’

— IAB — C

and

Etic. = Z (ap - 1)bl’

pEeS?2

Zap Z by — pr’ - Z apby
P P 4

p,p’ ,p#£p’

(10)

= |AB— B —C|
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where we introduced

A=>"a, B=Y by C= > aby. (11)
>

p,p' ,p#£p’

For B < 0 one finds the solution set {A > £ +1}. In case the covariance term C' vanishes,
we find the condition Zp a, > 0.5, which is the relevant case as we are only interested in

real solutions, in which case we can rewrite the inequality (eq. ?7) as

VAB =) > \/(AB - B - ), (12)
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9 Converged absolute values at higher cutoff and un-

certainties

9.1 Converged absolute values for simulations with blocked pock-

ets

In the main text we showed in all the plots a maximum value of 24 A for the cutoff, r..
For all the computed properties, there was a negligible change when going to higher r. (cf.
Figure S14). To demonstrate this, Tables S1, S2 and S3 list all the materials considered
in this study together with the converged values (at higher r.) for the loadings 6 and the
Henry coefficients Ky. These “converged values” are computed with the highest feasible

cutoft:
min (max (cutoff with tail-correction) , max (cutoff without tail-correction)),  (13)

which is 30 A, or less for the calculations that could not finish at that high cutoff within

the walltime-limit of 3 days.
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Figure S14: Absolute values for loading # and Henry coefficients Ky as a function of the
cutoff radius r. with and without tail-correction for simulations without pore blocking.
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In addition to that, we show in Figure S14 all the properties considered in the study
in absolute values, there, one can see that the values at highest cutoff have a negligible
difference from the ones at r, = 24 A, which are plotted in the main text.

In all the computed results, the means and standard deviations (given as uncertainties
in bracket notation) are obtained by block-averaging as implemented in the RASPA

code. 5

From all of our plots we excluded the 2D COF CFT (13030N2 in Table S2, see the
CURATED COFs from Ongari et al. for nomenclature of the COF structures®?), as
the inter-layer distance of 3.3 A as well as the channel diameter are smaller than the
o = 3.7 A of the methane bead in our simulation (as well as the kinetic diameterS2®). For
this structure only, methane can not fit even when blocking spheres are not considered,
resulting in a null uptake and extremely low Henry coefficient. For the MOFs, we use
the nomenclature from the CoRE-MOF database for the ones that we sampled from
the database and the common names for the ones which we chose according to their

popularity:.
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9.2 Converged absolute values for simulations without blocked

pockets

Tables S4, S5 and S6 summarize the absolute values for the properties considered in this

study for simulations without blocked pockets.
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