Supplementary Information

Cryo-EM structure of trimeric *Mycobacterium smegmatis* succinate dehydrogenase with a membrane-anchor SdhF Hongri Gong, Yan Gao et al.

Supplementary Fig. 1 Purification and component identification of the Sdh2 trimer from *Mycobacterium smegmatis*. **a**, The elution profile of the Sdh2 trimer from size exclusion chromatography (SEC). Peak fractions were pooled and concentrated for preparation on the cryo-EM grids. **b**, SDS-PAGE of the pooled fraction from SEC in **a**. Each band is labelled with the corresponding subunit, which were then identified by mass spectrometry

(Table S1). c, Blue Native PAGE of the pooled fraction from SEC in a. The gel was stained with PMS/NTB. d, UV-visible spectra of the dithionite-reduced (black) and air-oxidized (red) forms of the Sdh2 trimer. The reduced wavelengths correspond to absorbance peaks of the cytochrome b (563 nm). e, EPR characterization of the purified complex. EPR spectra of the air-oxidized (black trace), succinate-reduced (red trace) and dithionite-reduced (blue and purple trace) complex. The EPR spectrum of the air-oxidized sample (black trace) showing characteristic peaks corresponding to the g_z of the two highly anisotropic low spin (HALS)-type heme groups and the oxidized [3Fe-4S]⁺ center; The EPR spectrum of the succinate-reduced sample (red trace) showing peaks arising from the reduced [2Fe-2S]⁺ cluster with an additional peak centered at g=2.003 attributable to a semiquinone (SQ) radical. Part of the amplitude of signal corresponding to heme b_P was lost upon reduction by succinate; Further reduction with dithionite (blue trace) resulted in complete loss of signal for both hemes due to complete reduction, along with the appearance of peaks from reduced [4Fe-4S]⁺ when the increased microwave (MW) power was increased to 15 mW (purple trace). Spectra were scaled correspondingly to highlight different metal centers. The central signals of dithionite-reduced samples under high MW power have been removed to highlight the outer g-values associated with the signal of [4Fe-4S]⁺. f, The identification of lipids and variants of MKs in the protein sample.

Supplementary Fig. 2 Cryo-EM structure of the *M. smegmatis* Sdh2 complex. **a**, Representative electron micrograph of the cryo-EM sample. **b**, Representative 2D classification averages calculated from selected particles. **c**, Viewing direction and Eeuler angle distributions of all particles used in the final 3D reconstruction. **d**, FSC curves of 3D reconstructions. **e**, 3DFSC histogram of final map. **f**, FSC_{work} and FSC_{test} calculations. **g**, Front view of the density map, which is colored according to the local resolution.

Supplementary Fig. 3 Cryo-EM map quality assessment and ligand representation of Sdh2 protein. Representative cryo-EM densities of (a) individual subunits, (b) prosthetic groups and (c) phospholipids of the Sdh2 trimer from *M. smegmatis*. Corresponding subunits or residues interacting with prosthetic groups and phospholipids are shown in stick or cartoon representation.

Supplementary Fig. 4 Quinone sites in *M. smegmatis* Sdh2 and porcine SQR. a, Representative cryo-EM densities of menaquinone/menaquinol molecules bound in *M. smegmatis* Sdh2. Individual densities for each MK is shown. b, Structural superposition between *M. smegmatis* Sdh2 (purple) and porcine SQR (yellow) with bound UQ1 (PDB: 1ZOY). Canonical Qp (left) and newly identified Q_{D2} sites (right) are shown. For the Q_{D2} site, the neighboring SdhD subunit of another monomer is colored in blue. c, (left) Q_{D1} binding pocket of porcine SQR with bound TFF inhibitor (PDB: 1ZPO). (right) Structural superposition of Q_{D1} site for *M. smegmatis* Sdh2 and porcine SQR.

	i		10	2	<u>o</u>	30
M. smegmatis	MVL	FFEII	L V A A	VLVIT WF	AVYALYR	LVT <mark>D</mark> ES
M. tuberculosis	MVL	FF <mark>E</mark> IM	1 <mark>l</mark> VLA	TVVISWF	ALYTLYR	LVT <mark>D</mark> ES
M. phlei	MVL	FF <mark>E</mark> II	L V A A	VVVIT <mark>WF</mark> 2	ALYALYR	LIT D ES
M. tokaiense	MVL	FF <mark>E</mark> LI	L VAA	VVVIT <mark>WF</mark> 2	ALYALYR	LIT D ES
M. houstonense	MVL	FF <mark>E</mark> II	L V A A	VVVIT <mark>WF</mark> 2	ALYTLYR	LVT D ES
M. hassiacum	MVL	FF <mark>E</mark> II	L V A A	VVVIT WF 2	ALYTLYR	LIT D ES
M. phocaicum	MVL	FF <mark>E</mark> II	L VAA	SLAITWF	ALYALYR	LIT D ES
M. aquaticum	MVL	FFEIM	1 <mark>l</mark> VAA	VVVIT <mark>WF</mark> 2	ALYTLYR	LVT D ES
M. kyorinense	MVL	FFEIM	1 <mark>L</mark> VTA	VVVIT WF 2	ALYALYR	LIT D ES
M. rhodesiae	MVL	FF <mark>E</mark> II	L V A T	VVLIT <mark>WF</mark> 2	ALYALYR	LVT D ES
M. aubagnense	MVL	FFEIM	1 <mark>L</mark> VAA	SLAITWF	ALYALYR	LIT D ES
M. chitae	MVL	FF E LM	1 <mark>l</mark> vaa	VVVIT <mark>WF</mark> 2	AIYTLYR	LIT D ES
M. moriokaense	MVL	FY <mark>E</mark> II	J <mark>L</mark> VAT	VVVIT <mark>WF</mark> 2	ALYALYR	LIT D ES
M. thermoresisti	MVL	FF <mark>E</mark> II	JUAC	VVLVT WF 2	ALYALYR	LIT D ES
M. tusciae	MVLI	LF <mark>E</mark> II	LIAA	VVVIT <mark>WF</mark> 2	AVYTIYR	LVT D ES
M. lacus	MVL	FF <mark>E</mark> IM	1 <mark>l</mark> vaa	TLVIS <mark>WF</mark>	ALYVLYR	LIT D ES
M. celeriflavum	MVL	FF <mark>E</mark> LI	L V A A	TVVIT WF	ALYAVYR	LIT D ES
M. fragae	MVL	FFEIM	1 <mark>L</mark> VAA	VVVIA <mark>WF</mark> 2	ALYALYR	LIT D DS
M. neglectum	MVLI	LF <mark>E</mark> II	L I A A	VVVIT <mark>WF</mark>	AVYTIYR	LIT D ES
M. hodleri	MVL	FF <mark>E</mark> II	L I V A	VVVIT <mark>WF</mark>	AVYAVYR	LVTDEL
M. diernhoferi	MVL	FFEFI	J <mark>I</mark> VAA	VVVIT <mark>WF</mark> 2	ALYAVYR	LVT D EG
M. intracellular	MVL	FF E IM	1 <mark>L</mark> V V A	VVVIS <mark>WF</mark> 2	ALYPLYR	LIT D ES
M. doricum	MVL	FY <mark>E</mark> II	LVVC	TLVIT <mark>WF</mark>	ALYALYR	LVT <mark>D</mark> DS
M. koreensis	MVL	FF <mark>E</mark> II	L V S A	TLVIT WF	ALYVLYR	QLTDES
M. confluentis	MVL	FF E FM	1 <mark>l</mark> vaa	AAVIT <mark>WF</mark>	ALYALYR	LIS D ES
M. litorale	MVL	FY <mark>E</mark> II	JUVC	TLVIT WF	ALYAVYR	LIT D ES
M. uberis	MVL	FFEIM	1 L I V A	VVVIS <mark>WF</mark>	ALYTLYR	LIT D ES
M. trivialis	MVL	FF E IM	1 <mark>L</mark> VAA	TAAITWF2	ALYVLYR	QITDES
M. duvalii	MVL	FFEII	JUVVA	VVVITWF	ALYALYR	LVT D ES

Supplementary Fig. 5 Sequence alignments of SdhF subunits. In order to evaluate the conservation of the subunit SdhF in the *phylum Actinobacteria*, homologous sequences were retrieved through the NCBI BLAST. The highly homologous sequences of representative species of mycobacteria were obtained.

Supplementary Fig. 6 Characterization of activities of the wild-type and mutant Sdh2 complex. Residues potentially interacting with menaquinone in (a) Q_{D1} site and (b) Q_{D2} site are labeled. The residues, Phe60, Phe67, Trp72, Trp93, and Trp96 from Q_{D1} site and Qln94, Met98, Trp102, Tyr146, and Thr150 from Q_{D2} site were mutated to alanine, respectively. (c) Gel filtration chromatography for wt and two mutants. (d) Enzymatic activity for the wild-type, mutated Q_{D1} and mutated Q_{D2} of Sdh2 complexes. Mean values resulting from technical triplicates and error bars using standard deviation are shown.

Supplementary Table 1. Identification of the Sdh2 complex subunits by

	Mass Spectroscopy			
Protein	Protein	Theoretical		
accession	Name	Molecular Weight	Peptides	Coverage
		(kDa)		
WP_011727811.1	SdhA	64.4	45	81
WP_003893076.1	SdhB	29.2	26	76
WP_011727812.1	SdhC	15.6	16	83
WP_003893078.1	SdhD	17.9	15	90
WP_011730792.1	SdhF	3.7	1	100

peptide mass fingerprint spectroscopy

and model building			
	M. smegmatis Sdh2 complex		
PDB entry	6LUM		
EMDB entry	EMD-0981		
Data collection and processing			
Magnification	29,000		
Voltage (keV)	300		
Electron exposure (e ⁻ /Å ²)	50.00		
Defocus range (µm)	-1.2 to -2.2		
Pixel size (Å)	0.82		
Symmetry imposed	C1		
Initial particle images (no.)	1,973,698		
Final particle images (no.)	461,385		
Map global resolution (Å)	2.84		
Global resolution FSC threshold	0.143		
Map local resolution range (Å)	2.0-8.0		
Local resolution FSC threshold	0.5		
Refinement			
Model resolution (Å)	2.8		
FSC threshold	0.143		
Model resolution range (Å)	to 2.8		
Map sharpening <i>B</i> factor (Å ²)	93.5		
Model composition			
Non-hydrogen atoms	26,191		
Protein residues	3,178		
Ligands	39		
<i>B</i> factors (Å ²)			
Protein	30.42		
Ligand	35.82		
R.m.s. deviations			
Bond lengths (Å)	0.010		
Bond angles (°)	1.165		
Validation			
MolProbity score	2.09		
Clashscore	10.26		
Poor rotamers (%)	0.08		
Ramachandran plot			
Outliers	0.13		
Allowed	10.18		
Favored	89.69		
EMRinger score	3.31		
Model vs. Data			
CC(mask)	0.86		
CC(volume)	0.81		
Mean CC for ligands	0.80		

Supplementary Table 2. Statistics for data collection, image processing

Subunit Name	Chain	Total residues/range built	% atomic model	Cofactors	Resolution (Å)
SdhA	A/J/P	2-305, 347-581/ 2-300, 347-581/ 2-305, 347-381	92.0	FAD	2.5~6.0
SdhB	B/K/Q	23-260/14-261/23-260	92.5	2Fe-2S, 3Fe-3S, 4Fe-4S	2.0~4.0
SdhC	C/G/M	15-136/15-137/16-138	88.9	Heme b	2.0~3.5
SdhD	D/H/N	11-156/37-156/41-156	81.6	Heme b	2.0~3.5
SdhF	E/I/O	1-31	96.9		2.5~3.5

Supplementary Table 3. Summary of the model

SdhD-F	5'-gccaagacaattgcggatccgtgagcgcgccaggggcagg-3'
SdhD-R	5'-tggtgatggtggtggtggtggaaatattcgcgtcgaagg-3'
pVV16-F	5'-ggatccgcaattgtcttggc-3'
pVV16-R	5'-caccatcaccatcatcacca-3'
$Mutant_{QD1}_{60}$ -F	5'-tggccctggcgctcggccacc-3'
Mutant_Q _{D1} _60-R	5'-cagggccaccagcgcaatgcc-3'
Mutant_Q _{D1} _67_72-F	5'-gccatcatgctgatggcgcaggacggcgtgtaccggat-3'
Mutant_Q _{D1} _67_72-R	5'-cgccatcagcatgatggccaggtggccgagcgccagg-3'
Mutant_Q _{D1} _93_96-F	5'-ttc <mark>gcg</mark> cagatcgcggacatggcc-3'
Mutant_Q _{D1} _93_96-R	5'-tccgcgatctgcgcgaacggcgagg-3'
Mutant_Q _{D2} _94-F	5'-gcgatctgggacatggccctgctctgg-3'
Mutant_Q _{D2} _94-R	5'-gtcccagatcgcccagaacggcgaggc-3'
Mutant_Q _{D2} _98-F	5'-gcggccctgctctggttggcaatgatc-3'
Mutant_Q _{D2} _98-R	5'-gagcagggccgcgtcccagatcgccca-3'
$Mutant_{QD2}_{102}F$	5'-gcgttggcaatgatccacggcgccaac-3'
Mutant_Q _{D2} _102-R	5'-cattgccaacgcgagcagggccgcgtc-3'
$Mutant_{QD2}_{146}_{150-F}$	5'-gcagcgccgtactggtcgccttcgacgcgaata-3'
Mutant_Q _{D2} _146_150-R	5'-tcgaaggcgaccagtacggcgctgcccagcaccaac-3'

Supplementary Table 4. Primers used in molecular cloning