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Supplementary Figure 1 

 

 
 

Trees-based models show no evidence of exploitable nonlinear relationships in brain images. The 

high-capacity estimators random forests (1), extremely randomized trees (2), and gradient boosted trees 

(3) achieved age/sex prediction performances similar to kernel models on the MNIST and Fashion images 

(A/C), but underperformed compared to linear and kernel models on brain images (B/D, IDP=image-derived 

phenotype). Due to the hyperparameter tuning, the examined kernel models approximate sample-efficient 

linear models in the absence of exploitable nonlinear relationships and thus performed like linear models 

on brain data. However, decision trees are generally acknowledged to be ill-suited to model linear 

relationships - having to approximate them by means of a step function. Their weak performance on brain 

data again suggests a primarily linear structure of the examined brain-imaging modalities. The number of 

input variables in a modeling scenario is denoted by p. Error bars = mean +/- 1 standard deviation across 

20 cross-validation iterations (all panels). 

  



 

Supplementary Figure 2 

 

 
 

Stained histological images of cancerous body tissue slices allow powerful predictions. In addition 

to reference datasets from the machine learning community, we analyzed a recently available oncological 

dataset (4). In this alternative biomedical dataset, histology slices of healthy and cancerous body tissue are 

to be categorized into seven tissue classes. We transformed the tissue slice images to grayscale images 

(via relative luminance) and resized them by downsampling (via nearest neighbour resampling) the 

resolution to match our whole-brain sMRI slices. In the tissue images (A), we clearly observed the expected 

increase in prediction performance when applying more and more expressive models. These results serve 

as a positive test that our model implementations, especially our convolutional neural network architectures, 

did indeed work properly on 100x100 pixel data. This in turn suggests that the lack of exploitable nonlinear 

information in sMRI slices (B/C/D) for phenotype prediction is a property of brain-imaging data, rather than 

a problem of high dimensionality or hyperparameter tuning (cf. Supplementary Fig. 5 and 6). The number 

of input variables in a modeling scenario is denoted by p. Error bars = mean +/- 1 standard deviation across 

20 cross-validation iterations (all panels). 

 

  



 

Supplementary Figure 3 

 
Difference in feature dimensionality does not explain inability to exploit nonlinear structure. After 

carrying out linear dimensionality reduction using principal component analysis (PCA), kernel and deep 

models clearly outperformed linear models in all examined reference datasets, but not in brain-imaging 

data. For MNIST, Fashion and histology slices, the performance gains from nonlinear models were more 

pronounced for lower-dimensional representations. In contrast, linear and nonlinear models performed 

indistinguishably on brain images. Moreover, model performance on MNIST, Fashion, and histology slices 

saturated in all PCA settings, while model performance on brain-imaging data saturated more slowly (latent 

embeddings p<64), or not at all (latent embeddings p=64). Repeating these analyses for univariate feature 

selection, recursive feature elimination, and random projections led to qualitatively similar results with the 

same conclusion. The number of input variables in a modeling scenario is denoted by p. Error bars = mean 

+/- 1 standard deviation across 20 cross-validation iterations (all panels). 



 

Supplementary Figure 4  

 

 
 

Whole-brain volumes do not reveal evidence of exploitable nonlinear structure. Even when using the 

full set of gray matter masked sMRI voxels, we observed no evidence of exploitable nonlinear relationships, 

as well as no clear saturation of prediction performance. This result provides additional evidence that our 

results obtained after a stage of feature selection are not an artifact of the applied feature reduction 

methods: Even without targeted feature selection, we observe no evidence of exploitable nonlinear 

structure in sMRI data for phenotype prediction. Moreover, Gaussian smoothing of voxels does not explain 

the lack of exploitable nonlinear relationships in sMRI data. Part of our preprocessing of raw sMRI voxels 

was the application of well-established 8mm Gaussian smoothing (A/C). We repeated our analysis without 

this smoothing step (B/D). All examined models performed better on smoothed data. On smoothed as well 

as non-smoothed data, deep and kernel models did not generally outperform simpler linear models. The 

number of input variables in a modeling scenario is denoted by p. Error bars = mean +/- 1 standard deviation 

across 20 cross-validation iterations (all panels). 

 

 

  



 

Supplementary Figure 5 

 

 
 

Hyperparameter grids for model selection are sufficiently fine-grained. Depicts the selected best 

hyperparameter combinations for each of 20 cross-validation subsampling repetitions (dots) across a range 

of training set sizes (hues). The grid of hyperparameters appears to have been sufficiently fine-grained, as 

a range of different hyperparameter combinations were found to be optimal for each sample size. 

Conversely, if all subsampling repetitions were to converge on the exact same hyperparameter 

combinations, this would indicate an inadequately coarse search grid. Shows results for RBF-SVM (figure 

rows A and B correspond to the relevant hyperparameters “C” and “gamma”, respectively), the repeatedly 

best-performing kernel method, and logistic regression (C), the repeatedly best performing linear method. 

Results for the other models are qualitatively similar. 

  



 

Supplementary Figure 6 

 

 
 

Continuous adaptive Bayesian hyperparameter search leads to equivalent results. For the strongest 

linear and kernel models (logistic regression and RBF-SVM), analyses were repeated with Bayesian 

hyperparameter search (5) and 500 evaluations per search. Results were consistent between smooth 

Bayesian hyperparameter search and grid search with discrete candidate hyperparameters. These 

supplementary analyses underline that our observations are unlikely to be a result of insufficient 

hyperparameter tuning. IDP=image-derived phenotype. Error bars = mean +/- 1 standard deviation across 

iterations (all panels). 
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