Supporting Information

A Bioinspired Molybdenum-Copper Molecular Catalyst for CO₂ Electroreduction

Ahmed Mouchfiq, Tanya K. Todorova, Subal Dey, Marc Fontecave*, Victor Mougel*

Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland

Table of Contents

Characterization of Complex 1	2
Electrochemical Experiments	4
Computational Details	13
References	21

Characterization of Complex 1

Figure S1. UV-Visible light absorption spectrum of a 10⁻⁵ M solution of complex **1** in CH₃CN.

Figure S2. ¹H NMR spectrum of complex 1 in CD₃CN.

Figure S3. FTIR spectrum of complex 1.

Electrochemical Experiments

Figure S4. Overlay of the Cyclic Voltammograms of 1mM complex **1** with 0.1 M TBAPF₆ in dry CH₃CN under Ar (blue), after 30 min exposure to air (red) and after purging 30 min with Ar to remove air (black). Scan rate = 100 mV s⁻¹.

Figure S5. Cyclic Voltammetry of 1 mM solution of complex **1** in dry acetonitrile (0.1 M TBAPF₆) under Ar on a 1.6 mm diameter Pt WE and Ag/AgNO₃ as RE. The scan rate = 100 mV.s⁻¹; (This CV displays the electrochemical behaviour of complex **1** in the same conditions used by Tatsumi et al¹).

Determination of the number of electrons associated to the redox events²

The number of electrons exchanged during the reduction of complex **1** at $E_{1/2} = -2.07$ V vs Fc/Fc⁺ was determined by the combination of a chronoamperometry experiment and a study of the stationary regime obtained at a carbon microelectrode. Solutions of complex **1** and ferrocene (20 mM in complex with 0.1 M TBAPF₆ in CH₃CN) were prepared. A chronoamperometry study was carried out on both solutions using exactly the same experimental conditions (Glassy carbon foam as working electrode, platinum wire counter electrode and Ag/AgCl reference electrode). The plot of the current i versus t^{-1/2} (**Figure S6**) obey the Cottrell equation {A. J. Bard and L. R. Faulkner, *Electrochemical Methods: Fundamentals and Applications*, John Wiley, New York, 2001}:

where i is the current, n the number of electrons, F the Farraday constant, A the electroactive area of the electrode, D the diffusion coefficient of the species and t the time. As the concentration of the ferrocene solution is equal to the one of the complex **1** solution, and as the number of electrons involved in the oxidation of ferrocene is 1, the ratio of the director coefficient k of the plot measured for the ferrocene and the complex **1** solutions is:

$$k_{Cpx}/k_{Fc} = n(D/D')^{1/2}$$

where D' is the diffusion coefficient for ferrocene, D is the diffusion coefficient for complex **1** and n is the number of electrons involved in its reduction.

Figure S6. I vs t^{-1/2} plot of the chronoamperometry data obtained from a 20 mM complex **1** (in blue, left) solution and a 20 mM ferrocene solution (in red, right) in 0.1 M TBAPF₆ in CH₃CN.

In parallel, the intensity of the current at a microelectrode in stationary regime was measured for both solutions (Figure S7). The following relation gives the value of the limiting current:

Where i is the current, n the number of electrons, F the Farraday constant, D the diffusion coefficient of the species, r the radius of the carbon microelectrode and C the concentration of the complex in the bulk solution.

Similarly, the ratio of the limit intensities measured for the ferrocene and complex **1** solutions is:

$$i^{lim}_{Cpx}/i^{lim}_{Fc} = nD/D'$$

where D' is the diffusion coefficient for ferrocene, D is the diffusion coefficient for complex **1** and n is the number of electrons involved in its reduction at $E_{1/2} = -2.07$ V vs Fc/Fc⁺.

Figure S7. Overlay of linear sweep voltammograms of a 20 mM complex **1** solution (blue) and a 20 mM ferrocene (red) in a 0.1 M TBAPF₆ solution in CH₃CN obtained in stationary regime at a carbon microelectrode (5 mV.s⁻¹ scan rate).

The number of electrons exchanged during the reduction of complex **1** is then given by:

 $n = (k_{Cpx}/k_{Fc})^2/(i^{\lim}C_{px}/i^{\lim}F_{c}).$

Table S1. Key parameters for the determination of the number of electrons

k _{cpx} (mA.s ^{1/2})	k _{Fc} (mA.s ^{1/2})	l ^{lim} _{Cpx} (μA)	l ^{lim} _{Fc} (μA)	n
2.3539	3.8619	0.042	0.204	1.805

From our electrochemical data (Table S1), we find **n** = **1.805**. Accordingly, the process observed by electrochemistry for the reduction of complex **1** at $E_{1/2}$ = -2.07 V vs Fc/Fc⁺ involves a transfer of **2 electrons**.

Figure S8. Cyclic Voltammetry data of complex **1** at different scan rates in CH₃CN (0.1 M TBAPF₆) under Ar (left); scan rates was varied from 5 to 5000 mV.s⁻¹. Plot of the anodic current peak (blue dots) and the cathodic current peak (red dots) as a function of the square root of scan rate (right).

Figure S9. Cyclic voltammograms of complex **1** in dry CH_3CN (0.1 M TBAPF₆) under Ar (blue), after 30 min purging with CO_2 (red) and after purging 30 min with Ar to remove CO_2 (black). Scan rate = 50 mVs⁻¹ (The increase of current density of the voltammogram before and after purging (blue vs. black) is due to the increase of concentration of the complex occurring in the long and vigorous purging process causing partial evaporation of the solvent)

Figure S10. Cyclic voltammograms of 1mM complex **1** with 0.1 M TBAPF₆ in dry CH_3CN under Ar (blue), under CO_2 (red) and under CO_2 with different TFE concentrations (0.01 M (black), 0.02 M (green), 0.05 M (yellow), 0.1 M (pink), 0.2 M (orange) and 0.6 M (turquoise)). The scan rate was 50 mV s⁻¹. Inset: zoom on the potential window between -2.2 V and -1.8 V vs Fc/Fc⁺.

Figure S11. Current density plot with respect to time for CPE at -2.17 V.

Figure S12. Current density as a function of time during 1 h controlled potential electrolysis on a glassy carbon plate electrode at -2.62 V (black line), at -2.37 V (red line) of a 1 mM solution of complex **1** and at -2.62 V vs Fc/Fc⁺ without complex **1** (background, blue) in a CO₂ saturated CH₃CN solution containing 0.1 M TBAPF₆ and 0.1 M TFE.

Rinse test

A 1 h constant potential electrolysis at -2.62 V vs Fc/Fc⁺ of a 1 mM solution of complex **1** with 0.1 M TBAPF₆ and 0.1 M TFE in 7 mL CH₃CN was carried out using a glassy carbon plate electrode, in the exact conditions reported for catalytic activity studies. Without exposure to air the solution was syringed out before being replaced by the same volume of a fresh solution without complex **1** in the same electrolyte. After bubbling CO₂ in that solution for 30 min a second 1h constant potential electrolysis at -2.62 V vs Fc/Fc⁺ was carried out. Current density vs. time is presented in Fig. S13 below.

Figure S13. Current density as a function of time during 1 h electrolysis on glassy carbon plate electrode at -2.62 V vs Fc/Fc⁺ of 1 mM of complex **1** before rinse test (black) and after (red), in a CO₂ saturated atmosphere, in CH₃CN with 0.1 M TBAPF₆ and 0.1 M TFE.

Figure S14. Cyclic voltammograms of 1 mM complex **1** with 0.1 M TBAPF₆ and 0.1 M TFE in dry CH₃CN on glassy carbon plate electrode under CO₂ (blue), after 30 min controlled potential electrolysis at -2.62 V vs Fc/Fc⁺ under CO₂ (red) and after 60 min controlled potential electrolysis at -2.62 V vs Fc/Fc⁺ under CO₂ (black). The scan rate was 50 mV s⁻¹. Inset: zoom on the potential window between -1.4 V and -0.4 V vs Fc/Fc⁺.

Figure S15. SEM images of glassy carbon plate electrode surface before controlled potential electrolysis (left) and after a 1-hour controlled potential electrolysis at -2.62 V vs Fc/Fc⁺ in presence of 1 mM complex **1** with 0.1 M TBAPF₆ and 0.1 M TFE in dry CH₃CN (right). Corresponding energy dispersive x-ray spectra are displayed in Figure S15 and Figure S16.

Figure S16. Energy dispersive x-ray spectrum of a 1 cm square glassy carbon plate electrode before controlled potential electrolysis (shown in Figure S14-left).

Figure S17. Energy dispersive x-ray spectrum of a 1 cm square glassy carbon plate electrode after 1-hour controlled potential electrolysis of complex **1** at -2.62 V vs Fc/Fc⁺ under CO₂ in presence of 1 mM complex **1** with 0.1 M TBAPF₆ and 0.1 M TFE in dry CH₃CN (shown in Figure S 14-right).

Figure S18. Current density as a function of time over 1 h electrolysis on a glassy carbon plate electrode at -2.62 V vs Fc/Fc⁺ of 1 mM of $[Mo(O)(bdt)_2][Et_4N]_2$ in a CO₂ saturated atmosphere, in CH₃CN with 0.1 M TBAPF₆ and 0.1 M TFE. Only detected product was H₂.

Figure S19. IR-SEC spectrum of complex **1** in dry CH_3CN with 0.1 M TBAPF₆ at resting potential under Ar (yellow), at -2.24 V vs Fc/Fc⁺ under Ar (blue), at resting potential under CO_2 (purple), at -2.24 V vs Fc/Fc⁺ under CO_2 (red), and in dry CD_3CN at -2.24 V vs Fc/Fc⁺ under CO_2 (green). Lab-O-Mak IR-SEC cell equipped with Pt grid for working and counter electrodes and an Ag pseudo-reference electrode.

Computational Details

Table S2. Selected bond distances (in Å) and angles (in deg). Experimental values are given in italic.

Structure	Mo–O [Å]	Mo–S1 [Å]	Mo–S2 [Å]	Cu–S1 [Å]	Cu–C [Å]	Mo–Cu [Å]	S1–Mo–S2 (deg)	Mo–Cu–C (deg)
1	1.694 1.694(4)	2.311 2.306(2) 2.307(2)	2.474 2.434(2) 2.448(2)	2.242 2.181(2) 2.180(2)	1.914	2.665 2.599(1)	79.5/79.8	178.7
1 _{red}	1.714	2.511/2.500	2.418/2.412	2.332/2.329	1.918	3.057	84.6/84.4	142.8
2a	1.930	2.445/2.312	2.562/2.389	2.337/2.298	1.927	3.011	85.9/89.7	174.5
2b	1.707	2.520/2.487	2.404/2.402	2.395/2.274	1.908	3.198	85.1/89.7	145.5
3	N.A.	2.264	2.383/2.375	2.320/2.314	1.918	2.755	112.9/117.9	177.4
3red	N.A.	2.300	2.352/2.344	2.326/2.322	1.922	2.805	115.5/117.5	177.1

Table S3. Calculated scaled (scaling factor 0.9674³) and experimental v_{CN} stretching frequencies (cm⁻¹).

Structure	Calculated CN	Experimental CN
	stretch	stretch
	(cm ⁻¹)	(cm ⁻¹)
1	2141	2124
1 _{red}	2059	2081
2a	2091	
2b	2086	
3	2128	2150
3 _{red}	2109	

Table S4. Calculated scale (scaling factor 0.9674^3) vibrational frequencies (in cm⁻¹) of some key intermediates formed during the CO₂ reduction reaction. The experimental values are given in parentheses.

Structure	CN stretch (cm ⁻¹)	Mo–H stretch (cm ⁻¹)
4-Mo [∨] H	2135 (2187)	1858 (1874)
5-Mo ^v H-SH	2147	1807

Figure S20. Kohn-Sham frontier molecular orbitals (isovalue 0.5) for complex 1.

Figure S21. Kohn-Sham frontier molecular orbitals (isovalue 0.5) for two-electron reduced complex **1**_{red}.

Figure S22. Kohn-Sham frontier molecular orbitals (isovalue 0.5) along with the total spin density for complex **2a**.

Figure S23. Kohn-Sham frontier molecular orbitals (isovalue 0.5) for complex 2b.

Figure S24. Frontier MO (isovalue 0.05) along with the total spin density for complex **3** (a) and its singly-reduced complex $\mathbf{3}_{red}$ (b).

Figure S25. Frontier MO (isovalue 0.05) along with the total spin density for complex 4- $Mo^{V}H$.

Figure S26. Potential shift observed for the Fc/Fc⁺ couple in the IR-SEC cell after the FTIR measurements shown in Figure 4 (20 s controlled potential electrolysis at -1.9V vs. the Ag pseudo-reference electrode): under Ar (black FTIR spectra in Figure 4, full line) and under CO₂ (red FTIR spectra in Figure 4, dashed line).

1

Мо	-4.248930	-0.786359	-4.878644
Cu	-4.075067	1.405573	-6.384691
Н	-5.128235	-2.010660	0.127998
Н	-1.115696	-3.890592	-2.068807
S	-2.350242	-2.030864	-3.894658
S	-4.911360	-0.838452	-2.496449
S	-5.600278	1.085143	-4.774798
S	-2.590287	-0.274375	-6.402840
С	-3.915946	2.993850	-7.441606
0	-5.191648	-1.991901	-5.604413
С	-2.796756	-2.568681	-2.280874
С	-3.934280	-2.036850	-1.658560
С	-4.250727	-2.426811	-0.352612
С	-3.453298	-3.338415	0.326391
С	-2.322051	-3.868936	-0.293449
С	-1.996446	-3.482891	-1.586913
Ν	-3.816324	3.957002	-8.082948
Н	-3.713549	-3.635032	1.334923
Н	-1.696249	-4.581587	0.229377

1_{red}

Мо	-3.904544	-0.410922	-4.509391
Cu	-3.879860	1.956950	-6.442153
Н	-5.138416	-2.142410	0.200382
Н	-1.204773	-4.079463	-2.069211
S	-2.168823	-1.885435	-3.698185
S	-4.744485	-0.681893	-2.264728
S	-4.882333	1.896093	-4.340945
S	-2.042079	0.697159	-5.754956
С	-4.476391	2.518672	-8.176273
0	-4.879015	-1.327173	-5.581574
С	-2.744386	-2.588886	-2.173708
С	-3.874647	-2.043890	-1.530057
С	-4.277879	-2.574774	-0.299455
С	-3.601359	-3.639095	0.288342
С	-2.493610	-4.189179	-0.355563
С	-2.072130	-3.658955	-1.571091
Ν	-4.822853	2.893806	-9.228602
Н	-3.938377	-4.037418	1.238255
Н	-1.961409	-5.024026	0.085339

2a

С	-2.387946	-3.860231	-1.681832
С	-3.069134	-2.866934	-2.408963
С	-3.859552	-1.944782	-1.686172
С	-3.945946	-2.047668	-0.294030
С	-3.267470	-3.039632	0.405221

С	-2.481785	-3.951046	-0.299943
S	-2.928357	-2.778356	-4.149539
Мо	-4.433485	-0.826631	-4.874181
0	-5.494466	-2.009526	-5.964298
S	-4.758659	-0.656865	-2.509565
Cu	-4.211244	1.834060	-6.260638
С	-3.999344	3.446096	-7.293267
Ν	-3.869737	4.425298	-7.913918
S	-5.994615	1.038101	-5.051507
S	-2.622721	0.149914	-5.933548
С	-5.494259	-3.370947	-6.254456
0	-6.257992	-4.071146	-5.552756
0	-4.795163	-3.726819	-7.227805
Н	-4.560595	-1.334595	0.244194
Н	-1.777780	-4.572556	-2.225328
Н	-3.352230	-3.100710	1.483321
Н	-1.944910	-4.732624	0.224975

2b

Мо	-3.993977	-0.605210	-4.514534
Cu	-4.083446	1.787760	-6.634671
Н	-4.950343	-1.880281	0.391076
Н	-1.539793	-4.438255	-2.100873
S	-2.419873	-2.274472	-3.803825
S	-4.580878	-0.596803	-2.183232
S	-4.250474	1.863973	-4.367757
S	-2.386464	0.129711	-6.310449
С	-4.804234	2.390914	-8.294614
0	-5.295831	-1.322490	-5.353357
С	-2.886718	-2.769444	-2.159870
С	-3.856171	-2.038725	-1.448470
С	-4.203922	-2.446467	-0.155675
С	-3.614008	-3.560079	0.433083
С	-2.649437	-4.281389	-0.269511
С	-2.291686	-3.880543	-1.552851
Ν	-5.217150	2.775587	-9.316388
Н	-3.905941	-3.862232	1.432028
Н	-2.180688	-5.150169	0.177311
С	-2.086282	-1.253288	-7.590773
0	-2.623686	-1.047049	-8.695238
0	-1.366896	-2.198850	-7.230005

Мо	-3.897079	-0.172294	-4.337616
Cu	-4.044659	1.539543	-6.491657
Н	-5.559108	-2.886078	-0.311363
Н	-0.790098	-3.172688	-1.583348
S	-2.070753	-1.383469	-3.422501
S	-5.167047	-1.193187	-2.598238
S	-3.624647	2.074450	-4.273573
S	-4.356325	-0.753636	-6.477011
С	-4.061508	2.725651	-7.999406
С	-2.695273	-2.296026	-2.044821

С	-4.050278	-2.214500	-1.683858
С	-4.513516	-2.951140	-0.587661
С	-3.651504	-3.756944	0.141429
С	-2.304800	-3.837416	-0.217186
С	-1.834543	-3.112183	-1.301581
Ν	-4.062162	3.443332	-8.914531
Н	-4.026755	-4.320353	0.986594
Н	-1.625144	-4.463862	0.346926

3_{red}

Мо	-3.835309	-0.173673	-4.358506
Cu	-4.058093	1.580604	-6.536212
Н	-5.559534	-2.884119	-0.313793
Н	-0.777392	-3.215902	-1.531753
S	-2.067383	-1.388139	-3.412341
S	-5.095680	-1.178786	-2.646383
S	-3.621336	2.116068	-4.315272
S	-4.363262	-0.721353	-6.528614
С	-4.114178	2.773037	-8.042373
С	-2.671766	-2.324872	-2.014339
С	-4.026718	-2.231103	-1.670522
С	-4.509378	-2.959371	-0.578229
С	-3.664036	-3.773444	0.166726
С	-2.312016	-3.867064	-0.177047
С	-1.826225	-3.145647	-1.260934
Ν	-4.135173	3.494023	-8.956948
Н	-4.053133	-4.331976	1.010055
Н	-1.644586	-4.499081	0.397086

4-Mo[∨]H

Мо	-3.891056	-0.278245	-4.582726
Cu	-3.984005	1.523941	-6.555411
Н	-5.269461	-2.282676	0.109724
Н	-1.048047	-3.796030	-1.965698
S	-2.237798	-1.879107	-3.722105
S	-4.921007	-0.825982	-2.348626
S	-5.311281	1.444900	-4.667370
S	-2.502160	-0.203151	-6.418945
С	-4.106044	2.908006	-7.875818
С	-2.751001	-2.503331	-2.160146
С	-3.948911	-2.058448	-1.570746
С	-4.343077	-2.613523	-0.344042
С	-3.569286	-3.575958	0.287960
С	-2.374235	-4.003338	-0.292170
С	-1.972795	-3.466793	-1.507051
Ν	-4.178635	3.759471	-8.663516
Н	-3.896942	-3.993925	1.232009
Н	-1.762945	-4.750956	0.197736
Н	-4.938010	-1.368458	-5.319261

TS_{4-3red}

Мо	-4.351237	-0.620679	-4.848037
Cu	-4.511112	1.862733	-5.992995
Н	-3.782230	-1.121733	0.185536
Н	-2.668744	-4.974248	-2.713901
S	-3.815667	-2.902414	-4.374228
S	-4.601827	-0.483590	-2.506131
S	-6.241983	0.614355	-5.198685
S	-2.625972	0.549558	-5.504351
С	-4.381224	3.583698	-6.827471
С	-3.480546	-2.986107	-2.642043
С	-3.800575	-1.897902	-1.818271
С	-3.532640	-1.964557	-0.447648
С	-2.954066	-3.100704	0.100543
С	-2.643706	-4.187628	-0.716832
С	-2.909666	-4.131091	-2.077946
Ν	-4.293055	4.623587	-7.338670
Н	-2.745816	-3.139449	1.162375
Н	-2.194087	-5.077123	-0.293614
Н	-4.902689	-1.615389	-6.260161
С	-5.525700	-1.974458	-7.508112
0	-4.959187	-1.376978	-8.376566
0	-6.378168	-2.765281	-7.225186

5-Mo^vH-SH

С	-1.749131	-2.774505	-1.221381
С	-2.699129	-2.349674	-2.155091
С	-4.063976	-2.515731	-1.883552
С	-4.461189	-3.119202	-0.685996
С	-3.512853	-3.537271	0.234684
С	-2.154267	-3.362946	-0.033323
S	-2.187727	-1.640348	-3.684828
Мо	-4.126747	-0.669398	-4.646988
S	-3.159396	-0.845910	-6.856556
Cu	-3.468784	1.428286	-6.358181
С	-3.114096	3.002900	-7.402639
Ν	-2.893299	3.953564	-8.031150
S	-5.265547	-2.017784	-3.075028
S	-4.384020	1.445091	-4.212042
Н	-5.516258	-3.252163	-0.481155
Н	-0.695454	-2.644218	-1.433909
Н	-3.830196	-3.996368	1.162245
Н	-1.411868	-3.687951	0.684360
Н	-5.510312	-1.278820	-5.427002
Н	-4.265710	-0.956299	-7.618873

TS_{5-3red}

С	-5.399743	-0.065794	-0.531947
С	-5.118052	1.298911	-0.608135
С	-3.829016	1.756570	-0.381582
С	-2.807061	0.852119	-0.079343
С	-3.086847	-0.517649	-0.008332
С	-4.391183	-0.968901	-0.231890
S	-1.175662	1.429516	0.254384

Мо	0.240763	-0.446420	0.281988
S	1.781861	0.460415	1.837913
Cu	2.942391	0.164061	-0.173808
С	4.771160	0.466353	-0.665290
Ν	5.878898	0.644998	-0.962461
S	-1.800021	-1.654564	0.396574
S	1.270954	-0.675946	-1.618081
Н	-4.607118	-2.028415	-0.172421
Н	-3.607845	2.815180	-0.435470
Н	-6.405810	-0.423769	-0.709170
Н	-5.904540	2.005130	-0.841378
Н	0.540697	-1.825913	1.325487
Н	1.321304	-0.945706	1.873567

References

- 1 M. Takuma, Y. Ohki and K. Tatsumi, *Inorg. Chem.*, 2005, **44**, 6034–6043.
- 2 C. Camp, V. Guidal, B. Biswas, J. Pécaut, L. Dubois and M. Mazzanti, *Chem. Sci.*, 2012, **3**, 2433–2448.
- 3 M. K. Kesharwani, B. Brauer and J. M. L. Martin, *J. Phys. Chem. A*, 2015, **119**, 1701– 1714.