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In this supplementary note, we provide additional details of the proposed variational EM algorithm and also a
simulation study with unbalanced clusters, i.e., clusters whose marginal probabilities are unequal.

1. More details of variational EM algorithm

1.1. Obtaining a lower bound of the log-likelihood (9)

Using Jensen’s inequality, the log-likelihood function can be bounded as
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Some choices of A(z) give rise to better lower bounds than others. The difference between the log-likelihood and
the lower bound is equal to the Kullback-Leibler divergence from A(z) to Pr(Z = z | yT , . . . , y0), since

ln Pr(y1, . . . , yT | y0) −
∑
z∈Z

{
ln

Pr(y1, . . . , yT , z | y0)
A(z)

}
A(z) =

∑
z∈Z

{
ln

A(z)
Pr(Z = z | yT , . . . , y0)

}
A(z).

Hence, we would obtain the best lower bound, yielding equality in (1), when A(z) = Pr(Z = z | yT , . . . , y0), which
reduces the Kullback-Leibler divergence to zero. However, this A(z) is computationally intractable since it cannot be
further factored over nodes.

To achieve tractability, we constrain A(z) to the mean-field variational family where the Zi are mutually indepen-
dent, i.e.,

A(z) = Pr(Z = z) =

n∏
i=1

Pr(Zi = zi).

To allow for achieving the optimal such A(z) in terms of Kullback-Leibler divergence, we maximize the flexibility of
our model by specifying that each Zi has its own multinomial parameter vector. That is, we assume that Pr(Zi = zi)
is Multinomial(1; γi1, . . . , γiK) for i = 1, . . . , n. Therefore, Γ = (γ1, . . . ,γn) is the variational parameter.
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With A(z) = Pr(Z = z), we obtain the following explicit lower bound of the log-likelihood:

LB(π, θ;Γ) =EΓ {ln Pr(y1, . . . , yT , z | y0)} − EΓ {ln Pr(Z = z)}
=EΓ {ln Pr(y1, . . . , yT | y0, z) + ln Pr(Z = z | y0)} − EΓ {ln Pr(Z = z)}
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1.2. Constructing a surrogate function

To construct the surrogate function Q(π(τ), θ(τ),Γ(τ);Γ) of equation (10), which satisfies equations (11) and (12),
we separate the lower bound of the log-likelihood, LB(π(τ), θ(τ);Γ), into two parts,
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For the first part, since ln Pr(Yt,i j = yt,i j | yt−1,i j,Zik = Z jl = 1) < 0, the arithmetic-geometric mean inequality
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Hence, the first part of our surrogate function is written as
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For the second part, the concavity of the logarithm function means that its graph is bounded above by any tangent
line, giving the inequality
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Therefore, the second part of our surrogate function is written as
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Combining these two parts, we have the surrogate function Q(π(τ), θ(τ),Γ(τ);Γ), which equals
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2. A simulation study with unbalanced clusters

We provide an additional simulation study to check the performance of our proposed algorithm in an unbalanced
clusters setting, called Model 7, in which the mixing parameters are unequal but all other parameters are the same as
in Model 1.

Table 1
Parameter values for a model with unequal mixing proportions.

Model 7

G1 G2

Mixing proportion πk 0.2 0.8
Stability parameter θs

k -0.5 0.5
Initial network density parameter θd

k -0.5 0.5

We check the performance of our criterion functions in choosing the correct number of groups. As shown in Table
2, both CL-BIC and modified ICL perform well. Next, we assess the clustering performance. The average value of RI
and NMI results are reported in Table 3.

Table 2
Frequencies of min CL-BIC and max ICL over 100 repetitions. K0 represents the true number of groups.

Model 7 (K0 = 2)

K = 1 K = 2 K = 3 K = 4

min CL-BIC 0 98 0 2
max ICL 0 100 0 0

Table 3
Mean values of Rand Index (RI) and Normalized Mutual Information (NMI) for 100 repetitions for various models and values of K, with sample
standard deviations in parentheses, where K0 is the true number of groups.

Model 7 (K0 = 2)

K = 2 K = 3 K = 4

RI 1.000 (0.000) 0.686 (0.033) 0.586 (0.053)
NMI 1.000 (0.000) 0.479 (0.040) 0.373 (0.046)

Finally, Table 4 summarizes estimation performance of our algorithm. The results of Tables 2 through 4 together
tell us that our algorithm performs convincingly on this test case.

Table 4
Average values of `2 norm loss for estimated mixing proportions and network parameters over 100 repetitions with standard deviations shown in
parentheses. K0 represents the true number of groups.

Model 7 (K0 = 2)

RSEπ RSEθs

0.045 (0.032) 0.020 (0.013)
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