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Abstract 49 

The domestic pig (Sus scrofa) is important both as a food source and as a biomedical model with high 50 

anatomical and immunological similarity to humans. The draft reference genome (Sscrofa10.2) of a 51 

purebred Duroc female pig established using older clone-based sequencing methods was incomplete 52 

and unresolved redundancies, short range order and orientation errors and associated misassembled 53 

genes limited its utility. We present two annotated highly contiguous chromosome-level genome 54 

assemblies created with more recent long read technologies and a whole genome shotgun strategy, 55 

one for the same Duroc female (Sscrofa11.1) and one for an outbred, composite breed male 56 

(USMARCv1.0). Both assemblies are of substantially higher (>90-fold) continuity and accuracy than 57 

Sscrofa10.2. These highly contiguous assemblies plus annotation of a further 11 short read assemblies 58 

provide an unprecedented view of the genetic make-up of this important agricultural and biomedical 59 

model species. We propose that the improved Duroc assembly (Sscrofa11.1) become the reference 60 

genome for genomic research in pigs. 61 

 62 
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Background 66 

High quality, richly annotated reference genome sequences are key resources and provide important 67 

frameworks for the discovery and analysis of genetic variation and for linking genotypes to function. 68 

In farmed animal species such as the domestic pig (Sus scrofa) genome sequences have been integral 69 

to the discovery of molecular genetic variants and the development of single nucleotide 70 

polymorphism (SNP) chips [1] and enabled efforts to dissect the genetic control of complex traits, 71 

including responses to infectious diseases [2]. 72 

 73 

Genome sequences are not only an essential resource for enabling research but also for applications 74 

in the life sciences. Genomic selection, in which associations between thousands of SNPs and trait 75 

variation as established in a phenotyped training population are used to choose amongst selection 76 

candidates for which there are SNP data but no phenotypes, has delivered genomics-enabled genetic 77 

improvement in farmed animals [3] and plants. From its initial successful application in dairy cattle 78 

breeding, genomic selection is now being used in many sectors within animal and plant breeding, 79 

including by leading pig breeding companies [4, 5]. 80 

 81 

The domestic pig (Sus scrofa) has importance not only as a source of animal protein but also as a 82 

biomedical model. The choice of the optimal animal model species for pharmacological or toxicology 83 

studies can be informed by knowledge of the genome and gene content of the candidate species 84 

including pigs [6]. A high quality, richly annotated genome sequence is also essential when using gene 85 

editing technologies to engineer improved animal models for research or as sources of cells and tissue 86 

for xenotransplantation and potentially for improved productivity [7, 8]. 87 

 88 

The highly continuous pig genome sequences reported here are built upon a quarter of a century of 89 

effort by the global pig genetics and genomics research community including the development of 90 



recombination and radiation hybrid maps [9, 10], cytogenetic and Bacterial Artificial Chromosome 91 

(BAC) physical maps [11, 12] and a draft reference genome sequence [13]. 92 

 93 

The previously published draft pig reference genome sequence (Sscrofa10.2), developed under the 94 

auspices of the Swine Genome Sequencing Consortium (SGSC), has a number of significant deficiencies 95 

[14-17]. The BAC-by-BAC hierarchical shotgun sequence approach [18] using Sanger sequencing 96 

technology can yield a high quality genome sequence as demonstrated by the public Human Genome 97 

Project. However, with a fraction of the financial resources of the Human Genome Project, the 98 

resulting draft pig genome sequence comprised an assembly, in which long-range order and 99 

orientation is good, but the order and orientation of sequence contigs within many BAC clones was 100 

poorly supported and the sequence redundancy between overlapping sequenced BAC clones was 101 

often not resolved. Moreover, about 10% of the pig genome, including some important genes, were 102 

not represented (e.g. CD163), or incompletely represented (e.g. IGF2) in the assembly [19]. Whilst the 103 

BAC clones represent an invaluable resource for targeted sequence improvement and gap closure as 104 

demonstrated for chromosome X (SSCX) [20], a clone-by-clone approach to sequence improvement is 105 

expensive notwithstanding the reduced cost of sequencing with next-generation technologies. 106 

 107 

The dramatically reduced cost of whole genome shotgun sequencing using Illumina short read 108 

technology has facilitated the sequencing of several hundred pig genomes [17, 21, 22]. Whilst a few 109 

of these additional pig genomes have been assembled to contig level, most of these genome 110 

sequences have simply been aligned to the reference and used as a resource for variant discovery. 111 

 112 

The increased capability and reduced cost of third generation long read sequencing technology as 113 

delivered by Pacific Biosciences and Oxford Nanopore platforms, have created the opportunity to 114 

generate the data from which to build highly contiguous genome sequences as illustrated recently for 115 

cattle [23, 24]. Here we describe the use of Pacific Biosciences (PacBio) long read technology to 116 



establish highly continuous pig genome sequences that provide substantially improved resources for 117 

pig genetics and genomics research and applications. 118 

  119 



Results 120 

Two individual pigs were sequenced independently: a) TJ Tabasco (Duroc 2-14) i.e. the sow that was 121 

the primary source of DNA for the published draft genome sequence (Sscrofa10.2) [13] and b) 122 

MARC1423004 which was a Duroc/Landrace/Yorkshire crossbred barrow (i.e. castrated male pig) from 123 

the USDA Meat Animal Research Center. The former allowed us to build upon the earlier draft genome 124 

sequence, exploit the associated CHORI-242 BAC library resource (https://bacpacresources.org/ 125 

http://bacpacresources.org/porcine242.htm) and evaluate the improvements achieved by 126 

comparison with Sscrofa10.2. The latter allowed us to assess the relative efficacy of a simpler whole 127 

genome shotgun sequencing and Chicago Hi-Rise scaffolding strategy [25]. This second assembly also 128 

provided data for the Y chromosome, and supported comparison of haplotypes between individuals. 129 

In addition, full-length transcript sequences were collected for multiple tissues from the 130 

MARC1423004 animal, and used in annotating both genomes. 131 

 132 

Sscrofa11.1 assembly 133 

Approximately sixty-five fold coverage (176 Gb) of the genome of TJ Tabasco (Duroc 2-14) was 134 

generated using Pacific Biosciences (PacBio) single-molecule real-time (SMRT) sequencing technology. 135 

A total of 213 SMRT cells produced 12,328,735 subreads of average length 14,270 bp and with a read 136 

N50 of 19,786 bp (Table S1). Reads were corrected and assembled using Falcon (v.0.4.0) [26], 137 

achieving a minimum corrected read cutoff of 13 kb that provided 19-fold genome coverage for input 138 

resulting in an initial assembly comprising 3,206 contigs with a contig N50 of 14.5 Mb. 139 

 140 

The contigs were mapped to the previous draft assembly (Sscrofa10.2) using Nucmer [27]. The long 141 

range order of the Sscrofa10.2 assembly was based on fingerprint contig (FPC) [12] and radiation 142 

hybrid physical maps with assignments to chromosomes based on fluorescent in situ hybridisation 143 

data. This alignment of Sscrofa10.2 and the contigs from the initial Falcon assembly of the PacBio data 144 

provided draft scaffolds that were tested for consistency with paired BAC and fosmid end sequences 145 



and the radiation hybrid map [9]. The draft scaffolds also provided a framework for gap closure using 146 

PBJelly [28], or finished quality Sanger sequence data generated from CHORI-242 BAC clones from 147 

earlier work [13, 20]. 148 

 149 

Remaining gaps between contigs within scaffolds, and between scaffolds predicted to be adjacent on 150 

the basis of other available data, were targeted for gap filling with a combination of unplaced contigs 151 

and previously sequenced BACs, or by identification and sequencing of BAC clones predicted from 152 

their end sequences to span the gaps. The combination of methods filled 2,501 gaps and reduced the 153 

number of contigs in the assembly from 3,206 to 705. The assembly, Sscrofa11 (GCA_000003025.5), 154 

had a final contig N50 of 48.2 Mb, only 103 gaps in the sequences assigned to chromosomes, and only 155 

583 remaining unplaced contigs (Table 1). Two acrocentric chromosomes (SSC16, SSC18) were each 156 

represented by single, unbroken contigs. The SSC18 assembly also includes centromeric and telomeric 157 

repeats (Tables S2, S3; Figs. S1, S2), albeit the former probably represent a collapsed version of the 158 

true centromere. The reference genome assembly was completed by adding Y chromosome 159 

sequences from other sources (GCA_900119615.2) [20] because TJ Tabasco (Duroc 2-14) was female. 160 

The resulting reference genome sequence was termed Sscrofa11.1 and deposited in the public 161 

sequence databases (GCA_000003025.6) (Table 1). 162 

 163 

The medium to long range order and orientation of Sscrofa11.1 assembly was assessed by comparison 164 

to an existing radiation hybrid (RH) map [9]. The comparison strongly supported the overall accuracy 165 

of the assembly (Fig. 1a), despite the fact that the RH map was prepared from a cell line of a different 166 

individual. There is one major disagreement between the RH map and the assembly on chromosome 167 

3, which will need further investigating. The only other substantial disagreement on chromosome 9, 168 

is explained by a gap in the RH map [9]. The assignment and orientation of the Sscrofa11.1 scaffolds 169 

to chromosomes was confirmed with fluorescent in situ hybridisation (FISH) of BAC clones (Table S4, 170 

Fig. S3). The Sscrofa11.1 and USMARCv1.0 assemblies were searched using BLAST with sequences 171 



derived from the BAC clones which had been used as probes for the FISH analyses. For most BAC 172 

clones these sequences were BAC end sequences [12], but in some cases these sequences were 173 

incomplete or complete BAC clone sequences [13, 20]. The links between the genome sequence and 174 

the BAC clones used in cytogenetic analyses by fluorescent in situ hybridization are summarised in 175 

Table S4. The fluorescent in situ hybridization results indicate areas where future assemblies might be 176 

improved. For example, the Sscrofa11.1 unplaced scaffolds contig 1206 and contig1914 may contain 177 

sequences that could be added to end of the long arms of SSC1 and SSC7 respectively. 178 

 179 

The quality of the Sscrofa11 assembly, which corresponds to Sscrofa11.1 after the exclusion of SSCY, 180 

was assessed as described previously for the existing Sanger sequence based draft assembly 181 

(Sscrofa10.2) [14]. Alignments of Illumina sequence reads from the same female pig were used to 182 

identify regions of low quality (LQ) or low coverage (LC) (Table 2). The analysis confirms that Sscrofa11 183 

represents a significant improvement over the Sscrofa10.2 draft assembly. For example, the Low 184 

Quality Low Coverage (LQLC) proportion of the genome sequence has dropped from 33.07% to 16.3% 185 

when repetitive sequence is not masked, and falls to 1.6% when repeats are masked prior to read 186 

alignment. The remaining LQLC segments of Sscrofa11 may represent regions where short read 187 

coverage is low due to known systematic errors of the short read platform related to GC content, 188 

rather than deficiencies of the assembly. 189 

 190 

The Sscrofa11.1 assembly was also assessed visually using gEVAL [29]. The improvement in short range 191 

order and orientation as revealed by alignments with isogenic BAC and fosmid end sequences is 192 

illustrated for a particularly poor region of Sscrofa10.2 on chromosome 12 (Fig. S4). The problems in 193 

this area of Sscrofa10.2 arose from failures to order and orient the sequence contigs and resolve the 194 

redundancies between these sequence contigs within BAC clone CH242-147O24 (FP102566.2). The 195 

improved contiguity in Sscrofa11.1 not only resolves these local order and orientation errors, but also 196 

facilitates the annotation of a complete gene model for the ABR locus. Further examples of 197 



comparisons of Sscrofa10.2 and Sscrofa11.1 reveal improvements in contiguity, local order and 198 

orientation and gene models (Fig. S5 to S7). 199 

 200 

USMARCv1.0 assembly 201 

Approximately sixty-five fold coverage of the genome of the MARC1423004 barrow was generated on 202 

a PacBio RSII instrument. The sequence was collected during the transition from P5/C3 to P6/C4 203 

chemistry, with approximately equal numbers of subreads from each chemistry. A total of 199 cells of 204 

P5/C3 chemistry produced 95.3 Gb of sequence with mean subread length of 5.1 kb and subread N50 205 

of 8.2 kb. A total of 127 cells of P6/C4 chemistry produced 91.6 Gb of sequence with mean subread 206 

length 6.5 kb and subread N50 of 10.3 kb, resulting in an overall average subread length, including 207 

data from both chemistries, of 6.4 kb. The reads were assembled using Celera Assembler 8.3rc2 [30] 208 

and Falcon (https://pb-falcon.readthedocs.io/en/latest/about.html). The resulting assemblies were 209 

compared and the Celera Assembler result was selected based on better agreement with a Dovetail 210 

Chicago® library [25], and was used to create a scaffolded assembly with the HiRise™ scaffolder 211 

consisting of 14,818 contigs with a contig N50 of 6.372 Mb (GenBank accession GCA_002844635.1; 212 

Table 1). The USMARCv1.0 scaffolds were therefore completely independent of the existing 213 

Sscrofa10.2 or new Sscrofa11.1 assemblies, and they can act as supporting evidence where they agree 214 

with those assemblies. However, chromosome assignment of the scaffolds was performed by 215 

alignment to Sscrofa10.2, and does not constitute independent confirmation of this ordering. The 216 

assignment of these scaffolds to individual chromosomes was confirmed post-hoc by FISH analysis as 217 

described for Sscrofa11.1 above. The FISH analysis revealed that several of these chromosome 218 

assemblies (SSC1, 5, 6-11, 13-16) are inverted with respect to the cytogenetic convention for pig 219 

chromosome (Table S4; Figs. S3, S8 to S10). After correcting the orientation of these inverted scaffolds, 220 

there is good agreement between the USMARCv1.0 assembly and the RH map [9] (Fig. 1b). 221 

 222 

Sscrofa11.1 and USMARCv1.0 are co-linear 223 

https://pb-falcon.readthedocs.io/en/latest/about.html


The alignment of the two PacBio assemblies reveals a high degree of agreement and co-linearity, after 224 

correcting the inversions of several USMARCv1.0 chromosome assemblies (Fig. S11). The agreement 225 

between the Sscrofa11.1 and USMARCv1.0 assemblies is also evident in comparisons of specific loci 226 

(Figs. S5 to S7) although with some differences (e.g. Fig. S6). The whole genome alignment of 227 

Sscrofa11.1 and USMARCv1.0 (Fig. S11) masks some inconsistencies that are evident when the 228 

alignments are viewed on a single chromosome-by-chromosome basis (Figs. S8 to S10). It remains to 229 

be determined whether the small differences between the assemblies represent errors in the 230 

assemblies, or true structural variation between the two individuals (see discussion of the ERLIN1 231 

locus below). 232 

 233 

Pairwise comparisons amongst the Sscrofa10.2, Sscrofa11.1 and USMARCv1.0 assemblies using the 234 

Assemblytics tools [31] (http://assemblytics.com) revealed a peak of insertions and deletion with sizes 235 

of about 300 bp (Figs. S12a to S12c). We assume that these correspond to SINE elements. Despite the 236 

fact that the Sscrofa10.2 and Sscrofa11.1 assemblies are representations of the same pig genome, 237 

there are many more differences between these assemblies than between the Sscrofa11.1 and 238 

USMARCv1.0 assemblies. We conclude that many of the differences between the Sscrofa11.1 239 

assembly and the earlier Sscrofa10.2 assemblies represent improvements in the former. Some of the 240 

differences may indicate local differences in terms of which of the two haploid genomes has been 241 

captured in the assembly. The differences between the Sscrofa11.1 and USMARCv1.0 will represent a 242 

mix of true structural differences and assembly errors that will require further research to resolve. 243 

The Sscrofa11.1 and USMARCv1.0 assemblies were also compared to 11 Illumina short read 244 

assemblies [17] (Table S5a, b, c). 245 

 246 

Repetitive sequences, centromeres and telomeres 247 

The repetitive sequence content of the Sscrofa11.1 and USMARCv1.0 was identified and 248 

characterised. These analyses allowed the identification of centromeres and telomeres for several 249 

http://assemblytics.com/


chromosomes. The previous reference genome (Sscrofa10.2) that was established from Sanger 250 

sequence data and a minipig genome (minipig_v1.0, GCA_000325925.2) that was established from 251 

Illumina short read sequence data were also included for comparison. The numbers of the different 252 

repeat classes and the average mapped lengths of the repetitive elements identified in these four pig 253 

genome assemblies are summarised in Figures S13 and S14, respectively. 254 

 255 

Putative telomeres were identified at the proximal ends of Sscrofa11.1 chromosome assemblies of 256 

SSC2, SSC3, SSC6, SSC8, SSC9, SSC14, SSC15, SSC18 and SSCX (Fig S1; Table S2). Putative centromeres 257 

were identified in the expected locations in the Sscrofa11.1 chromosome assemblies for SSC1-7, SSC9, 258 

SSC13 and SSC18 (Fig S2, Table S3). For the chromosome assemblies of each of SSC8, SSC11 and SSC15 259 

two regions harbouring centromeric repeats were identified. Pig chromosomes SSC1-12 plus SSCX and 260 

SSCY are all metacentric, whilst chromosomes SSC13-18 are acrocentric. The putative centromeric 261 

repeats on SSC17 do not map to the expected end of the chromosome assembly. 262 

 263 

Completeness of the assemblies 264 

The Sscrofa11.1 and USMARCv1.0 assemblies were assessed for completeness using two tools, BUSCO 265 

(Benchmarking Universal Single-Copy Orthologs) [32] and Cogent 266 

(https://github.com/Magdoll/Cogent). BUSCO uses a database of expected gene content based on 267 

near-universal single-copy orthologs from species with genomic data, while Cogent uses 268 

transcriptome data from the organism being sequenced, and therefore provides an organism-specific 269 

view of genome completeness. BUSCO analysis suggests both new assemblies are highly complete, 270 

with 93.8% and 93.1% of BUSCOs complete for Sscrofa11.1 and USMARCv1.0 respectively, a marked 271 

improvement on the 80.9% complete in Sscrofa10.2 and comparable to the human and mouse 272 

reference genome assemblies (Table S6). 273 

 274 

https://github.com/Magdoll/Cogent


Cogent is a tool that identifies gene families and reconstructs the coding genome using full-length, 275 

high-quality (HQ) transcriptome data without a reference genome and can be used to check 276 

assemblies for the presence of these known coding sequences. PacBio transcriptome (Iso-Seq) data 277 

consisting of high-quality isoform sequences from 7 tissues (diaphragm, hypothalamus, liver, skeletal 278 

muscle (longissimus dorsi), small intestine, spleen and thymus) [33] from the pig whose DNA was used 279 

as the source for the USMARCv1.0 assembly were pooled together for Cogent analysis. Cogent 280 

partitioned 276,196 HQ isoform sequences into 30,628 gene families, of which 61% had at least 2 281 

distinct transcript isoforms. Cogent then performed reconstruction on the 18,708 partitions. For each 282 

partition, Cogent attempts to reconstruct coding ‘contigs’ that represent the ordered concatenation 283 

of transcribed exons as supported by the isoform sequences. The reconstructed contigs were then 284 

mapped back to Sscrofa11.1 and contigs that could not be mapped or map to more than one position 285 

are individually examined. There were five genes that were present in the Iso-Seq data, but missing in 286 

the Sscrofa11.1 assembly. In each of these five cases, a Cogent partition (which consists of 2 or more 287 

transcript isoforms of the same gene, often from multiple tissues) exists in which the predicted 288 

transcript does not align back to Sscrofa11.1. NCBI-BLASTN of the isoforms from the partitions 289 

revealed them to have near perfect hits with existing annotations for CHAMP1, ERLIN1, IL1RN, MB, 290 

and PSD4. 291 

 292 

ERLIN1 is missing from its predicted location on SSC14 between CHUK and CPN1 gene in Sscrofa11.1. 293 

There is good support for the Sscrofa11.1 assembly in the region from the BAC end sequence 294 

alignments suggesting this area may represent a true haplotype. Indeed, a copy number variant (CNV) 295 

nsv1302227 has been mapped to this location on SSC14 [34] and the ERLIN1 gene sequences present 296 

in BAC clone CH242-513L2 (ENA: CT868715.3) were incorporated into the earlier Sscrofa10.2 297 

assembly. However, an alternative haplotype containing ERLIN1 was not found in any of the 298 

assembled contigs from Falcon and this will require further investigation. The ERLIN1 locus is present 299 

on SSC14 in the USMARCv1.0 assembly (30,107,816-30,143,074; note the USMARCv1.0 assembly of 300 



SSC14 is inverted relative to Sscrofa11.1). Of eleven short read pig genome assemblies [17] that have 301 

been annotated with the Ensembl pipeline (Ensembl release 98, September 2019) ERLIN1 sequences 302 

are present in the expected genomic context in all eleven genome assemblies. As the ERLIN1 gene is 303 

located at the end of a contig in eight of these short read assemblies, it suggests that this region of 304 

the pig genome presents difficulties for sequencing and assembly and the absence of ERLIN1 in the 305 

Sscrofa11.1 is more likely to be an assembly error. 306 

 307 

The other 4 genes are annotated in neither Sscrofa10.2 nor Sscrofa11.1. Two of these genes, IL1RN 308 

and PSD4, are present in the original Falcon contigs, however they were trimmed off during the contig 309 

QC stage because of apparent abnormal Illumina, BAC and fosmid mapping in the region which was 310 

likely caused by the repetitive nature of their expected location on chromosome 3 where a gap is 311 

present. The IL1RN and PSD4 genes are present in the USMARCv1.0, albeit their location is anomalous, 312 

and are also present in the 11 short read assemblies [17]. CHAMP1 (ENSSSCG00070014091) is present 313 

in the USMARCv1.0 assembly in the sub-telomeric region of the q-arm, after correcting the inversion 314 

of the USMARCv1.0 scaffold and is also present in all 11 short read assemblies [17]. After correcting 315 

the orientation of the USMARCv1.0 chromosome 11 scaffold there is a small inversion of the distal 316 

1.07 Mbp relative to the Sscrofa11.1 assembly; this region harbours the CHAMP1 gene. The 317 

orientation of the Sscrofa11.1 chromosome 11 assembly in this region is consistent with the 318 

predictions of the human-pig comparative map [35].  The myoglobin gene (MB) is present in the 319 

expected location in the USMARCv1.0 assembly flanked by RASD2 and RBFOX2. Partial MB sequences 320 

are present distal to RBFOX2 on chromosome 5 in the Sscrofa11.1 assembly. As there is no gap here 321 

in the Sscrofa11.1 assembly it is likely that the incomplete MB is a result of a misassembly in this 322 

region. This interpretation is supported by a break in the pairs of BAC and fosmid end sequences that 323 

map to this region of the Sscrofa11.1 assembly. Some of the expected gene content missing from this 324 

region of the Sscrofa11.1 chromosome 5 assembly, including RASD2, HMOX1 and LARGE1 is present 325 

on an unplaced scaffold (AEMK02000361.1). Cogent analysis also identified 2 cases of potential 326 



fragmentation in the Sscrofa11.1 genome assembly that resulted in the isoforms being mapped to two 327 

separate loci, though these will require further investigation. In summary, the BUSCO and Cogent 328 

analyses indicate that the Sscrofa11.1 assembly captures a very high proportion of the expressed 329 

elements of the genome. 330 

 331 

Improved annotation 332 

Annotation of Sscrofa11.1 was carried out with the Ensembl annotation pipeline and released via the 333 

Ensembl Genome Browser [36] (http://www.ensembl.org/Sus_scrofa/Info/Index) (Ensembl release 334 

90, August 2017). Statistics for the annotation as updated in June 2019 (Ensembl release 98, 335 

September 2019) are listed in Table 3. This annotation is more complete than that of Sscrofa10.2 and 336 

includes fewer fragmented genes and pseudogenes. 337 

 338 

The annotation pipeline utilised extensive short read RNA-Seq data from 27 tissues and long read 339 

PacBio Iso-Seq data from 9 adult tissues. This provided an unprecedented window into the pig 340 

transcriptome and allowed for not only an improvement to the main gene set, but also the generation 341 

of tissue-specific gene tracks from each tissue sample. The use of Iso-Seq data also improved the 342 

annotation of UTRs, as they represent transcripts sequenced across their full length from the polyA 343 

tract. 344 

 345 

In addition to improved gene models, annotation of the Sscrofa11.1 assembly provides a more 346 

complete view of the porcine transcriptome than annotation of the previous assembly (Sscrofa10.2; 347 

Ensembl releases 67-89, May 2012 – May 2017) with increases in the numbers of transcripts 348 

annotated (Table 3). However, the number of annotated transcripts remains lower than in the human 349 

and mouse genomes. The annotation of the human and mouse genomes and in particular the gene 350 

content and encoded transcripts has been more thorough as a result of extensive manual annotation. 351 

 352 

http://www.ensembl.org/Sus_scrofa/Info/Index


Efforts were made to annotate important classes of genes, in particular immunoglobulins and 353 

olfactory receptors. For these genes, sequences were downloaded from specialist databases and the 354 

literature in order to capture as much detail as possible (see supplementary information for more 355 

details). 356 

 357 

These improvements in terms of the resulting annotation were evident in the results of the 358 

comparative genomics analyses run on the gene set. The previous annotation had 12,919 one-to-one 359 

orthologs with human, while the new annotation of the Sscrofa11.1 assembly has 15,544. Similarly, in 360 

terms of conservation of synteny, the previous annotation had 11,661 genes with high confidence 361 

gene order conservation scores, while the new annotation has 15,958. There was also a large 362 

reduction in terms of genes that were either abnormally short or split when compared to their 363 

orthologs in the new annotation. 364 

 365 

The Sscrofa11.1 assembly has also been annotated using the NCBI pipeline 366 

(https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Sus_scrofa/106/). We have compared 367 

these two annotations. The Ensembl and NCBI annotations of Sscrofa11.1 are broadly similar (Table 368 

S7). There are 17,676 protein coding genes and 1,700 non-coding genes in common. However, 540 of 369 

the genes annotated as protein-coding by Ensembl are annotated as non-coding or pseudogenes by 370 

NCBI and 227 genes annotated as non-coding by NCBI are annotated as protein-coding (215) or as 371 

pseudogenes (12) by Ensembl. The NCBI RefSeq annotation can be visualised in the Ensembl Genome 372 

Browser by loading the RefSeq GFF3 track and the annotations compared at the individual locus level. 373 

Similarly, the Ensembl annotated genes can be visualised in the NCBI Genome Browser. Despite 374 

considerable investment there are also differences in the Ensembl and NCBI annotation of the human 375 

reference genome sequence with 20,444 and 19,755 protein-coding genes on the primary assembly, 376 

respectively. The MANE (Matched Annotation from NCBI and EMBL-EBI) project was launched to 377 

resolve these differences and identify a matched representative transcript for each human protein-378 

https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Sus_scrofa/106/


coding gene (https://www.ensembl.org/info/genome/genebuild/mane.html). To date a MANE 379 

transcript has been identified for 12,985 genes. 380 

 381 

We have also annotated the USMARCv1.0 assembly using the Ensembl pipeline [36] and this 382 

annotation was released via the Ensembl Genome Browser 383 

(https://www.ensembl.org/Sus_scrofa_usmarc/Info/Index) (Ensembl release 97, July 2019; see Table 384 

3 for summary statistics). More recently, we have annotated a further eleven short read pig genome 385 

assemblies [17] (Ensembl release 98, September 2019, see Tables S5c and S10 for summary statistics 386 

for the assemblies and annotation, respectively). 387 

 388 

SNP chip probes mapped to assemblies 389 

The probes from four commercial SNP chips were mapped to the Sscrofa10.2, Sscrofa11.1 and 390 

USMARCv1.0 assemblies. We identified 1,709, 56, and 224 markers on the PorcineSNP60, GGP LD and 391 

80K commercial chips that were previously unmapped and now have coordinates on the Sscrofa11.1 392 

reference (Table S8). These newly mapped markers can now be imputed into a cross-platform, 393 

common set of SNP markers for use in genomic selection. Additionally, we have identified areas of the 394 

genome that are poorly tracked by the current set of commercial SNP markers. The previous 395 

Sscrofa10.2 reference had an average marker spacing of 3.57 kbp (Stdev: 26.5 kb) with markers from 396 

four commercial genotyping arrays. We found this to be an underestimate of the actual distance 397 

between markers, as the Sscrofa11.1 reference coordinates consisted of an average of 3.91 kbp 398 

(Stdev: 14.9 kbp) between the same set of markers. We also found a region of 2.56 Mbp that is 399 

currently devoid of suitable markers on the new reference. 400 

 401 

A Spearman’s rank order (rho) value was calculated for each assembly (alternative hypothesis: rho is 402 

equal to zero; p < 2.2 x 10-16): Sscrofa10.2: 0.88464; Sscrofa11.1: 0.88890; USMARCv1.0: 0.81260. This 403 

rank order comparison was estimated by ordering all of the SNP probes from all chips by their listed 404 

https://www.ensembl.org/info/genome/genebuild/mane.html
https://www.ensembl.org/Sus_scrofa_usmarc/Info/Index


manifest coordinates against their relative order in each assembly (with chromosomes ordered by 405 

karyotype). Any unmapped markers in an assembly were penalized by giving the marker a "-1" rank in 406 

the assembly ranking order. 407 

 408 

In order to examine general linear order of placed markers on each assembly, the marker rank order 409 

(y axis; used above in the Spearman's rank order test) was plotted against the rank order of the probe 410 

rank order on the manifest file (x axis) (Fig. S15). The analyses revealed some interesting artefacts that 411 

suggest that the SNP manifest coordinates for the porcine 60K SNP chip are still derived from an 412 

obsolete (Sscrofa9) reference in contrast to all other manifests (Sscrofa10.2). Also, it confirms that 413 

several of the USMARCv1.0 chromosome scaffolds are inverted with respect to the canonical 414 

orientation of pig chromosomes. The large band of points at the top of the plot corresponds to marker 415 

mappings on the unplaced contigs of each assembly. These unplaced contigs often correspond to 416 

assemblies of alternative haplotypes in heterozygous regions of the reference animal [24]. Marker 417 

placement on these segments suggests that these variants are tracking different haplotypes in the 418 

population, which is the desired intent of genetic markers used in Genomic Selection. 419 

  420 



Discussion 421 

We have assembled a superior, extremely continuous reference assembly (Sscrofa11.1) by leveraging 422 

the excellent contig lengths provided by long reads, and a wealth of available data including Illumina 423 

paired-end, BAC end sequence, finished BAC sequence, fosmid end sequences, and the earlier curated 424 

draft assembly (Sscrofa10.2). The pig genome assemblies USMARCv1.0 and Sscrofa11.1 reported here 425 

are 92-fold to 694-fold respectively, more continuous than the published draft reference genome 426 

sequence (Sscrofa10.2) [13]. The new pig reference genome assembly (Sscrofa11.1) with its contig 427 

N50 of 48,231,277 bp and 506 gaps compares favourably with the current human reference genome 428 

sequence (GRCh38.p12) that has a contig N50 of 57,879,411 bp and 875 gaps (Table 1). Indeed, 429 

considering only the chromosome assemblies built on PacBio long read data (i.e. Sscrofa11 - the 430 

autosomes SSC1-SSC18 plus SSCX), there are fewer gaps in the pig assembly than in human reference 431 

autosomes and HSAX assemblies. Most of the gaps in the Sscrofa11.1 reference assembly are 432 

attributed to the fragmented assembly of SSCY. The capturing of centromeres and telomeres for 433 

several chromosomes (Tables S2, S3; Figs. S1, S2) provides further evidence that the Sscrofa11.1 434 

assembly is more complete. The increased contiguity of Sscrofa11.1 is evident in the graphical 435 

comparison to Sscrofa10.2 illustrated in Figure 2. 436 

 437 

The improvements in the reference genome sequence (Sscrofa11.1) relative to the draft assembly 438 

(Sscrofa10.2) [13] are not restricted to greater continuity and fewer gaps. The major flaws in the BAC 439 

clone-based draft assembly were i) failures to resolve the sequence redundancy amongst sequence 440 

contigs within BAC clones and between adjacent overlapping BAC clones and ii) failures to accurately 441 

order and orient the sequence contigs within BAC clones. Although the Sanger sequencing technology 442 

used has a much lower raw error rate than the PacBio technology, the sequence coverage was only 4-443 

6 fold across the genome. The improvements in continuity and quality (Table 2; Figs. S5 to S7) have 444 

yielded a better template for annotation resulting in better gene models. The Sscrofa11.1 and 445 

USMARCv1.0 assemblies are classed as 4|4|1 and 3|5|1 [10X: N50 contig (kb); 10Y: N50 scaffold (kb); 446 



Z = 1|0: assembled to chromosome level] respectively compared to Sscrofa10.2 as 1|2|1 and the 447 

human GRCh38p5 assembly as 4|4|1 (see https://geval.sanger.ac.uk). 448 

 449 

The improvement in the complete BUSCO (Benchmarking Universal Single-Copy Orthologs) genes 450 

indicates that both Sscrofa11.1 and USMARCv1.0 represent superior templates for annotation of gene 451 

models than the draft Sscrofa10.2 assembly and are comparable to the finished human and mouse 452 

reference genome sequences (Table S6). Further, a companion bioinformatics analysis of available Iso-453 

seq and companion Ilumina RNA-seq data across the nine tissues surveyed has identified a large 454 

number (>54,000) of novel transcripts [33]. A majority of these transcripts are predicted to be spliced 455 

and validated by RNA-seq data. Beiki and colleagues identified 10,465 genes expressing Iso-seq 456 

transcripts that are present on the Sscrofa11.1 assembly, but which are unannotated in current NCBI 457 

or Ensembl annotations. 458 

 459 

Whilst the alignment of the Sscrofa11.1 and USMARCv1.0 assemblies revealed that several of the 460 

USMARCv1.0 chromosome assemblies are inverted relative to Sscrofa11.1 and the cytogenetic map. 461 

Such inversions are due to the agnostic nature of genome assembly and post-assembly polishing 462 

programs. Unless these are corrected post-hoc by manual curation, they result in artefactual 463 

inversions of the entire chromosome. However, such inversions do not generally impact downstream 464 

analysis that does not involve the relative order/orientation of whole chromosomes. 465 

 466 

Whether the differences between Sscrofa11.1 and USMARCv1.0 in order and orientation within 467 

chromosomes represent assembly errors or real chromosomal differences will require further 468 

research. The sequence present at the telomeric end of the long arm of the USMARCv1.0 chromosome 469 

7 assembly (after correcting the orientation of the USMARCv1.0 SSC7) is missing from the Sscrofa11.1 470 

SSC7 assembly, and currently located on a 3.8 Mbp unplaced scaffold (AEMK02000452.1). This 471 

unplaced scaffold harbours several genes including DIO3, CKB and NUDT14 whose orthologues map 472 

https://geval.sanger.ac.uk/


to human chromosome 14 as would be predicted from the pig-human comparative map [35]. This 473 

omission will be corrected in an updated assembly in future. 474 

 475 

We demonstrate moderate improvements in the placement and ordering of commercial SNP 476 

genotyping markers on the Sscrofa11.1 reference genome which will impact future genomic selection 477 

programs. The reference-derived order of SNP markers plays a significant role in imputation accuracy, 478 

as demonstrated by a whole-genome survey of misassembled regions in cattle that found a correlation 479 

between imputation errors and misassemblies [37]. The gaps in SNP chip marker coverage that we 480 

identified will inform future marker selection surveys, which are likely to prioritize regions of the 481 

genome that are not currently being tracked by marker variants in close proximity to potential causal 482 

variant sites. In addition to the gaps in coverage provided by the commercial SNP chips there are 483 

regions of the genome assemblies that are devoid of annotated sequence variation as hitherto 484 

sequence variants have been discovered against incomplete genome assemblies. Thus, there is a need 485 

to re-analyse good quality re-sequence data against the new assemblies in order to provide a better 486 

picture of sequence variation in the pig genome. 487 

 488 

The cost of high coverage whole-genome sequencing (WGS) precludes it from routine use in breeding 489 

programs. However, it has been suggested that low coverage WGS followed by imputation of 490 

haplotypes may be a cost-effective replacement for SNP arrays in genomic selection [38]. Imputation 491 

from low coverage sequence data to whole genome information has been shown to be highly accurate 492 

[39, 40]. At the 2018 World Congress on Genetics Applied to Livestock Production Aniek Bouwman 493 

reported that in a comparison of Sscrofa10.2 with Sscrofa11.1 (for SSC7 only) for imputation from 494 

600K SNP genotypes to whole genome sequence overall imputation accuracy on SSC7 improved 495 

considerably from 0.81 (1,019,754 variants) to 0.90 (1,129,045 variants) (Aniek Bouwman, pers. 496 

comm). Thus, the improved assembly may not only serve as a better template for discovering genetic 497 

variation but also have advantages for genomic selection, including improved imputation accuracy. 498 



 499 

Advances in the performance of long read sequencing and scaffolding technologies, improvements in 500 

methods for assembling the sequence reads and reductions in costs are enabling the acquisition of 501 

ever more complete genome sequences for multiple species and multiple individuals within a species. 502 

For example, in terms of adding species, the Vertebrate Genomes Project 503 

(https://vertebrategenomesproject.org/) aims to generate error-free, near gapless, chromosomal 504 

level, haplotyped phase assemblies of all of the approximately 66,000 vertebrate species and is 505 

currently in its first phase that will see such assemblies created for an exemplar species from all 260 506 

vertebrate orders. At the level of individuals within a species, smarter assembly algorithms and 507 

sequencing strategies are enabling the production of high quality truly haploid genome sequences for 508 

outbred individuals [24]. The establishment of assembled genome sequences for key individuals in the 509 

nucleus populations of the leading pig breeding companies is achievable and potentially affordable. 510 

However, 10-30x genome coverage short read data generated on the Illumina platform and aligned to 511 

a single reference genome is likely to remain the primary approach to sequencing multiple individuals 512 

within farmed animal species such as cattle and pigs [21, 41]. 513 

 514 

There are significant challenges in making multiple assembled genome resources useful and 515 

accessible. The current paradigm of presenting a reference genome as a linear representation of a 516 

haploid genome of a single individual is an inadequate reference for a species. As an interim solution 517 

the Ensembl team are annotating multiple assemblies for some species such as mouse 518 

(https://www.ensembl.org/Mus_musculus/Info/Strains) [42]. We have implemented this solution for 519 

pig genomes, including eleven Illumina short-read assemblies [17] in addition to the reference 520 

Sscrofa11.1 and USMARCv1.0 assemblies reported here (Ensembl release 98, September 2019 521 

https://www.ensembl.org/Sus_scrofa/Info/Strains?db=core). Although these additional pig genomes 522 

are highly fragmented (Table S5c) with contig N50 values from 32 – 102 kbp, the genome annotation 523 

(Table S10) provides a resource to explore pig gene space across thirteen genomes, including six Asian 524 

https://vertebrategenomesproject.org/
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pig genomes. The latter are important given the deep phylogenetic split of about 1 million years 525 

between European and Asian pigs [13]. 526 

 527 

The current human genome reference already contains several hundred alternative haplotypes and it 528 

is expected that the single linear reference genome of a species will be replaced with a new model – 529 

the graph genome [43-45]. These paradigm shifts in the representation of genomes present challenges 530 

for current sequence alignment tools and the ‘best-in-genome’ annotations generated thus far. The 531 

generation of high quality annotation remains a labour-intensive and time-consuming enterprise. 532 

Comparisons with the human and mouse reference genome sequences which have benefited from 533 

extensive manual annotation indicate that there is further complexity in the porcine genome as yet 534 

unannotated (Table 3). It is very likely that there are many more transcripts, pseudogenes and non-535 

coding genes (especially long non-coding genes), to be discovered and annotated on the pig genome 536 

sequence [33]. The more highly continuous pig genome sequences reported here provide an improved 537 

framework against which to discover functional sequences, both coding and regulatory, and sequence 538 

variation. After correction for some contig/scaffold inversions in the USMARCv1.0 assembly, the 539 

overall agreement between the assemblies is high and illustrates that the majority of genomic 540 

variation is at smaller scales of structural variation. However, both assemblies still represent a 541 

composite of the two parental genomes present in the animals, with unknown effects of haplotype 542 

switching on the local accuracy across the assembly. 543 

 544 

Future developments in high quality genome sequences for the domestic pig are likely to include: (i) 545 

gap closure of Sscrofa11.1 to yield an assembly with one contig per (autosomal) chromosome arm 546 

exploiting the isogenic BAC and fosmid clone resource as illustrated here for chromosome 16 and 18; 547 

and (ii) haplotype resolved assemblies of a Meishan and White Composite F1 crossbred pig currently 548 

being sequenced. Beyond this haplotype resolved assemblies for key genotypes in the leading pig 549 

breeding company nucleus populations and of miniature pig lines used in biomedical research can be 550 



anticipated in the next 5 years. Unfortunately, some of these genomes may not be released into the 551 

public domain.  The first wave of results from the Functional Annotation of ANimal Genomes (FAANG) 552 

initiative [46, 47], are emerging and will add to the richness of pig genome annotation. 553 

 554 

In conclusion, the new pig reference genome (Sscrofa11.1) described here represents a significantly 555 

enhanced resource for genetics and genomics research and applications for a species of importance 556 

to agriculture and biomedical research. 557 

  558 



Methods 559 

Additional detailed methods and information on the assemblies and annotation are included in the 560 

Supplementary Materials. 561 

 562 

Preparation of genomic DNA 563 

DNA was extracted from Duroc 2-14 cultured fibroblast cells passage 16-18 using the Qiagen Blood & 564 

Cell Culture DNA Maxi Kit. DNA was isolated from lung tissue from barrow MARC1423004 using a salt 565 

extraction method. 566 

 567 

Genome sequencing and assembly 568 

Genomic DNAs from the samples described above were used to prepare libraries for sequencing on 569 

Pacific Biosciences RS II sequencer [48]. For Duroc 2-14 DNA P6/C4 chemistry was used, whilst for 570 

MARC1423004 DNA a mix of P6/C4 and earlier P5/C3 chemistry was used. 571 

 572 

Reads from the Duroc 2-14 DNA were assembled into contigs using the Falcon v0.4.0 assembly pipeline 573 

following the standard protocol [26]. Quiver v. 2.3.0 [49] was used to correct the primary and 574 

alternative contigs. Only the primary pseudo-haplotype contigs were used in the assembly. The reads 575 

from the MARC1423004 DNA were assembled into contigs using Celera Assembler v8.3rc2 [30]. The 576 

contigs were scaffolded as described in the results section above. 577 

 578 

Fluorescence in situ hybridisation 579 

Metaphase preparations were fixed to slides and dehydrated through an ethanol series (2 min each 580 

in 2×SSC, 70%, 85% and 100% ethanol at RT). Probes were diluted in a formamide buffer (Cytocell) 581 

with Porcine Hybloc (Insight Biotech) and applied to the metaphase preparations on a 37°C hotplate 582 

before sealing with rubber cement. Probe and target DNA were simultaneously denatured for 2 mins 583 

on a 75°C hotplate prior to hybridisation in a humidified chamber at 37°C for 16 h. Slides were washed 584 



post hybridisation in 0.4x SSC at 72°C for 2 mins followed by 2x SSC/0.05% Tween 20 at RT for 30 secs, 585 

and then counterstained using VECTASHIELD anti-fade medium with DAPI (Vector Labs). Images were 586 

captured using an Olympus BX61 epifluorescence microscope with cooled CCD camera and 587 

SmartCapture (Digital Scientific UK) system. 588 

 589 

Analysis of repetitive sequences, including telomeres and centromeres 590 

Repeats were identified using RepeatMasker (v.4.0.7) (http://www.repeatmasker.org) with a 591 

combined repeat database including Dfam (v.20170127) [50] and RepBase (v.20170127) [51]. 592 

RepeatMasker was run with “sensitive” (-s) setting using sus scrofa as the query species (-- species 593 

“sus scrofa”). Repeats which showed greater than 40% sequence divergence or were shorter than 70% 594 

of the expected sequence length were filtered out from subsequent analyses. The presence of 595 

potentially novel repeats was assessed by RepeatMasker using the novel repeat library generated by 596 

RepeatModeler (v.1.0.11) (http://www.repeatmasker.org). 597 

 598 

Telomeres were identified by running Tandem Repeat Finder (TRF) [52] with default parameters apart 599 

from Mismatch (5) and Minscore (40). The identified repeat sequences were then searched for the 600 

occurrence of five identical, consecutive units of the TTAGGG vertebrate motif or its reverse 601 

complement and total occurrences of this motif was counted within the tandem repeat. Regions which 602 

contained at least 200 identical hexamer units, were >2kb of length and had a hexamer density of >0.5 603 

were retained as potential telomeres. 604 

 605 

Centromeres were predicted using the following strategy. First, the RepeatMasker output, both 606 

default and novel, was searched for centromeric repeat occurrences. Second, the assemblies were 607 

searched for known, experimentally verified, centromere specific repeats [53, 54] in the Sscrofa11.1 608 

genome. Then the three sets of repeat annotations were merged together with BEDTools [55] (median 609 

and mean length: 786 bp and 5775 bp, respectively) and putative centromeric regions closer than 610 

http://www.repeatmasker.org/
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500 bp were collapsed into longer super-regions. Regions which were >5kb were retained as potential 611 

centromeric sites. 612 

 613 

Long read RNA sequencing (Iso-Seq) 614 

The following tissues were harvested from MARC1423004 at age 48 days: brain (BioSamples: 615 

SAMN05952594), diaphragm (SAMN05952614), hypothalamus (SAMN05952595), liver 616 

(SAMN05952612), small intestine (SAMN05952615), skeletal muscle – longissimus dorsi 617 

(SAMN05952593), spleen (SAMN05952596), pituitary (SAMN05952626) and thymus 618 

(SAMN05952613). Total RNA from each of these tissues was extracted using Trizol reagent 619 

(ThermoFisher Scientific) and the provided protocol. Briefly, approximately 100 mg of tissue was 620 

ground in a mortar and pestle cooled with liquid nitrogen, and the powder was transferred to a tube 621 

with 1 ml of Trizol reagent added and mixed by vortexing. After 5 minutes at room temperature, 622 

0.2 mL of chloroform was added and the mixture was shaken for 15 seconds and left to stand another 623 

3 minutes at room temperature. The tube was centrifuged at 12,000 x g for 15 minutes at 4°C. The 624 

RNA was precipitated from the aqueous phase with 0.5 mL of isopropanol. The RNA was further 625 

purified with extended DNase I digestion to remove potential DNA contamination. The RNA quality 626 

was assessed with a Fragment Analyzer (Advanced Analytical Technologies Inc., IA). Only RNA samples 627 

of RQN above 7.0 were used for library construction. PacBio IsoSeq libraries were constructed per the 628 

PacBio IsoSeq protocol. Briefly, starting with 3 μg of total RNA, cDNA was synthesized by using 629 

SMARTer PCR cDNA Synthesis Kit (Clontech, CA) according to the IsoSeq protocol (Pacific Biosciences, 630 

CA). Then the cDNA was amplified using KAPA HiFi DNA Polymerase (KAPA Biotechnologies) for 10 or 631 

12 cycles followed by purification and size selection into 4 fractions: 0.8-2 kb, 2-3 kb, 3-5 kb and >5 kb. 632 

The fragment size distribution was validated on a Fragment Analyzer (Advanced Analytical 633 

Technologies Inc, IA) and quantified on a DS-11 FX fluorometer (DeNovix, DE). After a second round 634 

of large scale PCR amplification and end repair, SMRT bell adapters were separately ligated to the 635 

cDNA fragments. Each size fraction was sequenced on 4 or 5 SMRT Cells v3 using P6-C4 chemistry and 636 



6 hour movies on a PacBio RS II sequencer (Pacific Bioscience, CA). Short read RNA-Seq libraries were 637 

also prepared for all nine tissue using TruSeq stranded mRNA LT kits and supplied protocol (Illumina, 638 

CA), and sequenced on a NextSeq500 platform using v2 sequencing chemistry to generate 2 x 75 bp 639 

paired-end reads. 640 

 641 

The Read of Insert (ROI) were determined by using consensustools.sh in the SMRT-Analysis pipeline 642 

v2.0, with reads which were shorter than 300 bp and whose predicted accuracy was lower than 75% 643 

removed. Full-length, non-concatemer (FLNC) reads were identified by running the classify.py 644 

command. The cDNA primer sequences as well as the poly(A) tails were trimmed prior to further 645 

analysis. Paired-end Illumina RNA-Seq reads from each tissue sample were trimmed to remove the 646 

adaptor sequences and low-quality bases using Trimmomatic (v0.32) [56] with explicit option settings: 647 

ILLUMINACLIP:adapters.fa: 2:30:10:1:true LEADING:3 TRAILING:3 SLIDINGWINDOW: 4:20 LEADING:3 648 

TRAILING:3 MINLEN:25, and overlapping paired-end reads were merged using the PEAR software 649 

(v0.9.6) [57]. Subsequently, the merged and unmerged RNA-Seq reads from the same tissue samples 650 

were in silico normalized in a mode for single-end reads by using a Trinity (v2.1.1) [58] utility, 651 

insilico_read_normalization.pl, with the following settings: --max_cov 50 --max_pct_stdev 100 --652 

single. Errors in the full-length, non-concatemer reads were corrected with the preprocessed RNA-Seq 653 

reads from the same tissue samples by using proovread (v2.12) [59]. Untrimmed sequences with at 654 

least some regions of high accuracy in the .trimmed.fq files were extracted based on sequence IDs in 655 

.untrimmed.fa files to balance off the contiguity and accuracy of the final reads. 656 

 657 

Short read RNA sequencing (RNA-Seq) 658 

In addition to the Illumina short read RNA-seq data generated from MARC1423004 and used to correct 659 

the Iso-Seq data (see above), Illumina short read RNA-seq data (PRJEB19386) were also generated 660 

from a range of tissues from four juvenile Duroc pigs (two male, two female) and used for annotation 661 

as described below. Extensive metadata with links to the protocols for sample collection and 662 



processing are linked to the BioSample entries under the Study Accession PRJEB19386. The tissues 663 

sampled are listed in Table S9. Sequencing libraries were prepared using a ribodepletion TruSeq 664 

stranded RNA protocol and 150 bp paired end sequences generated on the Illumina HiSeq 2500 665 

platform in rapid mode. 666 

 667 

Annotation 668 

The assembled genomes were annotated using the Ensembl pipelines [36] as detailed in the 669 

Supplementary materials. The Iso-Seq and RNA-Seq data described above were used to build gene 670 

models. 671 

 672 

Mapping SNP chip probes 673 

The probes from four commercial SNP chips were mapped to the Sscrofa10.2, Sscrofa11.1 and 674 

USMARCv1.0 assemblies using BWA MEM [60] and a wrapper script 675 

(https://github.com/njdbickhart/perl_toolchain/blob/master/assembly_scripts/alignAndOrderSnpPr676 

obes.pl). Probe sequence was derived from the marker manifest files that are available on the provider 677 

websites: Illumina PorcineSNP60 https://emea.illumina.com/products/by-type/microarray-678 

kits/porcine-snp60.html) [1]; Affymetrix Axiom™ Porcine Genotyping Array 679 

(https://www.thermofisher.com/order/catalog/product/550588); Gene Seek Genomic Profiler 680 

Porcine – HD beadChip (http://genomics.neogen.com/uk/ggp-porcine); Gene Seek Genomic Profiler 681 

Porcine v2– LD Chip (http://genomics.neogen.com/uk/ggp-porcine). In order to retain marker 682 

manifest coordinate information, each probe marker name was annotated with the chromosome and 683 

position of the marker’s variant site from the manifest file. All mapping coordinates were tabulated 684 

into a single file, and were sorted by the chromosome and position of the manifest marker site. In 685 

order to derive and compare relative marker rank order, a custom Perl script 686 

(https://github.com/njdbickhart/perl_toolchain/blob/master/assembly_scripts/pigGenomeSNPSortR687 

https://github.com/njdbickhart/perl_toolchain/blob/master/assembly_scripts/alignAndOrderSnpProbes.pl
https://github.com/njdbickhart/perl_toolchain/blob/master/assembly_scripts/alignAndOrderSnpProbes.pl
https://emea.illumina.com/products/by-type/microarray-kits/porcine-snp60.html
https://emea.illumina.com/products/by-type/microarray-kits/porcine-snp60.html
https://www.thermofisher.com/order/catalog/product/550588
http://genomics.neogen.com/uk/ggp-porcine
http://genomics.neogen.com/uk/ggp-porcine
https://github.com/njdbickhart/perl_toolchain/blob/master/assembly_scripts/pigGenomeSNPSortRankOrder.pl


ankOrder.pl) was used to sort and number markers based on their mapping locations in each 688 

assembly. 689 

  690 

https://github.com/njdbickhart/perl_toolchain/blob/master/assembly_scripts/pigGenomeSNPSortRankOrder.pl
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Figure 1. Assemblies and radiation hybrid map alignments. Plots illustrating co-linearity between radiation hybrid map and a) Sscrofa11.1 and b) USMARCv1.0 950 

assemblies (autosomes only). 951 

a. 

 

b. 

 

 952 



Figure 2. Visualisation of improvements in assembly contiguity. Graphical visualisation of contigs 953 

for Sscrofa11 (top) and Sscrofa10.2 (bottom) as alternating dark and light grey bars. 954 

 955 

 956 

 957 
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Table 1. Assembly statistics. Summary statistics for assembled pig genome sequences and comparison with current human reference genome. (source: NCBI, 959 

https://www.ncbi.nlm.nih.gov/assembly/; * includes mitochondrial genome. 960 

Assembly Sscrofa10.2 Sscrofa11 Sscrofa11.1 USMARCv1.0 GRCh38.p12 

Total sequence length 2,808,525,991 2,456,768,445 2,501,912,388 2,755,438,182 3,099,706,404 

Total ungapped length 2,519,152,092 2,454,899,091 2,472,047,747 2,623,130,238 2,948,583,725 

Number of scaffolds 9,906 626 706 14,157 472 

Gaps between scaffolds 5,323 24 93 0 349 

Number of unplaced scaffolds 4,562 583 583 14,136 126 

Scaffold N50 576,008 88,231,837 88,231,837 131,458,098 67,794,873 

Scaffold L50 1,303 9 9 9 16 

Number of unspanned gaps 5,323 24 93 0 349 

Number of spanned gaps 233,116 79 413 661 526 

Number of contigs 243,021 705 1,118 14,818 998 

Contig N50 69,503 48,231,277 48,231,277 6,372,407 57,879,411 

Contig L50 8,632 15 15 104 18 

Number of chromosomes* *21 19 *21 *21 24 
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Table 2. Summary of quality statistics for SSC1-18, SSCX. Quality measures and terms as defined [14].  963 

 964 

 Mean 
(Sscrofa11) 

Std 
(Sscrofa11) 

Bases 
(Sscrofa11) 

% genome 
(Sscrofa11) 

% genome 
(Sscrofa10.2) 

High Coverage 50 7 119,341,205 4.9 2.6 

Low Coverage (LC) 50 7 185,385,536 7.5 26.6 

% Properly paired 86 6.8 95,508,007 3.9 4.95 

% High inserts 0.3 1.6 40,835,320 1.72 1.52 

% Low inserts 8.2 4.3 114,793,298 4.7 3.99 

Low quality (LQ) - - 284,838,040 11.6 13.85 

Total LQLC - - 399,927,747 16.3 33.07 

LQLC windows that do not intersect RepeatMasker regions 39,918,551 1.6  
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Table 3. Annotation statistics. Ensembl annotation of pig (Sscrofa10.2, Sscrofa11.1, USMARCv1.0), human (GRCh38.p12) and mouse (GRCm38.p6) 967 

assemblies. 968 

 969 

 Sscrofa10.2 Sscrofa11.1 USMARCv1.0 GRCh38.p13 GRCm38.p6 

 Ensembl (Release 89) Ensembl (Release 98) Ensembl (Release 97) Ensembl (Release 98) Ensembl (Release 98) 

Coding genes 21,630 
(Incl. 10 read 

through) 

21,301 21,535 20,444 
incl 667 read through 

22,508 
incl 270 read through 

Non-coding genes 3,124 8,971 6,113 23,949 16,078 

small non-coding genes 2,804 2,156 2,427 4,871 5,531 

long non-coding genes 135 
(incl 1 read through) 

6,798 3,307 16,857 
incl 304 read through 

9,985 
incl 75 read through 

misc. non-coding genes 185 17 379 2,221 562 

Pseudogenes 568 1,626 674 15,214 
incl 8 read through 

13,597 
incl 4 read through 

Gene transcripts 30,585 63,041 58,692 227,530 142,446 

      

Genscan gene 
predictions 

52,372 46,573 152,168 51,756 57,381 

Short variants 60,389,665 64,310,125  665,834,144 83,761,978 

Structural variants 224,038 224,038  6,013,113 791,878 
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