

advances.sciencemag.org/cgi/content/full/6/35/eabb1573/DC1

Supplementary Materials for

Highly active dry methane reforming catalysts with boosted in situ grown Ni-Fe nanoparticles on perovskite via atomic layer deposition

Sangwook Joo, Arim Seong, Ohhun Kwon, Kyeounghak Kim, Jong Hoon Lee, Raymond J. Gorte, John M. Vohs*, Jeong Woo Han*, Guntae Kim*

*Corresponding author. Email: vohs@seas.upenn.edu (J.M.V.); jwhan@postech.ac.kr (J.W.H.); gtkim@unist.ac.kr (G.K.)

Published 26 August 2020, *Sci. Adv.* **6**, eabb1573 (2020) DOI: 10.1126/sciadv.abb1573

This PDF file includes:

Figs. S1 to S10

Fig. S1. A/B ratio for the exsolution pathway. (A) Conventional exsolution pathway with deficiency amount of α . (B) Topotactic exsolution pathway with re-established equilibrium position through the substitution step of Fe cation into Ni site.

Fig. S2. Particle count analysis on the surface. (A) SEM image corresponding to Fig. 1D. (B) exsolved nanoparticles mapping and contour extracted with ImageJ from Supplementary Fig. 2A; scale bars are 500 nm. SEM images of (C) LSTN-5C-Fe, (D) LSTN-10C-Fe, (E) LSTN-15C-Fe,

and (**F**) LSTN-30C-Fe; scale bars are 500 nm. SEM images for (**G**) LSTN before reduction and (**H**) LSTN-20C-Fe before reduction; scale bars are 500 nm.

Fig. S3. Particle size distributions for the samples. The histogram of the particle size distribution for (**A**) LSTN, (**B**) LSTN-5C-Fe, (C) LSTN-10C-Fe, (D) LSTN-15C-Fe, (E) LSTN-20C-Fe, and (F) LSTN-30C-Fe.

Fig. S4. Growth curves for ALD layers on LSTN powder. All measures were measured after thermal treatment to ensure the removal of moisture content.

Fig. S5. SEM image of (**A**) LSTN-20C-Fe and (**B**) pristine LSTN reduced for 30 minutes; scale bars are 500 nm.

Fig. S6. X-ray diffraction patterns of (A) $La_{0.3}Sr_{0.7}Ti_{0.85}Ni_{0.15}O_3$ before reduction and (B) $La_{0.3}Sr_{0.7}Ti_{0.85}Ni_{0.15}O_3$ after reduction. SEM images of (C) $La_{0.3}Sr_{0.7}Ti_{0.85}Ni_{0.15}O_3$ before reduction and (D) $La_{0.3}Sr_{0.7}Ti_{0.85}Ni_{0.15}O_3$ after reduction; scale bars are 500 nm.

Fig. S7. X-ray diffraction patterns of $La_{0.7}Sr_{0.1}Ti_{0.85}Ni_{0.15}O_3$ before reduction.

Fig. S8. X-ray diffraction patterns and X-ray photoelectron curves of the samples. X-ray diffraction patterns of (**A**) LSTN and LSTN-20C-Fe before/after reduction (red highlights around 44.5 ° indicate exsolved metals) and (**B**) magnified metal peaks for LSTN and LSTN-20C-Fe. (**C**) X-ray photoelectron curves of LSTN before reduction.

Fig. S9. Optimized two possible cation configurations of bulk structures of La_{0.5}Sr_{0.5}TiO₃. (A, B) and (C, D) represent top and side views of uniformly and layer by layer cation distributions, respectively. (E) side and (F) top views of optimized surface structure of La_{0.5}Sr_{0.5}TiO₃(110) used for DFT calculations.

Fig. S10. A picture of home-made ALD apparatus. Photo Credit: Sangwook Joo, UNIST.