Supporting Information for: "Hydropathy Patterning Complements Charge Patterning to Describe Conformational Preferences of Disordered Proteins"

Wenwei Zheng^{1a}, Gregory Dignon², Matthew Brown ¹, Young C. Kim ³ and Jeetain Mittal $^{\rm 2b}$

 1 College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ 85212, USA

 2 Department of Chemical and Biomolecular Engineering, Bethlehem, PA 18015, USA

 3 Center for Materials Physics and Technology, Naval Research Laboratory, Washington, DC 20375, United States

^aElectronic mail: wenweizheng@asu.edu

^bElectronic mail: jeetain@lehigh.edu

1. Supplementary Methods

Molecular simulation methods. The simulations of sequences in the database (Fig. S1) were conducted using the HOOMD-Blue v2.1.5.[1] For each sequence, the simulation were run for 500 ns using a Langevin thermostat with a friction coefficient of 1 ps⁻¹, and the first 100 ns was dumped as equilibration. A time step of 10 fs and a temperature of 300 K were used for all the simulations. The ionic strength is set to be 100 mM and characterized using Debye-Hückle electrostatic screening [2]. There are three types of interactions, including bonded, electrostatic and short-range pairwise interaction term characterized by amino acid hydropathy.[3] Bonded interactions are modelled by a harmonic potential with a spring constant of 10 kJ/Å² and a bond length of 3.8 Å. Electrostatic interactions are modeled using a Coulombic term with Debye-Hückel [2] electrostatic screening,

(S1)
$$E_{ij}(r) = \frac{q_i q_j}{4\pi D r} \exp(-r/\kappa),$$

in which κ is the Debye screening length and D = 80, the dielectric constant of the solvent. The short-range pairwise interaction is modelled using Ashbaugh-Hatch functional form[4],

(S2)
$$\Phi(r) = \begin{cases} \Phi_{LJ} + (1-\lambda)\epsilon, & \text{if } r \le 2^{1/6}\sigma\\ \lambda \Phi_{LJ}, & \text{otherwise} \end{cases}$$

in which Φ_{LJ} is the standard Lennard-Jones potential

(S3)
$$\Phi_{LJ} = 4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^6 \right].$$

The λ value in the pairwise interaction term is the arithmetic average of the λ values of the two amino acids (Table S1). We refer the readers to the literature of our HPS model for the details of the coarse-grained model.[5]

References

- [1] Anderson, J. A.; Lorenz, C. D.; Travesset, A. J. Comput. Phys. 2008, 227, 5342–5359.
- [2] Debye, P.; Hückel, E. Physikalische Zeitschrift 1923, 24, 185–206.
- [3] Kapcha, L. H.; Rossky, P. J. J. Mol. Biol. 2014, 426, 484–498.
- [4] Ashbaugh, H. S.; Hatch, H. W. J. Am. Chem. Soc. 2008, 130, 9536–9542.
- [5] Dignon, G. L.; Zheng, W.; Kim, Y. C.; Best, R. B.; Mittal, J. PLoS Comput. Biol. 2018, 14, e1005941.
- [6] Das, R. K.; Pappu, R. V. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 13392–13397.
- [7] Riback, J. A.; Bowman, M. A.; Zmyslowski, A. M.; Knoverek, C. R.; Jumper, J. M.; Hinshaw, J. R.; Kaye, E. B.; Freed, K. F.; Clark, P. L.; Sosnick, T. R. Science 2017, 358, 238–241.
- [8] Hofmann, H.; Soranno, A.; Borgia, A.; Gast, K.; Nettels, D.; Schuler, B. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 16155–16160.
- Borgia, A.; Zheng, W.; Buholzer, K.; Borgia, M. B.; Schuler, A.; Hofmann, H.; Soranno, A.; Nettels, D.; Gast, K.; Grishaev, A.; Best, R. B.; Schuler, B. J. Am. Chem. Soc. 2016, 138, 11714–11726.
- [10] Fuertes, G.; et al. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, E6342–E6351.

- [11] Martin, E. W.; Holehouse, A. S.; Peran, I.; Farag, M.; Incicco, J. J.; Bremer, A.; Grace, C. R.; Soranno, A.; Pappu, R. V.; Mittag, T. Science 2020, 367, 694–699.
- [12] Rieloff, E.; Skepö, M. J. Chem. Theory Comput. 2020, 16, 1924–1935.
- [13] Cragnell, C.; Durand, D.; Cabane, B.; Skepö, M. Proteins 2016, 84, 777–791.

2. Supplementary Figures

FIGURE S1. Amino acid probabilities for the randomly generated sequences. Database A contains 10260 charged random sequences (blue), in which there are 60 sequences for each of the chain length from 30 to 200, and database B contains 5130 random sequences without charged amino acids (red), in which there are 30 sequences for each of the chain length.

FIGURE S2. Relative difference between ν_{R_g} and ν_{fit} as a function of ν_{fit} (A) and chain length (B).

FIGURE S3. Intrachain distances as a function of the sequence separations for the three cases with most deviations between ν_{R_g} and ν_{fit} : $\nu_{R_g} > \nu_{\text{fit}}$ (top row) and $\nu_{R_g} < \nu_{\text{fit}}$ (bottom row). Dotted lines come from simulations and dashed lines show the exponential fitting curves.

FIGURE S4. Average relative difference between ν_{R_g} and ν_{fit} as a function of γ (A), b (B) and variaton of N (C) in Eq. 2 of the main text. $\Delta N = 0$ suggests that N is defined as the number of peptide bonds and $\Delta N = 1$ suggests N is defined as the chain length.

FIGURE S5. Scanning β in defining *SHD* (Eq. 4 of the main text). *R* is the Pearson correlation coefficient between the two variables.

FIGURE S6. Mean field definitions of SHD using average hydropathy instead of residue specific hydropathy.

FIGURE S7. Comparison between using the mean hydrophathy $\langle \lambda \rangle$ (A) and the hydropathy patterning parameter SHD (B) to capture the scaling exponents of binary sequences (Table S2). The dash lines show the linear fitting between SHD and ν and the legends show the Pearson correlation coefficients.

FIGURE S8. Test of the sequence separation exponent in SCD. We use random sequence database A (Fig. S1) for the test. For each scanned exponent in SCD, SHD is always calculated using an optimal -1 exponent whereas SCD is calculated using a different exponent shown in the x-axis. A multilinear regression is then applied to find the best parameters for using SCD and SHD to fit ν . The Pearson correlation coefficient between the modeled and reference ν is shown.

FIGURE S9. Capturing the scaling exponents using one sequence descriptor. A) Pearson correlation coefficients between the sequence descriptors and simulated scaling exponents. B) The best one sequence-descriptor model with the linear equation shown in labels of x-axis.

FIGURE S10. Left: Number of sequences of the database containing charged sequences (Fig. S1) at different range of $\langle |q| \rangle$ values. Right: The three fitting free parameters in the multi-linear equations of SHD and SCD (Eq. 5 of the main text) when using sequences at different range of $\langle |q| \rangle$ values. The black dashed lines show the fitting parameters using all the sequences.

FIGURE S11. Pearson correlation coefficients between the sequence descriptors and ν for sequences with different range of $\langle |q| \rangle$ shown in the legend.

FIGURE S12. Pearson correlation coefficient (left) and relative errors (right) for assessing the model, when increasing the number of sequences. The error bars are estimated from randomly splitting the database for the training and test sets 100 times.

3. Supplementary Tables

TABLE S1. The amino acid hydropathy scales [3]. It has been rescaled within the range of 0 to 1.

Amino acid	Hydropathy
ALA	0.730
ARG	0.000
ASN	0.432
ASP	0.378
CYS	0.595
GLN	0.514
GLU	0.459
GLY	0.649
HIS	0.514
ILE	0.973
LEU	0.973
LYS	0.514
MET	0.838
PHE	1.000
PRO	1.000
SER	0.595
THR	0.676
TRP	0.946
TYR	0.865
VAL	0.892

TABLE S2. Compactness of 32 binary hydrophobic sequences. The binary sequences consist of two possible units, with a hydropathy of 0 and 1, respectively. So the sequences are written in numbers for illustration. The R_g is obtained from simulations using HPS model.

Sequences shown in numbers	$R_g (\mathrm{nm})$	ν	SHD
10	2.040	0.568	3.499
11100011100011100011100011100011100011100010	2.024	0.565	3.488
0100010011001101010101000110101000011010	2.049	0.569	3.475
01010011010011100101010001100011011001100011011101	2.048	0.569	3.476
01011010001111010000110101010101100110000	2.046	0.569	3.486
1110010011011001001011100010111000101111	2.032	0.566	3.491
1111000011110000111100001111000011110000	2.004	0.562	3.484
0000111100001111000011110000111100001111	2.011	0.563	3.515
11001110101011111001001001000110101000010000	2.049	0.569	3.420
10000001100011111000111000100110101101001001101111	2.011	0.563	3.462
10100000111001011110111100000101110110011010	1.977	0.558	3.550
100111111010011110100101101001001001001	2.019	0.564	3.524
010001010010001110001110100011001001001	2.032	0.566	3.489
1001011011110000011010010000100000111111	2.070	0.572	3.424
001001000100100111010010000101001111111	2.024	0.565	3.492
101011000110000100101100101010011111111	2.007	0.562	3.505
101000000101000010100100101110110100011001111	2.029	0.566	3.420
011001111111011000001000100111000110001111	2.026	0.566	3.512
1111100000111110000011111000001111100000	2.000	0.561	3.499
110111111011101110011100100100101100100	2.031	0.566	3.408
11111111101000001011000000100100001001111	2.087	0.575	3.409
011110110110000101101000000000000001001	2.092	0.576	3.378
111110111111111111011010000010000001010000	2.053	0.570	3.433
1111011111011111111111100011000001000000	1.993	0.560	3.516
111111111111111111111111111111101000000	2.083	0.574	3.358
011111110110111111111111111011100000000	1.987	0.559	3.517
0010001001111111111111111111111101100000	1.899	0.545	3.661
100000000000000000001111111111111111111	1.948	0.553	3.553
011110111111111111111111100000000000000	1.953	0.554	3.580
1111111111111111111111111000000000000	1.986	0.559	3.499
000000000000111111111111111111111111111	1.809	0.529	3.751
111111111111100000000000000000000000001111	2.123	0.580	3.248

Sequences descriptors	Symbol	
Charge properties		
Net charges per residue	< q >	
Fraction of charged residues	< q >	
Fraction of positively charged residues	f+	
Fraction of negatively charged residues	f+	
Sequence charge decoration	$SCD = N^{-1} \Sigma_i \Sigma_{j,j>i} (q_i q_j) j-i ^{1/2}$	
κ	see reference[6]	
Hydrophathy properties		
Average hydrophathy	$<\lambda>$	
Sequence hydrophathy decoration	$SHD = N^{-1} \Sigma_i \Sigma_{j,j>i} (\lambda_i + \lambda_j) j-i ^{-1}$	

TABLE S3. List of sequence descriptors we have tested.

TABLE S4. List of sequences with experimentally determined R_g .^{*a*)} Since both FRET and SAXS measurements were provided in these two publications and were shown to be consistent, we only reanalyze the FRET data set here with $R_0=5.4$ nm and dye length correction of 9 residues.^{*b*} Molecular form factor method [7].^{*c*} Eq. 1 in the main text is used to calculate ν from reported experimental Rg values.

Name	Chain length	$R_g (\mathrm{nm})$	ν			
Hofmann et al [8], FRET, SAW- ν						
CSP	71	2.226(0.102)	0.535(0.013)			
R15	114	2.612(0.087)	0.511(0.008)			
hCyp	167	2.534(0.078)	0.458(0.007)			
IN	60	2.221(0.063)	0.562(0.009)			
$ProT\alpha$ -N	55	2.549(0.076)	0.619(0.009)			
$ProT\alpha$ -C	55	2.998(0.134)	0.668(0.013)			
Borgia et al [9], FRET and SAXS, SAW- ν^{a}						
ACTR	79	2.510(0.044)	$0.552 \ (0.005)$			
R17d	118	$2.817 \ (0.056)$	$0.525\ (0.005)$			
Fuertes et al [10], FRET and SAXS, SAW- ν^{a}						
N49	37	1.411(0.072)	0.494(0.018)			
NLS	45	1.669(0.062)	$0.518\ (0.012)$			
NUS	81	2.439(0.075)	$0.538\ (0.008)$			
IBB	98	$2.544 \ (0.076)$	$0.523\ (0.008)$			
NUL	113	2.680(0.081)	$0.517 \ (0.008)$			
Riback et al [7], SAXS, MFF b						
pNT	334	5.11	0.542			
fHua	144	3.34	0.543			
RNasea	124	3.36	0.545			
Martin et al [11], SAXS, MFF b						
hnRNPA1	137	27.2 (0.2)	$0.45 \ (0.004)$			
hnRNPA1 Aro-	137	28.9(0.1)	$0.48 \ (0.003)$			
hnRNPA1 Aro-	137	30.1 (0.1)	$0.51 \ (0.005)$			
hnRNPA1 Aro+	137	24.4(0.6)	$0.41 \ (0.02)$			
Rieloff et al $[12]$, SAXS, pair distance distribution ^{c}						
SN15n	15	0.99~(0.01)	$0.561 \ (0.006)$			
Cragnell et al [13] , SAXS, pair distance distribution c						
His5	24	1.38(0.004)	$0.584 \ (0.001)$			