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Figure S1 Dimension reduction results after applying Principal Component Analysis (PCA) from
either no imputation (no-imp) or the 18 imputation methods using the null simulations data,
except the difference between this figure and Figure 1A is this figure includes the latent spaces
directly found by scScope (scScope_latent), scVI (scVI_latent) and SAUCIE (SAUCIE latent) (not
Principal Components — PCs). All other methods are showing observations along the first two
PCs. The color represents the simulated library size (defined as the total sum of counts across all

relevant features) for each cell.
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Figure S2 Impact of imputation methods on differential expression analysis. (A) Schematic of
evaluating differentially expressed genes (DEGs) using the overlap between bulk RNA-seq and
scRNA-seq — also shown in Figure 2A. Using the pairs of cell lines in the sc_10x_5cl dataset,
ENCODE _fluidigm_5cl dataset, and pairs of cell types in the bone marrow tissue from the
HCA_10x_tissue dataset, we show heatmaps of proportion of overlap between bulk and single-cell
DEGs identified using (B, D, F) MAST [1] and (C, E, G) Wilcoxon-rank-sum test [2] (abbreviated
as Wilcoxon) for differential expression analysis, respectively. (H) Schematic of a null differential
expression analysis by randomly partitioning cells from the same cell type into two groups — also
shown in Figure 2E. Using the Ab49 cells from the sc_10x_5cl dataset, the GM12878 cells from
the ENCODE_fluidigm_5cl dataset, and bone marrow cells from the HCA_10x_tissue dataset, the
number of false positive DEGs identified using (I, K, M) MAST and (J, L, N) Wilcoxon,
respectively. The x-axis in Figures (I-N) describe the number of cells in each group (e.g. 10
sampled cells in group 1 and 10 sampled cells in group 2) when applying a method to identify
differentially expressed genes. White areas with black outline indicate that the imputation
methods did not return output after 72 hours and areas with grey outline indicate that either
MAST or Wilcoxon failed to return results.
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Method
For each cell line in the sc_10x_5cl dataset, we calculated the gene-specific standard deviation

Figure S3 Estimates of gene-specific standard deviation of imputed values for five cell lines.
across cells with no imputation (no_imp) and with imputation.
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Figure S4 Summary distributions of output from MAST using the imputed values from pairs of
cell lines. The pairs of cell lines from the sc_10x_5cl dataset compared below are (A) H2228
(N=758) vs H838 (IN=876) — more balanced group sizes and (B) A549 (N=1256) vs H1975
(IN=440) — less balanced group sizes. For each pair of cell lines, we applied MAST and extracted
and plot the following information: the distribution of estimated log-fold changes (‘coefficients’)
(top left), the distribution of standard errors for the coefficients (top right), the distribution of
test statistics (z-score output from MAST, bottom left), and distribution of log-transformed
p-values (bottom right).
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Figure S5 Results for Figure 3J and 3K that are adjusted for differences in the number of
“gold standard” (bulk) differentially expressed genes. (A) Using results in Figure 3K, the
number of “gold standard” differentially expressed genes (DEGs) is related to the sum for each
column. For example in H2228_H838 cell types, there are 12312 gold standard DEGs, therefore,
when we only look at the low log-fold change genes (Figure 3K), many low log-fold-change genes
will overlap with the gold standard already, no matter what imputation method has been
performed. (B) Same figure as Figure 3J-K, reproduced here for comparison with (C). This
heatmap shows the percentage of the overlap between bulk and single-cell DEGs identified using
MAST stratified by genes with high (top 10%) or low (bottom 10%) log-fold changes. The color
bar on the last column shows the mean overlap across all comparison for each method. If MAST
failed to identify DEGs from the imputed profiles of any method in any dataset, we denoted it as
“DifferentialFail”. (C) Similar to (B), but to adjust for unwanted this data set specific variability,
we use ‘“ranks”, which should not be affected by data set variability. First, we rank all methods
based on the overlap proportion within each set of data (i.e. a pair of cell types, for example
A549_H1975). The ranks should not depend on the set of data, so there is no variability across
sets of data (see in the heatmap rows). Instead of averaging the overlap proportions as what we
showed on main manuscript Figure 3J-K ((B) here), now we use these “ranks” as scores and
averaged across datasets. We can see that the ranking between (B) and (C) are quite consistent.
It tells that the methods variability is not affected by the dataset variability. (D) (E) Similar to
the idea of showing (B) and (C) here but instead of using MAST we use Wilcoxon rank-sum test
as the test method to identify DEGs.
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Figure S6 Impact of imputation methods on k-means clustering analysis using seven datasets
from CellBench single cells. Heatmaps of the individual performance metrics (A) entropy of
cluster accuracy (Hacc), (B) entropy of cluster purity (Hpur), (C) adjusted Rand index (ARI),
and (D) the median of Silhouette and median Silhouette index of each imputation method for
each of the seven datasets in CellBench [3]. The white boxes with black lines represent cases in
which no output was returned from the imputation method after 72 hours. The white boxes with
gray lines represent cases in which the clustering algorithm failed to cluster the cells using the
principal components, for instance “more cluster centers than distinct data points” because many

cells with imputed profiles are identical.
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Figure S7 Impact of imputation methods on Louvain clustering analysis using seven datasets
from CellBench [3]. (A) Heatmap of four performance metrics — entropy of cluster accuracy
(Hacc), entropy of cluster purity (Hpur), adjusted Rand index (ARI), and median Silhouette index
— averaged across seven datasets. To compare imputation methods across metrics, the metrics
were re-scaled to be between 0 and 1 and the order of Huce and Hpyr were flipped to where a
higher standardized score translates to better performance. Imputation methods (rows) are ranked
by the average across all four metrics. (B) Dimension reduction results after applying PCA to the
sc_celseq2_5cl_p1 data with no imputation (left) and with imputation using MAGIC (right). The
colors are the true group labels. (C) Overall score (or average of the four performance metrics) for
Louvain clustering (x-axis) and k-means clustering (y-axis). (D-G) Heatmaps of the individual
performance metrics (D) Hace, (E) Hpur, (F) ARI and (G) the median of Silhouette of each
imputation method for each CellBench dataset. The white boxes with black lines represent cases
in which no output was returned from the imputation method after 72 hours.
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Figure S8 UMAP of the imputation methods output in clustering analysis using ten sorted
peripheral blood mononuclear cell (PBMC) cell types from 10x Genomics. Dimension reduction
results using UMAP components [4] derived from top principal components of imputed gene
expression profiles (marked with the imputation method name) or from latent space
representation (marked with '_latent’). For each method, there are three subplots where each dot
is a cell, x-axis is UMAP coordinate 1 and y-axis is UMAP coordinate 2. The only difference of
the three subplots is the way the dots are colored: colored by known cell types of the cells (left,
titled “celltype”), colored by k-means clustering clusters (middle, titled “kmeans”), and colored
by Louvain clustering clusters (right, titled “louvain™). This figure visualizes the unsupervised
clustering results of each of the imputation methods.
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Figure S9 Impact of imputation methods on Louvain clustering analysis using ten sorted
peripheral blood mononuclear cell (PBMC) cell types from 10x Genomics. (A) Heatmap of four
performance metrics — entropy of cluster accuracy (Hgacc), entropy of cluster purity (Hpur),
adjusted Rand index (ARI), and median Silhouette index — on data from 10x Genomics [5]. To
compare imputation methods across metrics, the metrics were re-scaled to be between 0 and 1
and the order of Hyce and Hpyr were flipped to where a higher standardized score translates to
better performance. Imputation methods (rows) are ranked by the average across all four metrics.
(B) Dimension reduction results using UMAP components [4] with no imputation (left) and with
imputation using MAGIC (right). The colors are the true group labels. (C) Overall score (or
average of the four performance metrics) for Louvain clustering (x-axis) and k-means clustering
(y-axis). White areas with black outline in (D) indicate that the imputation methods did not
return output after 72 hours.
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Figure S10 Impact of imputation methods on inferred trajectories for pseudotime analysis
using Monocle 2 with the RNA mixture and cell mixture datasets from CellBench [3]. (A)

Heatmap showing the Pearson correlation coefficients (PCC), denoted as correlation, between the
inferred trajectory and the rank order of the cells where we know the true trajectory (or ordering)

of the cells. (B) Heatmap of the proportion of cells on the inferred trajectories that correctly
overlap with the cells on the branch where we know the true trajectory of the cells.
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Figure S11 Values of time, scalability and memory of each imputation method on each dataset
before scaling. (A) Computation time (in minutes) for each method to finish imputing four
datasets of 103, 5 x 103, 5 x 104 and 10° cells, respectively. For some imputation methods, no
results are shown because no imputed values were returned within 72 hours. Scalability (marked in
the parentheses after each methods’s name) is defined by fitting a linear model with the number
of cells on the log;y-scaled on the x-axis and the computation time on the y-axis and using the
coefficient as the metric for scalability. (B) Memory usage (in maximum resident set size of all
tasks in job (MaxRSS) in gigabyte (GB), returned from the Slurm command sacct) for each
method to finish imputating the four datasets mentioned above.
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