Cell Reports, Volume 32

Supplemental Information

In Vivo Estimates of Liver Metabolic Flux Assessed by ¹³C-Propionate and ¹³C-Lactate Are Impacted by Tracer Recycling and Equilibrium Assumptions Clinton M. Hasenour, Mohsin Rahim, and Jamey D. Young

Figure S1. Regression of base model to specific measurement sets. Related to Figures 2, S2, and Table S1

(A) Flux estimates obtained from the base model using plasma glucose MIDs alone contrasted with those that included ¹³CO₂ and plasma lactate measurements in the flux regression. Data are presented as means (μ mol/kg/min) ± SEM, (n=4) *p<0.05 vs. base model with glucose measurements only

(B) Base model flux estimates from mice infused with ${}^{13}C_3Lac/{}^{2}H$ or ${}^{13}C_3Prop/{}^{2}H$ isotopes. Data are presented as means (µmol/kg/min) ± SEM (n=6-7) *p<0.05 vs. ${}^{13}C_3Lac/{}^{2}H$ base model

Figure S2. Confidence interval widths in dual tracer models. Related to Figures 2 and 5

95% confidence intervals were calculated for relative hepatic and extrahepatic fluxes in INCA.

- (A) ¹³C₃Lac/²H (SSR Ave: 19.9±3.5, Expected Range: 11-36.8 DOF: 22) and ¹³C₃Prop/²H Base Models (SSR Ave: 32.5±5.4, Expected Range: 11-36.8 DOF: 22). V_{Tracer} represents the flux V_{Lac.tracer} or V_{Prop.tracer} in the liver compartment, depending on the experiment
- (B) ¹³C₃Lac/²H (SSR Ave: 78.4±8.3, Expected Range: 49.6-96.2, DOF: 72) and ¹³C₃Prop/²H Expanded Models (SSR Ave: 70.9±8.1, Expected Range: 49.6-96.2, DOF: 72). V_{Tracer} represents the flux V_{Lac.inf} in blood plasma or the flux of V_{Prop.inf} in the liver compartment, depending on the experiment

Upper and lower bounds are presented as the mean differences (x-axis) from the relative flux estimates (n=5-7). Ranges are expressed relative to $V_{CS,L}$ =100. The Expected Range of the SSR is calculated from the 95% confidence limits of a chi-square cumulative distribution function with the indicated degrees of freedom (DOF)

Figure S3. Mass isotopomer measurements for plasma and liver metabolites. Related to Figures 3, 4, S4, S5, S6, and Tables S3 and S5.

- (A) Liver lactate (*m/z* 261, 233), alanine (*m/z* 260, 232), glutamate (*m/z* 432, 330), aspartate (*m/z* 418, 390), α-ketoglutarate (*m/z* 346), and urea (*m/z* 231) derivative measurements
- (B) Plasma glucose (*m*/*z* 301,145,173, 259, 284, 370), alanine, (*m*/*z* 260, 232) and lactate (*m*/*z* 261, 233) derivative measurements

Enriched mass isotopomer distributions were determined using GC-MS for metabolites extracted from liver and plasma harvested at the close of the experimental period from 19-20hr fasted C57BI/6J mice infused with ${}^{13}C_{3}Lac$. Unenriched samples were obtained from control C57BI/6 mice for metabolite identification and measurement error determination. Data are presented as means ± SEM (n=7)

¹³C₃Lac Expanded Model - 2 Compartments

Figure S4. Expansion of models in mice infused with $^{13}C_3Lac$. Related to Figures 4, S3, S5 and Tables S3 and S5

- (A) Relative flux estimates from expanded model (liver only) using plasma and liver tissue measurements
- (B) Relative flux estimates from the same mice presented in (A) regressed using an expanded model including an extrahepatic compartment to facilitate descriptions of Cori cycling; mice were infused with ¹³C₃Lac only.

Data are presented as means ± SEM (n=7) *p<0.05 vs. ¹³C₃Lac expanded model – liver only

Β

Figure S5. Confidence interval widths in ¹³C₃Lac studies. Related to Figures 4, S4 and S6

- (A) ¹³C₃Lac expanded model Liver Only for networks without PDH (SSR Ave: 65.1±8.9, Expected Range: 44.6-89.2, DOF: 65) or with PDH (+V_{PDH.L}) (SSR Ave: 53.9±6.0, Expected Range 43.8-88, DOF: 64)
- (B) ¹³C₃Lac expanded model with two compartments for networks without PDH (SSR Ave: 80.7±9.6, Expected Range: 63.1-114.7, DOF: 87) or with PDH (+V_{PDH,L}) (SSR Ave: 68.4±6.6, Expected Range: 62.2-113.5, DOF: 86)
 Upper and lower bounds are presented as the mean differences (x-axis) from relative flux estimates (n=5-7). Ranges are expressed relative to V_{CS,L}=100. The Expected Range of the SSR is calculated from the 95% confidence limits of a chi-square cumulative distribution function with the indicated degrees of freedom (DOF)

 $^{13}\text{C}_3\text{Lac}$ Expanded Model (Liver Only) + $\text{V}_{\text{PDH.L}}$

Α

¹³C₃Lac Expanded Model (2 Compartments) + V_{PDH.L}

Figure S6. Testing the assumption of low $V_{PDH,L}$ flux during fasting with ${}^{13}C_{3}Lac$. Related to Figure 4B, S3, S5, and Tables S3 and S5

- (A) Relative flux estimates from expanded model (liver only) using plasma and liver tissue measurements and an active pyruvate dehydrogenase complex (+V_{PDH,L}) in the liver
- (B) Relative flux estimates from the same mice presented in (A) using a two-compartment expanded model with an active pyruvate dehydrogenase complex (+V_{PDH.L}) in the liver Data are presented as means ± SEM (n=7)

Figure S7. Comparison of ${}^{13}C_3Lac/{}^{2}H$ and ${}^{13}C_3Prop/{}^{2}H$ isotopes for hepatic flux estimates using expanded models of metabolism. Related to Figures 5, S2, and Tables S2 and S4

(A) Expanded model (two compartments) showing absolute flux estimates in 19-20hr fasted, C57BI/6J mice infused with ${}^{13}C_{3}Lac/{}^{2}H$ or

(B) ¹³C₃Prop/²H isotopes

Data are presented as means ± SEM (µmol/kg/min, n=5)

Flux	Base Model Reaction Network
	Liver Compartment: Glucose Synthesizing and Oxidative Metabolic Reactions
V _{Glc.inf}	Glucose.inf (AaBbCcDdEeFfg) → Glucose.P (AaBbCcDdEeFfg)
VEndoRa	H6P (AaBbCcDdEeFfg) → Glucose.P (AaBbCcDdEeFfg)
V _{PYGL.L}	Glycogen (AaBbCcDdEeFfg) + H (h) \rightarrow H6P (AaBhCcDdEeFfg) + H (b)
VAldo.L	T3P (ChBcAab) + T3P (DdEeFfg) + H (i) → H6P (AbBiCcDdEeFfg) + H (h) + H (a)
VGAPDH.L	BPG (ABbCcd) + H (e) + H (f) \rightarrow T3P (AfBeCcd) + H (b)
Vgk.l	Glycerol (AaeBbCcd) + H (f) \rightarrow T3P (AeBfCcd) + H (a) + H (b)
V _{Enol.L}	PEP (ABCcd) + H (b) \rightarrow BPG (ABbCcd)
V _{PK+ME.L}	PEP (ABCab) + H (c) \rightarrow Pyr (ABCabc)
VLDH.L	Lac (ABbCcde) \rightarrow Pyr (ABCcde) + H (b)
V _{Lac.source}	Lac.source (ABaCbcd) → Lac (ABaCbcd)
V _{PC.L}	Pyr (ABCcde) + CO2 (D) + H (f) + H (g) → 0.5*Oac (ABCfgD) + 0.5*Oac (DCBfgA) + H (c)
V _{PCK.L}	Oac (ABCabD) → PEP (ABCab) + CO2 (D)
Vcs.L	Oac (ABCcdD) + AcCoA (EFfgh) \rightarrow Cit (DCcdBFfgEA) + H (h)
VIDH.L	Cit (ABabCDcdEF) + H (e) \rightarrow Akg (ABCeaDcdE) + H (b) + CO2 (F)
Vogdh.l	Akg (ABCabDcdE) → SucCoA (BCabDcdE) + CO2 (A)
V _{SDH.L}	SucCoA (ABabCcdD) + H (e) + H (f) \rightarrow 0.5*Oac (ABCefD) + 0.5*Oac (DCBefA) + H (a) + H
VPCC.L	PropCoA (ABabCcde) + CO2 (D) → SucCoA (ACcdBabD) + H (e)
VBicarb.source	Bicarb.source (A) \rightarrow CO2 (A)
V _{Bicarb.sink}	CO2 (A) \rightarrow Bicarb.sink (A)
VH.inf	H.inf (a) \rightarrow H (a)
VH.sink	$H \rightarrow H.sink$
	¹³ C-Isotope Infusate Reactions
VLac.tracer	Lac.tracer (ABaCbcd) → Lac (ABaCbcd)

V_{Prop.tracer} Prop.tracer (ABabCcde) → PropCoA (ABabCcde)

Table S1. Base reaction network for ²H/¹³C MFA. Related to Figures 2D, 2E and S1. The base model of liver metabolism tracks carbon (uppercase) and hydrogen (lowercase) atoms through the specified enzymatic reactions. Fluxes are regressed from plasma measurements of glucose MIDs using either ¹³C₃Lac/²H or ¹³C₃Prop/²H isotopes. Unenriched sources and sinks are denoted ".source" and ".sink", respectively. ²H and ¹³C isotopes are introduced into model reactions as ".tracer" sources. Compartments are denoted by ".P" for plasma and ".L" for liver. Liver is the default compartment if no compartment is designated for a metabolite. Simulations were performed post hoc from fluxes regressed to experimental labeling data. Unless otherwise noted here, reaction network and model assumptions have been described elsewhere (Hasenour et al., 2015)

Flux Reaction	Base Model ¹³ C₃Lac/²H	Base Model ¹³ C₃Prop/²H	Expanded Model ¹³ C ₃ Lac/ ² H	Expanded Model ¹³ C ₃ Prop/ ² H
V _{CS.L}	73 ± 6	100 ± 11	183 ± 28 ^b	195 ± 42
VEnol.L	131 ± 16	131 ± 11	191 ± 20	189 ± 20
Vpygl+gk.l	26 ± 4	29 ± 3	15 ± 7	14 ± 4
Vldh.l	131 ± 16	106 ± 10	191 ± 20	164 ± 17
VPC.L	141 ± 19	214 ± 22 ª	363 ± 59 ^b	247 ± 69
VPCK.L	141 ± 19	240 ± 22 ª	363 ± 59 ^b	272 ± 74
VPK+ME.L	9 ± 5	109 ± 13 ª	172 ± 42 ^b	82 ± 63

Table S2. Comparison of selected flux estimates between base and expanded models of ¹³C/²H studies. Related to Figures 2 and 5, S1 and 7. ^a denotes fluxes that are significantly different between the ¹³C₃Lac/²H and ¹³C₃Prop/²H Base Models. ^b denotes fluxes that are significantly different between the ¹³C₃Lac/²H Base and ¹³C₃Lac/²H Expanded Models. Data presented as means (µmol/kg/min) ± SEM (p ≤ 0.05, n=5-7)

Flux	Expanded Model Reaction Network (¹³ C transitions only)
	Liver Compartment: Glucose Synthesizing and Oxidative Metabolic Reactions
VEndoRa	G6P (ABCDEF) → Glucose.P (ABCDEF)
VAldo.L	DHAP (ABC) + GAP (DEF) \rightarrow G6P (CBADEF)
V _{TPI.L}	DHAP (ABC) $\leftarrow \rightarrow$ GAP (ABC)
Vgapdh.l	$BPG\ (ABC) GAP\ (ABC)$
Vgk.l	Glycerol (ABC) \rightarrow DHAP (ABC)
V _{Enol.L}	$PEP(ABC) \rightarrow BPG(ABC)$
VPK+ME.L	$PEP(ABC) \rightarrow Pyr(ABC)$
Vldh.l	Lac (ABC) $\leftarrow \rightarrow$ Pyr (ABC)
V _{Lac.source}	Lac.source (ABC) \rightarrow Lac (ABC)
Valt.l	Ala (ABC) $\leftarrow \rightarrow$ Pyr (ABC)
VPC.L	Pyr (ABC) + CO2 (D) \rightarrow Oac (ABCD)
VPCK.L	$Oac (ABCD) \rightarrow PEP (ABC) + CO2 (D)$
Vpdh.l	Pyr (ABC) → AcCoA (BC) + CO2 (A)
$V_{\beta Oxid.L}$	Fat (AB) \rightarrow AcCoA (AB)
V _{CS.L}	Oac (ABCD) + AcCoA (EF) \rightarrow Cit (DCBFEA)
VIDH.L	Cit (ABCDEF) $\leftarrow \rightarrow$ Akg (ABCDE) + CO2 (F)
Vgdh.l	Glu (ABCDE) $\leftarrow \rightarrow$ Akg (ABCDE)
V _{Glu.source}	Glu.source (ABCDE) \rightarrow Glu (ABCDE)
Vogdh.l	Akg (ABCDE) → SucCoA (BCDE) + CO2 (A)
V _{SCS.L}	SucCoA (ABCD) \rightarrow Suc* (ABCD)
V _{SDH.L}	Suc* (ABCD) $\leftarrow \rightarrow$ Fum* (ABCD)
Vfh.l	Fum* (ABCD) $\leftarrow \rightarrow$ Mal (ABCD)
V _{MDH.L}	Mal (ABCD) $\leftarrow \rightarrow$ Oac (ABCD)
VBicarb source	Bicarb.source (A) \rightarrow CO2 (A)
VBicarb sink	CO2 (A) \rightarrow Bicarb.sink (A)

¹³C-Isotope Infusate Reactions

 $V_{Lac.tracer}$ Lac.inf (ABC) \rightarrow Lac (ABC)

 $V_{Lac.inf}$ Lac.inf (ABC) \rightarrow Lac.P (ABC)

Table S3. Expanded reaction network for ¹³C MFA. Related to Figures 4, S4 and S6. (Table and caption continues to next page)

	Extrahepatic Compartment: Glycolytic, and Cori Cycle Reactions
Vнк.е	Glucose.P (ABCDEF) → G6P.E (ABCDEF)
$V_{\text{PYGM},\text{E}}$	Glycogen.E (ABCDEF) → G6P.E (ABCDEF)
V _{Aldo.E}	G6P.E (ABCDEF) → GAP.E (CBA) + DHAP.E (DEF)
V _{TPI.E}	$GAP.E (ABC) \leftarrow \rightarrow DHAP.E (ABC)$
$V_{GAPDH,E}$	$GAP.E\ (ABC) BPG.E\ (ABC)$
$V_{\text{Enol},\text{E}}$	$BPG.E(ABC) \rightarrow PEP.E(ABC)$
Vpk.e	PEP.E (ABC) \rightarrow Pyr.E (ABC)
V _{PyrOxid.E}	Pyr.E (ABC) \rightarrow CO2 (A) + CO2 (B) + CO2 (C)
$V_{\text{LDH.E}}$	Pyr.E (ABC) $\leftarrow \rightarrow$ Lac.P (ABC)
VLacTransport	Lac.P (ABC) \rightarrow Lac (ABC)

Table S3 (Continued). Expanded reaction network for ¹³C MFA. Related to Figures 4, S4 and S6. Expanded model of liver metabolism for tracking only carbon atoms through the specified enzymatic reactions. Fluxes are regressed from liver and plasma measurements for mice infused with ¹³C₃Lac. Unenriched sources and sinks are denoted ".source" and ".sink", respectively. Infused ¹³C isotopes are introduced into model reactions as ".tracer" sources in liver-only models or ".inf" sources for two-compartment models. (Note that these two types of tracer input fluxes are not expected to be equivalent in the case of ¹³C₃Lac administration, since V_{Lac.tracer} represents liver-specific uptake of the tracer while V_{Lac.inf} represents infusion of tracer into the plasma compartment.) Compartments are denoted by ".P" for plasma, ".E" for extrahepatic, and ".L" for liver. Liver is the default compartment if no compartment is designated for a metabolite. The two-compartment model includes reactions for the liver, ¹³C-bicarbonate recycling, and Cori cycle reactions. *denotes that the carbons of succinate and fumarate are symmetric

Flux	Expanded Model Reaction Network (² H/ ¹³ C transitions)		
	Expanded Liver Compartment: Glucose Synthesizing and Oxidative Metabolic Reactions		
V _{Glc.Inf}	Glucose.inf (AaBbCcDdEeFfg) → Glucose.P (AaBbCcDdEeFfg)		
V _{EndoRa}	G6P (AaBbCcDdEeFfg) → Glucose.P (AaBbCcDdEeFfg)		
VPYGL.L	Glycogen (AaBbCcDdEeFfg) + H (h) \rightarrow G6P (AaBhCcDdEeFfg) + H (b)		
VAldo.L	DHAP (AabBCcd) + GAP (DeEfFgh) + H (i) → G6P (CdBiAaDeEfFgh) + H (b) + H (c)		
V _{TPI.L}	DHAP (AabBCcd) + H (e) $\leftarrow \rightarrow$ GAP (AbBeCcd) + H (a)		
Vgapdh.l	BPG (ABbCcd) + H (a) \rightarrow GAP (AaBbCcd)		
V _{GK.L}	Glycerol (AabBeCcd) \rightarrow DHAP (AabBCcd) + H (e)		
V _{Enol.L}	PEP (ABCcd) + H (b) \rightarrow BPG (ABbCcd)		
VPK+ME.L	PEP (ABCab) + H (c) \rightarrow Pyr (ABCabc)		
VLDH.L	Lac (ABbCcde) $\leftarrow \rightarrow$ Pyr (ABCcde) + H (b)		
VLac.source	Lac.source (ABbCcde) → Lac (ABbCcde)		
VALT.L	Ala (ABbCcde) + H (f) $\leftarrow \rightarrow$ Pyr (ABCcdf) + H (b) + H (e)		
VPC.L	Pyr (ABCcde) + CO2 (D) \rightarrow Oac (ABCcdD) + H (e)		
VPCK.L	Oac (ABCabD) → PEP (ABCab) + CO2 (D)		
V _{CS.L}	Oac (ABCcdD) + AcCoA (EFfgh) \rightarrow Cit (DCcdBFfgEA) + H (h)		
VIDH.L	Cit (ABabCDcdEF) + H (e) $\leftarrow \rightarrow$ Akg (ABCeaDcdE) + H (b) + CO2 (F)		
$V_{\text{GDH.L}}$	Glu (ABeCabDcdE) $\leftarrow \rightarrow$ Akg (ABCabDcdE) + H (e)		
Vogdh.l	Akg (ABCabDcdE) → SucCoA (BCabDcdE) + CO2 (A)		
V _{SCS.L}	SucCoA (ABabCcdD) → Suc* (ABabCcdD)		
VPCC.L	PropCoA (ABabCcde) + CO2 (D) \rightarrow SucCoA (ACcdBabD) + H (e)		
V _{SDH.L}	Suc* (ABabCcdD) $\leftarrow \rightarrow$ Fum* (ABaCdD) + H (b) + H (c)		
$V_{FH,L}$	Fum* (ABaCbD) + H (c) $\leftarrow \rightarrow$ Mal (ABaCcbD)		
$V_{\text{MDH.L}}$	Mal (ABaCbcD) $\leftarrow \rightarrow$ Oac (ABCbcD) + H (a)		
VBicarb.source	Bicarb.source (A) \rightarrow CO2 (A)		
VBicarb.sink	CO2 (A) \rightarrow Bicarb.sink (A)		
$V_{H.inf}$	H.inf (a) \rightarrow H (a)		
$V_{\text{H.sink}}$	$H \rightarrow H.sink$		

Table S4. Expanded reaction network for ²H/¹³C MFA. Related to Figures 5 and S7. (Table and caption continues to next page)

¹³ C-Isotope Infusate Reactions
--

 $V_{Lac.inf}$ Lac.inf (ABbCcde) \rightarrow Lac.P (ABbCcde)

 $V_{Prop.inf}$ Prop.inf (ABabCcde) \rightarrow PropCoA (ABabCcde)

Expanded Extrahepatic Compartment: Glycolytic, and Cori Cycle Reactions			
V _{HK.E}	Glucose.P (AaBbCcDdEeFfg) → G6P.E (AaBbCcDdEeFfg)		
V _{PYGM.E}	Glycogen.E (AaBbCcDdEeFfg) + H (h) \rightarrow G6P.E (AaBhCcDdEeFfg) + H (b)		
V _{Aldo.E}	G6P.E (CdBiAaDeEfFgh) + H (b) + H (c) → DHAP.E (AabBCcd) + GAP.E (DeEfFgh) + H (i)		
V _{TPI.E}	DHAP.E (AabBCcd) + H (e) $\leftarrow \rightarrow$ GAP.E (AbBeCcd) + H (a)		
VGAPDH.E	GAP.E (AaBbCcd) → BPG.E (ABbCcd) + H (a)		
V _{Enol.E}	BPG.E (ABbCcd) → PEP.E (ABCcd) + H (b)		
V _{PK.E}	PEP.E (ABCab) + H (c) \rightarrow Pyr.E (ABCabc)		
VALT.E	Ala.E (ABbCcde) + H (f) $\leftarrow \rightarrow$ Pyr.E (ABCcdf) + H (b) + H (e)		
V _{PyrOxid.E}	Pyr.E (ABCcde) → H (c) + H (d) + H (e) + CO2 (A) + CO2 (B) + CO2 (C)		
VLDH.E	Pyr.E (ABCcde) + H (b) ←→ Lac.P (ABbCcde)		
VLacTransport	Lac.P (ABbCcde) \rightarrow Lac (ABbCcde)		

Table S4 (Continued). Expanded reaction network for ${}^{2}H/{}^{13}C$ MFA. Related to Figures 5 and S7. Expanded model of liver metabolism for tracking both carbon (uppercase) and hydrogen (lowercase) atoms through the specified enzymatic reactions. Fluxes are regressed from liver and plasma measurements using either ${}^{13}C_{3}Lac/{}^{2}H$ or ${}^{13}C_{3}Prop/{}^{2}H$ isotopes. See

Tables S1 and S3 for nomenclature

Metabolite	m/z	Formula	Carbons
Alanine	260	$C_{11}H_{26}O_2NSi_2$	123
Alanine	232	$C_{10}H_{26}ONSi_2$	2 3
Aspartate	390	$C_{17}H_{40}O_3NSi_3$	234
Aspartate	418	$C_{18}H_{40}O_4NSi_3$	1234
α-Ketoglutarate	346	$C_{14}H_{28}O_5NSi_2$	12345
Glutamate	432	$C_{19}H_{42}O_4NSi_3$	12345
Glutamate	330	$C_{16}H_{36}O_2NSi_2$	2345
Glucose	370	$C_{17}H_{24}O_8N$	12345
Glucose	301	$C_{14}H_{21}O_7$	123456
Glucose	284	$C_{13}H_{18}O_6N$	1234
Glucose	259	$C_{12}H_{19}O_6$	456
Glucose	173	$C_8H_{13}O_4$	56
Glucose	145	$C_6H_{11}O_3N$	1 2
Lactate	261	$C_{11}H_{25}O_3Si_2$	123
Lactate	233	$C_{10}H_{25}O_2Si_2$	2 3
Urea	231	$C_9H_{23}N_2OSi_2$	1

Table S5. Measured GC-MS fragment ions. Related to all Figures.