Biophysical Journal, Volume 119

Supplemental Information

Mathematical Model Shows How Sleep May Affect Amyloid- β Fibrillization

Masoud Hoore, Sahamoddin Khailaie, Ghazal Montaseri, Tanmay Mitra, and Michael Meyer-Hermann

SUPPLEMENTARY MATERIALS FOR ''MATHEMATICAL MODEL SHOWS HOW SLEEP MAY AFFECT AMYLOID β FIBRILLIZATION''

Masoud Hoore, Sahamoddin Khailaie, Ghazal Montaseri Tanmay Mitra, Michael Meyer-Hermann

Figure S1: Impact of the fA β decay rate d_f on the fibrillization of A β . Panel A and B show the concentration of fA β and sA β , respectively. The inset diagram shows that R_c scales linearly with the changes of d_f . d_s is only used for the normalization purpose and kept constant.

Figure S2: **Impact of the polymerization rate constant** k_p **on the fibrillization of A** β **.** Panel A and B show the concentration of fA β and sA β , respectively. The inset diagram shows that R_c scales inversely with k_p . k_n is only used for the normalization purpose and kept constant. Reduction of k_p is related to the number and efficiency of astrocytes.

Figure S3: Impact of the sA β efflux rate e_s on the fibrillization of A β . Panel A and B show the concentration of fA β and sA β , respectively. The inset diagram shows that R_c scales almost linearly with e_s .