OMTN, Volume 21

Supplemental Information

Adenosine-to-Inosine Editing

of Vasoactive MicroRNAs Alters

Their Targetome and Function in Ischemia

Reginald V.C.T. van der Kwast, Laura Parma, M. Leontien van der Bent, Eva van Ingen, Fabiana Baganha, Hendrika A.B. Peters, Eveline A.C. Goossens, Karin H. Simons, Meindert Palmen, Margreet R. de Vries, Paul H.A. Quax, and A. Yaël Nossent

SUPPLEMENTAL INFORMATION

Table of Contents

A) Supplemental Figures

- S1 In vitro ischemia conditions induce HIF1A, VEGFA, p53, ADAR1 and ADAR2 expression.
- S2 MicroRNA expression and characterization of the microRNA qRT-PCR assays
- S3 Expression of ADARs in vitro after knockdown and in vivo after hindlimb ischemia.
- S4 ADAR1 and ADAR2 expression in lower limb veins of patients with peripheral artery disease compared to coronary artery disease.
- S5 Regulation of percentage miRNA editing after overexpression of either a WT-miRNA or an ED-miRNA.
- S6 Overall target gene regulation after overexpression of WT-miR-411-5p or ED-miR-411-5p.
- S7 Expression of validated WT-miRNA and ED-miRNA target gene in lower limb veins of patients with and without peripheral artery disease.
- S8 Identification of vasoactive microRNAs containing tissue specific A-to-I editing

B) Supplemental Tables

- S1 MicroRNAs containing A-to-I editable adenosines
- S2 Seed sequence analysis of A-to-I edited pri-miRNAs
- S3 Overview of the findings per selected microRNA
- S4 Enriched pathways within putative targetomes
- S5 Putative targets of WT-miRNAs or ED-miRNAs involved in one or more selected processes related to the response to ischemia
- S6 Number of miR-411-5p targets detected using RNA-seq and regulation of the unique targets
- S7 Number of targets within each targetome and fractions conserved in mice and detected by microarray
- S8 Primer sequences and purpose
- S9 Sequences of WT-miRNA and ED-miRNA specific qRT-PCR assays
- S10 Sequences of siRNA and synthesized endogenous 3'UTRs

C) Supplemental References

SUPPLEMENTAL FIGURES AND FIGURE LEGENDS

Figure S1: In vitro ischemia conditions induce HIF1A, VEGFA, p53, ADAR1 and ADAR2 expression. (A)Primary human umbilical vascular endothelial cells (HUVECs) and human umbilical arterial fibroblasts (HUAFs) were cultured either under normal or ischemic culture conditions, mimicked using a combination of hypoxia and serum starvation (H+S). Expression of hypoxia-inducible genes HIF1A (B) and VEGFA (C) and p53 (D) were successfully increased upon H+S culture conditions. (D-E) Regulation of ADAR1 (D) and ADAR2 (E) expression in response to either only serum starvation or hypoxia or the combination. All data are presented as mean \pm SEM (n=3). #P<0.1, *P<0.05, **P<0.01, ***P<0.001; versus control condition unless otherwise indicated by 2-sided Student *t* test.

Figure S2: MicroRNA expression and characterization of the microRNA qRT-PCR assays. (A) Overall mature miRNA expression in reads per million (RPM) of microRNAs found edited at pri-miRNA level in vascular cells. Data are displayed in descending order and were extrapolated from miRbase.org (only canonical miRNA sequence reads were included). (B-E) Characterization of PCR efficiency of TaqMan WT-miRNA and custom ED-miRNA qRT-PCR kits by serial dilution of cDNA from HUAF samples transfected with 0.1 pg of the miRNA. To do so, cycle threshold was plotted versus the logarithmic function of the relative input. The equation: efficiency = $10^{(-1/slope)}$ was used to calculate the corresponding real-time PCR efficiencies¹.

Figure S3: Expression of ADARs *in vitro* after knockdown and *in vivo* after hindlimb ischemia. (A) After transfecting HUAFs with a negative control, *ADAR1*-targeted or *ADAR2*-targeted siRNA (siNegC, siADAR1 and siADAR2 respectively), relative expression of *ADAR1* and *ADAR2* was measured by qRT-PCR to validate the knockdown efficiency and specificity. Data was expressed as fold change relative to siNegC and presented as mean \pm SEM (n=3 per treatment). (**B-C**) Relative expression of Adar1 isoforms P150 (**B**) and P110 (**C**) and Adar2 (**D**) in muscles before hindlimb ischemia (T0) and 1 and 3 days after (T1 and T3 respectively) as determined by qRT-PCR. Data was expressed relative to *Rplp0* and presented as mean \pm SEM (n=3 per treatment). **P*<0.05, ***P*<0.01; versus siNegC or T0 by two-sided Student's *t*-test.

۸			CAI) (#1-8	3)	PA	D (#9-	14)	en	d-staç	ge PAD	(#15-	-22)
A	patient #	1	2	3	4	9	10	11	15	16	17	18	19
	p150	100	(enire)	616	-	_		c = 4			100	101	1
	Q p110	-	-	-	-	-	-		-	-	-	-	-
	β-actin	-	-	-	-	-	-		-	-	-	-	-
	patient #	5	6	7	8	12	13	14	20	21	22		
	p150	2-0	heat	-	40-40	10000	4.4	-	-	24	$_{\rm invert}$]	
	P 110	-	-	Sec. 4	1.1	_	0.00	-	-	-	-		
	β-actin	-	-	-	_				-	-	-]	
												1	
R			CAL) (#1-8)	PA	D (#9-	14)	en	d-stag	je PAD	(#15-	22)
D	patient #	1	2	3	4	9	10	11	15	16	17	18	19
	ADAR2		-	_		-	-	-		-	and the second	-	-
	β-actin	-	-	-	_	-	_		1	-	_	_	-
	patient #	5	6	7	8	12	13	14	20	21	22	_	
	ADAR2	-	-	-	-	_	-	-	-	-	-		
	β-actin	-	-	-	-	-	-	-	-	•]	

Figure S4: ADAR1 and ADAR2 expression in lower limb veins of patients with peripheral artery disease compared to coronary artery disease. Westernblots of ADAR1 (A) and ADAR2 (B) expression in lower leg vein (LLV) samples from different patient groups. Normoxic LLV samples (n=8) from patients with coronary artery disease (CAD) undergoing coronary artery bypass-surgery were compared to ischemic LLV samples (n=6) from patients with peripheral artery disease (PAD) undergoing femoral artery to popliteal artery-bypass surgery and to critically ischemic LLV samples (n=8) from patients with end-stage PAD, undergoing lower limb amputation. Stable household gene beta-actin was used to normalize expression.

Figure S5: Regulation of percentage miRNA editing and average target mRNA regulation after overexpression of either a WT-miRNA or an ED-miRNA.

HUAF samples were transfected with 0.1 pg of either a WT-miRNA mimic (WT), an ED-miRNA mimic (ED) or a control miRNA mimic (Ctrl). (**A-D**) Percentage editing was calculated afterwards using version specific qRT-PCR assays. In each case, overexpression of WT-miRNA successfully reduced overall percentage editing compared to Ctrl and overexpression of ED-miRNA successfully increased percentage editing. Data are presented as mean \pm SEM (n=3). **P*<0.05, *****P*<0.0001 versus Ctrl mimic by 2-sided Student *t* test. (**E**) Average expression regulation of successful regulation of WT targets by WT-miRNA overexpression and ED targets by ED-miRNA overexpression shown in Figure 7C. Data are presented as mean \pm SEM. ***P*<0.001 by 2-sided Student *t* test.

Figure S6: Overall target gene regulation after overexpression of WT-miR-411-5p or ED-miR-411-5p. The log-fold changes (FC) of mRNA expression calculated from RNA-seq data obtained after overexpression of WT-miR-411-5p (**A&B**) or ED-miR-411-5p (**C&D**) compared to overexpression of a non-targeting control microRNA (Ctrl miRNA) in HUAFs. Data represent averages of 3 independent experiments and are visualized using mean-difference plots, highlighting the predicted target genes (with a 0.5 binding score threshold to minimize false positives, see Supplemental Table VI) that were uniquely targeted by the WT-miR-411-5p (green, **A&C**) or ED-miR-411-5p (red, **B&D**). The overall distribution of the logFC per targetome is shown in the boxplots. Differential expression of each targetome was tested using ROAST².

Figure S7: Expression of validated WT-miRNA and ED-miRNA target gene in lower limb veins of patients with and without peripheral artery disease. (A&B) Relative mRNA expression of genes we validated (see Figure 7B&C) to be targeted by the four selected WT-miRNAs (A) or ED-miRNAs (B) in lower leg vein (LLV) samples from different patient groups. LLV samples from patients with coronary artery disease (CAD) but not peripheral artery disease (PAD) (n=8) were compared to LLV samples from patients with severe PAD (n=6) and LLV samples from patients with end-stage PAD (n=8). Expression was normalized to stable household gene RPLP0 and expressed as fold change of the CAD group. Expression of WNT4 was not detected (N.D.) in these samples. Data is presented as mean ±SEM. *P<0.05, **P<0.01; by 2-sided Student t test versus CAD.

1. Identification of mature microRNAs containing A-to-I editable adenosines

Method: search Pubmed for studies that identified microRNA editing events by analyzing small RNA sequencing datasets

Inclusion criteria: observed A-to-G mismatches in mature miRNA or pri-miRNA sequencing reads that are either reported by multiple studies or validated to be ADAR-dependent

2. Remove microRNAs without previously reported link with vascular biology

Method: search each microRNA candidate in Pubmed with vascular search terms

Inclusion criteria: at least one search result that shows the microRNA is involved in or associated with cardiovascular functioning or disease

35 microRNAs identified as vasoactive, 25 excluded

3. Quantification of inferred mature miRNA editing in human major organs

Method: Reanalysis of high quality public RNA-seq datasets using miRgator webtool (*mirgator.kobic.re.kr*)

Inclusion criteria: Per organ only the dataset with the highest read counts available were used.

Figure S8: Identification of vasoactive microRNAs containing tissue specific A-to-I editing. A schematic overview of the steps taken to identify vasoactive microRNAs that can be A-to-I edited in a tissue and context dependent manner, using manual literature curation and reanalysis of public RNA-seq datasets.

SUPPLEMENTAL TABLES

Table S1. MicroRNAs containing A-to-I editable adenosines

	A 4 T 14 11	C	Dominant side		Reported A-	Linked to
#	A-to-l editable	Chromo	of miRNA dupley	Sequence and editable adenosines (\mathbf{A})	to-l edited	vascular
<u></u> 1	miR-37691-3n	14	3n	AIICAIIAGAGGAAAAUCCACGU	3-5	ves ⁶
1 2	miR-376a2-3p	14	3p		3-5	yes
2	miR-376h 3n	14	3p 3p		4 5 7-9	yes
3	miR-3760-3p	14	3p 2n		3 5 7 9 11 12	yes ¹³
4	min 391 3n	14	3p 2n		45781112	yes ¹⁴
5	mik-381-3p	14	Sp		4,5,7,6,11,12	yes ¹⁵
6	mik-411-5p	14	5p		3-3,7-9,11,12	yes ¹⁵
/	miR-376a2-5p	14	3p		4,5,8,9,11,12	yes ¹⁰
8	miR-605-3p	10	3p		4,5	yes ¹
9	miR-624-3p	14	5p		4,5	yes ¹⁰
10	miR-487b-3p	14	3p		4,19	yes ²⁰
11	Let-7c-5p	21	5p		4,5	yes ²¹
12	Let-7d-3p	9	5p		4,5,8	yes ²¹
13	Let-7e-3p	19	5p		4,5,8	yes ²²
14	miR-24-2-5p	19	3р	UGCCUACUGAGCUGAAACACAG	4,5	yes ²³
15	miR-27a-5p	19	3р	AGGGCUUA GCUGCUUGUGAGCA	4,5,11	yes ²⁴
16	miR-27a-3p	19	3р	U UCACAGU GGCUAAGUUCCGC	4,5,8,11	yes ²¹
17	miR-98-5p	Х	5p	U GAGGUAG UA <mark>A</mark> GUUGUAUUGUU	4,5	yes ²⁵
18	miR-99a-5p	21	5p	AACCCGUA GAUCCGAUCUUGUG	4,5,8,11,12	yes ²⁶
19	miR-130b-3p	22	3р	C AGUGCAA UGAUGAAAGGGC A U	4,5	yes ²⁷
20	miR-151a-3p	8	5p	C UAGACUG AAGCUCCUUGAGG	4,5,8,11,12	yes ¹⁸
21	miR-200b-3p	1	3р	U AAUACUG CCUGGUAAUGAUGA	4,5,8,11,12	yes ²¹
22	miR-337-3p	14	3р	C UCCUAUA UGAUGCCUUUCUUC	4,5,7,12	yes ²⁸
23	miR-376a1-5p	14	3р	G UAGAUUC UCCUUCUAUGAGUA	4,5,8,9,11,12	yes ¹⁶
24	miR-377-3p	14	3р	A UCACACA A <mark>A</mark> GGCAACUUUUGU	4,5	yes ¹⁶
25	miR-378a-3p	5	3р	A CUGGACU UGGAGUC A GAAGGC	3-5,7	yes ²¹
26	miR-379-5p	14	5p	U GGUAGAC UAUGGAACGUAGG	4,5,7-9,11,12	yes ¹⁶
27	miR-421-3p	Х	3р	A UCAACAG ACAUU <mark>A</mark> AUUGGGCGC	4,5,7,8	yes ²⁹
28	miR-455-5p	9	3р	U AUGUGCC UUUGGACU A UCG	4,5,8	yes ³⁰
29	miR-494-3p	14	3р	U GAAACAU ACACGGGAA <mark>A</mark> CCUC	4,31	yes ²⁰
30	miR-497-5p	17	5p	C AGCAGCA CACUGUGGUUUGU	4,5,7,8,11,12	yes ³²
31	miR-497-3p	17	5p	C AAACCAC ACUGUGGUGUU A	3-5,7	yes ²¹
32	miR-503-5p	Х	5p	U AGCAGCG GGAACAGUUCUGCAG	4,5	yes ²³
33	miR-539-5p	14	3р	A GAAAUUA UCCUUGGUGUG	4,5,8	yes ³³
34	miR-589-3p	7	5p	U CAGAACA AAUGCCGGUUCCCAGA	4,5,8,12	yes ³⁴
35	miR-1260b-5p	11	5р	A UCCCACCA CUGCCACCAU	4,5	yes ³⁵
36	miR-1251-5p	12	5p	A CUCUAGC UGCCAAAGGCGCU	4,5,7,12	no
37	miR-1295b-3p	1	5p	A AUAGGCCA CGGAUCUGGGCAA	4,12	no
38	miR-1301-3p	2	3p	U UGCAGCU GCCUGGGAGUGACUUC	4,5,12	no
39	miR-1304-3p	11	5p	U CUCACUG UAGCCUCGAACCCC	4,5,12	no
40	miR-301a-3p	17	3p	C AGUGCAA UAGUAUUGUCA A AGC	4,5	no
41	miR-301b-3n	22	3p	C AGUGCAA UGAUAUUGUCA A AGC	4,5	no
42	miR-3144-3n	6	5p	AUAUACCUGUUCGGUCUCUUUA	4,12	no
43	miR-3157-3n	10	5p 5n	CUGCCCUAGUCUAGCUGAAGCU	4.5	no
13	miR-3167-3p	10	5p 5n	AGAIIIIIICAGAAAIIACIIGGIIGII	4.5	no
45 45	miR 3622a 3n	8	5p 5p		4 5 12	no
45	miR-3622a-5p	2	Jp		4.5	no
40	miR-3081-3p	2	2n		3.5	no
47	miR-5/80-5p	5	5p		5-5	no
48	miR-3/80-5p	10	эр г		4,5	по
49 50	miR-4510-5p	15	Sp z		4,5	no
50	miR-4662a-5p	8	5p		4,5	no
51	m1R-488-3p	1	3p		4,5	no
52	m1R-532-5p	Х	3p -		4,5	no
53	miR-556-3p	1	5p	AUAUUACCAUUAGCUCAUCUUU	4,5	no
54	miR-561-3p	2	5p	C AAAGUUUA AGAUCCUUGAAGU	4,5	no
55	miR-598-3p	8	3р	U ACGUCAU CGUUGUCAUCGUCA	4,5,8	no
56	miR-625-3p	14	5p	G ACUAUAG AACUUUCCCCCUCA	4,5	no
57	miR-6503-3p	11	unclear	G GGACUAG GAUGCAGACCUCC	3-5,12	no
58	miR-664a-5p	1	3p	A CUGGCUA GGGAAAAUGAUUGGAU	4,5,11,12	no
59	miR-944-3p	21	3p	A AAUUAUU GUACAUCGGAUGAG	4,5,11	no
60	miR-99b-3p	19	5p	CAAGCUCGUGUCUGUGGGUCCG	4,5	no

MicroRNAs located in the 14q32 microRNA cluster have their chromosome number highlighted in blue. The seed sequence of each microRNA is highlighted in **bold**.

Table S2. Seed sequence analysis of A-to-I edited pri-miRNAs

miRNA	WT-miRNA sequence and pri- miRNA A-to-I editing location	WT-miRNA seed	Seed sequence shared by	ED-miRNA seed	Seed sequence shared by
miR-376a1-5p	G UAGAUUC UCCUUCUAUGAGUA	UAGAUUC	none	U G GAUUC	none
miR-376a1-3p	A UCAUAGA GGAAAAUCCACGU	UCAUAGA	miR-376a2+b-3p	UCAU <mark>G</mark> GA	none
miR-376a2-5p	G GUAGAUU UUCCUUCUAUGGU	GUAGAUU	none	GU <mark>G</mark> GAUU	miR-8056*
miR-376a2-3p	A UCAUAGA GGAAAAUCCACGU	UCAUAGA	miR-376a1+b-3p	UCAU <mark>G</mark> GA	none
miR-376b-3p	A UCAUAGA GGAAAAUCCAUGUU	UCAUAGA	miR-376a1+a2-3p	UCAU <mark>G</mark> GA	none
miR-376c-3p	A ACAUAGA GGAAAUUCCACGU	ACAUAGA	none	ACAU <mark>G</mark> GA	miR-4802-3P*
miR-381-3p	U AUACAAG GGCAAGCUCUCUGU	AUACAAG	miR-300-3p	AU G CAAG	none
miR-411-5p	U AGUAGAC CGUAUAGCGUACG	AGUAGAC	none	AGU <mark>G</mark> GAC	none
miR-605-3p	A GAAGGCA CUAUGAGAUUUAGA	GAAGGCA	none	GA <mark>G</mark> GGCA	miR-3616-3p*
miR-624-3p	C ACAAGGU AUUGGUAUUACCU	ACAAGGU	none	ACA <mark>G</mark> GGU	none
miR-487b-3p [†]	A AUCGUAC AGGGUCAUCCACUU	AUCGUAC	none	GUCGUAC	none

* unvalidated microRNA according to Targetscan³⁶.
 [†] characterized previously by Van der Kwast et al. 2018¹⁹.

			miR-376a&b-3p		miR-376c-3p		miR-381-3p			miR-411-5p					
	Experiment	Figur	e Tissue	WТ	ED	% editing	WТ	ED	% editing	WT	ED	% editing	WΤ	ED	% editing
ia		2	HUVECs	*	++	+	+	+	+	++	+	-	+	++	+
mei		2	HUAFs	≈	++	+	++	++	+	+	++	+	+	++	+
sch	mature miRNA editing		HUVECs	~	+	*	*	+	+	+	≈	-	+	+	~
r 24h		3	HUAFs	+	++	+	++	++	+	+	+	≈	+	+	≈
	AGO2 IP		HUAFs	+	++	+	++	++	+	+	++	+	+	+	*
afte	hindlimb ischemia		adductor	exclud	ed becaus	e edited	+	≈/-	-	≈/+	-	-	++	~	≈/-
ů ů	(adductor remains	5	gastrocnemius	adenosin	e is not co	nserved in	++	+	-	+	++	≈	+	+	~
latic	relatively normoxic)		soleus	the murin	ie mmu-mi	iR-376a-3p	*	++	+	++	++	≈	≈/+	+	+
	ex vivo culture	6	IMA	+	++	+	+	+	≈/+	+	+	≈	+	+	≈/+
£			VSM	≈/+	+	≈/+	*	+	+	*	++	+	+	+	≈/+
ische	emic LLVs (PAD		PAD patient LLVs	++	++	≈/+	+	+	+	+	+	+	++	++	≈/+
patie LLVs	nts) versus normoxic (CAD patients	6	end-stage PAD patient LLVs	+	++	≈/+	+	++	++	+	++	++	+	++	+
<u></u> м			HUAFs siADAR1	~	-	*	-		-	≈/-		-	-		-
e AR:	prinary mixing	1	HUAFs siADAR2	+	-	-	-	-	≈	-	-	≈	-	≈/-	≈
AD, G	mature miRNA editing	4	HUAFs siADAR1	-	≈/-	+	-		-	-		-	-	-	~
			HUAFs siADAR2	≈/-	-	-	-	-	≈	≈/-	≈/-	≈	≈	~	≈
				WT	ED	effect of	WΤ	ED	effect of	WТ	ED	effect of	WТ	ED	effect of
				mimic	mimic	editing	mimic	mimic	editing	mimic	mimic	editing	mimic	mimic	editing
sis -	wound healing		HUAFs	-	+	++	-	-	~	≈/-	+	+	≈/-	+	+
ngi ngi	tube formation	8	HUVECs	≈/-	≈/-	~	-	≈/+	++	≈/-	+	+	≈/-	+	+
a ji	neovessel sprouting		aortic segments	not conser	ved in mm	nu-miR-376a	≈/-	+	++	≈/+	+	+	≈	+	++

Table S3. Overview of the findings per selected microRNA

	Total genes mapped to pathway	# of mapped genes in target set	Expected # of genes targeted	Fold Enrichment	<i>P</i> value
WT-miR-376a+b-3p	-		-		
-					
ED-miR-376a+b-3p					
Cadherin signalling pathway	158	24	8.06	2.98	0.0007
Wnt signalling pathway	312	34	15.91	2.14	0.0062
WT-miR-376c-3p					
-					
ED-miR-376c-3p					
Cadherin signalling pathway	158	27	11.87	2.27	0.0395
WT-miR-381-3p					
-					
ED-miR-381-3p					
Cadherin signalling pathway	158	25	9.83	2.54	0.0046
Wnt signalling pathway	312	43	19.41	2.22	0.0010
WT-miR-411-5p					
Cadherin signalling pathway	158	23	4.94	4.66	0.0000
Wnt signalling pathway	312	31	9.76	3.18	0.0000
ED-miR-411-5p					
-					

Table S4. Enriched pathways within putative targetomes*

* Putative targetomes were analyzed by the PANTHER pathway algorithm³⁷. Only pathway enrichments with P<0.05 after Bonferroni correction are reported.

Table S5. Putative targets of WT-miRNAs or ED-miRNAs involved in one or more selected processesrelated to the response to ischemiaSee separate supplemental file.

Table S6	Number	of miR-411	-5p targets de	etected using	g RNA-seq a	nd regulation	n of the unio	lue targe	
Targe- tome	>0.5 binding score	in RNA- seq	to either targetome	down regulated	regulated	Direction	P-Value	FDR	
WT-miR	WT-miR-411-5p overexpression vs Ctrl microRNA overexpression								
WT	464	348	300	0.3133	0.0300	Down	0.002	0.003	
ED	407	315	274	0.0547	0.0876	Up	0.579	0.579	
ED-miR	-411-5p ove	rexpression	vs Ctrl microR	NA overexpr	ession				
WT	464	348	300	0.0733	0.0767	Down	0.987	0.987	
ED	407	315	274	0.2299	0.0657	Down	0.022	0.043	
ED-miR	-411-5p ove	rexpression	vs WT-miR-41	1-5p overexp	ression				
WT	464	348	300	0.0300	0.3333	Up	0.001	0.001	
ED	407	315	274	0.2482	0.0438	Down	0.013	0.013	

Overall regulation of unique targets was examined using limma's roast function³⁸

·			no cutoff				0.5 score cutoff			
			conse	rved	dete	cted	conse	rved	deteo	cted
microRNA	target set	human	in mo	ouse	in ar	ray	in mo	ouse	in ar	ray
miR-376c	WT only	879	590	67%	406	69%	218	37%	157	39%
	ED only	1200	854	71%	609	71%	266	31%	190	31%
	shared	326	207	63%	146	71%	45	22%	36	25%
miR-381	WT only	1259	959	76%	698	73%	509	53%	376	54%
	ED only	886	557	63%	391	70%	169	30%	125	32%
	shared	387	248	64%	185	75%	68	27%	51	28%
miR-411	WT only	557	256	46%	176	69%	58	23%	43	24%
	ED only	590	307	52%	218	71%	67	22%	49	22%
	shared	85	37	44%	28	76%	1	3%	1	4%

Table S7: Number of targets within each targetome and fractions conserved in mice and detected by microarray

Table S8: Primer seq	uences and	pur	pose
----------------------	------------	-----	------

Cable S8: Primer sequences and purpose							
Primer	Used for:	Sequence (5' to 3')					
pri-miR-let7c_F	amplification &	TTGGAGGAGCTGACTGAAGAT					
pri-miR-let7c_R	sequencing	ATGAAGAATTCCTCGACGGCT					
pri-miR-let7d_F	amplification &	TTTGAAGTGCATCTGCCAAGT					
pri-miR-let7d_R	sequencing	GCAAGGAAACAGGTTATCGGT					
pri-miR-let7e_F	amplification &	TGGTCCCTGTCTGTCTGTCT					
pri-miR-let7e_R	sequencing	TAAGGGTCCCTGAGTGGGG					
pri-miR-1260b_F	amplification &	CAGGTGCTTACCGCAATCAG					
pri-miR-1260b_R	sequencing	CTCCCAAGCAGCAGCAACAG					
pri-miR-130b_F	amplification &	AGCCTGCATTCCAGGTCTCAG					
pri-miR-130b_R	sequencing	AGGCAGCAAGCTCCCTTTCC					
pri-miR-151a_F	amplification &	CTACAGTAGCTGAGCCTGGT					
pri-miR-151a_R	sequencing	AGGTTTGGGCAACACCGA					
pri-miR-200b_F	amplification &	CAGCTACTGAGCTTCCCAGC					
pri-miR-200b_R	sequencing	TCGGCCGGTCGCTGC					
pri-miR-24-2_F	amplification &	CCGCCTGTCCCCTGC					
pri-miR-24-2_R	sequencing	CAGCCCACCCAGGGAAG					
pri-miR-27a_F	amplification &	CTGAGCTCTGCCACCGAG					
pri-miR-27a_R	sequencing	GCAAGGCCAGAGGAGGTGAG					
pri-miR-337_F	amplification &	ATCCGAGCGCTTGCACTG					
pri-miR-337_R	sequencing	AAGGGTGCAGAGGAGGGTC					
pri-miR-376a1_F	amplification; qPCR &	TTTCTGATGACTCAAGCACAGG					
pri-miR-376a1_R	sequencing	CGTCCTCCGAGGTTTTCAAAG					
pri-miR-376a2_F	amplification &	TTGTGTTTGATGGATTGTACTTAGG					
pri-miR-376a2_R	sequencing	CCTGATGGTGGCTTCAGTCC					
pri-miR-376b_F	amplification &	ACTGTGTTCAGATTTGTCCTTTCC					
pri-miR-376b_R	sequencing	TCAGGCCCTACGGTCTCTTC					
pri-miR-376c_F	amplification &	ATTTTGATAGATTGTGCTTAGGTTC					
pri-miR-376c_R	sequencing	AGGAATGTTTCCAAGCAGCA					
pri-miR-377_F	amplification &	GGCATCTCGGTGTGTTCTTG					
pri-miR-377_R	sequencing	GGGGTGTAGATGCCCCTGAG					
pri-miR-378a_F	amplification &	GGAGTGAGCGGCTTGTATGG					
pri-miR-378a_R	sequencing	GTGGGGAAGGTGACTCCACT					
pri-miR-379_F	amplification &	GTGACGCCAACTTCAGGGG					
pri-miR-379_R	sequencing	GTTGGCAACACCTCCAGGAA					
pri-miR-381_F	amplification &	CCGTGAATGATAGTGAGAAC					
pri-miR-381_R	sequencing	ACACATACCGCATCCCTTG					
pri-miR-411_F	amplification; qPCR &	AAGGCCTTGGAGGGCTTTCTG					
pri-miR-411_R	sequencing	GACAGCGTTGTTTCCAGGAGC					
pri-miR-487b_F	amplification; qPCR &	GAAGACGTACCAAGTCCACCC					
pri-miR-487b_R	sequencing	GCTCCAGAGTCTGCGCTCTT					
pri-miR-494_F	amplification &	TTCGGCAGTTCTGTTTTGAT					
pri-miR-494_R	sequencing	TCCAGGGTGGGATTTGATACT					
pri-miR-497_F	amplification &	TGGGGTCTTCCCAGCACT					
pri-miR-49/_R	sequencing						
pri-miR-503_F	amplification &	TATICCTGGCTAGGCTGGGG					
pri-miR-503_R	sequencing						
pri-miR-539_F	amplification &						
pri-mik-539_K	sequencing						
pri-miK-589_F	amplification &						
рп-шк-389_к	sequencing						
pri-mik-605_F	amplification &						
pri-mik-605_K	sequencing						
pri-miK-624_F	amplification &						
рп-шк-624_к	sequencing	ATCHTUTTCACTUAAAUCACH					

pri-miR-98_F	amplification &	AAAGAGTCTGTCACCATGTAAAA
pri-miR-98_R	sequencing	TGCTAAGACTAAGTGTGAATATGCC
pri-miR-99a_F	amplification &	TTTTGACTCTTAATTGCATCAGATA
pri-miR-99a_R	sequencing	GCACTGTGTATAGCATTTTGTCA
pri-miR-376a2_F	DCD	CGTGCTTTCCGGGATGAAAC
pri-miR-376a2_R	qPCR	CAGTCCAGCCATGATCCCAA
pri-miR-376b F		CAGAGCCCAGTCCTTCTTTG
pri-miR-376b_R	qPCR	CCTACGGTCTCTTCCAGAAACA
pri-miR-376c F		GGTTCATGCTTTCCAGGACTCA
pri-miR-376c R	qPCR	TCTTCCCTGATGGTGGTTTCAG
pri-miR-381 F		AACCTGCCCAGTGCTATTGTT
pri-miR-381 R	qPCR	ACACACATACCGCATCCCTT
pri-miR-605 F		TGTCTCTAGCCCTAGCTTGGTT
pri-miR-605_P	qPCR	
pri-miR-605_R		
pri-miR-024_P	qPCR	
U0-F	qPCR	
	-	
ADARI_human_F	qPCR	
ADAR1_human_R	*	CGCAGICIGGGAGIIGIAIIIC
ADAR2_human_F	aPCR	GGAAGCTGCCTTGGGATCAG
ADAR2_human_R	I	GCTGCTGGAACTCATGTTTTCTTC
RPLP0_human_F	aPCR	TCCTCGTGGAAGTGACATCG
RPLP0_human_R	1	TGTCTGCTCCCACAATGAAAC
p53_F	aPCR	TGACACGCTTCCCTGGATTG
p53_R	qi oli	TTTTCAGGAAGTAGTTTCCATAGGT
VEGFa_F	aPCR	ATCACCATGCAGATTATGCGG
VEGFa_R	qi cix	CCCCTTTCCCTTTCCTCGAAC
HIF1A_F	aDCD	TGTCTCTAGCCCTAGCTTGGTT
HIF1A_R	Y rCK	AGCAATATACCTGTGGCTGTCA
Adar1p150_mouseF	aDCD	GGCACTATGTCTCAAGGGTTC
Adar1p150_mouseR	qPCK	CCTGTGGCTGCGGGTATC
Adar1p110_mouseF	DCD	TCACCAATCTGCGCCCTAAC
Adar1p110_mouseR	qPCR	GTGTCTGGTGAGGGAACACC
Adar2_mouse_F	DCD	GCTTGCCCTGAAGGAGTTTTG
Adar2_mouse_R	qPCR	CAGTGCTGCTGGAACTCATATTC
Rplp0_mouse_F	2.62	GCGACCTGGAAGTCCAACTA
Rplp0_mouse_R	qPCR	ATCTGCTGCATCTGCTTGG
ANGPT2 3'UTR F	construct cloning (WT-	CTCTCTCGAGTATCAACAGAAACGTGCCAT
ANGPT2 3'UTR R	376a&b site)	CTGCGGCCGCGGGTGAATCTTGAGACATATAGC
WNT4 3'UTR F	construct cloning (ED-	CTCTCTCGAGCTGAAGTCCCACCCTAGAACC
WNT4_3'UTR_R	376a&b site)	CTGCGGCCGCGTTTGTCTGCTTCCCAGGACT
TGEBR2 3'LITR F	construct cloning (WT-	CTCTCGAGACTGTTCTATAGTTTTTCAGGATCT
TGFBR2_3'UTR_R	376c site)	CTGCGGCCGCATTCAAACATGACCATGCTAATAA
CHD2 3'UTR F	construct cloning (FD-	CTCTCTCGAGGGGGGGATGAGACCATGAGATT
CHD2_3'UTR_R	376c site)	CTGCGGCCGCTGTGCTAAGAACTTTTCTCCCCT
VIE2 2'UTD E	construct cloping (WT	CTCTCTCCACATCAACTTCCTCCCACCTCTC
KLF3_3 UIK_F	381 site)	
CUDE 2'UTD E	construct cloning (WT	
CHDC_3 UIK_F	All site)	
TCED2 221TD D		
TCED2 22UTD D	All site)	
IGFB2_3 UIK_K	+11 Sile)	
FGF2_3'UTR_F	construct cloning (ED-	
FGF2_3'UTR_R	411 Site)	CIGCGGCCGCCGTCCTGAGTATTCGGCAAC
ANGPT2_F	aPCR	CAGCCCCTACGTGTCCAATG
ANGPT2_R	41 011	GCCGTCTGGTTCTGTACTGC

BMP2_F	~DCD	CCAGACCACCGGTTGGAG
BMP2_R	qPCK	AAACTCCTCCGTGGGGATAG
WNT4_F	aDCD	GCTCCACACTCGACTCCTTG
WNT4_R	qrek	CCCATGCACTGTCCTGTCAC
TGFBR1_F	aDCD	TCCTCGAGATAGGCCGTTTG
TGFBR1_R	qrek	CCAGTTCCACAGGACCAAGG
CHD2_F	aDCD	ATGCAAGACTGGATTTCCTGAAG
CHD2_R	qrek	TCTCACGGCATACACCATGC
BCL2_F	aDCD	AACATCGCCCTGTGGATGAC
BCL2_R	qrek	GGGCCAAACTGAGCAGAGTC
KLF3_F	aDCD	TGACCCAGTTCCTGTCAAGC
KLF3_R	qrek	TGTATTCCGTGCGACAGACC
CHD6_F	aDCD	GCTCTGGTTGCCATCCTTCTG
CHD6_R	qrek	CCACCTTCGTCGTTGTAACTG
TGFB2_F	aDCD	CCCTGCTGCACTTTTGTACC
TGFB2_R	qrek	AGGAGATGTGGGGTCTTCCC
FGF2_F	aDCD	ACCTGGCTATGAAGGAAGATGG
FGF2_R	qrCK	CGTTTCAGTGCCACATACCAAC

Gray highlighted sequences are primer extensions to flank the amplicon restriction enzyme sites

Assay target	Component	Sequence
	hairpin RT primer	GTGCTAACGTGTGCAGGGACGGAGGACACGTTAGCACACGTGG
ED-miR-		CCGGCGATCATGGAGGAAAATC
376a+b-3p	qPCR primers	TGCAGGGACGGAGGA
	qPCR probe	<vic>ACGTTAGCACACGTGGAT<mgb></mgb></vic>
	hairpin RT primer	GTCGTATCCAGTGCAGGGACCGAGGACTGGATACGACACGTGG
ED-miR-	aDCD primars	CCGGCGAACATGGAGGAAATTC
576C-5p	qrCK primers	TGCAGGGACCGAGGA
	qPCR probe	<vic>CTGGATACGACACGTGGAA<mgb></mgb></vic>
	hairpin RT primer	GGCGTTGGCAGTGCAGGGTCCGAGGTCTGCCAACGCCACAGAG
ED-miR-	aDCD mimore	GCCGTATGCAAGGGCAAGC
381-3p	qrCK primers	GTGCAGGGTCCGAGG
	qPCR probe	<vic>CCAACGCCACAGAGAG<mgb></mgb></vic>
	hairpin RT primer	GTCGTATCCAGTGCAGGGACCGAGGACTGGATACGACCGTACGC
ED-miR-	aDCD primara	CCGCCTAGTGGACCGTATAGC
411- ə p	qrCK primers	TGCAGGGACCGAGGA
	qPCR probe	<vic>CTGGATACGACCGTACGCT<mgb></mgb></vic>

Table S9. Sequences of custom ED-miRNA specific qRT-PCR assays

<VIC>, VIC fluorophore <MGB>, minor groove binder

siRNA	targets	sequence
siADAR1	ADAR1	5'-GCUAUUUGCUGUCGUGUCA (dT) (dT) -3'
siADAR2	ADAR2	5'-GAUCGUGGCCUUGCAUUAA (dT) (dT) -3'
siRNA control:	nothing	5'-UCUCUCACAACGGGCAU(dT)(dT)-3'

Table	S10:	Sequences	of siRNA	and	synthesized	endogenous	s 3'UTRs
					•		

3'UTR from

sequence

BMP2 (ED-miR-	CTCTCTCTCGAGGGAAAAAAATAGCTAATTTGTATTTATATGTAATCAAAAGAAGTATCGGGTTTGTACA
	TAATTTTCCAAAAATTGTAGTTGTTTTCAGTTGTGTGTATTTAAGATGAAAAGTCTACATGGAAGGTTAC
	TCTGGCAAAGTGCTTAGCACGTTTGCTTTTTGCAGTGCTACTGTTGAGTTCACAAGTTCAAGTCCAGAA
	AAAAAAGTGGATAATCCACTCTGCTGACTTTCAAGATTATTATTATTCAATTCTCAGGAATGTTGCA
376a+b-	GAGTGATTGTCCAA TCCATGA GAATTTACATCCTTATTAGGTGGAATATTTGGATAAGAACCAGACATTG
3p binding	CTGATCTATTATAGAAACTCCCCCCCCCCCCCCTTAATTTACAGAAAGAA
	AATTAGGAAAACGATGAACCTGCAGGAAAGTGAATGATGGTTGCTTCTTCTTCCTAAATTAGTGAT
site)	
5100)	
BCL 2	
(ED-miR-	AAACATAGATTCGCTT TCCATGT GGTCGGCCGGATCACATCTGAAGAGCAGACGGATGGAAAAAGGACC
	TGATCATTGGGGAAGCTGGCTTTCTGGCTGCTGGGGGGGG
376c-3p	TTGCCCTGGGGATATTTAATGACAACCTTCTGGTTGGTAGGGACATCTGTTTCTAAATGTTTATTATGTA
binding	CAATACAGAAAAAAATTTTATAAAATTAAGCAATGTGAAAACTGAATTGGAGAGTGATAATACAAGTCCTT
sites)	TAGTCTTACCCAGTGAATCATTCTGT <mark>TCCATGT</mark> CTTTGGACAACCATGACCTTGGACAATCATGAAATAT
	GCATCTCACTGGATGCAAAGAAAATCAGATGGAGCATGAATGGTACTGTACCGGTTCATCTGGACTGCCC
	CAGAAAAATAACTTCAAGCAAACATCCTATGCGGCCGCAG
	CTCTCTCTCGAGTATCATTTATTTTTTTTTACATTATTAAGAAAAAAGATTTATTT
	TCAAAACTCCTGTCTTTGGAAATCCGACCACTAATTGCCAAGCACCGCTTCGTGTGGCTCCACCTGGATG
BCL2	TTCTGTGCCTGTAAACATAGATTCGCTTTCCATGTTGTTGGCCGGATCACCATCTGAAGAGCAGACGGAT
(ED-miR-	GGAAAAAGGACCTGATCATTGGGGAAGCTGGCTTTCTGGCTGCTGGAGGCTGGGGAGAAGGTGTTCATTC
381-3p	ACTTGCATTTCTTTGCCCTGGGGGCTGTGATATTAACAGAGGGAGG
binding	CTCCCTGGCCTGAAGAAGAGACTCT TTGCATA TGACTCACATGA <mark>TGCATA</mark> CCTGGTGGGAGGAAAAGAGT
citos)	TGGGAACTTCAGATGGACCTAGTACCCACTGAGATTTCCACGCCGAAGGACAGCGATGGGAAAAATGCCC
sites)	TTAAATCATAGGAAAGTATTTTTTTAAGCTACCAATTGTGCCGAGAAAAGCATTTTAGCAATTTATACAA
	TATCATCCAGTACCTTAAGCCCTGATTGCGGCCGCCTTCC
	CTCTCTCGAGACATCCCAGTCCACCTGAGGAACTGTCTCGAACTATTTTCAAAGACTTAAGCCCAGTGCA
ANGPT2	CTGAAAGTCACGGCTGCGCACTGTGTCCTCTTCCACCACAGAGGGCGTGTGCTCGGTGCTGACGGGACCC
(ED-miR-	ACATGCTCCAGATTAGAGCCTGTAAACTTTATCACTTAAAC CTTGCAT CACTTAACGGACCAAAGCAAGAC
381_3n	CCTAAACATCCATAATTGTGATTAGACAGAACACCTATGCAAAGATGAACCCGAGGCTGAGAATCAGACT
binding	GACAGTTTACAGACGCTGCTGCTGCACAACCAAGAATGTTATGTGCACAAGTTTATCAGTAAATAACTGGAAAA
omung	
sites)	
	GI I GONI ANALGI I A I GAALATI I AACAAYAAGI I GALI GAGAAAGU GU GU GU

Gray highlighted sequences are non-endogenous extensions containing restriction enzyme sites for cloning. Colored highlights indicate miRNA binding sites.

SUPPLEMENTAL REFERENCES

- 1. Pfaffl, MW (2001). A new mathematical model for relative quantification in real-time RT-PCR. *Nucleic Acids Res* **29**: e45.
- 2. Wu, D, Lim, E, Vaillant, F, Asselin-Labat, ML, Visvader, JE, and Smyth, GK (2010). ROAST: rotation gene set tests for complex microarray experiments. *Bioinformatics (Oxford, England)* **26**: 2176-2182.
- Zheng, Y, Li, T, Ren, R, Shi, D, and Wang, S (2014). Revealing editing and SNPs of microRNAs in colon tissues by analyzing high-throughput sequencing profiles of small RNAs. *BMC Genomics* 15 Suppl 9: S11.
- 4. Li, L, Song, Y, Shi, X, Liu, J, Xiong, S, Chen, W, Fu, Q, Huang, Z, Gu, N, and Zhang, R (2018). The landscape of miRNA editing in animals and its impact on miRNA biogenesis and targeting. *Genome Res* **28**: 132-143.
- 5. Pinto, Y, Buchumenski, I, Levanon, EY, and Eisenberg, E (2018). Human cancer tissues exhibit reduced A-to-I editing of miRNAs coupled with elevated editing of their targets. *Nucleic Acids Res* **46**: 71-82.
- 6. Su, Q, Li, L, Zhao, J, Sun, Y, and Yang, H (2017). MiRNA Expression Profile of the Myocardial Tissue of Pigs with Coronary Microembolization. *Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology* **43**: 1012-1024.
- Chiang, HR, Schoenfeld, LW, Ruby, JG, Auyeung, VC, Spies, N, Baek, D, Johnston, WK, Russ, C, Luo, S, Babiarz, JE, *et al.* (2010). Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. *Genes & development* 24: 992-1009.
- Alon, S, Mor, E, Vigneault, F, Church, GM, Locatelli, F, Galeano, F, Gallo, A, Shomron, N, and Eisenberg, E (2012). Systematic identification of edited microRNAs in the human brain. *Genome Res* 22: 1533-1540.
- 9. Ekdahl, Y, Farahani, HS, Behm, M, Lagergren, J, and Ohman, M (2012). A-to-I editing of microRNAs in the mammalian brain increases during development. *Genome Res* **22**: 1477-1487.
- 10. Korkmaz, G, le Sage, C, Tekirdag, KA, Agami, R, and Gozuacik, D (2012). miR-376b controls starvation and mTOR inhibition-related autophagy by targeting ATG4C and BECN1. *Autophagy* **8**: 165-176.
- 11. Gong, J, Wu, Y, Zhang, X, Liao, Y, Sibanda, VL, Liu, W, and Guo, AY (2014). Comprehensive analysis of human small RNA sequencing data provides insights into expression profiles and miRNA editing. *RNA Biol* **11**: 1375-1385.
- 12. Wang, Y, Xu, X, Yu, S, Jeong, KJ, Zhou, Z, Han, L, Tsang, YH, Li, J, Chen, H, Mangala, LS, *et al.* (2017). Systematic characterization of A-to-I RNA editing hotspots in microRNAs across human cancers. *Genome Res* 27: 1112-1125.
- 13. Edelstein, LC, Simon, LM, Montoya, RT, Holinstat, M, Chen, ES, Bergeron, A, Kong, X, Nagalla, S, Mohandas, N, Cohen, DE, *et al.* (2013). Racial differences in human platelet PAR4 reactivity reflect expression of PCTP and miR-376c. *Nat Med* **19**: 1609-1616.
- 14. Liu, L, Yao, J, Li, Z, Zu, G, Feng, D, Li, Y, Qasim, W, Zhang, S, Li, T, Zeng, H, *et al.* (2018). miR-381-3p knockdown improves intestinal epithelial proliferation and barrier function after intestinal ischemia/reperfusion injury by targeting nurr1. *Cell death & disease* **9**: 411.
- 15. Stather, PW, Sylvius, N, Sidloff, DA, Dattani, N, Verissimo, A, Wild, JB, Butt, HZ, Choke, E, Sayers, RD, and Bown, MJ (2015). Identification of microRNAs associated with abdominal aortic aneurysms and peripheral arterial disease. *The British journal of surgery* **102**: 755-766.
- 16. Welten, SM, Goossens, EA, Quax, PH, and Nossent, AY (2016). The multifactorial nature of microRNAs in vascular remodelling. *Cardiovascular research* **110**: 6-22.
- 17. Xiang, Y, Guo, J, Peng, YF, Tan, T, Huang, HT, Luo, HC, and Wei, YS (2017). Association of miR-21, miR-126 and miR-605 gene polymorphisms with ischemic stroke risk. *Oncotarget* **8**: 95755-95763.
- 18. McManus, DD, and Freedman, JE (2015). MicroRNAs in platelet function and cardiovascular disease. *Nature reviews Cardiology* **12**: 711-717.
- 19. van der Kwast, RVCT, van Ingen, E, Parma, L, Peters, HAB, Quax, PHA, and Nossent, AY (2018). Adenosine-to-Inosine Editing of MicroRNA-487b Alters Target Gene Selection After Ischemia and Promotes Neovascularization. *Circ Res* **122**: 444-456.
- 20. Welten, SM, Bastiaansen, AJ, de, JR, de Vries, MR, Peters, EH, Boonstra, M, Sheikh, SP, La, MN, Kandimalla, ER, Quax, PH, *et al.* (2014). Inhibition of 14q32 MicroRNAs miR-329, miR-487b, miR-494 and miR-495 Increases Neovascularization and Blood Flow Recovery after Ischemia. *Circ Res.*
- 21. Romaine, SP, Tomaszewski, M, Condorelli, G, and Samani, NJ (2015). MicroRNAs in cardiovascular disease: an introduction for clinicians. *Heart (British Cardiac Society)* **101**: 921-928.
- 22. Lin, Z, Ge, J, Wang, Z, Ren, J, Wang, X, Xiong, H, Gao, J, Zhang, Y, and Zhang, Q (2017). Let-7e modulates the inflammatory response in vascular endothelial cells through ceRNA crosstalk. *Scientific reports* **7**: 42498.

- 23. Condorelli, G, Latronico, MV, and Cavarretta, E (2014). microRNAs in cardiovascular diseases: current knowledge and the road ahead. *J Am Coll Cardiol* **63**: 2177-2187.
- 24. Feinberg, MW, and Moore, KJ (2016). MicroRNA Regulation of Atherosclerosis. Circ Res 118: 703-720.
- 25. Li, HW, Meng, Y, Xie, Q, Yi, WJ, Lai, XL, Bian, Q, Wang, J, Wang, JF, and Yu, G (2015). miR-98 protects endothelial cells against hypoxia/reoxygenation induced-apoptosis by targeting caspase-3. *Biochem Biophys Res Commun* **467**: 595-601.
- 26. Bao, MH, Li, JM, Luo, HQ, Tang, L, Lv, QL, Li, GY, and Zhou, HH (2016). NF-kappaB-Regulated miR-99a Modulates Endothelial Cell Inflammation. *Mediators of inflammation* **2016**: 5308170.
- 27. Olson, EN (2014). MicroRNAs as therapeutic targets and biomarkers of cardiovascular disease. *Science translational medicine* **6**: 239ps233.
- Wang, X, Suofu, Y, Akpinar, B, Baranov, SV, Kim, J, Carlisle, DL, Zhang, Y, and Friedlander, RM (2017). Systemic antimiR-337-3p delivery inhibits cerebral ischemia-mediated injury. *Neurobiology of disease* 105: 156-163.
- 29. Marchand, A, Proust, C, Morange, PE, Lompre, AM, and Tregouet, DA (2012). miR-421 and miR-30c inhibit SERPINE 1 gene expression in human endothelial cells. *PLoS One* **7**: e44532.
- 30. Shoshan, E, Mobley, AK, Braeuer, RR, Kamiya, T, Huang, L, Vasquez, ME, Salameh, A, Lee, HJ, Kim, SJ, Ivan, C, *et al.* (2015). Reduced adenosine-to-inosine miR-455-5p editing promotes melanoma growth and metastasis. *Nat Cell Biol* **17**: 311-321.
- 31. Voellenkle, C, Rooij, J, Guffanti, A, Brini, E, Fasanaro, P, Isaia, E, Croft, L, David, M, Capogrossi, MC, Moles, A, *et al.* (2012). Deep-sequencing of endothelial cells exposed to hypoxia reveals the complexity of known and novel microRNAs. *Rna* **18**: 472-484.
- 32. Su, SH, Wu, CH, Chiu, YL, Chang, SJ, Lo, HH, Liao, KH, Tsai, CF, Tsai, TN, Lin, CH, Cheng, SM, *et al.* (2017). Dysregulation of Vascular Endothelial Growth Factor Receptor-2 by Multiple miRNAs in Endothelial Colony-Forming Cells of Coronary Artery Disease. *Journal of vascular research* **54**: 22-32.
- 33. Hui, J, Huishan, W, Tao, L, Zhonglu, Y, Renteng, Z, and Hongguang, H (2017). miR-539 as a key negative regulator of the MEK pathway in myocardial infarction. *Herz* **42**: 781-789.
- 34. Qiang, L, Hong, L, Ningfu, W, Huaihong, C, and Jing, W (2013). Expression of miR-126 and miR-508-5p in endothelial progenitor cells is associated with the prognosis of chronic heart failure patients. *International journal of cardiology* **168**: 2082-2088.
- 35. Cheuk, BL, and Cheng, SW (2014). Identification and characterization of microRNAs in vascular smooth muscle cells from patients with abdominal aortic aneurysms. *Journal of vascular surgery* **59**: 202-209.
- 36. Agarwal, V, Bell, GW, Nam, JW, and Bartel, DP (2015). Predicting effective microRNA target sites in mammalian mRNAs. *eLife* **4**.
- 37. Mi, H, Huang, X, Muruganujan, A, Tang, H, Mills, C, Kang, D, and Thomas, PD (2017). PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. *Nucleic Acids Res* **45**: D183-D189.
- 38. Ritchie, ME, Phipson, B, Wu, D, Hu, Y, Law, CW, Shi, W, and Smyth, GK (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. *Nucleic Acids Res* **43**: e47.