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A Turnover Framework

We introduce a system of parameters and constraints to describe risk group turnover in deterministic

epidemic models with heterogeneity in risk.1 We then describe how the system can be used in practical

terms, based on different assumptions and data available for parameterizing turnover in risk. We conclude

by framing previous approaches to this task using the proposed system.

A.1 Notation

Consider a population divided into G risk groups. We denote the number of individuals in risk group

i ∈ [1, . . . , G] as xi and the set of all risk groups as x = {x1, . . . , xG}. The total population size is N =
∑
i xi,

and the relative population size of each group is denoted as x̂i = xi/N . Individuals enter the population at

a rate ν per year, and exit at a rate µ per year. We model the distribution of risk groups among individuals

entering into the population as ê, which may be different from individuals already in the population x̂.2

Thus, the total number of individuals entering into population x per year is given by νN , and the number

of individuals entering into group i specifically is given by êiνN .

Turnover transitions may then occur between any two groups, in either direction. Therefore we denote

the turnover rates as a G × G matrix φ. The element φij corresponds to the proportion of individuals in

group i who move from group i to group j each year. An example matrix is given in Eq. (A.1), where we

write the diagonal elements as ∗ since they represent transitions from a group to itself.

φ =



∗ x1 → x2 · · · x1 → xG

x2 → x1 ∗ · · · x2 → xG

...
...

. . .
...

xG → x1 xG → x2 · · · ∗


(A.1)

Risk groups, transitions, and the associated rates are also shown for G = 3 in Figure A.1.

A.2 Parameterization

Next, we present methods to illustrate how epidemiologic data can be used to parametrize turnover in

epidemic models. We construct a system like the one above which reflects the risk group dynamics observed

in a specific context. We assume that the relative sizes of the risk groups in the model (x̂) are already known,

and should remain constant over time. Thus, what remains is to estimate the values of the parameters: ν,

µ, ê, and φ, using commonly available sources of data.

1 A preliminary version of this framework was used by Knight et al. (2019).

2 We could equivalently stratify the rate of entry ν by risk group; however, we find that the mathematics in subsequent sections

are more straightforward using ê.
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Figure A.1: System of G = 3 risk groups and turnover between them.

xi: number of individuals in risk group i; ei: number of individuals available to enter risk group i; ν: rate of population

entry; µ: rate of population exit; φij : rate of turnover from group i to group j.

A.2.1 Total Population Size

The total population size N(t) is a function of the rates of population entry ν(t) and exit µ(t), given

an initial size N0. We allow the proportion entering the system to vary by risk group via ê, while the exit

rate has the same value for each group. We assume that there is no disease-attributable death. Because the

values of ν and µ are the same for each risk group, they can be estimated independent of x̂, ê, and φ.

The difference between entry and exit rates defines the rate of population growth:

G(t) = ν(t)− µ(t) (A.2)

The total population may then be defined using an initial population size N0 as:

N(t) = N0 exp

(∫ t

0

log
(
1 + G(τ)

)
dτ

)
(A.3)

which, for constant growth, simplifies to the familiar expression (Malthus, 1798):

N(t) = N0(1 + G)
t

(A.4)

Census data, such as (DataBank, 2019), can be used to source the total population size in a given geographic

setting over time N(t), thus allowing Eqs. (A.3) and (A.4) to be used to estimate G(t).

If the population size is assumed to be constant, then G(t) = 0 and ν(t) = µ(t). If population growth

occurs at a stable rate, then G is fixed at a constant value which can be estimated via Eq. (A.4) using any
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two values of N(t), separated by a time interval τ :

Gτ =
N(t+ τ)

N(t)

1
τ

− 1 (A.5)

If the rate of population growth G varies over time, then Eq. (A.5) can be reused for consecutive time

intervals, and the complete function G(t) approximated piecewise by constant values. The piecewise approx-

imation can be more feasible than exact solutions using Eq. (A.3), and can reproduce N(t) accurately for

small enough intervals τ , such as one year.

Now, given a value of G(t), either ν(t) must be chosen and µ(t) calculated using Eq. (A.2), or µ(t) must

be chosen, and ν(t) calculated. Most modelled systems assume a constant duration of time that individuals

spend in the model δ(t) (Anderson and May, 1991) which is related to the rate of exit µ by:

δ(t) = µ−1(t) (A.6)

In the context of sexually transmitted infections, the duration of time usually reflects the average sexual

life-course of individuals from age 15 to 50 years, such that δ = 35 years. The duration δ may also vary

with time to reflect changes in life expectancy. The exit rate µ(t) can then be defined as δ−t(t) following

Eq. (A.6), and the entry rate ν(t) defined as G(t)− µ(t) following Eq. (A.2).

A.2.2 Turnover

Next, we present methods for resolving the distribution of individuals entering the risk model ê(t) and

the rates of turnover φ(t), assuming that entry and exit rates ν(t) and µ(t) are known. Similar to above, we

first formulate the problem as a system of equations. Then, we explore the data and assumptions required

to solve for the values of parameters in the system. The (t) notation is omitted throughout this section for

clarity, though time-varying parameters can be estimated by repeating the necessary calculations for each t.

The number of risk groups G dictates the number of unknown elements in ê and φ: G and G(G − 1),

respectively. We collect these unknowns in the vector θ = [ê,y], where y = veci 6=j(φ). For example, for

G = 3, the vector θ is defined as:

θ =
[
ê1 ê2 ê3 φ12 φ13 φ21 φ23 φ31 φ32

]
(A.7)

We then define a linear system of equations which uniquely determine the elements of θ:

b = Aθ (A.8)

where A is a M×G2 matrix and b is a M -length vector. Specifically, each row in A and b defines a constraint:

an assumed mathematical relationship involving one or more elements of ê and φ. For example, a simple

constraint could be to assume the value ê2 = 0.20. Each of the following four sections introduces a type of

constraint, including: assuming a constant group size, specifying elements of θ directly, assuming an average
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duration in a group, and specifying a relationship between two individual rates of turnover. Constraints may

be selected and combined together based on availability of data and plausibility of assumptions. However,

a total of M = G2 constraints must be defined in order to obtain a “unique solution”: exactly one value

of θ which satisfies all constraints. The values of ê and φ can then be calculated algebraically by solving

Eq. (A.8) with θ = A−1b, for which many algorithms exist (LAPACK, 1992).

1. Constant group size. One epidemiologic feature that epidemic models consider is whether or not the

relative sizes of risk groups are constant over time (Henry and Koopman, 2015; Boily et al., 2015). Assuming

constant group size implies a stable level of heterogeneity over time. To enforce this assumption, we define

the “conservation of mass” equation for group i, wherein the rate of change of the group is defined as the

sum of flows in / out of the group:

d

dt
xi = νNêi +

∑
j

φji xj − µxi −
∑
j

φij xi (A.9)

Eq. (A.9) is written in terms of absolute population sizes x, but can be written as proportions x̂ by dividing

all terms by N . If we assume that the proportion of each group x̂i is constant over time, then the desired rate

of change for risk group i will be equal to the rate of population growth of the risk group, Gxi. Substituting

d
dtxi = Gxi into Eq. (A.9), and simplifying yields:

ν xi = ν Nêi +
∑
j

φji xj −
∑
j

φij xi (A.10)

Factoring the left and right hand sides in terms of ê and φ, we obtain G unique constraints. For G = 3, this

yields the following 3 rows as the basis of b and A:

b =


νx1

νx2

νx3

 ; A =


ν · · −x1 −x1 x2 · x3 ·
· ν · x1 · −x2 −x2 · x3

· · ν · x1 · x2 −x3 −x3

 (A.11)

These G constraints ensure risk groups do not change size over time. However, a unique solution requires

an additional G(G− 1) constraints. For G = 3, this corresponds to 6 additional constraints.

2. Specified elements. The simplest type of additional constraint is to directly specify the values of individual

elements in ê or φ. Such constraints may be appended to b and A as an additional row k using indicator

notation.3 That is, with bk as the specified value v, and Ak as the indicator vector, with 1 in the same

position as the desired element in θ:

bk = v; Ak = [0, . . . , 1, . . . , 0] (A.12)

3 Indicator notation, also known as “one-hot notation” is used to select one element from another vector, based on its position.

An indicator vector is 1 in the same location as the element of interest, and 0 everywhere else.
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For example, for G = 3, if it is known that 20% of individuals enter directly into risk group 2 upon entry

into the model (ê2 = 0.20), then b and A can be augmented with:

bk =
[

0.20
]

; Ak =
[
· 1 · · · · · · ·

]
(A.13)

since ê2 is the second element in θ. If the data suggest zero turnover from group i to group j, then Eq. (A.13)

can also be used to set φij = 0.

The elements of ê must sum to one. Therefore, specifying all elements in ê will only provide G − 1

constraints, as the last element will be either redundant or violate the sum-to-one rule. As shown in

Appendix B.3, the sum-to-one rule is actually implicit in Eq. (A.11), so it is not necessary to supply a

constraint like 1 =
∑
i êi.

3. Group duration. Type 1 constraints assume that the relative population size of each group remains

constant. Another epidemiologic feature that epidemic models considered is whether or not the duration

of time spent within a given risk group remains constant. For example, in STI transmission models that

include formal sex work, it can be assumed that the duration in formal sex work work remains stable over

time, such as in (Mishra et al., 2014; Boily et al., 2015). The duration δi is defined as the inverse of all rates

of exit from the group:

δi =

(
µ+

∑
j

φij

)−1
(A.14)

Estimates of the duration in a given group can be sourced from cross-sectional survey data where participants

are asked about how long they have engaged in a particular practice – such as sex in exchange for money

(Watts et al., 2010). Data on duration may also be sourced from longitudinal data, where repeated measures

of self-reported sexual behaviour, or proxy measures of sexual risk data, are collected (The DHS Program,

2019; ICAP, 2019). Data on duration in each risk group can then be used to define φ by rearranging

Eq. (A.14) to yield: δi
−1−µ =

∑
j φij . For example, if for G = 3, the average duration in group 1 is known

to be δ1 = 5 years, then b and A can be augmented with another row k:

bk =
[

5−1 − µ
]

; Ak =
[
· · · 1 1 · · · ·

]
(A.15)

Similar to specifying all elements of ê, specifying δi may result in conflicts or redundancies with other

constraints. A conflict means it will not be possible to resolve values of φ which simultaneously satisfy all

constraints, while a redundancy means that adding one constraint does not help resolve a unique set of

values θ. For example, for G = 3, if Type 2 constraints are used to specify φ12 = 0.1 and φ13 = 0.1, and

µ = 0.05, then by Eq. (A.14), we must have δ1 = 4. Specifying any other value for δ1 will result in a conflict,

while specifying δ1 = 4 is redundant, since it is already implied. There are innumerable situations in which

this may occur, so we do not attempt to describe them all. Section A.2.2 describes how to identify conflicts

and redundancies when they are not obvious.
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4. Turnover rate ratios. In many cases, it may be difficult to obtain estimates of a given turnover rate φij

for use in Type 2 constraints. However, it may be possible to estimate relative relationships between rates

of turnover, such as:

r φij = φi′j′ (A.16)

where r is a ratio relating the values of φij and φi′j′ . For example, for G = 3, let T1 be the total number

of individuals entering group 1 due to turnover. If we know that 70% of T1 originates from group 2, while

30% of T1 originates from group 3, then 0.7T1 = φ23 x2 and 0.3T1 = φ13 x1, and thus: φ23

(
0.3 x2

0.7 x1

)
= φ13.

This constraint can then be appended as another row k in b and A like:

bk =
[

0
]

; Ak =
[
· · · ·

(
0.3 x2

0.7 x1

)
· 1 · ·

]
(A.17)

The example in Eq. (A.17) is based on what proportions of individuals entering a risk group j came from

which former risk group i, but similar constraints may be defined based on what proportions of individuals

exiting a risk group i enter into which new risk group j. It can also be assumed that the absolute number

of individuals moving between two risk groups is equal, in which case the relationship is: φij

(
xi
xj

)
= φji.

All constraints of this type will have bk = 0.

Solving the System. Table A.1 summarizes the four types of constraints described above. Given a set of

sufficient constraints on θ to ensure exactly one solution, the system of equations Eq. (A.8) can be solved

using θ = A−1b. The resulting values of ê and φ can then be used in the epidemic model.

However, we may find that we have an insufficient number of constraints, implying that there are multiple

values of the vector θ which satisfy the constraints. An insufficient number of constraints may be identified

by a “rank deficiency” warning in numerical solvers of Eq. (A.8) (LAPACK, 1992). Even if A has G2 rows,

the system may have an insufficient number of constraints because some constraints are redundant. In this

situation, we can pose the problem as a minimization problem, namely:

θ∗ = arg min f(θ), subject to: b = Aθ; θ ≥ 0 (A.18)

where f is a function which penalizes certain values of θ. For example, f = || · ||2 penalizes large values in

θ, so that the smallest values of ê and φ which satisfy the constraints will be resolved.4

Similarly, we may find that no solution exists for the given constraints, since two or more constraints

are in conflict. Conflicting constraints may be identified by a non-zero error in the solution to Eq. (A.8)

(LAPACK, 1992). In this case, the conflict should be resolved by changing or removing one of the conflicting

constraints.

4 Numerical solutions to such problems are widely available, such as the Non-Negative Lease Squares solver (Lawson and Han-

son, 1995), available in Python: https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.nnls.html.
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Table A.1: Summary of constraint types for defining risk group turnover

Name Eq. E.g. Data requirements

1. Constant group size (A.10) (A.11) all values of x̂i and ν

2. Specified elements (A.12) (A.13) any value of êi or φij

3. Group duration (A.14) (A.15) any value of δi

4. Turnover rate ratios (A.16) (A.17) any relationship between two turnover rates φij and φi′j′

ν: rate of population entry; φij : rate of turnover from group i to group j; x̂i: proportion of individuals in risk group i;

êi: proportion of individuals entering into risk group i; δi: average duration spent in risk group i.

A.3 Previous Approaches

Few epidemic models of sexually transmitted infections with heterogeneity in risk have simulated turnover

among risk groups, and those models which have simulated turnover have done so in various ways. In this

section, we review three prior implementations of turnover and their assumptions. We then highlight how

the approach proposed in Section A.2 could be used to achieve the same objectives.

Stigum et al. (1994) simulated turnover among G = 2 risk groups in a population with no exogenous

entry or exit (ν = µ = 0 and hence ê is not applicable). Turnover between the groups was balanced in order

to maintain constant risk group sizes (Type 1 constraint),5 while the rate of turnover from high to low was

specified as κ (Type 2 constraint). Thus, the turnover system used by Stigum et al. (1994) can be written

in the proposed framework as: 0

κ

 =

 x̂1 −x̂2
1 ·

 φ12

φ21

 , ê1 = ê2 = 0 (A.19)

Henry and Koopman (2015) also simulated turnover among G = 2 risk groups, but considered exogenous

entry and exit, both at a rate µ. The authors used the notation fi for our x̂i, and assumed that the

population of individuals entering into the modelled population had the same distribution of risk groups

as the modelled population itself: êi = fi (Type 2 constraint). The authors further maintained constant

risk group sizes (Type 1 constraint) by analytically balancing turnover between the two groups using:

φ12 = ωx̂2; φ21 = ωx̂1, where ω is a constant. However, it can be shown that this analytical approach is

also the solution to the following combination of Type 1 and Type 2 constraints: 0

ωf2

 =

 f1 −f2
1 ·

 φ12

φ21

 , êi = fi (A.20)

5 Due to its simplicity, this constraint is actually an example of both Type 1 and Type 4 constraints.
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Eaton and Hallett (2014) simulated turnover among G = 3 risk groups, considering a distribution of

risk among individuals entering into the modelled population ê which was different from x̂. Turnover was

considered from high-to-medium, high-to-low, and medium-to-low risk, all with an equal rate ψ; the reverse

transition rates were set to zero (six total Type 2 constraints). Given the unidirectional turnover, risk group

sizes were maintained using the values of êi, computed using Type 1 constraints as follows:
νx1 + 2x1ψ

νx2 − x1ψ + x2ψ

νx3 − x1ψ − x2ψ

 =


ν · ·
· ν ·
· · ν



e1

e2

e3

 , φ12 = φ13 = φ23 = ψ

φ21 = φ31 = φ32 = 0
(A.21)

In sum, the framework for modelling turnover presented in this section aims to generalize all previous

implementations. In so doing, we hope to clarify the requisite assumptions, dependencies on epidemiologic

data, and relationships between previous approaches.
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B Supplemental Equations

Table B.1: Notation

Symbol Definition

i risk group index

j risk group index for “other” group in turnover

k risk group index for “other” group in incidence

t time

Si number of susceptible individuals in risk group i

Ii number of infectious individuals in risk group i

Ti number of treated individuals in risk group i

N total population size

ν rate of population entry

µ rate of population exit

φij rate of turnover from group i to group j

λi force of infection among susceptibles in risk group i

τ rate of treatment initiation among infected

x̂i proportion of individuals in risk group i

êi proportion of individuals entering into risk group i

δi average duration spent in risk group i

Ci number of partners per year among individuals in risk group i

β probability of transmission per partnership

ρik probability of partnership formation between risk groups i and k

B.1 Model Equations

d

dt
Si(t) = +

∑
j

φjiSj(t)−
∑
j

φijSi(t)− µSi(t) + νêiN(t)− λi(t)Si(t) (B.1a)

d

dt
Ii(t) = +

∑
j

φjiIj(t) −
∑
j

φijIi(t) − µIi(t) + λi(t)Si(t)− τIi(t) (B.1b)

d

dt
Ti(t) = +

∑
j

φjiTj(t) −
∑
j

φijTi(t) − µTi(t) + τIi(t) (B.1c)

︸ ︷︷ ︸
turnover into

︸ ︷︷ ︸
turnover from

︸ ︷︷ ︸
death

︸ ︷︷ ︸
birth

︸ ︷︷ ︸
incidence

︸ ︷︷ ︸
treatment
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B.2 Complete Example Turnover System

constant group size


specified e


group duration


turnover rate ratios





νx1

νx2

νx3

e∗1

e∗2

e∗3

δ1
−1 − µ

δ2
−1 − µ

δ3
−1 − µ

0

0

0



=



ν · · −x1 −x1 x2 · x3 ·

· ν · x1 · −x2 −x2 · x3

· · ν · x1 · x2 −x3 −x3
1 · · · · · · · ·

· 1 · · · · · · ·

· · 1 · · · · · ·

· · · 1 1 · · · ·

· · · · · 1 1 · ·

· · · · · · · 1 1

· · · x1 · −x2 · · ·

· · · · x1 · · −x3 ·

· · · · · · x2 · −x3





e1

e2

e3

φ12

φ13

φ21

φ23

φ31

φ32



(B.2)

B.3 Redundancy in specifying all elements of ê

Whenever it is assumed that risk groups do not change size, G rows of the form shown in Eq. (A.11) are

added to b and A:

b =


νx1

νx2

νx3

 ; A =


ν · · −x1 −x1 x2 · x3 ·
· ν · x1 · −x2 −x2 · x3

· · ν · x1 · x2 −x3 −x3

 (A.11)

After multiplying by θ, these G rows can be row-reduced by summing to obtain:

[νx1 + νx2 + νx3] = [νe1 + νe2 + νe3 + 0φ12 + 0φ13 + 0φ21 + 0φ23 + 0φ31 + 0φ32]

ν [x1 + x2 + x3] = ν [e1 + e2 + e3]
(B.3)

which therefore implies that
∑
i xi =

∑
i ei, or equivalently

∑
i x̂i =

∑
i êi = 1. Thus, it is redundant to

specify all G elements of ê, as the final element will be dictated by constant group size constraints.

B.4 Factors of Incidence

Substituting the proportional mixing definition of ρik into the incidence equation, Eq. (3), we have:

λi = Ci
∑
k

ρikβ
Ik
Xk

= Ciβ
∑
k

CkXk∑
k CkXk

Ik
Xk

= Ciβ

∑
k CkIk∑
k CkXk︸ ︷︷ ︸
f

(B.4)
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We can factor the term f as:

f =

∑
k CkIk∑
k CkXk

=

∑
k CkIk∑
k Ik

·
∑
k Ik∑
k Xk

·
∑
k Xk∑

k CkXk
(B.5)

which we recognize as the following terms:

= ĈI · Î · Ĉ−1 (B.6)

Namely,

1. ĈI is the average number of partners among infectious individuals

2. Î is the proportion of the population who are infectious (overall prevalence)

3. Ĉ is the average number of partners among all individuals (constant)

Therefore, only two non-constant factors control incidence per susceptible: 1) the average number of partners

among infectious individuals ĈI , and 2) overall prevalence Î. The product of these factors ĈI Î, scaled by

β Ci/Ĉ, then gives λi. In fact, the incidence in each group individually is proportional to incidence overall,

as Ci is only factor depending on i.
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C Supplemental Results

C.1 Equilibrium health states and rates of transition
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Figure C.1: Equilibrium health state proportions under different rates of turnover.

Turnover rate (log scale) is a function of the duration of time spent in the high risk group δH , where shorter time spent in the

high risk group yields faster turnover. No turnover is indicated by δ−1
H = 0.03, due to population exit rate µ = 0.03.
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(d) Medium risk susceptible
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(f) Medium risk treated
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Figure C.2: Absolute rates of change at equilibrium (number of individuals gained/lost per year) among individuals in each

health state and risk group, broken down by type of change: gain via births, loss/gain via incident infections, loss/gain via

treatment, loss/gain via turnover, loss via death, and net change. Based on Eq. (B.1).

Turnover rate (log scale) is a function of the duration of time spent in the high risk group δH , where shorter time spent in the

high risk group yields faster turnover. No turnover is indicated by δ−1
H = 0.03, due to population exit rate µ = 0.03. Rates of

change do not sum to zero due to population growth.
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Figure C.3: Proportion of new infectious individuals in each risk group which are from turnover of infectious individuals, as

opposed to incident infection of susceptible individuals in the risk group.

C.2 Equilibrium Prevalence Ratios
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(c) Medium vs Low Risk

Figure C.4: Equilibrium prevalence ratios between risk groups under different rates of turnover.

Turnover rate (log scale) is a function of the duration of time spent in the high risk group δH , where shorter time spent in the

high risk group yields faster turnover. No turnover is indicated by δ−1
H = 0.03, due to population exit rate µ = 0.03.
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C.3 Equilibrium Incidence
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Figure C.5: Equilibrium incidence among high, medium, and low risk groups under different rates of turnover.

Turnover rate (log scale) is a function of the duration of time spent in the high risk group δH , where shorter time spent in the

high risk group yields faster turnover. No turnover is indicated by δ−1
H = 0.03, due to population exit rate µ = 0.03. Incidence

in each risk group is proportional to overall incidence with Ci as a scale factor.
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Figure C.6: Equilibrium incidence ratios between risk groups under different rates of turnover. Incidence ratios do not depend

on turnover.

Turnover rate (log scale) is a function of the duration of time spent in the high risk group δH , where shorter time spent in the

high risk group yields faster turnover. No turnover is indicated by δ−1
H = 0.03, due to population exit rate µ = 0.03.
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C.4 Equilibrium prevalence and number of partners before and after model fitting
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Figure C.7: Equilibrium STI prevalence among high, medium, and low risk groups as well as overall, with and without turnover,

and with and without fitted Ci to group-specific prevalence.
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Figure C.8: Numbers of partners Ci among high, medium, and low risk groups as well as overall, with and without turnover,

and with and without model fitting to group-specific prevalence.

C.5 Influence of turnover on tPAF of the high risk group before and after model fitting
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(a) High risk, before fitting
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(b) High risk, after fitting

Figure C.9: Transmission population attributable fraction (tPAF) of the high risk group in models with and without turnover,

before and after model fitting.
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C.6 Effect of treatment rate on the influence of turnover on equilibrium prevalence

In order to examine the effect of treatment rate τ on the results of Experiment 1 – the influence of turnover

on equilibrium prevalence – we recreated Figures 4 and 7 for a range of treatment rates τ ∈ [0.05, 1.0]. The

results are shown in Figure C.10.
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(d) Average C among infectious individuals ĈI
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Figure C.10: Relationship between turnover rate and equilibrium STI prevalence in high, medium, and low risk groups, as well

as overall STI prevalence and incidence, and average C among infectious individuals, for a range of treatment rates τ . Darker

blue indicates higher treatment rate. The threshold turnover rate separating regions A and B decreases with treatment rate,

meaning that increasing turnover becomes more likely to decrease equilibrium prevalence as treatment rate increases.

Turnover rate (log scale) is a function of the duration of time spent in the high risk group δH , where shorter time spent in the

high risk group yields faster turnover. No turnover is indicated by δ−1
H = 0.03, due to population exit rate µ = 0.03.
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