nature research Double-blind peer review submissions: write DBPR and vour manuscript number here Corresponding author(s): Ronit Rosenfeld and Ohad Mazor Last updated by author(s): \(\cdot \cdo ## **Reporting Summary** Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist. Please do not complete any field with "not applicable" or n/a. Refer to the help text for what text to use if an item is not relevant to your study. For final submission: please carefully check your responses for accuracy; you will not be able to make changes later. or all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section | | | is a substant and s | |--------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | n/a | Cor | nfirmed | | | ✓ | The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement | | | V | A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly | | V | | The statistical test(s) used AND whether they are one- or two-sided Only common tests should be described solely by name; describe more complex techniques in the Methods section. | | \checkmark | | A description of all covariates tested | | V | | A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons | |] | ✓ | A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals) | | ✓ | | For null hypothesis testing, the test statistic (e.g. <i>F</i> , <i>t</i> , <i>r</i>) with confidence intervals, effect sizes, degrees of freedom and <i>P</i> value noted <i>Give P values as exact values whenever suitable.</i> | | V | | For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings | | \checkmark | | For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes | | V | | Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated | Our web collection on statistics for biologists contains articles on many of the points above ### oftware and code Policy information about <u>availability of computer code</u> Data collection tatistics Provide a description of all commercial, open source and custom code used to collect the data in this study, specifying the version used OR state that no software was used. Biolayer interferometry (BLI) experiments results were analyzed using Octet data analysis software 8.1, Fortebio, USA, 2015 Graphs and statistical analyses were performed in GraphPad Prism 5.01 and Microsoft Excel 2013 Figures were prepared using GraphPad Prism 5.01, Microsoft Excel, Adobe indesign and Adobe illustrator Policy information about availability of data All manuscripts must include a <u>data availability statement</u>. This statement should provide the following information, where applicable: - Accession codes, unique identifiers, or web links for publicly available datasets - A list of figures that have associated raw data - A description of any restrictions on data availability 9 9 y se $\label{lem:genPept: QHD43416 ORF [https://www.ncbi.nlm.nih.gov/protein/1791269090]) was used for SARS-CoV-2 spike protein sequence.$ Fig 1e: Raw data obtained by BLI is provided in Supplementary Figure 2. Fig 2a: Example image. All the data provided in Supplementary Figure 3 and 4. Fig 2b: All the data provided in Supplementary Figure 3 and 4. There are no restrictions on data availability ### Field-specific reporting | Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your se | election. | |----------------------------------------------------------------------------------------------------------------------------------------------|-----------| |----------------------------------------------------------------------------------------------------------------------------------------------|-----------| Life sciences Behavioural & social sciences Ecological, evolutionary & environmental sciences For a reference copy of the document with all sections, see <u>nature.com/documents/nr-reporting-summary-flat.pdf</u> ## Life sciences study design All studies must disclose on these points even when the disclosure is negative. No statistical methods were used to predetermine sample size. In vitro experiments were performed with replicates and repeated several times based on previous experience with the protocols and demonstrated high reproducibility No data were excluded All experiments were successfully replicated independently. Exact numbers are indicated in the figure legends The study describes isolation and characterization of antibodies based on the response of infected individuals to the virus. There was no step where randomization was relevant Blinding is irelevant as it was essential to know exactely the identity of every sample analyzed ### Behavioural & social sciences study design All studies must disclose on these points even when the disclosure is negative. Study description Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional, quantitative experimental, mixed-methods case study). Research sample State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For studies involving existing datasets, please describe the dataset and source. Sampling strategy Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and what criteria were used to decide that no further sampling was needed. Data collection Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper, computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and whether the researcher was blind to experimental condition and/or the study hypothesis during data collection. Timing Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample cohort. Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the rationale behind them, indicating whether exclusion criteria were pre-established. Non-participation State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no participants dropped out/declined participation. Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if allocation was not random, describe how covariates were controlled. ### Ecological, evolutionary & environmental sciences study design All studies must disclose on these points even when the disclosure is negative. Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested, hierarchical), nature and number of experimental units and replicates. Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National | Research sample | Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets, describe the data and its source. | |-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Sampling strategy | Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient. | | Data collection | Describe the data collection procedure, including who recorded the data and how. | | Timing and spatial scale | Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which the data are taken | | Data exclusions | If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them, indicating whether exclusion criteria were pre-established. | | Reproducibility | Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to repeat the experiment failed OR state that all attempts to repeat the experiment were successful. | | Randomization | Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were controlled. If this is not relevant to your study, explain why. | | Blinding | Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why blinding was not relevant to your study. | | Did the study involve field | d work? Yes No | | Field work, collec | tion and transport | | Field conditions | Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall). | | Location | State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth). | | Access & import/export | Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority, | ### Reporting for specific materials, systems and methods Describe any disturbance caused by the study and how it was minimized. We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. | Materials & experimental systems | Methods | |----------------------------------|---------------------------| | n/a Involved in the study | n/a Involved in the study | | Antibodies | ChIP-seq | | Eukaryotic cell lines | Flow cytometry | | Palaeontology and archaeology | MRI-based neuroimaging | | Animals and other organisms | | | Human research participants | | | Clinical data | | the date of issue, and any identifying information). #### **Antibodies** Disturbance HRP-conjugated anti-M13 antibody (Sino Biological, USA, Cat# 11973-MM05T-H lot HO13AU601; used at 1:5000 working dilution AP-conjugated Donkey anti-human IgG (Jackson ImmunoResearch, USA, Cat# 709-055-149 lot 130049; used at 1:2000 working dilution)" Commertial antibodies are validated by manufacturer and can be traced by lot number given above #### Eukaryotic cell lines Policy information about cell lines Dual use research of concern Vero E6 (ATCC® CRL-1586TM) were obtained from the American Type Culture Collection (Summit Pharmaceuticals International, Japan) ExpiCHO-S were purchesed from Thermoscientific, USA, Cat# A29127 Authentication the cell line used was not authenticated ach cell line used OR declare that none of the cell lines used were authenticated. Mycoplasma contamination cell line tested negative foe mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination. No commonely misidentified cell lines were used in this study #### Palaeontology and Archaeology Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the issuing authority, the date of issue, and any identifying information). Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers. Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are provided Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information. Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance was required and explain why not. Note that full information on the approval of the study protocol must also be provided in the manuscript. #### Animals and other organisms Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research Laboratory animals For laboratory animals, report species, strain, sex and age OR state that the study did not involve laboratory animals. Wild animals Provide details on animals observed in or captured in the field; report species, sex and age where possible. Describe how animals were caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released, say where and when) OR state that the study did not involve wild animals. Field-collected samples For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field. Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance was required and explain why not. Note that full information on the approval of the study protocol must also be provided in the manuscript. ### Human research participants Policy information about studies involving human research participants The study employed as a starting material, blood samples obtained from an infected individuals. The only parameter relevant was the fact that these individuals were infected with SARS-CoV-2. convalescent or severe COVID-19 patients. see note above. Ethics oversight The study was approved by the Sheba Medical Center IRB Ethical Committee as well as by the Baruch Padeh Medical Center IRB Ethical Committee #### Clinical data Policy information about clinical studies All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions. Clinical trial registration | Provide the trial registration number from ClinicalTrials.gov or an equivalent agency. Study protocol Note where the full trial protocol can be accessed OR if not available, explain why. Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection. Outcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures. ### Dual use research of concern Policy information about <u>dual use research of concern</u> #### Hazards | Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented in the manuscript, pose a threat to: | | | | | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--| | No Yes Public health National security | | | | | | Public health | | | | | | National security | | | | | | Crops an | d/or livestock | | | | | Ecosystems | | | | | | Any other significant area | | | | | | Other impacts | Describe any other significant impacts. | | | | | Hazards | Please describe the agents/technologies/information that may pose a threat, including any agents subject to oversight for dual use research of concern. | | | | | For examples of ag | ents subject to oversight, see the United States Government Policy for Institutional Oversight of Life Sciences Dual Use Research of Concern. | | | | | Experiments of | concern | | | | | • | avolve any of these experiments of concern: | | | | | No Yes | Notice any of these experiments of contectin | | | | | | trate how to render a vaccine ineffective | | | | | | esistance to therapeutically useful antibiotics or antiviral agents | | | | | | the virulence of a pathogen or render a nonpathogen virulent | | | | | | transmissibility of a pathogen | | | | | | host range of a pathogen | | | | | | vasion of diagnostic/detection modalities | | | | | | ne weaponization of a biological agent or toxin | | | | | | r potentially harmful combination of experiments and agents | | | | | Other combinati | ons Describe any other potentially harmful combination(s) of experiments and agents. | | | | | | | | | | | Precautions an | d benefits | | | | | Biosecurity prec | Desamples were treated in accordance with the biosafety guidelines of the IIBR in BL3 facility and in the communication and application of the research, to minimise biosecurity risks. These may include bio-containment facilities, changes to the study design/methodology or redaction of details from the manuscript. | | | | | Biosecurity over | Des n/a e any evaluations and oversight of biosecurity risks of this work that you have received from people or organizations outside of your immediate team. | | | | | Benefits | DeThe selected neutralizing antibodies represent a promising basis for the design of efficient combined post-exposure therapy for neSARS-CoV-2 infection at the forces, livestock or the environment. | | | | | Communication | benefits Desa Vs : whether the benefits of communicating this information outweigh the risks, and if so, how. | | | | | ChIP-seq | | | | | | Data deposition | | | | | | | hoth raw and final processed data have been deposited in a public database such as GEO | | | | | Confirm that both raw and final processed data have been deposited in a public database such as GEO. | | | | |----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--| | Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks. | | | | | | For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document, provide a link to the deposited data. | | | | Files in database submission | Provide a list of all files available in the database submission. | | | Genome browser session (e.g. UCSC) Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to enable peer review. Write "no longer applicable" for "Final submission" documents. #### Methodology Replicates Describe the experimental replicates, specifying number, type and replicate agreement. Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and whether they were paired- or single-end. Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot number Peak calling parameters | Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files used. Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment. Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community repository, provide accession details. #### Flow Cytometry #### Plots C--£:..... +|--+ Software | Collinii triat. | |-----------------------------------------------------------------------------------------------------------------------------------------------------| | The axis labels state the marker and fluorochrome used (e.g. CD4-FITC). | | The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers). | | All plots are contour plots with outliers or pseudocolor plots. | | A numerical value for number of cells or percentage (with statistics) is provided. | #### Methodology Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used. **Instrument** Identify the instrument used for data collection, specifying make and model number. Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a community repository, provide accession details. Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the samples and how it was determined. Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell population, indicating where boundaries between "positive" and "negative" staining cell populations are defined. Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information. #### Magnetic resonance imaging Behavioral performance measures #### Experimental design Design type Indicate task or resting state; event-related or block design. Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial or block (if trials are blocked) and interval between trials. (4) 2121 (4) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) 2121 (2) State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across subjects). | Acquisition | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | Imaging type(s) | Specify: functional, structural, diffusion, perfusion. | | | Field strength | Specify in Tesla | | | Sequence & imaging parameters | Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, slice thickness, orientation and TE/TR/flip angle. | | | Area of acquisition | State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined. | | | Diffusion MRI Used | Not used | | | Parameters Specify | # of directions, b-values, whether single shell or multi-shell, and if cardiac gating was used. | | | Preprocessing | | | | Preprocessing software | Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, segmentation, smoothing kernel size, etc.). | | | Normalization | If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for transformation OR indicate that data were not normalized and explain rationale for lack of normalization. | | | Normalization template | Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized. | | | Noise and artifact removal | Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and physiological signals (heart rate, respiration). | | | Volume censoring | Define your software and/or method and criteria for volume censoring, and state the extent of such censoring. | | | Statistical modeling & infere | ence | | | Model type and settings | Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and second levels (e.g. fixed, random or mixed effects; drift or auto-correlation). | | | Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and in ANOVA or factorial designs were used. | | | | Specify type of analysis: W | hole brain ROI-based Both | | | Anato | omical location(s) Describe how anatomical locations were determined (e.g. specify whether automated labeling algorithms or probabilistic atlases were used). | | | Statistic type for inference
(See <u>Eklund et al. 2016</u>) | Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods. | | | Correction | Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo). | | | Madala & analysis | | | #### Models & analysis | n/a | Involved in the study | | |--|--|---| | | Functional and/or effective connectivity | | | | Graph analysis | | | | Multivariate modeling or predictive analys | is | | Functional and/or effective connectivity | | Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation, mutual information). | | Graph analysis | | Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, etc.). | | N 4 | | Considering and authorized and dimension reduction, model training and application | Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation metrics.