Clinically applicable histopathological diagnosis system for gastric cancer detection using deep learning

Song et al.

Figure 1: Four examples of labelled WSIs. The WSIs underwent the three-step annotation procedure. We obtained similar annotation results repeating the procedure three times.

DeepLab v3 Inception v3 (stride: 320) Inception v3 (stride: 80)

Figure 2: Comparison between segmentation (DeepLab v3) and classification (Inception v3) models. a, The average prediction time for 10 slides with size around 500 MB (with 4 GPUs). For the segmentation model, in the inference stage, we used tiles of $2,000 \times 2,000$ pixels and a 10 percent overlap ratio. For the classification model, we used tiles of size 320×320 pixels with different strides. b, Several predicted heatmaps from the models, we could see that the segmentation model reveals more interpretable predictions.

Figure 3: **Patient-level data distribution of the daily gastric dataset. a**, Patient gender distribution. **b**, Patient age distribution.

Figure 4: Example WSIs digitalized by three different scanners from the daily gastric dataset. All the images were captured with a $20 \times$ objective. The slides were digitalized for ten times, and we obtained similar results.

Figure 5: Model performance on the daily gastric dataset.

Figure 6: Four examples of deep learning model predictions in the form of heatmaps.

(a) Heterotopic pancreas

(b) Distorted lymphoid follicle

(c) Disorientated and sloughing foveolar epithelium

(d) Trapped air bubbles

(e) Inflamed granulation tissue

(f) Fibrinoinflammatory exudates

(g) Shreddered section

(h) Carcinoma with co-existing stromal tumor

(i) Crushed tissue

(j) Thick section

(m) Hypertrophic myenteric plexus

(n) Defocused section

(o) Inflammatory infiltrates in edematous stroma

(p) Regenerative atypia accompanied by marked inflammation

Figure 7: More false-positive cases. The experiment was performed five times, and we obtained the same results.

Figure 8: Example WSIs with visual difference digitalized by KF-Pro-005 from three hospitals. PLAGH and PUMCH used automatic H&E staining with Leica AutoStainer XL in practice, while CHCAMS adopted automatic H&E staining with Roche Ventana HE 600. Significant visual difference could be found in the images. All the images were captured with a $20 \times$ objective. The slides were prepared three times from the same blocks, and we observed similar visual appearances.

PLAGH

Figure 9: Illustration of the test datasets.

Figure 10: iPad-based annotation system interface.

Figure 11: AI assistance system architecture.

GPU Number	Server Cost	Processing Capacity / 12 Hours
1	\$4,000	200 Slides
2	\$7,000	400 Slides
3	\$11,000	600 Slides
4	\$14,000	800 Slides

Figure 12: A complete cost analysis of the whole assistance system. The cost for the digital scanners were estimations of the current market price. The server hardware configuration was: [CPU] Intel Core i7, [Memory] 32GB, [Solid State Disk] 1TB, [Hard Disk Drive] 10TB, [GPU] NVIDIA Tesla P100. The cost of the diagnostic system was not included.

Figure 13: The interface of the AI assistance system used in the internal examination. The inference was performed five times, and we obtained the same result.

Table 1: Abbreviations of tumour subtypes.

HGIN	High grade intraepithelial neoplasia
TAC	Tubular adenocarcinoma
MucAC	Mucinous adenocarcinoma
PCC	Poorly cohesive carcinoma
MixAC	Mixed adenocarcinoma

Name	Position	Education	Experience (year)	Role
Huaiyin Shi	Chief Pathologist	PhD	31	Final check
Zhigang Song	Associate Chief Pathologist	Master	16	Final check
Zhanbo Wang	Associate Chief Pathologist	Master	16	Labelling
Jing Yuan	Associate Chief Pathologist	PhD	16	Labelling
Chunkai Yu	Associate Chief Pathologist	PhD	16	Labelling
Yong Huang	Attending Pathologist	PhD	19	Labelling
Jinhong Liu	Attending Pathologist	PhD	16	Labelling
Xiaohui Ding	Attending Pathologist	Master	16	Labelling
Xin Chen	Attending Pathologist	Master	7	Labelling
Wei Jin	Attending Pathologist	Master	7	Labelling
Xiangnan Gou	Attending Pathologist	Master	7	Labelling
Liwei Shao	Attending Pathologist	Master	4	Labelling

Table 2: Details of annotation pathologists.

Predictor	AUC	Sensitivity	Specificity	Accuracy
Random forest	0.973	0.986	0.623	0.790
Top 10 probabilities	0.983	0.986	0.532	0.753
Top 100 probabilities	0.983	0.986	0.571	0.773
Top 200 probabilities	0.982	0.986	0.604	0.790
Top 500 probabilities	0.985	0.986	0.636	0.807
Top 1,000 probabilities	0.988	0.986	0.740	0.860
Top 2,000 probabilities	0.983	0.986	0.734	0.857
Top 5,000 probabilities	0.979	0.986	0.721	0.850
Top 10,000 probabilities	0.976	0.986	0.675	0.827

Table 3: Performance of different slide-level prediction approaches on the validation dataset.

 Table 4: Performance of different classification and segmentation models for patch-level

 classification on the validation dataset.

Deep learning model	AUC	Sensitivity	Specificity	Accuracy
ResNet-50	0.853	0.779	0.777	0.778
Inception v3	0.887	0.864	0.765	0.806
DenseNet	0.834	0.804	0.713	0.750
U-Net	0.779	0.950	0.369	0.550
DeepLab v2	0.884	0.918	0.710	0.775
DeepLab v3	0.945	0.944	0.780	0.833

Digital scanner	Total	Malignant	Benign	AUC	Accuracy	Sensitivity	Specificity
KF-PRO-005	403	80	323	0.995	0.950	1.0	0.938
Hamamatsu NanoZoomer S360	1832	352	1480	0.982	0.781	1.0	0.728
Ventana DP200	677	200	LTT	0.992	0.918	0.995	0.898

Table 5: Model performance on the daily gastric WSI digitalized by three scanners.

performance (average)	Spec. Time (min) Acc. Sen. Spec. Time (min)	0.778 44	0.903 51 0.000 0.001 0.001	0.903 72 0.821 0.801 23.30	0.861 47	0.972 48	0.903 45	0.861 52 0.843 0.909 0.903 48.23	0.875 48	0.958 41		0.792 47 COSU 9000 0.000 74 COSU 0.792 47	
Indiv	Acc. Se	.820 0.93	.870 0.79	.830 0.6	.880 0.93	.820 0.43	.860 0.7:	.860 0.8.	.840 0.7:	.910 0.7	.850 0.7	.840 0.9	
		9 (8 () 6	10 () 0	2 (11 (1 (5 (4 (3 (
				Microscope	I			Digital			Ĭ	W	

Table 6: Pathologists' performance in the trainees' examination with one hour constraint.

Individual performance Group performance (average)	Acc. Sen. Spec. Time (min) Acc. Sen. Spec. Time (min)	1 0.820 0.929 0.778 60	2 0.880 0.893 0.875 75	7 0.810 0.964 0.750 60 0.810 0.911 0.771 59.25	11 0.730 0.857 0.681 42	8 0.820 0.821 0.819 30	5 0.910 0.821 0.944 46	4 0.840 0.893 0.819 41 0.855 0.857 0.893 0.819 41	3 0.840 0.893 0.819 43	6 0.860 0.893 0.847 61		10 0.920 0.857 0.944 53	
Lothod Comes accord	JIOUP HAILIC FAULU			viicroscope				Digital			Ĩ	AI	

Table 7: Pathologists' performance in the trainees' examination without time constraint.

Table 8: Distribution of benign and malignant cases and tumour subtypes in the datasets by individual patient.

, L	c	f			Tu	mour subt	ype	
Dataset	Specimen	Benign	Malignant	HGIN	TAC	MucAC	PCC	MixAC
E	Biopsy	440	102	22	59	21	0	0
Iraining	Surgical	50	908	151	579	176	9	51
E	Biopsy	114	32	2	21	0	2	7
I raining (random lorest)	Surgical	14	52	5	42	2	1	8
	Biopsy	119	60	0	27	6	13	14
уандацоп	Surgical	7	86	7	51	8	12	15
-	Biopsy	68	27	3	20	0	7	0
Internal examination	Surgical	4	1	0	1	0	0	0
UII I	Biopsy	30	12	0	11	0		0
ППС	Surgical	1	6	0	6	0	0	0
	Biopsy	1599	61	12	42	4	2	10
Daily gasure (PLAGH)	Surgical	36	118	16	83	6	4	25
	Biopsy	330	14	5	10	0	0	0
Muluceline (FUMCA)	Surgical	3	8	0	9	0	0	5
	Biopsy	396	59	9	51	0	3	5
Muluceline (ChCAIMS)	Surgical	15	71	7	49	1	3	19

Table 9: Distribution of benign and malignant cases and tumour subtypes in the datasets by individual slide.

Ĺ	c	¢	-		Tu	mour subt	ype	
Dataset	Specimen	benign	Malignant	HGIN	TAC	MucAC	PCC	MixAC
E	Biopsy	639	102	22	59	21	0	0
Iraining	Surgical	93	1,289	242	760	274	11	63
	Biopsy	169	39	4	26	0	2	7
I familing (random torest)	Surgical	215	314	54	268	4	2	42
	Biopsy	143	60	0	27	9	13	14
уандацоп	Surgical	11	86	5	51	8	12	15
	Biopsy	68	27	3	20	0	7	0
Internal examination	Surgical	4	1	0	1	0	0	0
CIE	Biopsy	50	22	0	23	0	1	0
THC	Surgical	7	20	0	25	0	0	0
	Biopsy	2,085	124	20	93	5	8	6
Daily gasure (PLAGH)	Surgical	495	508	51	354	26	22	118
	Biopsy	496	30	7	24	0	0	0
Muluceline (FUMCA)	Surgical	27	42	0	38	0	0	4
	Biopsy	685	81	20	68	0	5	8
Multicente (CHCAIMS)	Surgical	67	154	9	105	3	9	43

Deep learning model	Training iteration	Batch size	Learning rate	Decay step (by 0.5)
ResNet-50	145,000	10×4	2×10^{-3}	20,000
Inception v3	51,000	32×4	1×10^{-3}	10,000
DenseNet	165,000	20×4	2×10^{-3}	20,000
U-Net	75,000	20×4	2×10^{-3}	20,000
DeepLab v2	189,000	10×4	2×10^{-3}	20,000
DeepLab v3	95,000	32×4	1×10^{-3}	20,000

Table 10: The detailed training configurations for different deep learning models.

Table 11: Features used for the random forest model. The eccentricity, extend, major axis length, and solidity are defined as ellipse with the same second moment, ratio of the region area over the bounding box, length of the major axis of the ellipse with the same normalized second central moment, and ratio of the region area over the surrounding convex, respectively.

Number	Feature definition
1-5	Ratios of cancer to tissue (thresholds: 0.5, 0.6, 0.7, 0.8, 0.9)
6-10	Ratios of probability sum of cancer to tissue (thresholds: 0.5, 0.6, 0.7, 0.8, 0.9)
11-14	Largest area, eccentricity, extend, and bounding box area
15	Major axis length
16-17	Maximum/minimum probability in the region
18	Largest mean probability in the region
19	Aspect ratio of the bounding box
20	Solidity
21-24	Second largest area, eccentricity, extend, and bounding box area
25	Minor axis length
26-27	Second maximum/minimum probability in the region
28	Second largest mean probability in the region
29	Aspect ratio of the bounding box (second largest)
30	Second largest solidity